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Abstract

Convergence rates are established for an inexact accelerated alternating direction
method of multipliers I-ADMM) for general separable convex optimization with a
linear constraint. Both ergodic and non-ergodic iterates are analyzed. Relative to the
iteration number k, the convergence rate is O(1/k) in a convex setting and O(1/k?)
in a strongly convex setting. When an error bound condition holds, the algorithm
is 2-step linearly convergent. The I-ADMM is designed so that the accuracy of the
inexact iteration preserves the global convergence rates of the exact iteration, lead-
ing to better numerical performance in the test problems.
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1 Introduction

We consider a convex, separable linearly constrained optimization problem
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min ®(x) subject to Ax = b, (1.1)

where @ : R” - RU {0} and A is N by n. By a separable convex problem, we
mean that the objective function is a sum of m independent parts, and the matrix is
partitioned compatibly as in

O(x) = ) fix)+h(x) and Ax= ) AX. (1.2)
i=1 i=1

Here f;is convex and Lipschitz continuously differentiable, #; is a proper closed con-
vex function (possibly nonsmooth), and A, is N by n; with " | n; = n. There is no
column independence assumption for the A;. Constraints of the form x; € X}, where
X, is a closed convex set, can be incorporated in the optimization problem by letting
h; be the indicator function of A}. That is, /;(x;) = co when x; € &;. The problem
(1.1)-(1.2) has attracted extensive research due to its importance in areas such as
image processing, statistical learning, and compressed sensing. See the recent sur-
vey [2] and its references.

It is assumed that there exists a solution x* to (1.1)—(1.2) and an associated
Lagrange multiplier A* € R" such that the following first-order optimality condi-
tions hold: Ax* = band fori = 1,2, ..., m and for all u € R, we have

(VA +ATA  u—x) + hy(u) > hy(x)), (1.3)

where V denotes the gradient.
A popular strategy for solving (1.1)—(1.2) is the alternating direction method of
multipliers (ADMM) [16, 17]: Fori =1, ... ,m,

k+1 : k+1 k+1 k k gk
X" € argx?el#xr}w Ep(x1 sy X X X X, A%, (1)
lk+l — lk +p(AXk+1 _b),
where p is a penalty parameter and £, is the augmented Lagrangian defined by
£,(x.2) = D) + (A Ax =) + £ | Ax " (15)

Early ADMMs only consider problem (1.1)—(1.2) with m = 2 corresponding to a
2-block structure. In this case, the global convergence and complexity can be found
in [12, 28]. When m > 3, the ADMM strategy (1.4) is not necessarily convergent
[4], although its practical efficiency has been observed in many recent applications
[40, 41]. Many recent papers, including [3, 5, 6, 11, 18, 24, 26, 27, 32, 33], develop
modifications to ADMM to ensure convergence when m > 3. The approach we have
taken employs a back substitution step to complement the ADMM forward substitu-
tion step. This modification was first introduced in [26, 27].
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Much of the CPU time in an ADMM iteration is associated with the solution of
the minimization subproblems. If m = 1, then ADMM reduces to the augmented
Lagrangian method, for which the first relative error criteria based on the residual
in an iteration emanates from [37], while more recent work includes [13, 39]. For
m = 2 or larger, inexact approaches to the ADMM subproblems have been based on
an absolute summable error criterion as in [9, 12, 19], a combined adaptive/absolute
summable error criterion [31], a relative error criteria [14, 15], proximal regulariza-
tions [7, 25], and linearized subproblems and reduced multiplier update steps [30].

The approach taken in our -ADMM emanates from our earlier work [10, 20,
21] on a Bregman Operator Splitting algorithm with a variable stepsize (BOSVS)
with application to image processing. In the current paper, the penalty term in the
accelerated gradient algorithm of [21] is linearized so as to make the solution of
the I-ADMM subproblem trivial; there is essentially no reduction in the size of the
multiplier update step. The I-ADMM is designed so that the accuracy of the inexact
solution of the ADMM subproblems is high enough to preserve the global conver-
gence rates of the exact iteration. The global convergence results for - ADMM are
similar to those presented in [21]. However, there is no convergence rate analysis
in [21]. In this paper, we focus on the convergence rate of -ADMM. In particu-
lar, relative to the iteration number k, the convergence rate for F-ADMM is O(1/k)
for ergodic iterates in the convex setting and O(1/k?) for both ergodic and noner-
godic iterates in a strongly convex setting. When an error bound condition holds,
I-ADMM is 2-step linearly convergent. These convergence rates are consistent with
those obtained for ADMM schemes that solve subproblems exactly including the
O(1/k) rates in [28, 35, 38] for ergodic iterates, and the linear rates obtained in [23,
42] for a 2-block ADMM, and in [30] for the multi-block case and a sufficiently
small stepsize in the multiplier update. For a more extensive review of linear con-
vergence results for ADMMs, see [43]. But again, almost all the sublinear or linear
convergence rate analysis is based on either a single linearization step to solve the
subproblem or the exact solution of the (proximal) subproblem. An advantage of
our inexact scheme, compared to the exact iteration, is that the computing time to
achieve a given error tolerance is reduced, while maintaining global convergence
and its rate.

The paper is organized as follows. Section 2 gives an overview of the inexact
ADMM (I-ADMM) that will be analyzed. Section 3 reviews the global conver-
gence results found in a companion paper [22]. These global convergence results
are similar to those established for the inexact ADMM of [21]. Section 4 estab-
lishes a O(1/k) convergence rate of for ergodic iterates, and under a strong convex-
ity assumption, an O(1/k?) rate for both ergodic and nonergodic iterates. Section 5
gives 2-step linear convergence results when an error bound condition holds. Finally,
Section 6 shows the observed convergence in some image recovery problems.
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1.1 Notation

Throughout the paper, ¢ denotes a generic positive constant which is independent of
parameters such as the iteration number k or the index i € [1, m]. Let W* denote the set
of solution/multiplier pairs (x*, 1¥) of (1.1)—(1.2) satisfying (1.3), while (x*, 1*) € W*
is a generic solution/multiplier pair. £ (without the p subscript) stands for £,. For x
andy € R”,(x,y) = x"y is the standard inner product, where the superscript " denotes
transpose. The Euclidean vector norm, denoted || - ||, is defined by ||x|| = 1/(x, x) and
Ix]lg = VXTGx for a positive definite matrix G. For any matrix A, the matrix norm
induced by the Euclidean vector norm is the largest singular value of A. For a sym-
metric matrix, the Euclidean norm is the largest absolute eigenvalue. In addition,
A > 0 and A > 0 mean that the matrix A is positive definite and positive semidefi-
nite, respectively. For a differentiable function f : R” — R, Vf(x) is the gradient of f
at x, a column vector. More generally, df (x) denotes the subdifferential at x. A function
h : R" » Ris convex with modulus ¢ > 0 if

h((1 = 0)x + 0y) < (1 — OA(X) + 0h(y) — (1 — O)(u/2)x — y||?

for all u and ve R" and 6 € [0, 1]. If u > 0, then & is strongly convex. The prox
operator associated with % is defined by

. 1
prox ,(y) = arg min (h(X) +5lx - yI|2>~

2 Algorithm structure

The structure of our F-ADMM algorithm is given in Algorithm 2.1. The algorithm gen-
erates sequences x¥, y¥, z, and R*. Both x* and z* are updated in Step 1, R¥ is updated
in Step 2, and y* is updated in Step 3. The error is estimated in Step 2. The matrix Q
in Step 3 is an m by m block diagonal matrix whose i-th diagonal block, denoted Q,, is
chosen to satisfy the conditions:

Q>0 and Q; :=Q,—ATA, >0. @2.1)

For example, we could take Q; = y,I where y; > ||A[.TA,-||. Condition (2.1) is required
for showing global convergence of our I-ADMM. Recent studies show that for the
2-block case (m = 2) and an exact ADMM, the requirement that Q; is positive sem-
idefinite can be relaxed [8, 29]. The matrix M in Step 3 is the m by m block lower
triangular matrix defined by
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ATA; ifj<i,
M= Q ifj=i (2.2)
0 ifj>i.

By (2.1), M is nonsingular. The solution y**! of the block upper triangular system
MT(y**+! — y¥) = aQ(z* — y*) can be obtained by back substitution.

Parameters: p, dyin, 6; >0, a€(0,1), o€ (0,1)
Starting guess: x' and Al.
Initialize: y'=x', k=1 and F? =0, 1<i<m, "=
Step 1: For ¢=1,....m
Generate xf“, zF, and rf by Algorithm 2.2.
End
Step 2: If € :=0,|z" — y*| + 62]|Az" — b|| + 63V RF is sufficiently
small, then terminate, where RF =" rk.
Step 3: Find y**! by solving Q 'MT(y*+! — y*¥) = a(z* — y*)
Aetl — Ak 4 ap(Az® —b), where Q and M are defined
in (2.1) and (2.2), respectively.

Step 4: k:=k+1, and go to Step 1.

ALc. 2.1. FADMM algorithm.

In Step 1 of Algorithm 2.1, we approximate the minimizer in the x; subproblem of
the ADMM algorithm (1.4) using the accelerated gradient method of Algorithm 2.2,
which is a modification of Algorithm 5.1 in [21]. Compared with Algorithm 5.1
in [21], Algorithm 2.2 has a slightly different stopping condition in Step 1b, and a
proximal term to generate uﬁ in Step la, where

K_p k_ k
bf=b- Y Az - D Ay 2.3)

Jj<i J>i
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734 W.W. Hager, H. Zhang

Inner loop of Step 1, an accelerated gradient method:
Initialize: a? = u? = xf
For [=1,2,...
la. Choose ' > §pin and when [ > 1, choose o' € (0,1) such that
= - = 1-0)s' =
fi@)+ (V@) a) —a) + S52% af A > fila),

-1 = -1 -1
where al = (1 —al)al™! +alul, a = (1 -ab)al ™' +alul™!, and

u! = argmin{P(u) + 5|lu— ny%l + hi(u) :u e R} with
— l — .
P(u) = (Vfi(@),u) + & u—ui"" | + £ A — b + X /p||2,
and b defined in (2.3).

1
1b. If 4= (1/51)1_[(1—0/)71 >TF!, where 4! =1/4",

and ol =1.

j=2
and ||al — x¥||/y/7' < ¥(¢F71), then break.
Next

t. Sev xH —ul, 2F —al, TF—ol, and b = (1T Y, ul - ul 2.

ALG. 2.2. Inner loop in Step 1 of Algorithm 2.1.

The termination condition for Algorithm 2.2 appears in Step 1b. In this step, y is a
nonnegative function for which y(0) = 0 and y(s) > 0 for s > 0 with y continuous at
s = 0. For example, y(¢) = t. Two different ways are developed in [21] for choosing the
parameters &' and o/ in Step 1a. If a Lipschitz constant ¢; of f; is known, then we could
take

1 2 2
Y=o M d=pgeen .

in which case, we have

(-0 _ U+ DG
al l

g

This relation along with a Taylor series expansion of f; around Ei implies that the
line search condition in Step 1a of Algorithm 2.2 is satisfied for each [.

A different, adaptive way to choose to choose &' and o, that does not require knowl-
edge of the Lipschitz constant for f;, is the following: Choose 5(1) € [61ins 0 where
0 < ppin < Omax < o0 are fixed constants, independent of k and /, and set

max]’
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5l = 2 and o = ; where

4 /(002 + 40TA-T 1+ AR

1
=21/5f, A°=0, and 6'=1/\n)withn> 1.

2.5)

Here the integer j > 0 is chosen as small a possible while satisfying the inequality in
Step la. It can be shown that

8! !

—=7=6 ;1’ (2.6)

a

Since # > 1, the ratio §'/a’ appearing in Step 1a tends to infinity as j tends to infin-
ity; consequently, the inequality in Step la is satisfied for j sufficiently large.
The stopping condition in Step 1b is elucidated using the following function:

Zf(u) =L + g(u ~-¥9TQ,u -y,  where

LX) =f.(w) + h(w) + gllAiu — bk + 24/ pl12,

and bk is defined in (2.3). As pointed out in Lemma 3.1 of the next section, for either
of the parameter choices (2.4) qr (2.5), the iterates a of Algorithm 2.2 converge to
the minimizer of the function L, at rate O(1/1), while the objective values converge
at rate O(1/1%), which is optimal for first-order methods applied to general convex,
possibly nonsmooth optimization problems. We let lf denote the terminating value
of /in Step 1b.

Remark 2.1 For the two parameter choices (2.4) and (2.5), it has been shown [21,
pp. 227-228] that in Step 1b, ¥/ > [*@ for some constant ® > 0, independent of k
and /. Consequently, the conditions in Step 1b are satisfied for / sufficiently large.

3 Global convergence

The global convergence analysis of the accelerated ADMM in this paper with a lin-
earized penalty term is similar to the global convergence analysis of the accelerated
scheme in [21]. Hence, this section simply states the main results, while a supple-
mentary arXiv document [22] provides the detailed analysis. The first result concerns
the convergence of the iterates in Step 1 of FADMM under the assumption that the
sequence

g = slaly!

is nondecreasing. For either of the parameter choices (2.4) or (2.5), it is shown in
[21, pp. 227-228] that & = 1.
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736 W.W. Hager, H. Zhang

Lemma 3.1 If the sequence &' is nonincreasing, then for eachi € [1,m]and L > 1,
we have

o i = Ixk = %717
L _ k2 3 Z = L2 o Z Il 12 i i
pvi”ai _Xi ” + ”Xi _ai ” + éllui _ui ” < . l >
2 rE rE
=1 =1
3.1

where , , is the modulus of convexity of h;, v; > 0 is the smallest eigenvalue of Q;,
and

if = arg min{Zf(u) tue R} (3.2)

—k
Since L, is strongly convex, it has a unique minimizer. The following decay
property plays an important role in the global convergence analysis.

Lemma 3.2 Let (x*, A*) € W* be any solution/multiplier pair for (1.1)—(1.2), let x*,
yk, z*, ui, and A* be the iterates generated by Algorithm 2.1, and define

m k #[12
! . [Ixt — x|
Eg =plly" x5+ =14 = AP + @ Y ——"—
P 5 1

m k # (12

) ! , [Ixt — x|
E; =p||yk—x*||f,+;|Mk—z*||2+a2‘rk—_l',

i=1 i

(3.3)

where P = MQ™'M". If &l := 8laly! = 1for each , then

Ey—Ewy1 Z2E—E,

> a<2Ak +oR + p(1 — a)(Ily* = 2°IIg, + 1AZ" = bII>) + Y py, llzf — x7||2>,
i=1

(34
where R¥ is the residual defined in Step 2, My, ; is the modulus of convexity of h;, and
AX = L(ZF, %) — d(x*) > 0. (3.5)
Recall that £ = L, is the ordinary Lagrangian associated with (1.1). This decay
property is used to obtain the following global convergence result for LADMM.

Theorem 3.3 Suppose the parameters 8' and o in Algorithm 2.2 are chosen accord-
ing to either (2.4) or (2.5). If ’FADMM performs an infinite number of iterations
generating y*, z*, and A, then the sequences y* and z¥ both approach a common
limit x*, A* approaches a limit A*, and (x*, A*) € W'

Theorem 3.3 considers the case of an infinite number of iterations. The follow-
ing lemma considers the case where ¢ = 0 within a finite number of iterations.
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Lemma 3.4 Ife* = 0 in Algorithm 2.1, then x**! = x¥ = y* = z¥ solves (1.1)—(1.2)
and (x*, AF) e W

Proof If ek = 0, then ¥ = 0 for each i. It follows that

Xf=u=ul=..=u. (3.6)
By Step Ic, u/ =x*1 By the definitions al=(l—a')al™' +a'u! and
a =1 -ahal™ +alul” 1wherea0 =u) =xf, wehaveaf —al—xl for each { due to
(3 6). Again, by Step lc, zf = x! Consequently, we have Xk+1 xk =z~

k+1 k

Let x* denote x* Then x* = x! = xk = 7%, Since € =0, Step 2 of Algo-
rithm 2.1 implies that y¥ = z*¥ = x* and Ax* = b. Consequently, we have

— k k _ * * __ *
=b- ZAij - ZAjyj =b- Zijj - Zijj =Ax.
Jj<i >i Jj<i J>i
With this substitution in P(u) in Step 1a, it follows that uﬁ = X minimizes over u the
function

* 5[ * * *
(VAGD W) + Zllu = X117 + 1A = %)) + 2ol + Ellu = X712+ hyw).

The first-order optimality condition for this minimizer x} is the same as the first-
order optimality condition (1.3), but with 1* replaced by A4*. Hence, (x*, 4*) € W*.
O

Remark 3.1 In tlli/? paper, we have focused on algorithms based on an inexact
minimization of L, in Step 1 of Algoritpm 2.1. In cases where f; and h; are simple
enough that the exact minimizer xk of L, can be quickly evaluated, we could simply

set Xt =2F = x and rf =0 in Step 1 of ILADMM, and proceed to Step 2. The
global convergence results still hold.

4 Sublinear convergence rates

In this section, sublinear convergences rates are established for -ADMM. We
first establish an O(1/f) convergence rate for the ergodic iterates

t
- 1 X
7= Dz @.1)
generated by FADMM.

Theorem 4.1 Let (x*,A*) € W' be any primal/dual solution pair for (1.1)—(1.2)
and let 7% be generated by I-ADMM with §'a'y' = 1for each | and k. Then, we have
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738 W.W. Hager, H. Zhang

L, 1) - dx*) < E
’ = 2at’
where Z' is defined in (4.1) and E, is defined in (3.3).

Proof Discarding several nonnegative terms from (3.4), we have
20Af + E,,, <E,.

Adding this inequality over k between 1 and ¢ yields

t
20 Y A*+E,, <E,.
k=1
Hence, by the definition of A¥in (3.5), we have

2a Z [£@", 1) - o(x*)] < E|.

k=1

By the convexity of @ and the definition (4.1), it follows that
2at[L@, 1) - ©(x*)] < E|.
This completes the proof. a

Note that the minimum of L£(x,A") over x € R" is attained at x = x*, and
L(x*, A*) = ®(x*). Hence, Theorem 4.1 bounds the difference between £(Z', 1*) and
the minimum of £(-, 1*). We will strengthen the convergence rate to O(1/¢>) when
a strong convexity assumption holds, and also obtain a convergence rate for noner-
godic iterates.

Assumption 4.1 If y;; > 0 and p;,; > 0 are the convexity moduli of f; and A,
respectively, then

p=min {p;; +3pu,; 1 i=1,....,m} > 0. 4.2)

In the following theorem, we suppose that at the k-th iteration, the penalty param-
eter p is chosen in the following way:

P = (ko + k)0, 4.3)
where

_41Q7'/2PQ 2|

apu
d k 2
and %o a(l—a)

8P|

(4.4)

with y defined in Assumption 4.1, @ € (0, 1) is the parameter in Algorithm 2.1, and
P = MQ 'M". We have the following theorem:
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Theorem 4.2 Let (x*, A*) € W* be any solution/multiplier pair for (1.1)—(1.2), let
x¥, y¥, 28 and A* be generated by ILADMM, and assume that Assumption 4.1 holds
and 8'a'y! = 1 for each | and k. Suppose that for every k, p, is given by (4.3) and Ff.‘
satisfies

k+1

k .
ﬁz g 1<i<m. 4.5)
Then, for allt > 0, we have
“t as 2c
LEZ V) - ————————
@ 47) = @) < D) ¥ 2kot] (4.6)
and
1 _ o * |12 < c
Ily x|I* < ey 4.7
where
R S Z((k +k)zh), (4.8)
1+ 1)+ 2kyt &0 :
and

. IIx! = x*1? .
= M 1||2+a<ko+1>zr—+k§9uyl—x||f,. 4.9)
i=1 i

Proof By Assumption 4.1 and the definition (3.5) of A¥, we have

. Heit My Myt My
= L6 27 - L, A>>Z—||z -x/IP = ZTnzjinz,
i=1

where z¥ = z* — x*. The inequality (3.4) of Lemma 3.2 relates the error in two con-
secutive iterations, where the p in (3.4) is the penalty at iteration k. Combining this
with the definition of x4 in Assumption 4.1, we have

U
a( A%+ EIZIP + o1 - @)lly* — 213 )
m ko2 k+1712
| A R ol
< A = I ) + NP = A1) + o Y~
k i=1 i

l

s

(4.10)

where x¥ = x* — x*, y* = y* — x*, and ' = 2F - 1",

For any matrix P, it follows from an e1gendecomposition that

T T
x'Px x'Px
x'x > and x'Qx

>
1P| 1Q-1/2PQ~1/2|
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The second inequality is deduced from the first when x is replaced by Q'/>x and P
is replaced by Q~!/2PQ~!/2. This yields the following lower bound for terms on the
left side of (4.10):

B + 01 - 0lly* =217 2 2||P|||| ol oy — 21
ZZHP” (12415 + 11y = 213)
22”1,“ (202415 + Iyl = 20241 141)
> eIl = 22l

@.11)

The second inequality is due to the special form of p; in (4.3) and (4.4), and the last
inequality is due to the relation

1,2 1 2)
< —(2 =b° ).
ab < 2( a” + 2b
The inequality (4.11) is incorporated in the left side of (4.10). We multiply the
resulting inequality by K := k; + k, substitute p, = K6, exploit the assumption (4.5)

and the inequality K(K — 2) < (K — 1)? to obtain

1
akA* <0((K = D?NIyEllg = K2llys ' 1I5) + E(II/V;II2 = AP

k12 k+1712
KIIX A7 K+ DI
+ az Fk+1 :
i

Summing this inequality for k between 1 and ¢, with K = k;, + k, yields

1
a Y (ky+ A+ (kg +D*0lly™ = x5 <7, (4.12)
k=1

where ¢ is defined in (4.9). Substituting for A* using (3.5) and discarding the y'*!
term, we have

a Y (ko +)[L@E, 47) - d(x)] < T 4.13)
k=1

The convexity of ® and the definition of Z* in (4.8) yield

Sk g 2

which together with (4.13) gives (4.6). In addition, since A* > 0, (4.12) also implies
“4.7). O
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As noted at the end of Sect. 2, for either of the parameter choices (2.4) or (2.5),
y! > @ for some constant ® > 0, independent of k and I. Hence, for [ sufficiently
large, the requirement (4.5) at iteration k + 1 is satisfied.

5 Linear convergence

For the analysis of linear convergence rate of LADMM, we assume that y has the
additional property that y(7) < ¢, for all 7 > 0, where ¢, > 0 is a constant. Let us
define

ey, A) = Ily; — prox , (y; — Vfi(y) — A] Il 5.1

We begin with the following lemma.

Lemma 5.1 [f the parameters &' and o' in Algorithm 2.2 are chosen according to
either (2.4) or (2.5) and w(t) < Cyls then for any k > 2, we have

m

Y ey A < cld +dy ), (5.2)

i=1

where ¢ > 0 is a generic constant which only depends on the problem data and algo-
rithm parameters such as p and c,, and

d, = |ly* — 7| + ||AZ" — b|| + VR~ (5.3)

Proof For any p,; and q; € R", i = 1, 2, it follows from the triangle inequality and the
nonexpansive property of the prox operator that

P, — prox ;. (q,)ll
= |Illp, — prox ;,(4;)] + [p; — ol + [ prox ;, (q) — prox , (@Il (5.4)
<Py = prox , (@)l + llpy — poll + lla; — qall-

We 1dent1fy lIp; — prox ,, (q))|| with e, (y**', A1y and ||p, — prox 5 (@)l with
e;(z", A%), and use (5.4) to obtain the following bound for e, (YL 4 H1)%in terms of

e,(zk 5):
e, (Y A < (28, A + @+ Oy — 2F | + AT =AY,

where {; is the Lipschitz constant for Vf,. The update formula for A implies that
A _ 2K = ap(Azk — b) = apr,, where r, = AzF —b. With this substitution, the
bound for e,(y**!, /lf,‘”) becomes

e, (", A < e(2h, AN + 2 + Oy - 2F|| + apllATE. (5.5)

Let v; > 0 denote the smallest eigenvalue of Q,. The analysis is partitioned into two
cases:
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742 W.W. Hager, H. Zhang

Case 1 Ff > 4/(pv;). Again, by property (5.4), we have

i@, A" < & A + 2+ Ol -], (5.6)

where X" is given in (3.2). The first-order optimality conditions for §f can be written
§f.( = Prox (if - Vfi(if) - pAl.T(Aiyf.‘ - bf + AK/p) — in(if - yf)).
Using this formula for the first if on the right side of the identity
X, 4) = [IX] — prox , &} — V£(&) - AT DI,
along with the nonexpansive property of prox operator, we have
e &2 < p(IAT AN, ~ B+ IQE - ¥ )-

The definition of bf yields

Ayi-bi=Y Azb+ Y Ay -b

j<i j2i

Ak _ k_ k

=Az"-Db+ Z Aj(yj z;)
Jj=>i

=r;, + Z Aj(yJ’.‘ - z]’.‘).

J=i
It follows that
AT (AyE =DOI < ellirll + lly* = 2D (5.7)

and

e(®', 25 < ellimll + IIy* = 2811 + I} = zf1). (5.8)
Combining this with (5.6) gives

e, 2 < e(limell + 11y = 21 + I%; - z{1).
Now, by Lemma 3.1, we have

Kk =k
o IR
V pvillzi _Xi” < l l

r*

i
s (5.9)
lIx} = z{1| + Iz — X; |

r*

l

The stopping condition in Step 1b gives
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lIxf — 22|l _ _
- < W(ek 1) < cet ! (5.10)

L

Hence, by (5.9) we have

L+4/I%py " =

Ix* — z¥||
ZF X < —/—— <l

i il = -

rx I«

l L

Therefore, the Case 1 condition F{f > 4/(pv;) implies that

k_ gk k-1
”Z,* - X ” <ce",

and by (5.8), we have
(25, %) < c(€" + Ik = ZM|| + IIxglD). (5.11)

Case 2 Ff <4/(pv;). It is shown in [21, pp. 227-228] that when the parameters &'
and o' are chosen according to either (2.4) or (2.5), there exists a constant ® > 0,
independent of k and [, such that y/ > [?@. Since the y! are increasing functions of
[ and Fi.‘ is the final value of y! in Step 1, it follows from the uniform bound on Ff.‘
in Case 2, and the quadratic growth in y!, that the final [ value in Step 1, which we
denote l;‘, is uniformly bounded as a function of i and k. Also, it follows from the
quadratic growth of y/ and equations (5.18) and (5.20) in [21] that §' is uniformly (in
k, I, and i) bounded.

By the definition of y! in Algorithm 2.2, we have (1 — a')y! = y/~!, or equiva-
lently, a'y! = y* — y*=! (with the convention that y* = 0). Summing this identity over
[ yields

1
Y= oyl (5.12)
Jj=1

Next, we multiply the definition aik =(1- aj)ai:;l + afu’l:k by ¥ and sum over j
between 1 and [. Again, exploiting the identity (1 — o/)y/ = /! yields

!

1
=5 Z (o, (5.13)
It follows from (5.12), that agk is a convex combination of u’l:k, 1<j<LIf pik e [0,1]
denotes the coefficients in the convex combination, we have

!
Ay, = Zp{ku]zk (.14)
J=1

k

. _ L _ k ') . . .
Since z; = a; for L = [}, Jensen’s inequality gives
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*
ez, 1% < Y plyIlu, — prox ,, (28 — Vfiz) — ATA9)|
=1
I*
<) Il = prox , (2 — Vfi(z)) - AT A9
=1

(5.15)

Now, by the formula for u in Alg. 2.2, we have u = prox;, (q,), where
q, = ) - V@) — o}l —ul) - pAT(AyE = bf + 4/ p) - pQ(u, — ¥).

We utilize (5 4) with q; = Z - Vf, (zk) AT}Lk with q, as given above, and with
p=p,= u . Hence, p, — prox h, (qz) 0 and by (5.4), it follows that

k Tk
”u,’k — prox hi(zi - Vf;(Z,) - A,’ A )”
I k =l k 1 -1 T k k 1 k
< c(lluik - z,‘ ” + ”a,'k - Z,’ ” + ”uik - u[k ” + ”A, (Aiy,' - b,)” + ”u,‘k - y,‘ ”)
1 k = k 1 -1 T k k k k
< (I, = 261+ 1, = 2611+ lul = w11+ HATCAYE = D)1 + Iyt = 241

(5.16)

Each of the terms on the right side of (5.16) is now analyzed.
Based on (5.7), the trailing two terms in (5.16) have the bound

AT Ay; = DI+ NIy} =21l < cClieell + 1y = 2°ID.

The remaining terms in (5.16) are bounded by c\/rj’.< as will now be shown. The

bound ||u — u N < c\/;i is a trivial consequence of the definition of r" and the

uniform bound on Ff.‘ in Case 2. By the definition ﬁﬁk =(1- ocl)(a;:1 ) + ulk ,
it follows that

= k -1 -1 -1 k
“aik - Zi “ < ”aik - uik “ + “uik - Zi ”

This inequality and the fact that zf.‘ = afk for [ = lf implies that all the remaining
terms in (5.16) have the form ||afk —u}, || for some/ € [1, lf] and some ¢ € [1,/]. Com-
bine (5.14), Jensen’s inequality, the fact that [ < lf.‘ where lf.‘ is uniformly bounded in

Case 2, and the Schwarz inequality to obtain
l
4 - p
“u]zk —u ” < C\/Z’
=1

!
j t
ay — Wl < Z H“ik ~ Wi

These bounds for the terms in (5.16) combine to yield

luf, — prox , 2! — Vf(z}) — ATAM)| < c<||rk|| Iy =201+ \/?>

Moreover, by (5.15) and the Case 2 uniform bound on lf, we have
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ez, 1) < c<||rk|| +Ily* -2+ \/7>

Combine this with the Case 1 lower bound (5.11) gives

ez, AF) < c(ek_l + gl + Ny =281 + ﬁ) (5.17)

Inserting this in (5.5) yields
e,y A < C<€"‘l + el + 1y =280+ /e - ykll>.

Based on the back substitution formula y**! — y* = aM~TQ(z* — y*), this reduces

to
e, (y*, A% < c<e"" + el + 1ly* - 20 + ﬁ)
Since €71 < cd,_, and ||r; || + ||y* — 2¥|| + rl" < d,, the proof is complete. O

The expression E; defined in (3.3) measures the energy between the current
iterate (X;,¥;, 4,) and a given (x*,x*, 1*). Let E} denote the minimum energy
between the iterate and all possible (x*, ") € W*. We will show that when an
error bound condition holds, there exists a constant k¥ < 1 such that EZ < KE;:.

The error bound condition relates the KKT error to the Euclidean distance to

WF. The KKT error K is given by

K(x, ) = [|Ax = b]| + ) ¢;(x, A). (5.18)

i=1

When K(x, A) =0, the first-order optimality conditions hold. The Euclidean dis-
tance from (x, 1) to W* will be measured by

1/2
5(x,/1)=min{p||x—x*||f,+1||/1—,1*||2 : (x*,/l*)eW*} . (5.19
p

Note that P = MQ™'MT is positive definite since M is invertible. Also, by [1, Prop.
6.1.2], every solution of (1.1) has exactly the same set of Lagrange multipliers. If X*
and A denote the set of solutions and multipliers for (1.1), then W* = X* x A*is a
closed, convex set, and there exists a unique (X, 1) € W* that achieves the minimum
in (5.19). The local error bound assumption is as follows:

Assumption 5.1 There exist constants § > 0 and # > 0 such that £(x, 1) < nK(x, A1)
whenever £(x, 1) < f.
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The local error bound condition is equivalent to saying that in a neighborhood
of W¥, the Euclidean distance to W' is bound by the KKT error, which is often
used to analyze the linear convergence behavior of an optimization algorithm.
More recently, a partial error bound condition based on the ADMM iterates
instead of conditions on the optimization problem is proposed in [34]. Under such
conditions, linear convergence is also established for a 2-block ADMM.

A multivalued mapping F is piecewise polyhedral if its graph
Gph F := {(X,y) : y € F(x)} is a union of finitely many polyhedral sets. The
local error bound condition (Assumption 5.1) holds when Vf; is affine and dh;
is piecewise polyhedral for i =1,...,m [23, 36, 42]. Note that when (x, 1) is
restricted to a bounded set, the requirement that £(x, 1) < § can be dropped. That
is, when £(x, A) > f, K(x, 4) is strictly positive, and by taking the constant # large
enough, the bound &£(x, 1) < nK(x, A) holds over the entire set. In our analysis, the
error bound condition is applied to the iterates (y*, A¥) which lie in a bounded set
by Lemma 3.2, so the requirement that £(x, 1) < f is unnecessary.

Theorem 5.2 If the parameters §' and o' in Algorithm 2.2 are chosen according to
either (2.4) or (2.5), w(1) < ¢, t, and Assumption 5.1 holds, then there exists k < 1
such that E; , < kE} at every iteration of Algorithm 2.1.

Proof Let (7+',7"") € W be the unique minimizer in (5.19) corresponding to
(x, A) = (y**!, A1), By the stopping condition in Step 1b of Algorithm 2.2, and the
definition of Ff.‘ in Step lc, the sequence Ff.‘ is nondecreasing in k by Remark 2.1.
Since Fif is nondecreasing in k, it follows from the triangle inequality and the back
substitution formula y**! — y* = aM~TQ(z* — y*) that for any i € [1, m], we have

K+l _ gkl k1 k+1 K+l _ gk+l
I =g <||Xi+ =zi |+ llzf = yill+ lly = v+ s =

/I“f.‘“ - /Ff.‘“

k k+1 k Sk+1
I =z llzf = yil+ lyf =y i+ Dy =y

I r!

i i

[|xk+! — 2K
k k k+1 ~k+1

. — +c(ll2" = yH I+ Iy =),

i

(5.20)

where ¢ > 0 denotes a generic constant, independent of k.

As noted earlier, when the parameters &' and o' in Algorithm 2.2 are chosen
according to either (2.4) or (2.5), we have & = 6'a'y! = 1. By equation (3.12) in
the supplementary material for this paper with L = I¥, u = al =z}, u* = x**!, and

i 9
u? = X;, we obtain the relation
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1
k k+ ” k k”

Iz — = -

VNG

where the last inequality is due to the stopping condition in Step 1b. Combining this
with (5.20) yields

< w(eh,

k+1 _ g+l
I -5

’F].(_H

Exploiting the error bound condition, we have

k1 _ k112 <o =T [lvk+] _ k]
Iy =017 <VIPHlY™ =5 llp

SCE(yk-H,lk-H) < CK(yk+l,l'{k+l).

<wE@ D +e(llZ =y I+ Iy =5). 501

(5.22)

The constraint violation term in K is estimated as follows:
k+1 k+1 k k_ ok k
IAY“" = bl < IANCAY" =y Il + ly* = z°ID) + |Az" — b|| < cd,,

where the last inequality is due to the back substitution formula and the definition
(5.3) of d,.. Hence, Lemma 5.1 yields

Ky, 2 < e(d, + d,_). (5.23)
Combine (5.21)—(5.23) to obtain

K+l _ g+l
I =3

[1k+1
Fi

since y(f) < ¢t and €1 < cd,_,. Since the energy .., corresponds to the mini-
mum of £, over all (x*, *) € W* and since (§**!, 1 o ) € W, it follows that

Sw(E ) +eld +d ) < cld+dyy) (5.24)

m ||Xk+1 _ 5,;&1 ”2

" - 1 sk+1
By S plly™! =95 + 225 - 2T 4 a)

k+1
i=1 F,‘

The first two terms on the right are Sz(yk“, /lk“), while the last term in bounded by
(5.24). We have

Ef,, <& A+ e(di+d,,)’.

Combine this with the error bound condition and (5.23) gives

2

Ef <c(di+d,)" (5.25)

Suppose that (XX, ik) € W' is the unique minimizing (x*, 1*) € W" associated with
E}. By Lemma 3.2 and the fact that (%%, 1)) € W¥, we have
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m

N 1 ~k
E; 2plly™! = %llp + JI2* -2 +a >

i=1

||Xk+l ﬁfllz
r«
"

+ pa(l — a)(|ly — 2| + |AZ" = b|®) + oo )| RE.

i=1

The first three terms on the right side are bounded from below by £} |, while the last
three terms are bounded from below by cd2 by the definition of d, in (5.3). Hence,

Ef > E}, +cd;. (5.26)
We replace k by k — 1 and then use again (5.26) followed by (5.25) to obtain

2
E_ | 2E +cd_| 2 E;

” Cted+dl ) > (1+0E;

k+1°
which completes the proof. O
Another linear convergence result is established when the objective @ is strongly

convex, in which case the solution x* of (1.1) is unique. Our assumption is the
following:

Assumption 5.2 The objective @ is strongly convex with modulus y# > 0 and there
exist constants # > 0 and # > 0 such that

1A =2l <7 Y llex*, Al (5.27)
i=1

whenever |4 — 1| < .

The local error bound condition (5.27) holds when 0#; is piecewise polyhedral for
i=1,...,m[23, 36, 42]. Similar to the comment before Theorem 5.2, the require-
ment that |4 — A|| < § can be dropped since it is applied to the iterates A% which lie
in a bounded set by Lemma 3.2.

Theorem 5.3 If the parameters §' and o' in Algorithm 2.2 are chosen according to
either (2.4) or (2.5), w(1) < ¢, t, and Assumption 5.2 holds, then there exists k < 1

such that E; , < kE} at every iteration of Algorithm 2.1.

Proof By the local error bound condition and by (5.4) with p; — prox (d) identi-
fied with e;(x*, A1y and P, — prox , (q,) identified with e;(z*, %), we have

k+1 "
1A =2 SnZei(x LA

m (5.28)
5c<||zk —X T+ 1A = 2K+ Y e xk>>,

i=1
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where ¢ > 0 is a constant. In the later proof, we again use ¢ > 0 as a generic con-
stant. By (5.17), it follows that

X e A < e+ I+ 1lys - 21+ VERY).

i=1

Inserting this in (5.28) and recalling that Ak = ap(Azk —b) = apr;, we have
1441 = 3 < el =Xl D+ Iy = 2+ V).
Since ! < cd,_;and ||r, || + ||ly* — Z*|| + VR* < d,, it follows that
2kl .
A = 20 < eldy + dyy + 125 = X7, (5.29)

By (5.21) with §**! = x*, we have

X — x|

———<

[Tk+1
Fi

The triangle inequality and the back substitution formula yield

C(ek_l + “Zk - yk” + ”yk+1 - X*”) (5.30)

Iy —x* I < lly" =y I+ Ily* =200+ N1z = x| (531)
<elly® =z + l12* = x*|I. '

The bounds €'~ < cd,_; and ||y* — z¥|| < d in (5.31) and (5.30) give

k+1
k+1 * k * ||Xi+ _X;(” k *
ly"™ —x*|| <cd, + ||z" —x*|| and SC(dk_1+dk+||Z - X ||).

,FI.(_H

(5.32)
Combine (5.29) and (5.32) to obtain
m k+1 112
" * 1 k+1 zk+1 2 IIXi - X ”
Ef =pllyt —xp+ =1 =TT Pt a ) ————
o Py Z{ it (5.33)
S C(dk + dk—l + ”Zk - X*”)z.
On the other hand, by Lemma 3.2 and the fact that (x*, :lk) € W', we have
m k+1 *112
* * 1 ~k ”Xl' - Xl' ”
Ef 2 plly*! = xIp + = 1A = TP+ Y -
p i=1 Fi
5.34
+ pa(l = a)(lly* - 2IIg, + lAZ" = b||?) + caR* + 2aA* (5-34)
>E,, + cd,f + ullz* — x*|?,

where the last inequality is due to the definition (5.3) of d, and the strong convexity
of @:
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A 1= o) — d(x*) + (I, AZk —b) > gllz" —x*|I%.

Finally, we replace k by k — 11in (5.34), and then use again (5.34) followed by (5.33)
to obtain

E | >E +cd, | >E}

k=1 = -1 2 B T C(d/f + dl%—l) +ullz = x*|? > (1 + 0E;

k+1°

which completes the proof. O

6 Numerical experiments

In this section, we compare the performance of -ADMM to that of two different
algorithms: (a) linearized ADMM with one linearization step for each subproblem
and (b) exact ADMM where the subproblems are solved either by the conjugate gra-
dient method or by an explicit formula. The conjugate gradient method was well
suited for the quadratic subproblems in our test set. We tried using a small number
of conjugate gradient iterations to solve a subproblem, such as 5 iterations starting
from the solution computed in the previous iteration, but found that the scheme did
not converge. Instead we continued the CG iteration until the norm of the gradient
was at most 107, The one-step ADMM algorithm that we used in (a) for the exper-
iments was the generalized BOSVS algorithm from [21]. This algorithm is glob-
ally convergent, and although the penalty term was not linearized, it was possible
to quickly solve the subproblems that arise in the imaging test problems using a fast
Fourier transform, as explained in [10].

The problems in our experiments were the same image reconstruction problems
used in [21]. One image employs a blurred version of the well-known Cameraman
image of size 256 X 256, while the second set of test problems, which arise in par-
tially parallel imaging (PPI), are found in [10]. The observed PPI data, correspond-
ing to 3 different images, are denoted data 1, data 2, and data 3. These image recon-
struction problem can be formulated as

1 2 T
min S{[Fu—£[|"+ aljullzy + I1¥ ull,. (6.1)
where f is the given image data, F is a matrix describing the imaging device, || - ||y
is the total variation norm, || - ||, is the £, norm, ¥ is a wavelet transform, and & > 0

and g > 0 are weights. The first term in the objective is the data fidelity term, while
the next two terms are for regularization; they are designed to enhance edges and
increase image sparsity. In our experiments, W is a normalized Haar wavelet with
four levels and WW' = I. The problem (6.1) is equivalent to

(min) %HFu —f)> + al|lwll;, + BlIvll; subject to Bu=w, Yu=yv, 6.2)
uw,v,w
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where Bu = Vu and (Vu); is the vector of finite differences in the image along the
coordinate directions at the i-th pixel in the image, [|w||, , = Zfil [[(Vu),||,, and N is
the total number of pixels in the image.

The problem (6.2) has the structure appearing in (1.1)—(1.2) with A, :=0,
fiw = 1/2[Fu— €112, hy(w) = Wl 5, fo 2= 0, hs(¥) = [I¥lly, f3 := 0,

w3 e (D) s () ()

The algorithm parameters a' and 6’ were chosen as in (2.5). Since f, = f; = 0, the
second and third subproblems are solved in closed form, due to the simple structure
of i, and h;. Only the first subproblem is solved inexactly. At iteration k, the solution
of this subproblem approximates the solution of

min %HFu )2+ glIBu — w4 p A2 gll‘I’Tu — Ve 7 b
u

where A* and p* are the Lagrange multipliers at iteration k for the constraints
Bu = w and ¥'u = v respectively. Details of the experimental setup can be found in
[21]. The i-th block diagonal element of Q was taken to be a multiple y; of the iden-
tity I. According to the assumptions of IADM, y, should be chosen large enough that
71— A]TA] is positive semidefinite, where

ATA, =B"B+¥V¥".

However, a closer inspection of the global convergence proof reveals that for conver-
gence, it is sufficient to have

nlizt = y*I1? > 1A, & - yHII? (6.3)

in each iteration. Instead of computing the largest eigenvalue of AlTAl, we simply
start with y; = 4 and multiply it by a constant factor (3 in the experiments) when-
ever the inequality (6.3) is violated. Within a finite number of iterations, y, is large
enough that (6.3) always holds.

Figure 1 plots the logarithm of the relative objective error versus the CPU time
for the four test problems and the three methods. Note that the first few iterations of
the exact ADMM for Data 3 have error greater than one, so they missing from the
plot. Observe that L-ADMM performed better than the exact ADMM and the exact
ADMM was generally better than the single linearization step, except possibly in
the initial iterations where the high accuracy of the exact ADMM was not helpful.
I-ADMM gave better performance both initially and asymptotically.

7 Conclusion
We propose an inexact alternating direction method of multipliers, -ADMM,

for solving separable convex linearly constrained optimization problems, where
the objective is the sum of smooth and relatively simple nonsmooth terms. The
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Fig. 1 Base-10 logarithm of the relative objective error versus CPU time for the test problems

nonsmooth terms could be infinite, so the algorithms and analysis include prob-
lems with additional convex constraints. This -ADMM emanates for our earlier
work [10, 20, 21] on a Bregman Operator Splitting algorithm with a variable step-
size (BOSVS). The subproblems are solved using an accelerated gradient algorithm
that employs a linearization of both the smooth objective and the penalty term. We
establish an O(1/k) ergodic convergence rate for LADMM, where £ is the iteration
number. Under a strong convexity assumption, the convergence rate improves to
O(1/k?) for both ergodic and nonergodic iterates. When an error bound condition
holds, 2-step linear convergence is established for nonergodic iterates. The conver-
gence rates for F-ADMM are consistent with convergence rates obtained for exact
ADMM schemes such as those in [23, 28, 30, 35, 38, 42]. As observed in the numer-
ical experiments, an advantage of the inexact scheme is that the computing time to
achieve a given error tolerance is reduced, when compared to the the exact iteration,
since the accuracy of the subproblem solutions are adaptively increased as the iter-
ates converge so as to achieve the same convergence rates as the exact algorithms.
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