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ABSTRACT

The natural multiply and accumulate feature of memristor crossbar
arrays promises unprecedented processing capabilities to resistive
dot-product engines (DPEs), which can accelerate approximate
matrix-vector multiplication. To overcome the challenges of low-
precision devices and voltage drop over non-zero array parasitics,
each matrix element can be represented using two memristors. In
this paper, we propose differential pair map (DP-MAP) — the first
matrix to memristor conductance mapping algorithm specifically
designed for crossbars with a differential pair configuration. In con-
trast, previous works consider the differential pair configuration as
an afterthought, which limits the achievable precision. The specified
conductance values are next programmed to the memristor hard-
ware using accurate closed-loop tuning. Analog computation with
high precision is attained by judiciously selecting the conductance
range and avoiding to explicitly decompose each matrix into a pos-
itive and negative component. Short run-time is achieved using a
hierarchical optimization algorithm and two speed-up techniques.
Compared with earlier studies, the computational accuracy is im-
proved with 3.36X. This translates into signal and image compres-
sion with 61% and 94% higher quality, respectively. The simulation
time of complex physical systems modeled using partial differential
equations (PDEs) is reduced with 5.87X.

1 INTRODUCTION

Memristor crossbar arrays have attracted significant interest due
to their natural ability of carrying out matrix-vector multiplica-
tion in a single time-step, which is the dominating workload for
many important applications [6, 17, 18]. By applying a vector of
voltages to the rows of a crossbar array, multiplication with the
memristors conductance values is performed using Ohm’s law and
summation of currents along the columns is performed using Kirch-
hoft’s current law, i.e., matrix-vector multiplication is performed in
the analog domain. Recent hardware prototypes have shown that
the analog computation is orders of magnitude more efficient than
using highly optimized digital ASICs [6].

The main challenge of utilizing memristor crossbars as dot-
product engines (DPEs) is that the computational accuracy may be
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degraded by parasitics, low-precision devices, and various sources
of variations. Specifically, the accuracy may be severely impacted by
voltage [R-drop over non-zero array parasitics [12], which allows
currents to flow from an input to an output using multiple alterna-
tive paths within a crossbar. This is related to but not equivalent to
the sneak path problem for memory applications [20]. Moreover, the
issue cannot be easily solved using selector devices or access tran-
sistors. Errors within analog computing paradigms are particularly
challenging because every error directly impacts the application-
level functional correctness [23]. In contrast, variations in digital
computing systems mainly introduce timing violations, which can
be alleviated by scaling down the clock frequency. Consequently, a
technique for mapping matrix-vector multiplication operations to
DPEs is needed, which has been the focus of several studies.

Researchers have proposed hardware and software based train-
ing schemes for deep learning applications [5, 9, 13, 15]. How-
ever, training based approaches results in high power consump-
tion [13, 15] or are limited to 64x64 crossbars [5, 9]. Prominent
architectural level studies attempt to circumvent the problem by
utilizing bit-slicing and reduction networks [1, 2, 4, 16]. Neverthe-
less, such architectural level schemes are significantly less efficient
because each matrix-vector multiplication operation is decomposed
across multiple crossbars and multiple time-steps. To maximize the
power-efficiency, many recent algorithm level studies are focused
on mapping a matrix A into appropriate memristor conductance val-
ues g while accounting for the voltage drop over non-zero parasitics.
Many initial studies only captured the output sensing resistance and
omitted the array parasitics [7, 19]. More recently, mapping algo-
rithms that account for all non-zero parasitics have been proposed
based on steepest gradient descent [12, 24] and Newtons method [8].
Although these algorithms result in improved computational accu-
racy, the precision is unacceptable for many real-world applications.
To boost the computational accuracy, each matrix element can be
represented using two (or multiple) devices [7]. When leveraging
crossbars with a differential pair configuration, the target matrix A
is decomposed into a positive and negative component A, and A_.
Next, the separate components are mapped to a crossbar using one
of the developed mapping algorithms. Unfortunately, it can easily
be observed that considering the differential pair configuration as
an afterthought limits the achievable computational accuracy. In
this paper, we propose differential pair map (DP-MAP) — the first
matrix to memristor conductance conversion algorithm specifically
designed for crossbars with a differential pair configuration. The
main innovations of DP-MAP are:

o The precision is improved with 3.36X by avoiding to de-
compose A into A4 and A_ explicitly. Instead, the difference
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between A and the matrix realized by the crossbar A is di-
rectly minimized by iteratively updating the conductance
of one memristor in each differential pair. Moreover, the
conductance range is judiciously selected by minimizing the
gap between a lower and upper bound on ||A — A7||2.

o The overall run-time is reduced with 12X by leveraging a
hierarchical algorithm and two speed-up techniques.

o The application level evaluation demonstrates that DP-MAP
improves the quality of signal and image compression appli-
cations with 61% and 94%, respectively. When resistive DPEs
are used to accelerate the simulation of physical systems,
the simulation time is on the average reduced with 5.87X.

The remainder of the paper is organized, as follows: preliminaries
in Section 2. Motivations in Section 3. The DP-MAP methodology
is given in Section 4. Speed-up techniques in Section 5. The experi-
mental evaluation in Section 6 and conclusions in Section 7.

2 PRELIMINARIES
2.1 DPE friendly Applications

The following applications are candidates for acceleration using
resistive DPEs. Signal compression: from the time domain into
the frequency domain is performed using a matrix-vector multipli-
cation, ¢ = Dx, where D is the DCT matrix. x and ¢ are respectively
the time and frequency representation of a signal in vector form.
Image compression: from the spatial domain into the frequency
domain is performed using C = DT XD, where D again is the DCT
matrix. X and C are the spatial and frequency representation of
an image, respectively. Simulation of physical systems: is per-
formed by modeling the system using partial differential equations
(PDEs). In every time step, a sparse system of linear equations is
required to be solved. State-of-the-art solvers for sparse systems of
linear equations are based on Krylov subspace methods, where the
dominating computation involves computing a new search vector
using a matrix-vector multiplication operation.

2.2 Matrix-vector multiplication using DPEs

Memristor crossbars have attracted significant attention for their
potential to accelerate approximate matrix-vector multiplication
(Ax = y). A memristor crossbar consisting of wordlines and bit-
lines with a memristor and an access transistor in each cross-point
is illustrated in Figure 1(a). Analog matrix vector multiplication,
vgut = viTnGRs, is performed using the natural multiply and accu-
mulate feature of the crossbar, where G is the conductance matrix
of the resistive network shown in Figure 1(b). R is the feedback
resistance of the transimpedance amplifiers (TIAs). The inputs and
outputs are converted between the analog and digital domain using
DACs and ADCs, respectively. When a crossbar with a differential
pair configuration is used, the ADCs measure the difference in the
output voltage between pairs of adjacent bitlines.

When the memristor crossbar is ideal, the memristor conduc-
tance values g can be obtained by mapping the matrix A linearly
into the programmable conductance range [gmin, Gmax]- As the
conductance values cannot be negative, A is decomposed into a
positive and negative component A, and A_ before the mapping.
Next, the conductance values specified in software are programmed
to the memristor hardware using closed-loop tuning. The accuracy
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Figure 1: (a) Memristor crossbar with a differential pair

configuration for matrix-vector multiplication. (b) Resistive
network and conductance matrix realized by the crossbar.

of the tuning is called write accuracy, which is measured in bits. A
write accuracy of 6 to 7 bits has been reported in [6, 8].

Unfortunately, it has been shown that a linear mapping results
in unacceptable computational accuracy when non-zero parasitics
(input, output, wire resistance) and the write accuracy is consid-
ered [8]. Consequently, a conversion algorithm is required to map
an arbitrary matrix A into appropriate conductance values g such
that the matrix realized by the crossbar A” is similar to A.

2.3 Matrix Realized by a Memristor Crossbar

In this section, it is explained how the matrix A" realized by a
crossbar is computed. The relation between the input voltages and
the output voltages of the resistive network in Figure 1(b) can be
obtained through modified nodal analysis (MNA), as follows:

Uxbar 0
Y(g) Udac | = |Vin| (1)
iout 0

where Y(g) is matrix with dimensions (2NM+M+n)x(2NM+M+N)
that is a function of g. The detailed definition of Y(g) is provided
in [12]. Uxpq, and vy, are the node voltages within the crossbar
and the DACs, respectively. ioy ¢ are the output currents. Next, the
conductance matrix G is obtained, as follows:

G =8y Y¢)B, )

where B = [0,1,0]7 is amatrix with dimensions (2NM+N +M)x(M)
and I is an MxM identity matrix. § = [0, 0, I] is a selection matrix
with dimensions (N)x(2NM + N + M). The matrix is used to select
the output currents from Y(g)~!B. Next, the matrix realized by the
crossbar A" is obtained, as follows:

A" =(Gy -G )/a, ®)

where « is a scaling factor that captures the feedback resistance of
the TIAs and the scaling of the DACs and ADCs. G, (G-) denotes
the odd/positive (even/negative) columns of G.

2.4 Problem formulation

This paper addresses the problem of mapping an arbitrary matrix
Ainto a scaling factor ¢ and memristor conductance values g for
crossbar with a differential pair configuration. The objective is to
maximize the computational accuracy while accounting for voltage
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Table 1: Comparison of DP-MAP with state-of-the-art mapping algorithms.

Work in Optimization techniques Overall performance
Differential pair Optimization Optimization Speed-up of || Precision | Run-time
decomposition of ofg computing G
[7,19] afterthought fixed - no very low short
[12] afterthought fixed gradient decent no low slow
[24] afterthought heuristic gradient decent no low very slow
(8] afterthought e heuristic no medium short
| DP-MAP ||~ by design | gap minimization | hierarchical optimization |~ yes || high | “short |

drop over non-zero array parasitics and the write accuracy. The
key is to formulate and solve a mathematical optimization problem.

The matrix to crossbar mapping problem: consists of speci-
fying the conductance values g and the scaling factor ¢ that mini-
mize the Frobenius norm between a target matrix A and the matrix
realized by the crossbar A", as follows:

min ||A” — Al|%, @
ga

where the realized matrix A” is obtained from g and & using Eq (2)
and Eq (3). The scaling factor « has units siemens and can be set to
any real number. The conductance values g are a discrete variable
with 2P states between the minimum and maximum programmable
conductance g, i and g4y, respectively. b is the memristor write
accuracy. The ||.||? operator is the square of the Frobenius norm.

2.5 Previous work

A comparison between DP-MAP and previous work is shown in
Table 1. The mapping algorithms in [7, 19] are fast but result in
low computational accuracy because they do not capture the array
parasitics. The methods in [12, 24] are based on minimizing the
objective ||A” — A||2. However, the computational accuracy is low
because the differential pair decomposition is considered as an
afterthought. Moreover, the run-time of the mapping algorithms are
slow. In [8], a mapping algorithm with short run-time that results
in medium computational accuracy was proposed. However, the
precision is only medium because the differential pair configuration
was considered as an afterthought and the method is not based
on minimizing ||A” — A||2. DP-MAP achieves high computational
accuracy while the run-time is relatively short.

3 DP-MAP: INSIGHTS AND MOTIVATIONS

In this section, we provide the insights and motivations for the
DP-MAP framework. We analyze how to solve two precision bot-
tlenecks and two run-time bottlenecks.

Precision bottleneck 1: The explicit (afterthought) decompo-
sition of A into A, and A_ significantly degrades the achievable
computational accuracy. This stems from that it is impossible to
realize small elements at certain locations in a crossbar, which is
illustrated with an example in Figure 2. The matrix in Figure 2(a) is
decomposed into positive and negative component in Figure 2(b).
The transpose is mapped to the crossbar in Figure 2(c). Next, con-
sider multiplying the matrix with an input vector [0, 0.2, 0, 0]. The
ideal outputvector is [0.2, 0], i.e., the net output current from bitline
three and four should be close to zero. However, due to the matrix
data pattern and the non-zero array parasitics, it can be observed
that there is significant output current on bitline three. Moreover,

the state-of-the-art techniques cannot eliminate the output current
by tuning the memristor at row two and column three (2,3) to be
less conductive, which is a result of the explicit decomposition.
DP-MAP reduces the net output current by tuning the memristor
of the negative component at (2,4), which is shown in Figure 2(d).

* low conductance cannot reduce
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Figure 2: (a) 2x4 matrix. (b) Differential pair decomposition
into a 4x4 matrix. (c) Transpose mapping to crossbar. The net
output current from column three and four is too large. The
current cannot be reduced by tuning the memristor at (2,3)
to be less conductive. (d) DP-MAP reduces the net current by
tuning the memristor at (2,4) to be more conductive.

Precision bottleneck 2: The parameter ¢ implicitly regulates
the utilization of the conductance range. A large o implies that the
entire programmable conductance range is used, which minimizes
the write errors introduced by the limited write precision. However,
a large « introduces significant voltage IR-drop over the non-zero
parasitics, which may result in large value range errors, i.e., that con-
ductance values are attempted to be specified outside [gmin, gmax]-
In [24], it was observed that the errors in Eq (4) were close to mini-
mal when the write errors (evrize) Were equal to the value range
errors (€,41y¢ ) However, the parameter ¢ was optimized using a
heuristic. DP-MAP optimizes « judiciously through a binary search
that minimizes the gap between a lower and upper bound on the
errors in Eq (4).

Run-time bottleneck 1 and 2: Intuitively, the objective ||A” —
A||? is required to be optimized in order to achieve high computa-
tional accuracy. An overview of the flow of the mapping algorithm
in [24] and DP-MAP is shown in Figure 4. The mapping algorithm
in [24] decouples the optimization of ¢ and g. The left loop is used
to minimize ||A” — A[|? by optimizing ¢. Given an ¢ value, the right
loop is used to minimize ||A” — A||? by optimizing g using steepest
gradient descent. The figure shows that the right loop is performed
many times and each iteration takes long run-time. The run-time is
dominated by the computation of the conductance matrix G using
Eq (2). Consequently, the overall run-time is many*long.

DP-MAP overcomes the run-time bottleneck using a i) hierar-
chical algorithm and ii) speed-up techniques for computing G. The
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Figure 4: (a) Flow in [24] and (b) flow of DP-MAP framework.

hierarchical algorithm reduces the number of times the conduc-
tance matrix G is required to be calculated. Instead of optimizing
the conductance values g to minimize ||A” — A||2, the conductance
values are optimized to deliver a target current i’ through each
memristor device. Next, given «, the target currents i* are calibrated
with respect to the difference between A and A”. This results in
that the number of times G is required to be computed is reduced
from many to several in Figure 4. Moreover, DP-MAP speeds-up
the calculation G itself. This is achieved by avoiding a significant
amount of redundant computation by reordering linear algebra op-
erations. This explains why the computation of G in Figure 4(b) is
labeled with medium run-time. Consequently, the overall run-time
is reduced from many~long to several’'medium.

4 THE DP-MAP METHODOLOGY

An overview of the proposed flow of DP-MAP is shown in Figure 3.
The input is a matrix A. The output is the conductance values g, the
scaling factor &, the conductance matrix G, and the realized matrix
A". The DP-MAP algorithm consists of three hierarchical steps, i.e.,
a top-level, a mid-level, and a bottom-level step.

The top-level optimization is called “Scaling factor optimization”
and is described in Section 4.1. The objective is to determine the

scaling factor ¢ that minimizes ||A” — A||. The top-level step uses
the mid-level step to determine the conductance values g with re-
spect to an ¢ value. The conductance values g directly define A"
using «, Eq (2), and Eq (3). The mid-level step is called “Target
current calibration” and it is invoked from the top-level. The objec-
tive is to determine the target current i* delivered through each
memristor device with respect to the target conductance matrix
Gt = aA(,_y and a calibration vector v, oy, where A(, _y is a matrix
with the rows in A, and A_ interleaved as shown in (a) and (b) of
Figure 2. The specifics of the target current calibration are given in
Section 4.2. The bottom-level step is called “Conductance tuning”
and it is invoked from the mid-level. The objective is to determine
the conductance values g that deliver the target currents i’ through
the memristors with respect v, ,;, which is detailed in Section 4.3.

4.1 Scaling factor optimization

The scaling factor optimization is shown in Figure 3(a). The ob-
jective is to determine the scaling factor « that minimizes Eq (4)
given the matrix A. The trend of the value range, write, and total
errors with respect to the scaling factor o is shown in Figure 5(a).
The value range errors (€, ,7,.) are defined to be ||A” — A|| while
treating g as a continuous variable between [gmin, gmax]- The total
errors (€01 41) are defined to be || A" — A|| after g has been quantized
(to 2P states) to capture the write errors. The write errors (€yrize)
are equal to €;0747 — €y alue- Based on the figure, it can be observed
that the total errors are minimized when €y ite ~ €, 41ye- Conse-
quently, the optimal value of & can be determined using a binary
search. First, we guess an ¢y and oy that satisty €y rire < €xqlue
and ewrite > €pqlye, respectively. Next, the mid-level target cur-
rent calibration is invoked to determine €,,ite and €47, With
respect to ey = (ap +azr)/2. Based on the ratio of €, 47,0 L0 Evrite,
ap, or eg is updated, follows:

aL = O, Ewrite < €pglues (5)

O = O, Ewrite > €pglue-

The currently best observed solution is naturally an upper bound
on the total errors. Similarly, a lower bound on the total errors
is the value range errors for ey plus the write errors for ay. In
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Figure 5(b), we show that the gap between the lower and upper
bound is reduced in each iteration of the binary search. The top-
level flow is terminated when the gap between the lower and the
upper bound is smaller than ¢;,;.

-8 Value range errors—-Write errors 8 Upper bound —#-Lower bound

Total errors 100
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~
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Figure 5: (a) Write, value, and total errors. (b) Narrowing of
gap between the lower and upper bound on the total errors.

4.2 Target current calibration

In this section, the target currents i’ delivered through the mem-
ristor devices are determined with respect to a target conductance
matrix G! and a calibration vector v,,;, which is shown in Fig-
ure 3(b). Let an ideal crossbar have zero input, output, and wire
parasitics, i.e., the voltages applied to the wordlines are applied
across each memristor device. Let the conductance matrix of the
ideal crossbar be denoted Gg. Gy is initialized to G*. The target
currents i’ are obtained by applying a calibration vector v,4; to the
ideal crossbar programmed with G. An arbitrary uniform vector
is used as vy, i.e., all the entries in the vector have the same mag-
nitude. Next, the bottom-level conductance tuning step is used to
determine the conductance values g that deliver the target currents
it through the memristor devices in a crossbar with parasitics. Us-
ing the determined conductance values g, the realized conductance
matrix G is computed using Eq (2) and the error AG is computed
as AG = paired(G" — G) = (G - GL) - (G4 — G-), L.e., the posi-
tive minus the negative components of both G* and G. If the error
[|AG]||? is reduced from the previous iteration, G is updated to
Gy 1. Otherwise, the mid-level step is terminated and g is returned
to the top-level. The update of G to Gg 4 is performed by first
setting Gy, equal to Gg. Next, half of the elements in Gy, are
updated based on AG using the flow in Figure 6. The algorithm
ensures that i) one memristor in each pair has the conductance gmin
and ii) the conductance of only one memristor in each pair is updated
in each iteration. Next, the flow is repeated with the new ideal con-
ductance matrix Gy, ;. Experimentally, we have observed that the
flow quickly converges to a solution with small errors. Despite that
it is an ideal conductance matrix that is updated, the step is called
target current calibration because Gy and v, ,; uniquely define i’.

4.3 Conductance tuning

In this section, the conductance values g are specified to deliver the
target currents i’ through the memristor devices, which is shown
in Figure 3(c). The conductance values are determined using an
iterative approach because it may be impossible to deliver the target
currents i* through the memristors while the conductance values g
are between [gmin, gmax]- Let iy be the target currents in iteration
k and iy is initialized to i*. The conductance values g are specified
by reformulating the system of linear equation in Eq (1) to capture

increase neg. component in Gy, with Ag
positive component

equal to g,n?

reduce pos. component in G, with Ag

for every Ag

in AG increase neg. component in Gy, with Ag

negative component
equal to g,n?
reduce pos. component in G,4; with Ag

Figure 6: Flow for updating G;. to G, based on AG. Ag is an
element in AG. The update ensures that one memristor in
each pair has the minimum conductance and that only one
memristor in each pair is updated in each iteration.

the currents flowing through the memristors using the right hand
side, as follows:

—iy
_ Uxbar i
=15 ©)
Udac Ucal
iout 0

where i are the target currents; v,y is the input calibration vector
used to determine the target currents. Y is a matrix with the same
dimensions as Y(g) in Eq (1) but it is not a function of g. Based
on Eq (6), the conductance values g and the voltage across each
resistive device v, are determined, as follows:

—iy
[g] -py | 'k @)
Ur Ucal

0

where D is a matrix with dimensions (2MN)x(2MN + N + M). The
matrix D is a function of iy. Note that ?_1[ik, ~igsVpqr» 0]7 can
be computed extremely efficiently using LU factorization. This
stems from that the target currents decouple each of the wordlines
and bitlines in Y. Consequently, Y is a block-wise matrix with
(N + M) subblocks, which the LU factorization can be solved for
independently. If the obtained conductance values g satisfy the
lower and upper bounds, the flow converges and the g is returned.
In this paper, we propose to update the target currents iz to i ¢
such that it is expected the conductance values obtained using Eq (7)
are within the programmable conductance range. The update is
performed by setting conductance values in g that are outside g,
and gmax t0 gmin and gmax, respectively. Next, the voltage across
each memristor in the crossbar (v;) is assumed to be fixed and the
new target currents iy, are obtained as ix,; = v, - g. Here, ‘-
denotes an element-wise multiplication of the vectors g and v;.

5 SPEED-UP OF DP-MAP

In this section, we propose a technique to further speed-up the
run-time of DP-MAP. We focus on the computation of G because
it stands for between 90% to 99% of the total run-time. The con-
ductance matrix G is computed by solving Eq (2) using sparse LU
factorization with pivoting, as follows:

G=SoUuT'L"pB (8)

where P and Q are permutation matrices. L and U are respectively
a lower and upper triangular matrices. The expression is evaluated
from right-to-left. First, Ty = L™1(PB) is computed using forward
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substitution. Next, T; = U™'Ty is solved using backward substitu-
tion. Lastly, G is computed using G = SQT;.

We propose to reduce the run-time by (i) permuting the order
linear algebra operations and (ii) avoiding redundant computation.
The first speed-up is obtained by computing SQT; from left-to-right
instead of from right-to-left. This reduces the run-time significantly
because S only has N non-zero entries. The matrix dimensions are
also smaller than of T;. The reordering results in that Q permutes
the elements in S to form a new selection matrix S = SQ. S is used
to select N rows in Ty. Next, we turn our attention to avoiding to
perform redundant computation by exploiting the structure of S.S
is an (N)x(2NM + N + M) matrix with only N non-zero elements.
Let r be the number of columns starting from the first in S that
only contain zeros. It can be observed that the top r rows of T;
are not used, which is illustrated in Figure 7(a). Consequently, the
top r rows in T are not required to be computed when solving
T, = U~'Ty, which is illustrated in Figure 7(b). Therefore, the
matrices S, U, Ty, and T, can be reduced to S, Uy, Ty, and Ty, by
removing rows and columns as illustrated in (a) and (b) of Figure 7.
Next, G can be computed as G = 7Svr(Ur_lTlr).

g T, r U T, T
(o] 3 ) ol e [
r _— not =
Tzr used T2r Tlr‘
@ (b)

Figure 7: (a) Exploiting the structure of S to reduce T; into Ty,
(b) Exploiting the structure of Ty, to reduce U and T; into U,
and Ty,, respectively.

In Figure 8(a), we show the breakdown of the run-time with
respect to the different steps of G for a crossbar with dimensions
256x256. The figure shows that the run-time of LU decomposition
and Ty = L7'PB are identical w/o the speed-up technique. The
run-time of computing G = SQT; (or S,QT;) is reduced close to
zero. The run-time of T, = U™y (or T = U_lTlr) is slightly
reduced. The impact of the techniques on the overall run-time of
computing G is shown in Figure 8(b). It can be observed that the
run time is reduced with 30% to 35% based on the crossbar size.

M Baseline  ® With speed-up

o W m— L = ——.

LU T1=L/P*rS) T2=U/T1 G=S*Q'T2 64x64 128x128  256x256
Operation

HBaseline  mWith speed-up

6 10

Run-time (s)
N S

Run-time (s)

o N B O

Crossbar size

@ (b)

Figure 8: (a) Run-time for computing G w/o speed-up for a
256x256 crossbar. (b) Speed-up of Eq (2) w.r.t the crossbar size.

6 EXPERIMENTAL EVALUATION

The experimental results are obtained using a quad core 3.4 GHz
Linux machine with 32GB of memory. DP-MAP is implemented in

MATLAB. Memristor crossbars with dimensions 64x64 to 256x256
are used in the evaluation. The crossbars have a wire resistance
rw=1€, and an input and output resistance are 100Q [6, 8]. The
programmable conductance range of the memristors is set to 2kQ
to 3MQ [8]. The maximum input voltage is 0.2V. The bit-accuracy
b of the closed-loop programming of the memristors is set to 6-
bits, which is modeled by quantizing the conductance values g to
2% states between the lower and upper bound, respectively. The
DAC/ADC domain interfaces are set to 8-bits. The computational
accuracy of the analog matrix-vector multiplication performed by
a DPE is evaluated using the conductance matrix obtained from
Eq (2), where g and « are obtained using DP-MAP.

Using the outlined setup, DP-MAP is compared with the previous
techniques in terms of matrix-vector multiplication in Section 6.1.
The capability of DP-MAP to accelerate signal/image compression
and the simulation of physical systems is evaluated in Section 6.2.

6.1 Evaluation of matrix-vector multiplication

The performance of DP-MAP is compared with previous works
in terms of matrix-vector multiplication in Figure 9. In particular,
we compare DP-MAP with a linear mapping, the mapping in [24],
and the mapping in [8]. The mapping algorithms are evaluated in
terms of normalized errors in Eq (4), maximum output error, and
run-time. The reported results are the averages with respect to
multiple matrices and several input vectors.

u DP-MAP
1000

0.001 ‘I 'I I-I

Error in Eq (4) Max output error
Performance Metric

M Linear In [24] min [8]

=
2 Q
o o

o
=

Norm. Performance
(log scale)
o
o
= =

Run-time

Figure 9: Comparison of different mapping techniques in
terms of normalized errors in Eq (4), maximum output er-
ror, and mapping run-time on a 128x128 crossbar.

The figure shows that DP-MAP archives 521X, 21X, 11X smaller
errors in Eq (4). Therefore, it is not surprising that the maximum
output errors are 26X, 3.87X, and 3.36X smaller. The improvement
in computational accuracy stems from that the use of two mem-
ristors in each differential pair is considered in the design of the
algorithm (see pairwise mapping in Figure 6) and judiciously select-
ing the conductance range. The run-time is 200X and 10X slower
than linear mapping and the mapping in [8], respectively. However,
we deem the run-time penalty very acceptable for a 26X and 3.36X
improvement in computational accuracy, respectively.

Next, we further evaluate the performance of DP-MAP in Fig-
ure 10. In Figure 10(a), we show the equivalent digital accuracy
for crossbars of different sizes while using both a single and two
memristors per matrix element. The equivalent digital accuracy is
obtained through regression with respect to the maximum error
of a fixed-point multiplier (where the matrix is represented using
one to eights bits). The figure shows that the equivalent digital
accuracy is gracefully degraded from 6.18 to 4.91 bits when the
dimensions of the crossbar is increased from 64x64 to 256x256. The
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Figure 10: (a) Equivalent digital bit-accuracy using differen-
tial pair and a single memristor per matrix element. (b) Run-
time with different configurations.

upper bound is seven bits, i.e., two memristors with six bits each. It
is very promising that the differential pair configuration improves
the digital bit-accuracy with more than one bit on the average,
which validates the effectiveness of the mapping algorithm. The
improvement is expected due to the occurrence and compensation
of non-desired currents as illustrated in (c) and (d) of Figure 2. The
run-time of DP-MAP for different crossbar sizes, w/o the hierarchi-
cal algorithm, and the speed-up technique is shown in Figure 10(b).
Compared with a baseline version where the conductance values
are tuned using steepest gradient descent, the hierarchical approach
reduces the run-time with about an order of magnitude. The speed-
up techniques further reduces the run-time with 32% on the average.
The run-time of DP-MAP is 0.04 min, 0.84 min, and 7.84 min for
crossbars of dimension 64x64, 128x128, and 256x256, respectively.

6.2 Application level evaluation

In this section, we evaluate the impact of using DP-MAP to program
the resistive DPEs used to accelerate signal compression, image
compression, and simulation of physical systems. We only compare
DP-MAP with the mapping algorithm in [8] because it is superior
to linear mapping and the mapping in [24].

6.2.1 Signal compression. In this section, we evaluate the appli-
cation level performance when a resistive DPE is used to perform
signal compression using 1D-DCT. The compression is performed
by first programming a 128x256 memristor crossbar with the DCT
matrix D [11]. Next, samples of the signals in Table 2 are con-
verted from the time domain to the frequency domain using a
matrix-vector multiplication operation. To improve the degree of
compression, frequency components are discarded such that only
99% of the signal energy is preserved [11]. Next, decompression is
performed using digital hardware. The compression is evaluated by
comparing the original signal with the decompressed signal. The
evaluation is performed in terms of mean square error (MSE) and
average bits per sample (BPS), respectively.

Table 2: Properties of input signals and input images [ 14].

1d Equation Samples | BPS Tmage Rows | Columns | BPP
(num) (name) | (num) (numy) (num)
1 sin(x) 128 8 bird 320 480 24
2 sin(2x) 128 8 lizard 320 480 24
3 sin(2x) + cos(x) 128 8 boat 320 480 24
4 | sin(x) + sin(2x) + sin(3x) 128 8 dolphine 320 480 24
5 sin(2x) + 0.2 sin(x) 128 8 geese 320 480 24

We compare the state-of-the-art method in [8] with DP-MAP
and DP-MAP+Q in Table 3. DP-MAP+Q is DP-MAP extended with

Table 3: Evaluation of signal compression in terms of map-
ping and application-level performance.

Signal Work Mapping Application
performance performance

FErrorin | Run-time || Quality | Compress-
(id) Eq (4) (s) (MSE) ion (BPS)
1 In [8] 1206.0 10.2 199.7 1.4
DP-MAP 19.9 105.3 92.4 1.4
DP-MAP+Q) 19.9 105.3 144.9 0.9

T2 ] T sl || 12060 [ T w02 24230 T 1]
DP-MAP 19.9 105.3 84.5 1.6
DP-MAP+Q) 19.9 105.3 150.2 1.1

T3 ] T sl T )| 12060 | T T 102 T 2118 | T T 14 ]
DP-MAP 19.9 105.3 100.3 1.4
DP-MAP+Q) 1206.0 10.2 143.7 0.9

[T 4T ] T sl )| 12060 | T T 102 T 1226 |7 T T 27 ]
DP-MAP 19.9 105.3 395 2.8
DP-MAP+Q) 1206.0 10.2 219.8 1.2

U5 ] T sl || 12060 [ T w02 1659 |0 T 15
DP-MAP 19:9 105.3 60.5 1.6
DP-MAP+Q) 0.0 0 119.8 1.1
Norm. In [8] 1.00 1.00 1.00 1.00
DP-MAP 0.02 10.32 0.39 1.04
DP-MAP+Q) 0.02 10.32 0.91 0.63

quantization of the frequency components, where the quantization
level is configured such that the signal quality in terms of MSE is
similar to in [8]. Quantization is a standard compression technique
within signal and image processing [11]. The mapping performance
is evaluated using errors in Eq (4) and run-time.

Compared within [8], it can be observed that DP-MAP reduces
the errors in Eq (4) with 98% at the expense of increasing the map-
ping time from a few seconds to just under two minutes. Note that
the improvement in errors in Eq (4) is highly dependent on the data
pattern of the matrix. On the application level, DP-MAP reduces
the MSE with 61% while achieving a 4% worse compression. When
quantization is applied to improve the degree of compression, i.e.,
DP-MAP+Q, the image quality is still 9% higher while reducing BPS
with 37% on the average. Compared with a digital ASIC [6], the
speed-efficiency product is improved with 500X.

6.2.2 Image compression. In this section, we evaluate the appli-
cation level performance when a resistive DPE is used to perform
image compression using 2D-DCT. A 64x128 crossbar arrays is
first programmed with a reconstructed DCT matrix as described
in [21, 22]. Next, the DPE is used to convert the images in Table 2
from the spatial domain to the frequency domain. Decompression
of the image is performed using digital hardware. We evaluate the
compression by comparing the original images with the decom-
pressed images. The evaluation is performed using mean square
errors (MSE) and bits per pixel (BPP). We again compare program-
ming the crossbar using the state-of-the-art technique in [8] with
DP-MAP and DP-MAP+Q. The mapping performance is evaluated
in terms of errors in Eq (4) and run-time.

Compared with the mapping in [8], DP-MAP and DP-MAP+Q
reduces the errors in Eq (4) with 99% at the expense of increasing
the mapping time from a few seconds to just under a minute. The
smaller errors translate into that the MSE is reduced with 94% while
the BPP is 10% higher. We speculate that the higher BPP stems from
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Table 4: Evaluation of image compression in terms of map-
ping and application level performance.

Table 5: Properties of five physical systems modeled using
PDEs from four different application domains [3].

Image Work Mapping Application
Performance Performance

Error Run-time || Quality | Compress-
(name) in Eq (4) (s) (MSE) ion (BPP)
bird In [8] 49.62 0.05 10.1 121
DP-MAP 0.27 0.57 0.9 14.0
DP-MAP+Q 0.27 0.57 10.1 59

| Tlizard” [ T InT8] T || T 4962 [ T T 005 || il |T T 126 ]
DP-MAP 0.27 0.57 0.8 143
DP-MAP+Q 0.27 0.57 10.8 6.4

| “boat | " InT8] " || 4962 |~ T o005 || 158 | 138
DP-MAP 0.27 0.57 0.7 151
DP-MAP+Q 0.27 0.57 121 7.5

| doiphine [ ~ InT8] ~ 4962 |~ 005 87 |~ 115
DP-MAP 0.27 0.57 04 12.2
DP-MAP+Q 0.27 0.57 11.2 6.6

| Tgeese | T In8] " || 496z | T Toos || T93 | T 93]
DP-MAP 0.27 0.57 04 10.0
DP-MAP+Q 0.27 0.57 7.8 5.1
Norm. In (8] 1.00 1.00 1.00 1.00
DP-MAP 0.01 12.59 0.06 1.10
DP-MAP+Q 0.01 12.59 0.97 0.53

that DP-MAP more accurately captures frequency components with
low magnitude. When quantization is applied, it can be observed
that DP-MAP+Q is capable of simultaneously improving image
quality with 3% and compression with 47%. Compared with per-
forming the compression using a digital ASIC the speed-power
efficiency is improved with 300X [6].

6.2.3 Simulation of physical systems. When simulating a physical
systems modeled using PDEs, a sparse system of linear equations
is required to be solved in each time-step. We follow the approach
of solving linear systems of equations using mixed-precision in-
memory computing paradigm detailed in [10]. The method is based
on utilizing a flow with an inner and outer loop. In the inner loop, an
approximate solution to Ax = r is determined using the conjugate
gradient method while leveraging low-precision resistive DPEs to
compute new search vectors using matrix-vector multiplication
operations. r is initialized to b in the first iteration of the outer
loop. Next, in the outer loop, the right hand side r refined based
on the residual r = Ax — b using high precision digital hardware.
Interestingly, the final precision is only limited by the precision of
the digital hardware and not the resisitve DPEs. The advantage over
digital implementations is that the number of high precision digital
matrix-vector multiplications is greatly reduced. We compare DP-
MAP with the state-of-the-art mapping in [8] and a digital approach
in Table 6 using the five systems in Table 5. We utilize the kernel
to crossbar mapping in [4] to decompose the sparse matrices to
crossbars of arrays of different dimensions. The tolerance on the
relative residual is set to 10715,

The table shows that DP-MAP reduces the errors in Eq (4) with
2.13X compared with in [8]. The reductions in errors are smaller
than for the other applications because the matrices are sparse and
easier to map. However, the run-time penalty of the mapping is also
smaller. On the application level, it can be observed that only four of

Id | Domain Matrix Properties Crossbar dimensions
Rows | Cols | Non-zero | 32x32 | 64x64 | 128x128
(num) | (num) (num) (num) | (num) | (num)

1 | economic | 2048 2048 11760 35 30 33

2 | acoustics 2048 2048 35012 84 35 64

3 | materials | 2048 2048 40722 123 21 122

4 | structural | 2048 2048 12074 102 15 58

5 | structural | 2048 2048 12142 89 15 39

the five systems converge to a solution with an error bellow the tol-
erance using the mapping in [8]. Moreover, the convergence of the
second system of linear equations is extremely slow. Consequently,
it is advantageous to utilize DP-MAP to perform the mapping. Com-
pared with a digital approach, the number of iterations is reduced
with 5.87X, i.e., the number of digital high precision matrix-vector
multiplication operations are reduced with 5.87X. This translates
into that the latency and energy is improved with a similar factor
because the computation in the inner-loop using the DPEs is almost
negligible compared with the outer-loop [10].

Table 6: Evaluation of simulation of physical systems in
terms of mapping and application performance.

Id Work Mapping Application
performance performance
Error in | Run-time || Converg | Relres Tter

Eq(4) (min) (ves/no) | (107%%) | (num)

1 Digital - - yes 0.21 205

In [8] 3.4 3.3 yes 0.65 51

DP-MAP 2.6 6.9 yes 0.11 28
|2 | Digital || T yes | 014 113

In [8] 78.4 8.7 yes 085 | 201

DP-MAP 30.5 23.7 yes 0.78 28
|3 | Digital || T yes | 072 79

In [8] 975 19.0 no 1013 i

DP-MAP 48.3 42.3 yes 0.92 35
| 4 | Digital || T yes | 094 61

In [8] 37.6 9.5 yes 0.07 6

DP-MAP 16.3 20.7 yes 0.05 6
|5 | Digital || T yes | 068 245 |

In [8] 39.1 95 yes 0.50 44

DP-MAP 16.1 21.2 yes 0.89 44

Norm. | Digital - - 5/5 5.87

In [8] 213 0.44 4/5 2.23

DP-MAP 1.00 1.00 5/5 1.00

7 SUMMARY AND FUTURE WORK

In this paper, we proposed DP-MAP for mapping arbitrary matrices
to memristor crossbars with a differential pair configuration. Com-
pared with state-of-the-art, the computational accuracy is improved
with up to 3.36X. This translates into significantly improved perfor-
mance for applications as signal compression, image compression,
and simulation of physical systems. In the future, we plan to further
improve the run-time and robustness to variations.
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