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Abstract

The privacy implications of generative adver-
sarial networks (GANs) are a topic of great
interest, leading to several recent algorithms
for training GANs with privacy guarantees.
By drawing connections to the generaliza-
tion properties of GANs, we prove that un-
der some assumptions, GAN-generated sam-
ples inherently satisfy some (weak) privacy
guarantees. First, we show that if a GAN is
trained on m samples and used to generate
n samples, the generated samples are (ε, δ)-
differentially-private for (ε, δ) pairs where
δ scales as O(n/m). We show that under
some special conditions, this upper bound is
tight. Next, we study the robustness of GAN-
generated samples to membership inference
attacks. We model membership inference as
a hypothesis test in which the adversary must
determine whether a given sample was drawn
from the training dataset or from the under-
lying data distribution. We show that this
adversary can achieve an area under the ROC
curve that scales no better than O(m−1/4).

1 Introduction

Generative adversarial networks (GANs) are a class of
generative models that aim to generate samples from
a distribution µ given a database of training samples
D = {xi}mi=1, where the xi ∈ X are drawn i.i.d. from
a distribution µ (Goodfellow et al., 2014). GANs are
posed as a zero-sum game between two neural networks:
a generator that aims to generate new samples x̂i ∼ µ
and a discriminator that aims to classify samples as
being either real (i.e., a member of D) or generated.
In recent years, GANs have garnered interest as a tool
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for generating synthetic data from potentially-sensitive
raw datasets, such as medical data (Esteban et al.,
2017; Jordon et al., 2018; Choi et al., 2017), banking
transactions (Jordon et al., 2018), and networking and
server traces (Lin et al., 2020a). However, GANs are
known to leak information about the data on which they
were trained. Common concerns include memorization
of sensitive training samples (Webster et al., 2019) and
membership inference attacks (Hayes et al., 2019; Chen
et al., 2019).

In response to these concerns, a popular approach in the
literature has been to train differentially-private GAN
models. This can be accomplished through training
methods like differentially-private stochastic gradient
descent (DP-SGD) (Abadi et al., 2016), PATE-GAN
(Jordon et al., 2018), and others (Long et al., 2019;
Chen et al., 2020). These approaches guarantee differ-
ential privacy for releasing the model parameters. In
practice, they also degrade model quality due to the
added noise, sometimes to the extent that the utility
of data is completely destroyed (Lin et al., 2020a).

In some practical scenarios, an attacker may only
have access to a GAN’s generated samples, instead
of the model parameters (e.g., when releasing synthetic
datasets instead trained models (Choi et al., 2017; Lin
et al., 2020a)). Note that ensuring the privacy for re-
leasing generated samples is a weaker condition than
ensuring the privacy for releasing parameters because
of the post-processing property of differential privacy
(Dwork et al., 2014). Releasing generated samples (ver-
sus model parameters) is therefore a promising solution
for achieving better privacy-fidelity trade-offs. As a first
step towards this goal, it is important to understand
the privacy properties of GAN-generated samples.

In this work, we show that GAN-generated samples
satisfy an inherent privacy guarantee without any spe-
cial training mechanism, by making connections to
recent results on the generalization properties of GANs
(Zhang et al., 2017). The strength of this privacy guar-
antee varies for different notions of privacy. Specifically,
we study two privacy notions: differential privacy (DP)
and robustness to membership inference attacks.
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• For differential privacy, we show that the samples
output by a vanilla GAN (i.e., trained without
differential privacy) inherently satisfy a (weak) dif-
ferential privacy guarantee with high probability
over the randomness of the training procedure.
More specifically, we consider the mechanism of
training a GAN on m training samples and using
it to generate n samples. We show that this mech-
anism ensures

(
ε, O(n/m)
ε(1−e−ε)

)
-differentially privacy

with high probability (under some assumptions).
The rate O(n/m) shows that differential privacy
guarantee is stronger as the training set size grows,
but degrades as you generate more samples from
the GAN. Additionally, we show that O(1/m) rate
is the optimal rate we can get when n = 1. On
the positive side, the results suggest that GAN-
generated samples are inherently differentially pri-
vate. On the negative side, however, the rate is as
weak as releasing n raw samples from m training
samples. This suggests that we need to incorpo-
rate other techniques (e.g., DP-SGD, PATE) in
practice if we want meaningful differential privacy
guarantees.

• For robustness to membership inference attacks,
we show that vanilla GANs are inherently robust
to black-box membership inference attacks. We
study the worst-case setting where an attacker
can draw infinite samples from the trained GAN.
Even in this case, we show that for any attacker
strategy, the difference between the true positive
rate and the false positive rate—as well as the area
under the ROC curve (AUC)—both have upper
bounds that scale as O(m−

1
4 ), where m is the

number of training samples. This again means that
GANs are more robust to membership inference
attacks as training set size grows. More generally,
for arbitrary generative models, we give a tight
bound on the ROC region that relies on a simple,
geometric proof. To the best of our knowledge, this
is the first result to bound either the ROC region
or the rate of decay of attack success probabilities
for membership inference attacks, including for
discriminative models.

The paper is organized as follows. We discuss the pre-
liminaries and related work in Section 2. Then we dis-
cuss the results on differential privacy and membership
inference attacks in Section 3 and Section 4 respectively.
Finally we conclude the paper in Section 5.

2 Background and Related Work

GANs GANs are a type of generative model that
implicitly learns a distribution from samples and syn-

thesizes new, random samples (Goodfellow et al., 2014).
To achieve this goal, GANs use two components: a gen-
erator g and a discriminator f . The generator maps
a random vector z from a pre-defined distribution pz
(e.g., Gaussian or uniform) on a latent space to the
sample space X; the discriminator reads a sample x,
either from the real distribution µ or the generated
distribution, and discriminates which distribution it
comes from. From another point of view, the discrim-
inator is trying to estimate a distance between the
generated distribution and the real distribution, and
the generator tries to minimize the distance. More
specifically, g and f are trained with the following loss:

min
g

max
f

df (µ, gz),

where df is a distance measurement between distri-
butions parametrized by f , and gz denotes the dis-
tribution obtained by sampling z ∼ pz and map-
ping it through the generator g(z). In the original
GAN paper (Goodfellow et al., 2014), the authors use
Jensen–Shannon divergence with formula

df (µ, gz) = Ex∼µ [log f(x)] + Ex∼gz [log (1− f(x))] .

Many other distances have later been used like the
Kullback-Leibler divergence and Wasserstein distance
(Nowozin et al., 2016; Gulrajani et al., 2017). After the
invention of GANs, many approaches were proposed
to improve their diversity and fidelity (Gulrajani et al.,
2017; Miyato et al., 2018; Lin et al., 2018; Arjovsky
and Bottou, 2017); today, GANs generate state-of-
the-art realistic images (Karras et al., 2017; Brock
et al., 2018). Inspired by these early successes, there
has been much interest in using GANs to share data
in privacy-sensitive applications such as medical data
(Esteban et al., 2017; Jordon et al., 2018; Choi et al.,
2017), backing transactions (Jordon et al., 2018), and
networking and server traces (Lin et al., 2020a).

Differential privacy Differential privacy (DP) has
become the de facto formal privacy definition in many
applications (Dwork, 2008; Dwork et al., 2014). We
say that two databases D0 and D1 are neighboring if
they differ in at most one element. A mechanism M is
(ε, δ)-differentially-private (Dwork, 2008; Dwork et al.,
2014) if for any neighboring database D0 and D1, and
any set S ⊆ range (M),

P [M(D0) ∈ S] ≤ eεP [M(D1) ∈ S] + δ.

Our result considers a stronger notion of differen-
tial privacy called probabilistic differential privacy. A
mechanism M is (ε, δ)-probabilistically-differentially-
private (Meiser, 2018) if for any neighboring database
D0 and D1, there exists sets S0 ⊆ range (M) where



Zinan Lin, Vyas Sekar, Giulia Fanti

P [M(D0) ⊆ S0] ≤ δ, such that for any set S ⊆
range (M)

P [M(D0) ∈ S \ S0] ≤ eεP [M(D1) ∈ S \ S0] .

This says that (ε, 0)-differential-privacy condition holds
except over a region of the support with probability
mass at most δ.

It is straightforward to show that (ε, δ)-probabilistically-
differential-privacy implies (ε, δ)-differential-privacy.
In fact, probabilistic differential privacy is strictly
stronger than differential privacy. To see this, con-
sider the following example: assume ρp, ρq are the
distribution function of M(D0) and M(D1) respec-
tively. When eε(1 − δ) < 1 and δ > 0, let ε′ =
min {1− eε(1− δ), δ}, we can construct the follow-
ing ρp, ρq: ρq(0) = 0, ρp(0) = 1 − (1 − ε′)e−ε and
ρq(1) = 1, ρp(1) = (1 − ε′)e−ε. Then M satisfies
(ε, δ)-differential-privacy, but does not satisfy (ε, γ)-
probabilistically-differential-privacy for any γ < 1.

Differential privacy and generalization The re-
lation between differential privacy and generalization
is well-studied (Cummings et al., 2016; Dwork et al.,
2015; Bassily et al., 2016; Nissim and Stemmer, 2015;
Wang et al., 2016). Three main factors differentiate
our work:

(1) Prior work has primarily studied how differential
privacy implies various notions of generalization (Cum-
mings et al., 2016; Dwork et al., 2015; Bassily et al.,
2016; Nissim and Stemmer, 2015; Wang et al., 2016).
We are interested in the other direction: when does
generalization imply differential privacy? Cummings et
al. showed that differential privacy is strictly weaker
than perfect generalization but is strictly stronger than
robust generalization (Cummings et al., 2016). How-
ever, these results do not directly apply to generative
models. First, the results about perfect generaliza-
tion only hold when the domain size is finite, which
is less interesting for generative models. Second, the
generalization definitions are based on hypotheses (i.e.,
conditional distributions), and are not easily extendable
to generative models.

(2) More generally, prior work has mainly considered
discriminative models instead of generative models
(Cummings et al., 2016; Dwork et al., 2015; Bassily
et al., 2016; Nissim and Stemmer, 2015; Wang et al.,
2016). Wu et al. (2019) showed that differential privacy
implies generalization in GANs. However, the notion of
generalization studied by Wu et al. (2019) is not mean-
ingful for GANs. It captures the distance between the
expected empirical loss of the discriminator and its
actual loss, so we can have zero generalization error
on the discriminator’s loss (e.g., for a discriminator
that always outputs 0 for any input) while having an

arbitrary generated distribution. A more meaningful
notion of generalization is to quantify the distance be-
tween the generated and real distributions. In this
work, we use this latter notion of generalization.

(3) The notion of differential privacy studied in prior
work is with respect to releasing the parameters of a
model (Cummings et al., 2016; Dwork et al., 2015; Bass-
ily et al., 2016; Nissim and Stemmer, 2015; Wang et al.,
2016; Wu et al., 2019), whereas ours is with respect to
releasing generated samples. This is a weaker guarantee
than if one were to reason about the differential privacy
guarantees of a generative model’s parameters, but is
relevant to many application settings.

Membership inference attacks Membership infer-
ence attacks are closely related to differential privacy.
Given a trained model, a membership inference at-
tack aims to infer whether a given sample x was in
the training dataset or not. The main difference be-
tween membership inference and differential privacy is
that the attacker in differential privacy is assumed to
know an adversarially-chosen pair of candidate training
databases, whereas in membership inference attacks,
the adversary is typically given access only to test
samples (of which some are training samples) and the
model. In some cases, the attacker is also given side
information about the number of training samples in
the test set. Hence, in general, the attacker in mem-
bership inference is neither strictly weaker nor strictly
stronger than the differential privacy attacker.

There have been many membership inference attacks
proposed for discriminative models (Sablayrolles et al.,
2019; Li and Zhang, 2020; Long et al., 2018; Melis
et al., 2019; Salem et al., 2018; Shokri et al., 2017;
Yeom et al., 2018) and generative models (including
GANs) (Hayes et al., 2019; Chen et al., 2019; Hilprecht
et al., 2019). Therefore, understanding robustness of
GANs to membership inference attacks is important.

There has been some theoretical analysis on member-
ship inference attacks (Sablayrolles et al., 2019; Farokhi
and Kaafar, 2020). For example, Sablayrolles et al.
(2019) show a theoretically optimal strategy for mem-
bership inference attacks. Farokhi and Kaafar (2020)
show that the accuracy of membership inference at-
tacks for a particular sample is upper bounded by the
Kullback–Leibler divergence between the distributions
of parameters with and without that sample. However,
these results do not give a practical method for bound-
ing an attacker’s global performance (i.e., the ROC
curve). In this paper, we resolve the issue. Ours is the
first work to show that the success rate of membership
inference attack decays as the number of training sam-
ples m grows, whereas prior work (Farokhi and Kaafar,
2020) only shows that the limit of the success rate is
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0.5 as m→∞.

3 Bounds on Differential Privacy

We start with some notation, definitions, and assump-
tions. For a probability measure µ on X, we let ρµ
denote its density function. We use G and F to denote
the set of possible generators and discriminators, re-
spectively, where F is a set of functions X → R. Our
results rely on three assumptions:

(A1) Our generator set G and discriminator set F satisfy
∀ν1, ν2 ∈ G, log (ρν1/ρν2) ∈ spanF , where spanF
is defined as the set of linear combinations of the
functions:

spanF ,
{
w0 +

n∑

i=1

wifi : wi ∈ R, fi ∈ F , n ∈ N

}
.

(A2) Our discriminator set F is even, i.e, ∀f ∈ F , −f ∈
F , and assume that ∀f ∈ F , ∀x ∈ X,

‖f(x)‖∞ ≤ ∆,

where ‖f‖∞ , supx∈X |f(x)|.
(A3) The discriminator set F = {fθ : θ ∈ Θ ⊆ [−1, 1]p}

and
‖fθ − fθ′‖∞ ≤ L ‖θ − θ′‖2 .

According to Lemma 4.1 in Bai et al. (2018), when
generators in G are invertible neural networks (e.g.,
in Dinh et al. (2016); Behrmann et al. (2019)) with l
layers, then the discriminator set F of neural networks
with l + 2 layers satisfy (A1). Assumption (A2) is
easily satisfied by neural networks with an activation
function on the output layer that bounds the output
(e.g., sigmoid). (A3) assumes the discriminator is Lips-
chitz in its (bounded) parameters; several recent works
attempt to make network layers Lipschitz in inputs
through various forms of regularization (e.g., spectral
normalization (Miyato et al., 2018; Lin et al., 2020b)),
which makes the network Lipschitz also in parameters
(Lin et al., 2020b).

Given µ, ν, two probability measures on X, and set
F of functions X → R, the integral probability metric
(Müller, 1997) is defined as:

dF (µ, ν) , sup
f∈F
{Ex∼µ [f(x)]− Ex∼ν [f(x)]} .

Given function set F , the F-variation norm of function
g is defined as

‖g‖F,1 , inf

{ n∑

i=1

|wi| : g = w0 +
n∑

i=1

wifi,

∀n ∈ N, wi ∈ R, fi ∈ F
}
,

which intuitively describes the complexity of linearly
representing g using functions in F (Zhang et al., 2017).
We define

ΓF,G , sup
ν1,ν2∈G

‖log (ρν1/ρν2)‖F,1 , (1)

which intuitively bounds the complexity of representing
differences in log densities of pairs of generators in G
using functions in F .
We consider the GAN training and sampling mechanism
in Algorithm 1, which adds a sampling processing be-
fore the normal GAN training. Note that the sampling
process in Algorithm 1 is commonly used in existing
GAN implementations (Goodfellow et al., 2014), which
typically sample i.i.d. from D in each training batch.
We have moved this sampling process to the beginning
of training in Algorithm 1 for ease of analysis.

Algorithm 1: Differentially-private GAN mech-
anism.
Input :D: A training dataset containing m

samples.
k: Number of sampled training samples
used in training.
n: Number of generated samples.

Output :Dgenerated: n generated samples.

1 Dtrain ← k i.i.d. samples from D ;
2 g ← Trained GAN using Dtrain;
3 Dgenerated ← n generated samples from the

trained g;

Finally, we define the quantity

τF,G (k, ξ, µ) , 2

(
inf
ν∈G

dF (µ, ν) + τopt +
Cξ√
k

)
, (2)

where

Cξ = 16
√

2πpL+ 2∆
√

2 log(1/ξ), (3)

p and L are the constants defined in (A3), ∆ is the
constant defined in (A2), τopt is an upper bound on
the optimization error, i.e.,

dF (µ̂k, g)− inf
ν∈G

dF (µ̂k, ν) ≤ τopt,

µ is the real distribution, µ̂k be the empirical distribu-
tion of µ on k i.i.d training samples, g is the trained
generator from the optimization algorithm. The inter-
pretation of τF,G (k, ξ, µ) is described in greater detail
in Section 3.1, but intuitively, it will be used to bound
(with probability at least 1− ξ) a GAN’s generalization
error arising from approximation, optimization, and
sampling of the training datasets in Line 1. To reduce
notation, we will henceforth write this quantity as τk,ξ.
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Our main result states that a GAN trained on m
samples and used to generate n samples satisfies a(
ε, O(n/m)
ε(1−e−ε)

)
-differential-privacy guarantee; moreover,

this bound is tight when n = 1 and for small ε.

Theorem 1 (Achievability). Consider a GAN trained
on m i.i.d. samples from distribution µ. The mech-
anism in Algorithm 1 under assumptions (A1)-(A3)
satisfies (ε, δ)-probabilistic-differential-privacy for any
ε > 0 and

δ ≥ n ΓF,G
ε(1− e−ε)

(
2∆

m
+ τk,ξ

)
(4)

with probability at least 1− 2ξ over the randomness in
Line 1.

We assume that τk,ξ can be made negligible: Cξ√
k
can

be arbitrarily small as we get more samples from the
sampling phase in Line 1, and we assume negligible
approximation error and optimization error. Hence,
the dominating term in Eq. (4) scales as O(n/m); here
we are ignoring the dependency on ε. Next, we show
that for a special case where n = 1 and ε scales as
O
(

1
m

)
, this bound is tight in an order sense (again

ignoring dependencies on ε).

Proposition 1 (Converse for n = 1). Under the as-
sumptions of Theorem 1, let

∆′ = sup
f∈F

sup
x,y∈X

|f(x)− f(y)|.

Then with probability at least 1− 2ξ, the GAN mech-
anism in Algorithm 1 for generating 1 sample (i.e.,
n = 1) does not satisfy (ε, δ)-differential-privacy for
any

δ <
(eε + 1)

2∆

(
∆′

2m
− τk,ξ

)
+ 1− eε. (5)

This bound in Eq. (5) is non-vacuous (nonnegative)
when ε < 1

∆

(
∆′

2m − τk,ξ
)
and m < ∆′/2τk,ξ. Again as-

suming τk,ξ ≈ 0 (i.e., ignoring the approximation error
and optimization error and taking Cξ√

k
→ 0), the latter

condition holds trivially. Hence when ε scales as O
(

1
m

)
,

it is not possible to achieve an (ε, δ)-probabilistic dif-
ferential privacy guarantee for δ = o

(
1
m

)
.

Discussion These results suggest that GAN-
generated samples satisfy an inherent differential pri-
vacy guarantee, so the influence of any single training
sample on the final generated samples is bounded. How-
ever, the rate O(n/m) is weak. For comparison, the
mechanism that releases n samples uniformly at ran-
dom from a set of m training samples satisfies (0, n/m)-
differential privacy, which is of the same rate. Therefore,

(ε, δ)-differential privacy usually requires δ � 1
poly(m)

to be meaningful. To satisfy this condition, we would
need ε to grow as a function of m (since δ in our re-
sults is a function of ε), which is not practically viable.
This suggests the need for incorporating additional
techniques (e.g., DP-SGD, PATE) to achieve stronger
differential privacy guarantees in practice.

Note that in the typical GAN training process, we usu-
ally have k > m (i.e., the number of sampled training
samples is larger than the dataset size). Therefore, the
random sampling step in Line 1 does not give privacy
amplification due to subsampling (e.g., (Balle et al.,
2018)). However, if the size of the training dataset is
large enough that we do not need to sample all dataset
entries to achieve good generalization, we can apply
sub-sampling theorems (Balle et al., 2018) to tighten
the bounds in Theorem 1.

3.1 Proof of Theorem 1

Assume that the two neighboring datasets are D0 and
D1, whose empirical distributions are µ̂0

m and µ̂1
m, and

the trained generator distributions from Algorithm 1
are g0 and g1 respectively. The proof has two parts.
First, we upper bound the distance between g0 and g1

by building on prior generalization results. Then, we
use this distance to prove a probabilistic differential
privacy guarantee.

Lemma 1 (Error of neural-network discriminators,
Corollary 3.3 in Zhang et al. (2017)). Let µ be the real
distribution, and µ̂k be the empirical distribution of µ
on k i.i.d training samples. Define the trained generator
from the optimization algorithm as g and assume the
optimization error is bounded by τopt, i.e., dF (µ̂k, g)−
infν∈G dF (µ̂k, ν) ≤ τopt. Under assumptions (A2) and
(A3), then with probability at least 1 − ξ w.r.t. the
randomness of training samples, we have

dF (µ, g) ≤ 1

2
τk,ξ =

inf
ν∈G

dF (µ, ν)
︸ ︷︷ ︸

approximation error

+ τopt︸︷︷︸
optimization error

+
Cξ√
k︸︷︷︸

generalization error

,

where Cξ is defined in Eq. (3).

From this lemma, we know that with high probabil-
ity, dF

(
µ̂im, gi

)
is small. The next lemma states that

dF
(
µ̂0
m, µ̂

1
m

)
is also small.

Lemma 2. Under the assumption (A2), for any two
neighboring datasets D0, D1 with m samples, we have

dF
(
µ̂0
m, µ̂

1
m

)
≤ 2∆

m
,

.
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(Proof in Appendix A.) Next, we use these results to
argue that dF (g0, g1) is small with high probability.

Lemma 3. Assume we have two training sets D0 and
D1, and the trained generator distributions using D0

and D1 with Algorithm 1 are g0 and g1, respectively.
Under the assumption of Lemma 1 and Lemma 2, we
have that with probability at least 1− 2ξ,

dF (g0, g1) ≤ τk,ξ +
2∆

m
.

(Proof in Appendix B.) We next use this bound on the
integral probability metric to bound Kullback-Leibler
(KL) divergence between g0 and g1 with the following
lemma.

Lemma 4. Given a generator set G and a discrimina-
tor set F which satisfy assumption (A1), then we have
∀ν1, ν2 ∈ G

dKL (ν1, ν2) + dKL (ν2, ν1) ≤ ΓF,GdF (ν1, ν2)

where ΓF,G is defined in Eq. (1) and dKL (·, ·) is the
Kullback–Leibler divergence.

This follows directly from Proposition 2.9 in Zhang
et al. (2017), which states the following. Denote µ’s
and ν’s density functions as ρµ and ρν respectively. If
log (ρµ/ρν) ∈ spanF , then we have

dKL (µ, ν) + dKL (ν, µ) ≤ ‖log (ρµ/ρν)‖F,1 dF (µ, ν) .

Note that ΓF,G = 1 when generators in G are invertible
neural networks with l layers and discriminator set F
is (l + 2)-layer neural networks, according to Lemma
4.1 in Bai et al. (2018).

Following Lemma 4 and Lemma 3, immediately we
have that with probability at least 1− 2ξ,

dKL (g0, g1) + dKL (g1, g0) ≤ ΓF,G

(
τk,ξ +

2∆

m

)

and

dKL (gn0 , g
n
1 ) + dKL (gn1 , g

n
0 ) ≤ n · ΓF,G

(
τk,ξ +

2∆

m

)

Given these facts, Theorem 1 follows directly by con-
necting KL divergence with differential privacy:

Lemma 5. If a mechanism M satisfies that for any
two neighboring databases D0 and D1, dKL (p, q) +
dKL (q, p) ≤ s, where p, q are the probability mea-
sure of M(D0) and M(D1) respectively, then M sat-
isfies (ε, s

ε(1−e−ε) )-probabilistic-differential-privacy for
all ε > 0.

(Proof in Appendix C.)

3.2 Proof of Proposition 1

The proof has two parts. First, we lower bound the
distance between g0 and g1 by building on prior gener-
alization results. Then, we use this distance to prove
the the lower bound of δ for (ε, δ)-differential-privacy.

Because ∆′ = supf∈F supx,y∈X |f(x)− f(y)|, we know
that there exists f ′ ∈ F and x1, y1 ∈ X such that
|f ′(x1)− f ′(y1)| ≥ ∆′

2 . Let’s construct two databases:
D0 = {x1, ..., xm} and D1 = {y1, x2, ..., xm} where
x2, ..., xm are arbitrary samples from X. Then we have

dF
(
µ̂0
m, µ̂

1
m

)
=

1

m
sup
f∈F
{f(x1)− f(y1)} ≥ ∆′

2m

where the proof of the first equality is in Appendix A.

On the other hand, from Lemma 1, we know that
with probability at least 1− ξ, dF

(
µ̂im, gi

)
≤ 1

2τk,ξ for
i = 0, 1. Combining the above, we have the following
lemma.
Lemma 6. Assume we have two training sets D0 and
D1, and the trained generator using D0 and D1 with
Algorithm 1 are g0 and g1 respectively. Under the
assumption of Lemma 1 and Lemma 2, we have that
with probability at least 1− 2ξ,

dF (g0, g1) ≥ ∆′

2m
− τk,ξ

(Proof in Appendix D.) Note that this lower bound is
nonnegative only for m < ∆′/2τk,ξ.

Now we connect integral probability metric to total
variation (TV) distance. Because the discriminators
are bounded (A2), we have

dF (g0, g1) ≤ 2∆dTV (g0, g1)

where dTV (g0, g1) is the TV distance between g0 and
g1. From the above, we know that

dTV (g0, g1) ≥ ∆′

4m∆
− τk,ξ

2∆

Finally, we connect TV distance to differential privacy
with the following lemma.
Lemma 7. If a mechanism satisfies (ε, δ)-differential-
privacy, then for any two neighboring databases D0

and D1, we have

dTV (p, q) ≤ eε + 2δ − 1

eε + 1

where p, q are the probability measure of M(D0) and
M(D1) respectively.

Therefore, we have

δ ≥ (eε + 1) ∆′

4m∆
− (eε + 1) τk,ξ

2∆
+ 1− eε.
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4 Bounds on Robustness to
Membership Inference Attacks

In this section, we first derive a general bound on the
error of membership inference attacks for generative
models. Then, we utilize generalization bounds for
GANs to obtain specific bounds for GANs.

We focus on the black-box attack setting (Sablayrolles
et al., 2019; Chen et al., 2019; Hayes et al., 2019), in
which the attacker can sample from the generated dis-
tribution gα, but does not have access to the generator
parameters α. To upper bound the attack performance,
we assume that attacker has unlimited resources and
can access the trained generator infinite times, so that
it can accurately get the generated distribution gα.

Our analysis departs from prior analysis of membership
inference in discriminative models (Sablayrolles et al.,
2019) in two key respects:

• (Sablayrolles et al., 2019) assume that the attacker
has access to a dataset U = {u1, . . . , up}, which
contains all the training samples (i.e., D ⊆ U) and
some other test samples drawn from the ground-
truth distribution µ (so p > m). It also assumes
that the attacker knows the number of training
samples m. We argue that this assumption is too
strong, especially in the case of generative models,
where training samples are typically proprietary.
Therefore, we assume that the attacker makes
guesses purely based on a single test sample x ∈ X,
without access to such a dataset. The test sample
is either drawn from the ground-truth distribution
(i.e., x ∼ µ), or from the training dataset (i.e.,
x

i.i.d.←− D).

• The analysis in (Sablayrolles et al., 2019) focuses
on the quantity P (u ∈ D|α) for a particular u.
This is useful for finding an attack policy, but is
not conducive to characterizing the error statistics.
Instead, we want to be able to bound the shape of
ROC curve. That is, we want to upper bound the
true positive rate an attacker can achieve given
any desired false positive rate. We show that this
problem can be reduced to a clean hypothesis
testing problem, whose errors are closely tied to
the generalization errors of GANs.

Following prior work on the theoretical analysis of mem-
bership inference attacks (Sablayrolles et al., 2019), we
assume that the distribution of the generator parame-
ters is

P (α|x1, ..., xm) ∝ e−
∑m
i=1 `(α,xi) (6)

(setting T = 1 in Sablayrolles et al. (2019)), where
x1, ..., xm ∼ µ are i.i.d training samples drawn from

the ground-truth distribution µ, and `(α, x) denotes
the loss on sample x and parameter α. As we are fo-
cusing on generative models here, we assume that the
loss is Kullback-Leibler (KL) divergence, i.e., ` (α, x) =
log (ρµ(xi)/ρgα (xi)), where ρgα denotes the density of
the generator with parameters α. Note that many gen-
erative models are explicitly or implicitly minimizing
this KL divergence, including some variants of GANs
(more specifically, f-GANs with a specific loss (Nowozin
et al., 2016)), Variational Autoencoder (VAE) (Kingma
and Welling, 2013), PixelCNN/PixelRNN (Oord et al.,
2016), and many other methods that are based on
maximum likelihood (Goodfellow et al., 2016). We use
KL divergence also because this simplifies the analy-
sis and highlights key theoretical insights. With this
assumption, the parameter distribution becomes

P (α|x1, ..., xm) ∝
m∏

i=1

ρgα (xi)

ρµ (xi)
.

Let ραtrain denotes the density posterior distribution of
the training samples given parameter α. The following
proposition shows that this distribution takes a simple
form.

Proposition 2 (Posterior distribution of training sam-
ples). The posterior distribution of training samples is
equal to the generated distribution, i.e., ραtrain = ρgα .

Proof. For any x, we have

ραtrain (x)

=
P (x ∈ D, parameter is α)

P (parameter is α)

=
ρµ (x)

∫
x2,...,xm

∏m
i=2 ρµ (xi)P (α|x, x2, ..., xm) dx2 . . . dxm∫

x1,...,xm

∏m
i=1 ρµ(xi)P (α|x1, ..., xm) dx1 . . . dxm

= ρgα (x)

This proposition validates prior membership inference
attacks that utilize approximations of ρgα (x) to make
decisions (Chen et al., 2019; Hayes et al., 2019; Hil-
precht et al., 2019).

With this proposition, the problem becomes clear: for
a given sample x, the attacker needs to decide whether
the sample comes from the training set (i.e., from gα)
or not (i.e., from µ). In the following theorem, we outer
bound the ROC region for this hypothesis test, which
relates the true positive (TP) rate to the false positive
(FP) rate.

Proposition 3. Consider a generative model gα and a
real distribution µ. Define r , dTV (gα, µ) as the total
variation (TV) distance between the two distributions.
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Define function f : [0, 1]→ [0, 1] as

f(x) =

{
x+ r (0 ≤ x ≤ 1− r)

1 (r < x ≤ 1)
,

Then we have that for any membership inference attack
policy A, the ROC curve gA : [0, 1]→ [0, 1] (mapping
FP to TP) satisfies g(x) ≤ f(x), ∀ 0 ≤ x ≤ 1, i.e., the
ROC curve is upper bounded by f . Also, this bound
is tight, i.e., there exists two distributions µ′, g′ such
that dTV (µ′, g′) = r and the ROC curve is exactly f at
every point.

(Proof in Section 4.1) As a result, we can directly bound
the area under the ROC curve (AUC) as a function of
the total variation distance.
Corollary 1 (Bound on the AUC for generative mod-
els). For any attack policy on a generative model, we
have

AUC ≤ −1

2
dTV (gα, µ)

2
+ dTV (gα, µ) +

1

2
.

Note that Proposition 3 and Corollary 1 hold for any
generative model. For GANs in particular, we can
use generalization bounds in Lemma 1 to obtain the
following result.
Theorem 2. Consider a GAN model gα and a real
distribution µ. Define

ΞF,G,µ , sup
ν∈G
‖log (ρµ/ρν)‖F,1

and

εTV (m, δ) ,
√

ΞF,G,µ · τm,δ
2
√

2
, (7)

where τm,δ is defined as in Eq. (2). Define function
f : [0, 1]→ [0, 1] as

f(x) =

{
x+ εTV (m, δ) (0 ≤ x ≤ 1− εTV (m, δ))

1 (εTV (m, δ) < x ≤ 1)
.

Then we have that for any membership inference attack
policy A, the ROC curve gA : [0, 1] → [0, 1] satisfies
g(x) ≤ f(x), ∀ 0 ≤ x ≤ 1, and the bound is tight.

One complication is that existing generalization bounds
do not directly bound TV distance, so these must be
extended. The proof can be found in Section 4.2, and
directly gives the following corollary bounding the AUC
for GANs.
Corollary 2 (Bound on AUC for GANs). For any
attack policy on GANs, we have that with probability at
least 1− δ w.r.t. the randomness of training samples,

AUC ≤ −1

2
εTV (m, δ)

2
+ εTV (m, δ) +

1

2
,

where εTV (m, δ) is defined as in Eq. (7).

Note that the AUC bound decays as O(m−1/4).

False positive rate

Tr
ue
po
si
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e
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1
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Figure 1: The upper bound of ROC curves.

Discussions These results confirm the prior empir-
ical observation that GANs are more robust to mem-
bership inference attacks when the number of training
samples grows (Lin et al., 2020a; Chen et al., 2019).
However, the results heavily rely on the assumption of
generator parameter distribution Eq. (6), which was
introduced in (Sablayrolles et al., 2019). It is unlikely
to strictly hold in practice. Extending the results to
more general settings would be an interesting future
direction.

4.1 Proof of Proposition 3

It is known from the hypothesis testing literature
(Kairouz et al., 2015) that, for any attack policy, the
difference between the true positive rate (TP) and
false positive rate (FP) is upper bounded by the total
variation (TV) distance dTV (gα, µ):

TP ≤ FP + min {dTV (gα, µ) , 1− FP} . (8)

Note that total variation distance and ROC curve has
a very simple geometric relationship, as noted in Lin
et al. (2018) (Remark 7). That is, the total variation
distance between gα and µ is the intersection between
the vertical axis and the tangent line to the upper
boundary of the ROC curve that has slope 1 (e.g., see
Fig. 1). This immediately implies that f(x) is an upper
bound for all possible ROC curves.

To show tightness, we can construct a g′ and µ′ as
shown in Fig. 2, such that dTV (µ′, g′) = r and they
achieve the ROC curve in Fig. 1.

4.2 Proof of Theorem 2

We begin by showing that, under the assumptions
in Lemma 1 and assuming that ∀ν ∈ G, log (ρµ/ρν) ∈
spanF , we have that with probability at least 1 − δ
w.r.t. the randomness of training samples,

dTV (gα, µ) ≤ εTV (m, δ) ,
√

ΞF,G,µ · τm,δ
2
√

2
. (9)
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x
1

ρg’(x)

0

r•δ(0)

(1-r) • Uniform(0,1)

x
1

ρμ’(x)

0

r•δ(1)

(1-r) • Uniform(0,1)

Figure 2: The pair of distributions that achieve the
ROC upper bound.

To show this, note that Lemma 1 gives an upper bound
on the integral probability metric between the real and
generated distribution. We first connect this distance
to the KL divergence with the following lemma.
Lemma 8. Denote the real distribution as µ. Given a
generator set G and a discriminator set F which satisfy
∀ν ∈ G, log (ρµ/ρν) ∈ spanF , then we have ∀gα ∈ G

dKL (gα, µ) + dKL (µ, gα) ≤ ΞF,G,µdF (µ, gα)

where ΞF,G,µ , supν∈G ‖log (ρµ/ρν)‖F,1.

Similar to Lemma 4, this lemma relies on Proposi-
tion 2.9 in Zhang et al. (2017). Furthermore, we use
Pinsker’s inequality (Tsybakov, 2008) to upper bound
the TV distance by the KL distance. Pinsker’s inequal-
ity says that dTV (a, b) ≤

√
1
2dKL (a, b) for any two

distributions a, b. Therefore, we have

ΞF,G,µdF (µ, gα) ≥ 4 · dTV (gα, µ)
2

Combing this equation with Lemma 1 we get the desired
inequality.

We can use Eq. (9) to upper bound Eq. (8) as

TP ≤ FP + min {εTV (m, δ) , 1− FP} . (10)

Combining Eq. (10) with Proposition 3 gives the re-
sult.

5 Discussion

In this work, we show that GAN-generated samples
naturally exhibit a (weak) differential privacy guaran-
tee as well as protection against membership inference
attacks. We provide bounds on the privacy risk of
each of these attacks. However, as discussed in Sec-
tion 3, the inherent differential privacy guarantee in

GANs is weak. This suggests that differentially-private
training techniques are required to ensure meaningful
differential privacy guarantees in practice. Given that
current techniques like DP-SGD (Abadi et al., 2016)
and PATE (Jordon et al., 2018) sacrifice fidelity in
exchange for privacy (as discussed in Section 1), there
is a need to develop new techniques that achieve a
better privacy-fidelity tradeoff. As noted in Section 1,
one approach for achieving this goal may be to ensure
the differential privacy for releasing generated sam-
ples (rather than enforcing the differential privacy for
releasing parameters).

Limitations and future work

(1) Since our results build on existing generalization
bounds for GANs (Zhang et al., 2017), we inherit their
assumptions (e.g., on the classes of generators and dis-
criminators). Some of these assumptions do not apply
to all GAN architectures. Extending the results to
more general settings would be an interesting direction,
potentially with stronger generalization bounds.

(2) As discussed in Section 4, the results on membership
inference attacks rely on an assumption from (Sablay-
rolles et al., 2019) regarding the generator parameter
distribution; this assumption is unlikely to hold in
practice. Relaxing this assumption is an interesting
direction for future work.

(3) The bounds we give for both privacy notions depend
on unknown constants like optimization and approxi-
mation errors. Numerically quantifying these bounds
in practice remains a challenging and interesting direc-
tion.
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