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Abstract
Convergence rates are established for an inexact accelerated alternating direction 
method of multipliers (I-ADMM) for general separable convex optimization with a 
linear constraint. Both ergodic and non-ergodic iterates are analyzed. Relative to the 
iteration number k, the convergence rate is O(1∕k) in a convex setting and O(1∕k2) 
in a strongly convex setting. When an error bound condition holds, the algorithm 
is 2-step linearly convergent. The I-ADMM is designed so that the accuracy of the 
inexact iteration preserves the global convergence rates of the exact iteration, lead-
ing to better numerical performance in the test problems.

Keywords  Separable convex optimization · Alternating direction method of 
multipliers · ADMM · Accelerated gradient method · Inexact methods · Global 
convergence · Convergence rates
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1  Introduction

We consider a convex, separable linearly constrained optimization problem

The authors gratefully acknowledge support by the National Science Foundation under Grants 
1819002 and 1819161, and by the Office of Naval Research under Grants N00014-15-1-2048 and 
N00014-18-1-2100.

 *	 William W. Hager 
	 hager@ufl.edu
	 http://people.clas.ufl.edu/hager/

	 Hongchao Zhang 
	 hozhang@math.lsu.edu
	 http://math.lsu.edu/~hozhang/

1	 Department of Mathematics, University of Florida, PO Box 118105, Gainesville, 
FL 32611‑8105, USA

2	 Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803‑4918, USA

http://orcid.org/0000-0003-3132-7017
http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-020-00221-y&domain=pdf


730	 W. W. Hager, H. Zhang 

1 3

where Φ ∶ ℝ
n
→ ℝ ∪ {∞} and � is N by n. By a separable convex problem, we 

mean that the objective function is a sum of m independent parts, and the matrix is 
partitioned compatibly as in

Here fi is convex and Lipschitz continuously differentiable, hi is a proper closed con-
vex function (possibly nonsmooth), and �i is N by ni with 

∑m

i=1
ni = n . There is no 

column independence assumption for the �i . Constraints of the form �i ∈ Xi , where 
Xi is a closed convex set, can be incorporated in the optimization problem by letting 
hi be the indicator function of Xi . That is, hi(�i) = ∞ when �i ∉ Xi . The problem 
(1.1)–(1.2) has attracted extensive research due to its importance in areas such as 
image processing, statistical learning, and compressed sensing. See the recent sur-
vey [2] and its references.

It is assumed that there exists a solution �∗ to (1.1)–(1.2) and an associated 
Lagrange multiplier �∗ ∈ ℝ

N such that the following first-order optimality condi-
tions hold: ��∗ = � and for i = 1, 2,… ,m and for all � ∈ ℝ

ni , we have

where ∇ denotes the gradient.
A popular strategy for solving (1.1)–(1.2) is the alternating direction method of 

multipliers (ADMM) [16, 17]: For i = 1,… ,m,

where � is a penalty parameter and L� is the augmented Lagrangian defined by

Early ADMMs only consider problem (1.1)–(1.2) with m = 2 corresponding to a 
2-block structure. In this case, the global convergence and complexity can be found 
in [12, 28]. When m ≥ 3 , the ADMM strategy (1.4) is not necessarily convergent 
[4], although its practical efficiency has been observed in many recent applications 
[40, 41]. Many recent papers, including [3, 5, 6, 11, 18, 24, 26, 27, 32, 33], develop 
modifications to ADMM to ensure convergence when m ≥ 3 . The approach we have 
taken employs a back substitution step to complement the ADMM forward substitu-
tion step. This modification was first introduced in [26, 27].

(1.1)min Φ(�) subject to �� = �,

(1.2)Φ(�) =

m∑
i=1

fi(�i) + hi(�i) and �� =

m∑
i=1

�i�i.

(1.3)⟨∇fi(�∗i ) + ��

i
�∗, � − �∗

i
⟩ + hi(�) ≥ hi(�

∗
i
),

(1.4)

{
�k+1
i

∈ arg min
�i∈ℝ

ni
L�(�

k+1
1

,… , �k+1
i−1

, �i, �
k
i+1

,… , �k
m
,�k),

�k+1 = �k + �(��k+1 − �),

(1.5)L�(�,�) = Φ(�) + ⟨�,�� − �⟩ + �

2
‖�� − �‖2.
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Much of the CPU time in an ADMM iteration is associated with the solution of 
the minimization subproblems. If m = 1 , then ADMM reduces to the augmented 
Lagrangian method, for which the first relative error criteria based on the residual 
in an iteration emanates from [37], while more recent work includes [13, 39]. For 
m = 2 or larger, inexact approaches to the ADMM subproblems have been based on 
an absolute summable error criterion as in [9, 12, 19], a combined adaptive/absolute 
summable error criterion [31], a relative error criteria [14, 15], proximal regulariza-
tions [7, 25], and linearized subproblems and reduced multiplier update steps [30].

The approach taken in our I-ADMM emanates from our earlier work [10, 20, 
21] on a Bregman Operator Splitting algorithm with a variable stepsize (BOSVS) 
with application to image processing. In the current paper, the penalty term in the 
accelerated gradient algorithm of [21] is linearized so as to make the solution of 
the I-ADMM subproblem trivial; there is essentially no reduction in the size of the 
multiplier update step. The I-ADMM is designed so that the accuracy of the inexact 
solution of the ADMM subproblems is high enough to preserve the global conver-
gence rates of the exact iteration. The global convergence results for I-ADMM are 
similar to those presented in [21]. However, there is no convergence rate analysis 
in [21]. In this paper, we focus on the convergence rate of I-ADMM. In particu-
lar, relative to the iteration number k, the convergence rate for I-ADMM is O(1∕k) 
for ergodic iterates in the convex setting and O(1∕k2) for both ergodic and noner-
godic iterates in a strongly convex setting. When an error bound condition holds, 
I-ADMM is 2-step linearly convergent. These convergence rates are consistent with 
those obtained for ADMM schemes that solve subproblems exactly including the 
O(1∕k) rates in [28, 35, 38] for ergodic iterates, and the linear rates obtained in [23, 
42] for a 2-block ADMM, and in [30] for the multi-block case and a sufficiently 
small stepsize in the multiplier update. For a more extensive review of linear con-
vergence results for ADMMs, see [43]. But again, almost all the sublinear or linear 
convergence rate analysis is based on either a single linearization step to solve the 
subproblem or the exact solution of the (proximal) subproblem. An advantage of 
our inexact scheme, compared to the exact iteration, is that the computing time to 
achieve a given error tolerance is reduced, while maintaining global convergence 
and its rate.

The paper is organized as follows. Section  2 gives an overview of the inexact 
ADMM (I-ADMM) that will be analyzed. Section  3 reviews the global conver-
gence results found in a companion paper [22]. These global convergence results 
are similar to those established for the inexact ADMM of [21]. Section  4 estab-
lishes a O(1∕k) convergence rate of for ergodic iterates, and under a strong convex-
ity assumption, an O(1∕k2) rate for both ergodic and nonergodic iterates. Section 5 
gives 2-step linear convergence results when an error bound condition holds. Finally, 
Section 6 shows the observed convergence in some image recovery problems.
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1.1 � Notation

Throughout the paper, c denotes a generic positive constant which is independent of 
parameters such as the iteration number k or the index i ∈ [1,m] . Let W∗ denote the set 
of solution/multiplier pairs (�∗,�∗) of (1.1)–(1.2) satisfying (1.3), while (�∗,�∗) ∈ W

∗ 
is a generic solution/multiplier pair. L (without the � subscript) stands for L0 . For � 
and � ∈ ℝ

n , ⟨�, �⟩ = ��� is the standard inner product, where the superscript � denotes 
transpose. The Euclidean vector norm, denoted ‖ ⋅ ‖ , is defined by ‖�‖ =

√⟨�, �⟩ and 
‖�‖� =

√
���� for a positive definite matrix � . For any matrix � , the matrix norm 

induced by the Euclidean vector norm is the largest singular value of � . For a sym-
metric matrix, the Euclidean norm is the largest absolute eigenvalue. In addition, 
� ≻ � and � ⪰ � mean that the matrix � is positive definite and positive semidefi-
nite, respectively. For a differentiable function f ∶ ℝ

n
→ ℝ , ∇f (�) is the gradient of f 

at � , a column vector. More generally, �f (�) denotes the subdifferential at � . A function 
h ∶ ℝ

n
↦ ℝ is convex with modulus � ≥ 0 if

for all � and � ∈ ℝ
n and � ∈ [0, 1] . If 𝜇 > 0 , then h is strongly convex. The prox 

operator associated with h is defined by

2 � Algorithm structure

The structure of our I-ADMM algorithm is given in Algorithm 2.1. The algorithm gen-
erates sequences �k , �k , �k , and Rk . Both �k and �k are updated in Step 1, Rk is updated 
in Step 2, and �k is updated in Step 3. The error is estimated in Step 2. The matrix � 
in Step 3 is an m by m block diagonal matrix whose i-th diagonal block, denoted �i , is 
chosen to satisfy the conditions:

For example, we could take �i = �i� where �i ≥ ‖��

i
�i‖ . Condition (2.1) is required 

for showing global convergence of our I-ADMM. Recent studies show that for the 
2-block case ( m = 2 ) and an exact ADMM, the requirement that �i is positive sem-
idefinite can be relaxed [8, 29]. The matrix � in Step 3 is the m by m block lower 
triangular matrix defined by

h((1 − �)� + ��) ≤ (1 − �)h(�) + �h(�) − �(1 − �)(�∕2)‖� − �‖2

prox h(�) = arg min
�∈ℝn

�
h(�) +

1

2
‖� − �‖2

�
.

(2.1)�i ≻ � and �i ∶= �i − ��

i
�i ⪰ �.
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By (2.1), M is nonsingular. The solution �k+1 of the block upper triangular system 
��(�k+1 − �k) = ��(�k − �k) can be obtained by back substitution.

In Step 1 of Algorithm 2.1, we approximate the minimizer in the �i subproblem of 
the ADMM algorithm (1.4) using the accelerated gradient method of Algorithm 2.2, 
which is a modification of Algorithm  5.1 in [21]. Compared with Algorithm  5.1 
in [21], Algorithm 2.2 has a slightly different stopping condition in Step 1b, and a 
proximal term to generate �l

i
 in Step 1a, where

 

(2.2)�ij =

⎧
⎪⎨⎪⎩

��

i
�j if j < i,

�i if j = i,

� if j > i.

(2.3)�k
i
= � −

∑
j<i

�j�
k
j
−
∑
j>i

�j�
k
j
.
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The termination condition for Algorithm 2.2 appears in Step 1b. In this step, � is a 
nonnegative function for which �(0) = 0 and 𝜓(s) > 0 for s > 0 with � continuous at 
s = 0 . For example, �(t) = t . Two different ways are developed in [21] for choosing the 
parameters �l and �l in Step 1a. If a Lipschitz constant �i of fi is known, then we could 
take

in which case, we have

This relation along with a Taylor series expansion of fi around �l
i
 implies that the 

line search condition in Step 1a of Algorithm 2.2 is satisfied for each l.
A different, adaptive way to choose to choose �l and �l , that does not require knowl-

edge of the Lipschitz constant for fi , is the following: Choose �l
0
∈ [�min, �max] , where 

0 < 𝛿min < 𝛿max < ∞ are fixed constants, independent of k and l, and set

(2.4)�l =
1

(1 − �)

2�i

l
and �l =

2

l + 1
∈ (0, 1],

(1 − 𝜎)𝛿l

𝛼l
=

(l + 1)𝜁i

l
> 𝜁i.
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Here the integer j ≥ 0 is chosen as small a possible while satisfying the inequality in 
Step 1a. It can be shown that

Since 𝜂 > 1 , the ratio �l∕�l appearing in Step 1a tends to infinity as j tends to infin-
ity; consequently, the inequality in Step 1a is satisfied for j sufficiently large.

The stopping condition in Step 1b is elucidated using the following function:

and �k
i
 is defined in (2.3). As pointed out in Lemma 3.1 of the next section, for either 

of the parameter choices (2.4) or (2.5), the iterates �l
i
 of Algorithm 2.2 converge to 

the minimizer of the function L
k

i
 at rate O(1∕l) , while the objective values converge 

at rate O(1∕l2) , which is optimal for first-order methods applied to general convex, 
possibly nonsmooth optimization problems. We let lk

i
 denote the terminating value 

of l in Step 1b.

Remark 2.1  For the two parameter choices (2.4) and (2.5), it has been shown [21, 
pp. 227–228] that in Step 1b, � l ≥ l2Θ for some constant Θ > 0 , independent of k 
and l. Consequently, the conditions in Step 1b are satisfied for l sufficiently large.

3 � Global convergence

The global convergence analysis of the accelerated ADMM in this paper with a lin-
earized penalty term is similar to the global convergence analysis of the accelerated 
scheme in [21]. Hence, this section simply states the main results, while a supple-
mentary arXiv document [22] provides the detailed analysis. The first result concerns 
the convergence of the iterates in Step 1 of I-ADMM under the assumption that the 
sequence

is nondecreasing. For either of the parameter choices (2.4) or (2.5), it is shown in 
[21, pp. 227–228] that �l = 1.

(2.5)

𝛿l =
2

𝜃l +
√
(𝜃l)2 + 4𝜃lΛl−1

and 𝛼l =
1

1 + 𝛿lΛl−1
, where

Λl =

l�
i=1

1∕𝛿i, Λ0 = 0, and 𝜃l = 1∕(𝛿l
0
𝜂j) with 𝜂 > 1.

(2.6)�l

�l
=

1

�l
= �l

0
�j.

L
k

i
(�) =Lk

i
(�) +

�

2
(� − �k

i
)��i(� − �k

i
), where

Lk
i
(�) =fi(�) + hi(�) +

�

2
‖�i� − �k

i
+ �k∕�‖2,

�l ∶= �l�l� l
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Lemma 3.1  If the sequence �l is nonincreasing, then for each i ∈ [1,m] and L ≥ 1 , 
we have

where �h,i is the modulus of convexity of hi , 𝜈i > 0 is the smallest eigenvalue of �i , 
and

Since L
k

i
 is strongly convex, it has a unique minimizer. The following decay 

property plays an important role in the global convergence analysis.

Lemma 3.2  Let (�∗,�∗) ∈ W
∗ be any solution/multiplier pair for (1.1)–(1.2), let �k , 

�k , �k , �l
k
 , and �k be the iterates generated by Algorithm 2.1, and define

where � = ��−1�� . If �l ∶= �l�l� l = 1 for each l, then

where Rk is the residual defined in Step 2, �h,i is the modulus of convexity of hi , and

Recall that L = L0 is the ordinary Lagrangian associated with (1.1). This decay 
property is used to obtain the following global convergence result for I-ADMM.

Theorem 3.3  Suppose the parameters �l and �l in Algorithm 2.2 are chosen accord-
ing to either (2.4) or (2.5). If I-ADMM performs an infinite number of iterations 
generating �k , �k , and �k , then the sequences �k and �k both approach a common 
limit �∗ , �k approaches a limit �∗ , and (�∗,�∗) ∈ W

∗.

Theorem 3.3 considers the case of an infinite number of iterations. The follow-
ing lemma considers the case where �k = 0 within a finite number of iterations.

(3.1)

��i‖�Li − �
k

i
‖2 + �h,i

2

L�
l=1

‖�k
i
− �L

i
‖2 + �

�L

L�
l=1

�l‖�l
i
− �l−1

i
‖2 ≤ ‖�k

i
− �

k

i
‖2

�L
,

(3.2)�
k

i
= argmin{L

k

i
(�) ∶ � ∈ ℝ

ni}.

(3.3)

Ek =�‖�k − �∗‖2
�
+

1

�
‖�k − �∗‖2 + �

m�
i=1

‖�k
i
− �∗

i
‖2

Γk
i

and

E−
k
=�‖�k − �∗‖2

�
+

1

�
‖�k − �∗‖2 + �

m�
i=1

‖�k
i
− �∗

i
‖2

Γk−1
i

,

(3.4)

Ek − Ek+1 ≥ Ek − E−
k+1

≥ �

�
2Δk + �Rk + �(1 − �)(‖�k − �k‖2

�
+ ‖��k − �‖2) +

m�
i=1

�h,i‖�ki − �∗
i
‖2
�
,

(3.5)Δk = L(�k,�∗) − Φ(�∗) ≥ 0.
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Lemma 3.4  If �k = 0 in Algorithm 2.1, then �k+1 = �k = �k = �k solves (1.1)–(1.2) 
and (�k,�k) ∈ W

∗.

Proof  If �k = 0 , then rk
i
= 0 for each i. It follows that

By Step 1c, �l
i
= �k+1

i
 . By the definitions �l

i
= (1 − �l)�l−1

i
+ �l�l

i
 and 

�
l

i
= (1 − �l)�l−1

i
+ �l�l−1

i
 where �0

i
= �0

i
= �k

i
 , we have �l

i
= �

l

i
= �k

i
 for each l due to 

(3.6). Again, by Step 1c, �k
i
= �k

i
 . Consequently, we have �k+1 = �k = �k.

Let �∗ denote �k . Then �∗ = �k+1 = �k = �k . Since �k = 0 , Step 2 of Algo-
rithm 2.1 implies that �k = �k = �∗ and ��∗ = � . Consequently, we have

With this substitution in P(�) in Step 1a, it follows that �l
i
= �∗

i
 minimizes over � the 

function

The first-order optimality condition for this minimizer �∗
i
 is the same as the first-

order optimality condition (1.3), but with �∗ replaced by �k . Hence, (�∗,�k) ∈ W
∗ . 	

� ◻

Remark 3.1  In this paper, we have focused on algorithms based on an inexact 
minimization of L

k

i
 in Step 1 of Algorithm 2.1. In cases where fi and hi are simple 

enough that the exact minimizer �k
i
 of L

k

i
 can be quickly evaluated, we could simply 

set �k+1
i

= �k
i
= �

k

i
 , and rk

i
= 0 in Step 1 of I-ADMM, and proceed to Step 2. The 

global convergence results still hold.

4 � Sublinear convergence rates

In this section, sublinear convergences rates are established for I-ADMM. We 
first establish an O(1∕t) convergence rate for the ergodic iterates

generated by I-ADMM.

Theorem  4.1  Let (�∗,�∗) ∈ W
∗ be any primal/dual solution pair for (1.1)–(1.2) 

and let �k be generated by I-ADMM with �l�l� l = 1 for each l and k. Then, we have

(3.6)�k
i
= �0

i
= �1

i
= … = �l

i
.

�k
i
= � −

∑
j<i

�j�
k
j
−
∑
j>i

�j�
k
j
= � −

∑
j<i

�j�
∗
j
−
∑
j>i

�j�
∗
j
= �i�

∗
i
.

⟨∇fi(�∗i ), �⟩ + �l

2
‖� − �∗

i
‖2 + �

2
‖�i(� − �∗

i
) + �k∕�‖2 + �

2
‖� − �∗

i
‖2
�i

+ hi(�).

(4.1)�
t
=

1

t

t∑
k=1

�k
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where �t is defined in (4.1) and Ek is defined in (3.3).

Proof  Discarding several nonnegative terms from (3.4), we have

Adding this inequality over k between 1 and t yields

Hence, by the definition of Δk in (3.5), we have

By the convexity of Φ and the definition (4.1), it follows that

This completes the proof. 	�  ◻

Note that the minimum of L(�,�∗) over � ∈ ℝ
n is attained at � = �∗ , and 

L(�∗,�∗) = Φ(�∗) . Hence, Theorem 4.1 bounds the difference between L(�t,�∗) and 
the minimum of L(⋅,�∗) . We will strengthen the convergence rate to O(1∕t2) when 
a strong convexity assumption holds, and also obtain a convergence rate for noner-
godic iterates.

Assumption 4.1  If �f ,i ≥ 0 and �h,i ≥ 0 are the convexity moduli of fi and hi 
respectively, then

In the following theorem, we suppose that at the k-th iteration, the penalty param-
eter � is chosen in the following way:

where

with � defined in Assumption 4.1, � ∈ (0, 1) is the parameter in Algorithm 2.1, and 
� = ��−1�� . We have the following theorem:

L(�
t
,�∗) − Φ(�∗) ≤

E1

2�t
,

2�Δk + Ek+1 ≤ Ek.

2�

t∑
k=1

Δk + Et+1 ≤ E1.

2�

t∑
k=1

[
L(�k,�∗) − Φ(�∗)

]
≤ E1.

2�t
[
L(�

t
,�∗) − Φ(�∗)

]
≤ E1.

(4.2)𝜇 = min {𝜇f ,i + 3𝜇h,i ∶ i = 1,… ,m} > 0.

(4.3)�k = (k0 + k)�,

(4.4)� =
��

8‖�‖ and k0 =
4‖�−1∕2��−1∕2‖

�(1 − �)
,
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Theorem 4.2  Let (�∗,�∗) ∈ W
∗ be any solution/multiplier pair for (1.1)–(1.2), let 

�k, �k, �k and �k be generated by I-ADMM, and assume that Assumption 4.1 holds 
and �l�l� l = 1 for each l and k. Suppose that for every k, �k is given by (4.3) and Γk

i
 

satisfies

Then, for all t > 0 , we have

and

where

and

Proof  By Assumption 4.1 and the definition (3.5) of Δk , we have

where �k
e
= �k − �∗ . The inequality (3.4) of Lemma 3.2 relates the error in two con-

secutive iterations, where the � in (3.4) is the penalty at iteration k. Combining this 
with the definition of � in Assumption 4.1, we have

where �k
e
= �k − �∗ , �k

e
= �k − �∗ , and �k

e
= �k − �∗.

For any matrix � , it follows from an eigendecomposition that

(4.5)
k

Γk
i

≥
k + 1

Γk+1
i

, 1 ≤ i ≤ m.

(4.6)L(�̃t,�∗) − Φ(�∗) ≤
2c

𝛼[t(t + 1) + 2k0t]

(4.7)‖�t+1 − �∗‖2 ≤ c

(t + k0)
2�

,

(4.8)�̃t =
2

t(t + 1) + 2k0t

t∑
k=1

((k0 + k)�k),

(4.9)c =
1

�
‖�1 − �∗‖2 + �(k0 + 1)

m�
i=1

‖�1
i
− �∗

i
‖2

Γ1
i

+ k2
0
�‖�1 − �∗‖2

�
.

Δk = L(�k,�∗) − L(�∗,�∗) ≥

m�
i=1

�f ,i + �h,i

2
‖�k

i
− �∗

i
‖2 =

m�
i=1

�f ,i + �h,i

2
‖�k

e,i
‖2,

(4.10)

�

�
Δk +

�

2
‖�k

e
‖2 + �k(1 − �)‖�k − �k‖2

�

�

≤ �k(‖�ke‖2� − ‖�k+1
e

‖2
�
) +

1

�k
(‖�k

e
‖2 − ‖�k+1

e
‖2) + �

m�
i=1

‖�k
e,i
‖2 − ‖�k+1

e,i
‖2

Γk
i

,

��� ≥
����

‖�‖ and ���� ≥
����

‖�−1∕2��−1∕2‖ .
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The second inequality is deduced from the first when � is replaced by �1∕2� and � 
is replaced by �−1∕2��−1∕2 . This yields the following lower bound for terms on the 
left side of (4.10):

The second inequality is due to the special form of �k in (4.3) and (4.4), and the last 
inequality is due to the relation

The inequality (4.11) is incorporated in the left side of (4.10). We multiply the 
resulting inequality by K ∶= k0 + k , substitute �k = K� , exploit the assumption (4.5) 
and the inequality K(K − 2) ≤ (K − 1)2 to obtain

Summing this inequality for k between 1 and t, with K = k0 + k , yields

where c is defined in (4.9). Substituting for Δk using (3.5) and discarding the �t+1 
term, we have

The convexity of Φ and the definition of �̃k in (4.8) yield

which together with (4.13) gives (4.6). In addition, since Δk ≥ 0 , (4.12) also implies 
(4.7). 	�  ◻

(4.11)

�

2
‖�k

e
‖2 + �k(1 − �)‖�k − �k‖2

�
≥

�

2‖�‖‖�
k
e
‖2
�
+

�k(1 − �)

‖�−1∕2��−1∕2‖‖�
k − �k‖2

�

≥
�

2‖�‖
�‖�k

e
‖2
�
+ ‖�k − �k‖2

�

�

≥
�

2‖�‖
�
2‖�k

e
‖2
�
+ ‖�k

e
‖� − 2‖�k

e
‖‖�k

e
‖�

≥
�

4‖�‖‖�
k
e
‖� =

2�

�
‖�k

e
‖�.

ab ≤
1

2

(
2a2 +

1

2
b2
)
.

�KΔk
≤�

�
(K − 1)2‖�k

e
‖2
�
− K2‖�k+1

e
‖2
�

�
+

1

�
(‖�k

e
‖2 − ‖�k+1

e
‖2)

+ �

m�
i=1

�
K‖�k

e,i
‖2

Γk
i

−
(K + 1)‖�k+1

e,i
‖2

Γk+1
i

�
.

(4.12)�

t�
k=1

(k0 + k)Δk + (k0 + t)2�‖�t+1 − �∗‖2
�
≤ c,

(4.13)�

t∑
k=1

(k0 + k)
[
L(�k,�∗) − Φ(�∗)

]
≤ c.

L(�̃k,�∗)) ≤
2

t(t + 1) + 2k0t

t∑
k=1

(k0 + k)L(�k,�∗),
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As noted at the end of Sect. 2, for either of the parameter choices (2.4) or (2.5), 
� l ≥ l2Θ for some constant Θ > 0 , independent of k and l. Hence, for l sufficiently 
large, the requirement (4.5) at iteration k + 1 is satisfied.

5 � Linear convergence

For the analysis of linear convergence rate of I-ADMM, we assume that � has the 
additional property that �(t) ≤ c� t for all t ≥ 0 , where c𝜓 > 0 is a constant. Let us 
define

We begin with the following lemma.

Lemma 5.1  If the parameters �l and �l in Algorithm 2.2 are chosen according to 
either (2.4) or (2.5) and �(t) ≤ c� t , then for any k ≥ 2 , we have

where c > 0 is a generic constant which only depends on the problem data and algo-
rithm parameters such as � and c� and

Proof  For any �i and �i ∈ ℝ
ni , i = 1, 2, it follows from the triangle inequality and the 

nonexpansive property of the prox operator that

We identify ‖�1 − prox hi
(�1)‖ with ei(�k+1,�

k+1) and ‖�2 − prox hi
(�2)‖ with 

ei(�
k,�k) , and use (5.4) to obtain the following bound for ei(�k+1,�

k+1) in terms of 
ei(�

k,�k):

where �i is the Lipschitz constant for ∇fi . The update formula for �k+1 implies that 
�k+1 − �k = ��(��k − �) = ���k , where �k = ��k − � . With this substitution, the 
bound for ei(�k+1,�

k+1
i

) becomes

Let 𝜈i > 0 denote the smallest eigenvalue of �i . The analysis is partitioned into two 
cases:

(5.1)ei(�,�) = ‖�i − prox hi
(�i − ∇fi(�i) − ��

i
�)‖.

(5.2)
m∑
i=1

ei(�
k+1,�k+1) ≤ c(dk + dk−1),

(5.3)dk = ‖�k − �k‖ + ‖��k − �‖ +
√
Rk.

(5.4)

‖�1 − prox hi
(�1)‖

= ‖[�2 − prox hi
(�2)] + [�1 − �2] + [ prox hi

(�2) − prox hi
(�1)]‖

≤ ‖�2 − prox hi
(�2)‖ + ‖�1 − �2‖ + ‖�1 − �2‖.

ei(�
k+1,�k+1) ≤ ei(�

k,�k) + (2 + �i)‖�k+1i
− �k

i
‖ + ‖��

i
(�k+1 − �k)‖,

(5.5)ei(�
k+1,�k+1) ≤ ei(�

k,�k) + (2 + �i)‖�k+1i
− �k

i
‖ + ��‖��

i
�k‖.
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Case 1 Γk
i
> 4∕(𝜌𝜈i) . Again, by property (5.4), we have

where �k is given in (3.2). The first-order optimality conditions for �k
i
 can be written

Using this formula for the first �k
i
 on the right side of the identity

along with the nonexpansive property of prox operator, we have

The definition of �k
i
 yields

It follows that

and

Combining this with (5.6) gives

Now, by Lemma 3.1, we have

The stopping condition in Step 1b gives

(5.6)ei(�
k,�k) ≤ ei(�

k
,�k) + (2 + �i)‖�ki − �

k

i
‖,

�
k

i
= prox hi

(
�
k

i
− ∇fi(�

k

i
) − ���

i
(�i�

k
i
− �k

i
+ �k∕�) − ��i(�

k

i
− �k

i
)
)
.

ei(�
k
,�) = ‖�k

i
− prox hi

(�
k

i
− ∇fi(�

k

i
) − ��

i
�)‖,

ei(�
k
,�k) ≤ �

�
‖��

i
(�i�

k
i
− �k

i
)‖ + ‖�i(�

k

i
− �k

i
)‖
�
.

�i�
k
i
− �k

i
=
∑
j<i

�j�
k
j
+
∑
j≥i

�j�
k
j
− �

=��k − � +
∑
j≥i

�j(�
k
j
− �k

j
)

=�k +
∑
j≥i

�j(�
k
j
− �k

j
).

(5.7)‖��

i
(�i�

k
i
− �k

i
)‖ ≤ c(‖�k‖ + ‖�k − �k‖),

(5.8)ei(�
k
,�k) ≤ c(‖�k‖ + ‖�k − �k‖ + ‖�k

i
− �k

i
‖).

ei(�
k,�k) ≤ c(‖�k‖ + ‖�k − �k‖ + ‖�k

i
− �k

i
‖).

(5.9)

√
��i‖�ki − �

k

i
‖ ≤

‖�k
i
− �

k

i
‖

�
Γk
i

≤
‖�k

i
− �k

i
‖ + ‖�k

i
− �

k

i
‖

�
Γk
i

.
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Hence, by (5.9) we have

Therefore, the Case 1 condition Γk
i
> 4∕(𝜌𝜈i) implies that

and by (5.8), we have

Case 2 Γk
i
≤ 4∕(��i) . It is shown in [21, pp. 227–228] that when the parameters �l 

and �l are chosen according to either (2.4) or (2.5), there exists a constant Θ > 0 , 
independent of k and l, such that � l ≥ l2Θ . Since the � l are increasing functions of 
l and Γk

i
 is the final value of � l in Step 1, it follows from the uniform bound on Γk

i
 

in Case 2, and the quadratic growth in � l , that the final l value in Step 1, which we 
denote lk

i
 , is uniformly bounded as a function of i and k. Also, it follows from the 

quadratic growth of � l and equations (5.18) and (5.20) in [21] that �l is uniformly (in 
k, l, and i) bounded.

By the definition of � l in Algorithm  2.2, we have (1 − �l)� l = � l−1 , or equiva-
lently, �l� l = � l − � l−1 (with the convention that �0 = 0 ). Summing this identity over 
l yields

Next, we multiply the definition �j
ik
= (1 − �j)�

j−1

ik
+ �j�

j

ik
 by � j and sum over j 

between 1 and l. Again, exploiting the identity (1 − �j)� j = � j−1 yields

It follows from (5.12), that �l
ik

 is a convex combination of �j
ik

 , 1 ≤ j ≤ l . If pj
ik
∈ [0, 1] 

denotes the coefficients in the convex combination, we have

Since �k
i
= �L

ik
 for L = lk

i
 , Jensen’s inequality gives

(5.10)
‖�k

i
− �k

i
‖

�
Γk
i

≤ �(�k−1) ≤ c�k−1.

⎛
⎜⎜⎜⎝

−1 +
�

Γk
i
��i

�
Γk
i

⎞
⎟⎟⎟⎠
‖�k

i
− �

k

i
‖ ≤

‖�k
i
− �k

i
‖

�
Γk
i

≤ c�k−1.

‖�k
i
− �

k

i
‖ ≤ c�k−1,

(5.11)ei(�
k,�k) ≤ c(�k−1 + ‖�k − �k‖ + ‖�k‖).

(5.12)� l =

l∑
j=1

�j� j.

(5.13)�l
ik
=

1

� l

l∑
j=1

(� j�j)�
j

ik
.

(5.14)�l
ik
=

l∑
j=1

p
j

ik
�
j

ik
,



744	 W. W. Hager, H. Zhang 

1 3

Now, by the formula for �l
ik

 in Alg. 2.2, we have �l
ik
= proxhi(�2) , where

We utilize (5.4) with �1 = �k
i
− ∇fi(�

k
i
) − ��

i
�k , with �2 as given above, and with 

�1 = �2 = �l
ik

 . Hence, �2 − prox hi
(�2) = � and by (5.4), it follows that

Each of the terms on the right side of (5.16) is now analyzed.
Based on (5.7), the trailing two terms in (5.16) have the bound

The remaining terms in (5.16) are bounded by c
√

rk
i
 as will now be shown. The 

bound ‖�l
ik
− �l−1

ik
‖ ≤ c

�
rk
i
 is a trivial consequence of the definition of rk

i
 and the 

uniform bound on Γk
i
 in Case 2. By the definition �l

ik
= (1 − �l)(�l−1

ik
− �l−1

ik
) + �l−1

ik
 , 

it follows that

This inequality and the fact that �k
i
= �l

ik
 for l = lk

i
 implies that all the remaining 

terms in (5.16) have the form ‖�l
ik
− �t

ik
‖ for some l ∈ [1, lk

i
] and some t ∈ [1, l] . Com-

bine (5.14), Jensen’s inequality, the fact that l ≤ lk
i
 where lk

i
 is uniformly bounded in 

Case 2, and the Schwarz inequality to obtain

These bounds for the terms in (5.16) combine to yield

Moreover, by (5.15) and the Case 2 uniform bound on lk
i
 , we have

(5.15)

ei(�
k,�k) ≤

lk
i�

l=1

pl
ik
‖�l

ik
− prox hi

(�k
i
− ∇fi(�

k
i
) − ��

i
�k)‖

≤

lk
i�

l=1

‖�l
ik
− prox hi

(�k
i
− ∇fi(�

k
i
) − ��

i
�k)‖.

�2 = �l
ik
− ∇fi(�

l

ik
) − �l

ik
(�l

ik
− �l−1

ik
) − ���

i
(�i�

k
i
− �k

i
+ �k∕�) − ��i(�

l
ik
− �k

i
).

(5.16)

‖�l
ik
− prox hi

(�k
i
− ∇fi(�

k
i
) − ��

i
�k)‖

≤ c
�
‖�l

ik
− �k

i
‖ + ‖�l

ik
− �k

i
‖ + ‖�l

ik
− �l−1

ik
‖ + ‖��

i
(�i�

k
i
− �k

i
)‖ + ‖�l

ik
− �k

i
‖
�

≤ c
�
‖�l

ik
− �k

i
‖ + ‖�l

ik
− �k

i
‖ + ‖�l

ik
− �l−1

ik
‖ + ‖��

i
(�i�

k
i
− �k

i
)‖ + ‖�k

i
− �k

i
‖
�

‖��

i
(�i�

k
i
− �k

i
)‖ + ‖�k

i
− �k

i
‖ ≤ c(‖�k‖ + ‖�k − �k‖).

‖�l
ik
− �k

i
‖ ≤ ‖�l−1

ik
− �l−1

ik
‖ + ‖�l−1

ik
− �k

i
‖.

‖�l
ik
− �t

ik
‖ ≤

l�
j=1

����
j

ik
− �t

ik

��� ≤ l

l�
j=1

����
j

ik
− �

j−1

ik

��� ≤ c

�
rk
i
,

‖�l
ik
− prox hi

(�k
i
− ∇fi(�

k
i
) − ��

i
�k)‖ ≤ c

�
‖�k‖ + ‖�k − �k‖ +

�
rk
i

�
.
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Combine this with the Case 1 lower bound (5.11) gives

Inserting this in (5.5) yields

Based on the back substitution formula �k+1 − �k = ��−��(�k − �k) , this reduces 
to

Since �k−1 ≤ cdk−1 and ‖�k‖ + ‖�k − �k‖ +
�

rk
i
≤ dk , the proof is complete. 	�  ◻

The expression Ek defined in (3.3) measures the energy between the current 
iterate (�k, �k,�k) and a given (�∗, �∗,�∗) . Let E∗

k
 denote the minimum energy 

between the iterate and all possible (�∗,�∗) ∈ W
∗ . We will show that when an 

error bound condition holds, there exists a constant 𝜅 < 1 such that E∗
k+2

≤ �E∗
k
.

The error bound condition relates the KKT error to the Euclidean distance to 
W

∗ . The KKT error K is given by

When K(�,�) = 0 , the first-order optimality conditions hold. The Euclidean dis-
tance from (�,�) to W∗ will be measured by

Note that � = ��−1�� is positive definite since � is invertible. Also, by [1, Prop. 
6.1.2], every solution of (1.1) has exactly the same set of Lagrange multipliers. If �∗ 
and �∗ denote the set of solutions and multipliers for (1.1), then W∗ = �∗ × �∗ is a 
closed, convex set, and there exists a unique (�̃, �̃) ∈ W

∗ that achieves the minimum 
in (5.19). The local error bound assumption is as follows:

Assumption 5.1  There exist constants 𝛽 > 0 and 𝜂 > 0 such that E(�,�) ≤ �K(�,�) 
whenever E(�,�) ≤ �.

ei(�
k,�k) ≤ c

�
‖�k‖ + ‖�k − �k‖ +

�
rk
i

�
.

(5.17)ei(�
k,�k) ≤ c

�
�k−1 + ‖�k‖ + ‖�k − �k‖ +

�
rk
i

�
.

ei(�
k+1,�k+1) ≤ c

�
�k−1 + ‖�k‖ + ‖�k − �k‖ +

�
rk
i
+ ‖�k+1 − �k‖

�
.

ei(�
k+1,�k+1) ≤ c

�
�k−1 + ‖�k‖ + ‖�k − �k‖ +

�
rk
i

�
.

(5.18)K(�,�) = ‖�� − �‖ +
m�
i=1

ei(�,�).

(5.19)E(�,�) = min

�
�‖� − �∗‖2

�
+

1

�
‖� − �∗‖2 ∶ (�∗,�∗) ∈ W

∗

�1∕2

.
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The local error bound condition is equivalent to saying that in a neighborhood 
of W∗ , the Euclidean distance to W∗ is bound by the KKT error, which is often 
used to analyze the linear convergence behavior of an optimization algorithm. 
More recently, a partial error bound condition based on the ADMM iterates 
instead of conditions on the optimization problem is proposed in [34]. Under such 
conditions, linear convergence is also established for a 2-block ADMM.

A multivalued mapping F is piecewise polyhedral if its graph 
Gph F ∶= {(�, �) ∶ � ∈ F(�)} is a union of finitely many polyhedral sets. The 
local error bound condition (Assumption  5.1) holds when ∇fi is affine and �hi 
is piecewise polyhedral for i = 1,… ,m [23, 36, 42]. Note that when (�,�) is 
restricted to a bounded set, the requirement that E(�,�) ≤ � can be dropped. That 
is, when E(�,�) > 𝛽 , K(�,�) is strictly positive, and by taking the constant � large 
enough, the bound E(�,�) ≤ �K(�,�) holds over the entire set. In our analysis, the 
error bound condition is applied to the iterates (�k,�k) which lie in a bounded set 
by Lemma 3.2, so the requirement that E(�,�) ≤ � is unnecessary.

Theorem 5.2  If the parameters �l and �l in Algorithm 2.2 are chosen according to 
either (2.4) or (2.5), �(t) ≤ c� t , and Assumption 5.1 holds, then there exists 𝜅 < 1 
such that E∗

k+2
≤ �E∗

k
 at every iteration of Algorithm 2.1.

Proof  Let (�̃k+1, �̃k+1
) ∈ W

∗ be the unique minimizer in (5.19) corresponding to 
(�,�) = (�k+1,�k+1) . By the stopping condition in Step 1b of Algorithm 2.2, and the 
definition of Γk

i
 in Step 1c, the sequence Γk

i
 is nondecreasing in k by Remark 2.1. 

Since Γk
i
 is nondecreasing in k, it follows from the triangle inequality and the back 

substitution formula �k+1 − �k = ��−��(�k − �k) that for any i ∈ [1,m] , we have

where c > 0 denotes a generic constant, independent of k.
As noted earlier, when the parameters �l and �l in Algorithm  2.2 are chosen 

according to either (2.4) or (2.5), we have �l = �l�l� l = 1 . By equation (3.12) in 
the supplementary material for this paper with L = lk

i
 , � = �L

i
= �k

i
 , �L

i
= �k+1 , and 

�0
i
= �k , we obtain the relation

(5.20)

‖�k+1
i

− �̃k+1
i

‖
�

Γk+1
i

≤
‖�k+1

i
− �k

i
‖ + ‖�k

i
− �k

i
‖ + ‖�k

i
− �k+1

i
‖ + ‖�k+1

i
− �̃k+1

i
‖

�
Γk+1
i

≤
‖�k+1

i
− �k

i
‖

�
Γk
i

+
‖�k

i
− �k

i
‖ + ‖�k

i
− �k+1

i
‖ + ‖�k+1

i
− �̃k+1

i
‖

�
Γ1
i

≤
‖�k+1

i
− �k

i
‖

�
Γk
i

+ c
�‖�k − �k‖ + ‖�k+1

i
− �̃k+1

i
‖�,
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where the last inequality is due to the stopping condition in Step 1b. Combining this 
with (5.20) yields

Exploiting the error bound condition, we have

The constraint violation term in K is estimated as follows:

where the last inequality is due to the back substitution formula and the definition 
(5.3) of dk . Hence, Lemma 5.1 yields

Combine (5.21)–(5.23) to obtain

since �(t) ≤ c� t and �k−1 ≤ cdk−1 . Since the energy E∗
k+1

 corresponds to the mini-
mum of Ek+1 over all (�∗,�∗) ∈ W

∗ and since (�̃k+1, �̃k+1
) ∈ W

∗ , it follows that

The first two terms on the right are E2(�k+1,�k+1) , while the last term in bounded by 
(5.24). We have

Combine this with the error bound condition and (5.23) gives

Suppose that (�̂k, �̂k
) ∈ W

∗ is the unique minimizing (�∗,�∗) ∈ W
∗ associated with 

E∗
k
 . By Lemma 3.2 and the fact that (�̂k, �̂k

) ∈ W
∗ , we have

‖�k
i
− �k+1

i
‖

�
Γk
i

≤
‖�k

i
− �k

i
‖

�
Γk
i

≤ �(�k−1),

(5.21)
‖�k+1

i
− �̃k+1

i
‖

�
Γk+1
i

≤ 𝜓(𝜖k−1) + c
�‖�k − �k‖ + ‖�k+1

i
− �̃k+1

i
‖�.

(5.22)
‖�k+1 − �̃k+1‖2 ≤√‖�−1‖‖�k+1 − �̃k+1‖�

≤cE(�k+1,�k+1) ≤ cK(�k+1,�k+1).

‖��k+1 − �‖ ≤ ‖�‖(‖�k+1 − �k‖ + ‖�k − �k‖) + ‖��k − �‖ ≤ cdk,

(5.23)K(�k+1,�k+1) ≤ c(dk + dk−1).

(5.24)
‖�k+1

i
− �̃k+1

i
‖

�
Γk+1
i

≤ 𝜓(𝜖k−1) + c(dk + dk−1) ≤ c(dk + dk−1)

E∗
k+1

≤ 𝜌‖�k+1 − �̃k+1‖2
�
+

1

𝜌
‖�k+1 − �̃

k+1‖2 + 𝛼

m�
i=1

‖�k+1
i

− �̃k+1
i

‖2
Γk+1
i

.

E∗
k+1

≤ E
2(�k+1,�k+1) + c

(
dk + dk−1

)2
.

(5.25)E∗
k+1

≤ c
(
dk + dk−1

)2
.
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The first three terms on the right side are bounded from below by E∗
k+1

 , while the last 
three terms are bounded from below by cd2

k
 by the definition of dk in (5.3). Hence,

We replace k by k − 1 and then use again (5.26) followed by (5.25) to obtain

which completes the proof. 	�  ◻

Another linear convergence result is established when the objective Φ is strongly 
convex, in which case the solution �∗ of (1.1) is unique. Our assumption is the 
following:

Assumption 5.2  The objective Φ is strongly convex with modulus 𝜇 > 0 and there 
exist constants 𝛽 > 0 and 𝜂 > 0 such that

whenever ‖� − �̃‖ ≤ 𝛽.

The local error bound condition (5.27) holds when �hi is piecewise polyhedral for 
i = 1,… ,m [23, 36, 42]. Similar to the comment before Theorem 5.2, the require-
ment that ‖� − �̃‖ ≤ 𝛽 can be dropped since it is applied to the iterates �k which lie 
in a bounded set by Lemma 3.2.

Theorem 5.3  If the parameters �l and �l in Algorithm 2.2 are chosen according to 
either (2.4) or (2.5), �(t) ≤ c� t , and Assumption 5.2 holds, then there exists 𝜅 < 1 
such that E∗

k+2
≤ �E∗

k
 at every iteration of Algorithm 2.1.

Proof  By the local error bound condition and by (5.4) with �1 − prox hi
(�1) identi-

fied with ei(�∗,�
k+1) and �2 − prox hi

(�2) identified with ei(�k,�
k) , we have

E∗
k
≥𝜌‖�k+1 − �̂k‖2

�
+

1

𝜌
‖�k+1 − �̂

k‖2 + 𝛼

m�
i=1

‖�k+1
i

− �̂k
i
‖2

Γk
i

+ 𝜌𝛼(1 − 𝛼)(‖�k − �k‖2
�
+ ‖��k − �‖2) + 𝜎𝛼

m�
i=1

Rk.

(5.26)E∗
k
≥ E∗

k+1
+ cd2

k
.

E∗
k−1

≥ E∗
k
+ cd2

k−1
≥ E∗

k+1
+ c(d2

k
+ d2

k−1
) ≥ (1 + c)E∗

k+1
,

(5.27)‖� − �̃‖ ≤ 𝜂

m�
i=1

‖ei(�∗,�)‖

(5.28)

‖�k+1 − �̃
k+1‖ ≤𝜂

m�
i=1

ei(�
∗,�k+1)

≤c

�
‖�k − �∗‖ + ‖�k+1 − �k‖ +

m�
i=1

ei(�
k,�k)

�
,
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where c > 0 is a constant. In the later proof, we again use c > 0 as a generic con-
stant. By (5.17), it follows that

Inserting this in (5.28) and recalling that �k+1 − �k = ��(��k − �) = ���k , we have

Since �k−1 ≤ cdk−1 and ‖�k‖ + ‖�k − �k‖ +
√
Rk ≤ dk , it follows that

By (5.21) with �̃k+1 = �∗ , we have

The triangle inequality and the back substitution formula yield

The bounds �k−1 ≤ cdk−1 and ‖�k − �k‖ ≤ dk in (5.31) and (5.30) give

Combine (5.29) and (5.32) to obtain

On the other hand, by Lemma 3.2 and the fact that (�∗, �̃k
) ∈ W

∗ , we have

where the last inequality is due to the definition (5.3) of dk and the strong convexity 
of Φ:

m�
i=1

ei(�
k,�k) ≤ c

�
�k−1 + ‖�k‖ + ‖�k − �k‖ +

√
Rk

�
.

‖�k+1 − �̃
k+1‖ ≤ c

�
𝜖k−1 + ‖�k − �∗‖ + ‖�k‖ + ‖�k − �k‖ +

√
Rk

�
.

(5.29)‖�k+1 − �̃
k+1‖ ≤ c(dk + dk−1 + ‖�k − �∗‖).

(5.30)
‖�k+1

i
− �∗

i
‖

�
Γk+1
i

≤ c
�
�k−1 + ‖�k − �k‖ + ‖�k+1 − �∗‖�.

(5.31)
‖�k+1 − �∗‖ ≤ ‖�k+1 − �k‖ + ‖�k − �k‖ + ‖�k − �∗‖

≤ c‖�k − �k‖ + ‖�k − �∗‖.

(5.32)

‖�k+1 − �∗‖ ≤ cdk + ‖�k − �∗‖ and
‖�k+1

i
− �∗

i
‖

�
Γk+1
i

≤ c
�
dk−1 + dk + ‖�k − �∗‖�.

(5.33)
E∗
k+1

= 𝜌‖�k+1 − �∗‖2
�
+

1

𝜌
‖�k+1 − �̃

k+1‖2 + 𝛼

m�
i=1

‖�k+1
i

− �∗
i
‖2

Γk+1
i

≤ c(dk + dk−1 + ‖�k − �∗‖)2.

(5.34)

E∗
k
≥ 𝜌‖�k+1 − �∗‖2

�
+

1

𝜌
‖�k+1 − �̃

k‖2 + 𝛼

m�
i=1

‖�k+1
i

− �∗
i
‖2

Γk
i

+ 𝜌𝛼(1 − 𝛼)(‖�k − �k‖2
�
+ ‖��k − �‖2) + 𝜎𝛼Rk + 2𝛼Δk

≥E∗
k+1

+ cd2
k
+ 𝜇‖�k − �∗‖2,
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Finally, we replace k by k − 1 in (5.34), and then use again (5.34) followed by (5.33) 
to obtain

which completes the proof. 	�  ◻

6 � Numerical experiments

In this section, we compare the performance of I-ADMM to that of two different 
algorithms: (a) linearized ADMM with one linearization step for each subproblem 
and (b) exact ADMM where the subproblems are solved either by the conjugate gra-
dient method or by an explicit formula. The conjugate gradient method was well 
suited for the quadratic subproblems in our test set. We tried using a small number 
of conjugate gradient iterations to solve a subproblem, such as 5 iterations starting 
from the solution computed in the previous iteration, but found that the scheme did 
not converge. Instead we continued the CG iteration until the norm of the gradient 
was at most 10−6 . The one-step ADMM algorithm that we used in (a) for the exper-
iments was the generalized BOSVS algorithm from [21]. This algorithm is glob-
ally convergent, and although the penalty term was not linearized, it was possible 
to quickly solve the subproblems that arise in the imaging test problems using a fast 
Fourier transform, as explained in [10].

The problems in our experiments were the same image reconstruction problems 
used in [21]. One image employs a blurred version of the well-known Cameraman 
image of size 256 × 256 , while the second set of test problems, which arise in par-
tially parallel imaging (PPI), are found in [10]. The observed PPI data, correspond-
ing to 3 different images, are denoted data 1, data 2, and data 3. These image recon-
struction problem can be formulated as

where � is the given image data, � is a matrix describing the imaging device, ‖ ⋅ ‖TV 
is the total variation norm, ‖ ⋅ ‖1 is the �1 norm, � is a wavelet transform, and 𝛼 > 0 
and 𝛽 > 0 are weights. The first term in the objective is the data fidelity term, while 
the next two terms are for regularization; they are designed to enhance edges and 
increase image sparsity. In our experiments, � is a normalized Haar wavelet with 
four levels and ��� = I . The problem (6.1) is equivalent to

Δk ∶= Φ(�k) − Φ(�∗) + (�̃
k
,��k − �) ≥

𝜇

2
‖�k − �∗‖2.

E∗
k−1

≥ E∗
k
+ cd2

k−1
≥ E∗

k+1
+ c(d2

k
+ d2

k−1
) + �‖�k − �∗‖2 ≥ (1 + c)E∗

k+1
,

(6.1)min
�

1

2
‖�� − �‖2 + �‖�‖TV + �‖���‖1,

(6.2)min
(�,�,�)

1

2
‖�� − �‖2 + �‖�‖1,2 + �‖�‖1 subject to �� = �, ��� = �,
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where �� = ∇� and (∇�)i is the vector of finite differences in the image along the 
coordinate directions at the i-th pixel in the image, ‖�‖1,2 = ∑N

i=1
‖(∇�)i‖2 , and N is 

the total number of pixels in the image.
The problem (6.2) has the structure appearing in (1.1)–(1.2) with h1 ∶= 0 , 

f1(�) = 1∕2‖�� − �‖2 , h2(�) = ‖�‖1,2 , f2 ∶= 0 , h3(�) = ‖�‖1 , f3 ∶= 0,

The algorithm parameters �l and �l were chosen as in (2.5). Since f2 = f3 = 0 , the 
second and third subproblems are solved in closed form, due to the simple structure 
of h2 and h3 . Only the first subproblem is solved inexactly. At iteration k, the solution 
of this subproblem approximates the solution of

where �k and �k are the Lagrange multipliers at iteration k for the constraints 
�� = � and ��� = � respectively. Details of the experimental setup can be found in 
[21]. The i-th block diagonal element of � was taken to be a multiple �i of the iden-
tity � . According to the assumptions of IADM, �1 should be chosen large enough that 
�1� − ��

1
�1 is positive semidefinite, where

However, a closer inspection of the global convergence proof reveals that for conver-
gence, it is sufficient to have

in each iteration. Instead of computing the largest eigenvalue of ��

1
�1 , we simply 

start with �1 = 4 and multiply it by a constant factor (3 in the experiments) when-
ever the inequality (6.3) is violated. Within a finite number of iterations, �1 is large 
enough that (6.3) always holds.

Figure 1 plots the logarithm of the relative objective error versus the CPU time 
for the four test problems and the three methods. Note that the first few iterations of 
the exact ADMM for Data 3 have error greater than one, so they missing from the 
plot. Observe that I-ADMM performed better than the exact ADMM and the exact 
ADMM was generally better than the single linearization step, except possibly in 
the initial iterations where the high accuracy of the exact ADMM was not helpful. 
I-ADMM gave better performance both initially and asymptotically.

7 � Conclusion

We propose an inexact alternating direction method of multipliers, I-ADMM, 
for solving separable convex linearly constrained optimization problems, where 
the objective is the sum of smooth and relatively simple nonsmooth terms. The 

�1 =

(
�

��

)
, �2 =

(
−�

�

)
, �3 =

(
�

−�

)
, and � =

(
�

�

)
.

min
�

1

2
‖�� − �‖2 + �

2
‖�� − �k + �−1�k‖2 + �

2
‖��� − �k + �−1�k‖2,

��

1
�1 = ��� +���.

(6.3)�1‖�k − �k‖2 ≥ ‖�1(�
k − �k)‖2
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nonsmooth terms could be infinite, so the algorithms and analysis include prob-
lems with additional convex constraints. This I-ADMM emanates for our earlier 
work [10, 20, 21] on a Bregman Operator Splitting algorithm with a variable step-
size (BOSVS). The subproblems are solved using an accelerated gradient algorithm 
that employs a linearization of both the smooth objective and the penalty term. We 
establish an O(1∕k) ergodic convergence rate for I-ADMM, where k is the iteration 
number. Under a strong convexity assumption, the convergence rate improves to 
O(1∕k2) for both ergodic and nonergodic iterates. When an error bound condition 
holds, 2-step linear convergence is established for nonergodic iterates. The conver-
gence rates for I-ADMM are consistent with convergence rates obtained for exact 
ADMM schemes such as those in [23, 28, 30, 35, 38, 42]. As observed in the numer-
ical experiments, an advantage of the inexact scheme is that the computing time to 
achieve a given error tolerance is reduced, when compared to the the exact iteration, 
since the accuracy of the subproblem solutions are adaptively increased as the iter-
ates converge so as to achieve the same convergence rates as the exact algorithms.
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