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ABSTRACT

Linear transformations are the dominating computation within
many artificial intelligence (AI) applications. The natural multi-
ply and accumulate feature of resistive crossbar arrays promise
unprecedented processing capabilities to resistive dot-product en-
gines (DPEs), which can accelerate approximate matrix-vector mul-
tiplication using analog in-memory computing. Unfortunately, the
functional correctness of the accelerated Al applications may be
compromised by various sources of errors. In this paper, we will
outline the most pressing robustness challenges, the limitations of
state-of-the-art solutions, and future opportunities for research.

CCS CONCEPTS

« Hardware — Emerging architectures; - Computing method-
ologies — Artificial intelligence.

KEYWORDS

Analog in-memory computing, memristor, analog matrix-vector
multiplication, variations, reliability, robustness.

ACM Reference Format:

Shravya Channamadhavuni, Sven Thijssen, Sumit Kumar Jha, and Rickard
Ewetz. 2021. Accelerating Al Applications using Analog In-Memory Com-
puting: Challenges and Opportunities. In Proceedings of the Great Lakes
Symposium on VLSI 2021 (GLSVLSI 21), June 22-25, 2021, Virtual Event, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3453688.3461746

1 INTRODUCTION

With the exponential growth and availability of digital data, we
have entered an era dominated by data-driven artificial intelligence
(AI) applications. As a result, the demand for data to be analyzed
and processed has rapidly increased to exascale (103 bytes/s). Un-
fortunately, these computing needs cannot be met through fur-
ther technology scaling using traditional silicon technology and
von-Neumann architecture. Mainly, due to the separation of com-
puting units and memory units, which translates into power hun-
gry and bandwidth limited data transfer [40]. Recently, numerous
large-scale research programs and research efforts have been de-
voted to improving energy-efficiency and reducing data movement,
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by rethinking all layers of the computing stack, including hard-
ware, software and hardware/software fundamental approaches
and schemes [1, 2, 4].

Due to promises of simultaneous dense storage and energy-
efficient analog processing, in-memory computing based on non-
volatile resistive technology has emerged as an appealing solu-
tion to overcome the aforementioned challenges. A non-volatile
resistive device is a two terminal device with programmable resis-
tance, which may be realized using memristor [11, 35], resistive
random access memory (ReRAM) [23, 38], phase change memory
(PCM) [20, 39], or spin-transfer torque magnetic random access
memory (STT-RAM) [18, 31]. By integrating the emerging devices
into resistive crossbar arrays (RCAs), approximate matrix-vector
multiplication (MVM) can be executed in the analog domain. This
is promising because the computation is significantly (orders of
magnitude) more energy-efficient than in the digital domain [17].
Data movement is also substantially reduced by storing the ma-
trix in-memory and performing the computation in-situ [9, 32].
Moreover, MVM is the dominating computation in many Al ap-
plications such as deep learning [22], image processing [24], and
graph analytics [34].

The main challenge of leveraging analog in-memory computing
is that the computational accuracy may be degraded by various
sources of errors and variations. This includes device write errors,
non-zero array parasitics, limited device yield, resistance drift, tem-
perature variations, random telegraph noise, and limited device
endurance. Moreover, any error introduced in the analog domain
may compromise the functional correctness of the accelerated ap-
plications. For example, the hardware classification accuracy of a
neural network may be significantly lower than the software level.
In contrast, robustness issues within digital computing systems
only introduce timing violations, which can be alleviated using
dynamic voltage frequency scaling (DVES).

To provide guarantees on the system level performance, syner-
gistic innovations on the device level, algorithm level, and software
application level are required. While device level researchers con-
tinuously attempt to improve the characteristics of the fabricated
devices, it is becoming urgent to develop the required algorithm
and software level support.

In this paper, we review the challenges, solutions, and future
research directions for accelerating Al applications using analog
in-memory computing. The basic concept of analog matrix-vector
multiplication, target Al applications, and the modeling of different
errors is discussed in Section 2. The state-of-the-art solutions to
improving the robustness to errors on the algorithm and software
level are reviewed in Section 3. Opportunities for future research
are outlined in Section 4. The paper is concluded in Section 5.
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Figure 1: (a) Digital MVM (b) Analog MVM (c) RCA circuit for analog MVM.

2 BACKGROUND

In this section, we review how analog MVM can be performed using
RCAs. Next, we outline target Al applications and sources of errors.

2.1 Analog MVM using RCAs

The high-level concept and circuitry needed to perform MVM op-
erations (Ax=y) using an RCA is illustrated in Figure 1. The MVM
operations are accelerated using a one-time expensive initialization
phase and a fast and efficient evaluation phase. In the initialization
phase, a matrix A is mapped to the state (or conductance) of the
multi-level resistive devices within an RCA. This is a slow and
expensive process because the conductance of each device in the
RCA is required to be accurately programmed based on the input
matrix. In the evaluation phase, MVM operations are performed fast
and efficiently by converting input vectors (x) into input voltages
and decoding the output voltages/currents into output vectors (y),
which is shown in Figure 1(a). Consequently, RCAs are a promising
candidate to accelerate applications where the matrix is relatively
fixed and the input vectors frequently change.

The basic principal of analog MVM is shown in Figure 1(b).
The figure shows a set of wordlines connected to a set of bitlines
using a resistive device in each intersection. The current through
each resistive device is obtained using Ohm’s law by multiplying
the input voltages applied to the wordlines with the conductance
values of the resistive devices. Next, the currents are summed along
the bitlines using Kirchhoff’s current law. The relation between
the input voltages (vi) and the output currents (ipy;) is equal to
vglG =il ., where G is the conductance matrix realized by the
RCA. The conductance matrix G has dimensions (N)x(M) for a
RCA with N wordlines and M bitlines. Let the conductance values
of the resistive devices (organized in a matrix form) be denoted
g, where gij € [gmin, gmax] is the conductance of the resistive
devices connecting wordline i with bitline j. In the ideal case (no
array/input/output resistances), each entry G;; in G is equal to g;;.
Hence, the conductance values g are obtained by linearly mapping
the target matrix A into [gmin, gmax]-

The circuit of an RCA used for analog MVM is shown in Fig-
ure 1(c). There are digital to analog converters (DACs) attached to
the wordlines that are used to convert a digital input vector x into
analog input voltages v;,. The transimpedance amplifiers (TIAs)
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attached to the bitlines amplify the output currents (ipy;) into out-
put voltages (voy:), where voyr = iourRs and R is the feedback
resistance of the TIAs. Consequently, the output voltages are equal
to vgut = oglGRs. Next, output voltages vy are converted into a

digital vector y using analog to digital converters (ADCs).

2.2 Target AI Applications

Applications such as DNN, signal and image processing, and graph
processing can be accelerated using RCAs. All these applications
are characterized by that (i) MVM (or the associated data transfer)
is the bottleneck of the application and (ii) the matrix is relatively
fixed and the input vectors frequently change. Now we specifically
turn our attention to the acceleration of DNNs.

Deep neural networks (DNNs): DNNs have surpassed human-
level capabilities for a number of computer vision applications [22].
DNN:ss consist of multiple layers of neurons connected together by
synapse weights, which is shown in Figure 2. The networks operate
using a training and an inference phase. In the training phase, the
synapse weights are learned to solve a classification task. In the
inference phase, input images/objects/videos are classified into one
of multiple output categories by passing an input to the first layer
and recording the output from the last layer. The evaluation of one
layer of a neural network involves multiplying the outputs from
the previous layer with the synapse weights (a MVM operation)
and passing the result through a non-linear activation functions. It
is appealing to accelerate the inference phase of DNNs by mapping
each weight matrix to an RCA because the MVM operation and
the associated memory access is the bottleneck limiting the system
performance. Using this high-level approach, architectural level
studies have demonstrated significant improvements in power, area,
latency, and throughput [9, 32, 33].

Figure 2: DNN inference deployment on RCAs.
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2.3 Sources of errors

The main challenge of leveraging MCAs to accelerate MVM oper-
ations is that various sources may introduce errors that degrade
system performance. A list of the most important sources of errors
are provided below.

e Write accuracy: Resistive devices cannot be exactly pro-
grammed to a specific conductance value due to device vari-
abilities. With respect to a desired target conductance, the
obtained device conductance exhibits a log normal distri-
bution [17]. The programming accuracy can on an abstract
level be captured using bit-accuracy b, i.e., the resistive de-
vices can be programmed to 2b distinguishable conductance
states [3, 15]. Consequently, each element in g is a discrete
variable with states uniformly distributed between [gmin,
Gmax ], where gmin and gmgax are the minimum and maxi-
mum conductance of programmable conductance range. De-
vice characterizations using non-uniform state distributions
have also been analyzed [30].

e Array parasitics: In the ideal case, the conductance matrix
G is equivalent to the conductance values of the resistive
devices g. However, the conductance matrix G(g, rparasitic)
(or G) is in reality a highly non-linear function of g and
the parasitics rparasitic- Let rparasitic capture the non-zero
input (driver), output (sensing), and array (wire) parasitics
that are fixed after fabrication [26]. In this paper, we inter-
changeably use G or G(g, I'parasitic) to balance clarity and
brevity. Let the RCA have M and N wordlines and N bitlines,
respectively. The conductance matrix G can be obtained as
follows:

1

where B, S, and Y (¢, "parasitic) are matrices. The B and S
matrices respectively have dimensions (M)x(2NM+ M+ N)
and (2NM + M + N)x(N) and only depend on the size of
the RCA. Y(g, rparasitic) is a matrix with dimension (2MN +
M + N)x(2MN + M + N) that depends on the fixed para-
sitic properties rpgrasitic and the conductance values g of
the resistive devices. The details of the matrices Eq (1) are
provided in [26].

e Device defects/Stuck-at-fault defects: A resistive device
can suffer hard defect, which implies that the device con-
ductance cannot be further programmed. The stuck-at-faults
occur at fabrication or from heavy device utilization [5, 37].
Research with insights in the spatial distribution of the de-
fects and the values have mainly focused on devices stuck
to the minimum or maximum programmable conductance
Imin and gmax.

e DAC/ADC quantization errors: The domain interfaces
introduce errors in both the digital/analog and the ana-
log/digital conversion. The DAC quantize the value range
into by, bits or 2bdac states. The ADC quantize the output
voltage range into b,q. bits or 2bade states. The errors intro-
duced by the DACs and ADCs are therefore proportional to
the input and output value range, respectively.

o Resistance drift: The resistance of every memristor will
be slightly changed after each MVM operation is performed

G(g, Vparasitic) = SY(g, rparasitic)_lB,
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due to resistance drift [7]. Consequently, the computational
accuracy of the MVM operations will be degraded over time.

e Temperature variations: The conductance of each resis-
tive device is dependent on the temperature of the operating
environment [17]. The devices are more (less) conductive at
higher (lower) temperatures.

e Stochastic variations: Random telegraph noise (RTN) con-
ductance variations for every resistive device [10, 12]. John-
son and short noise introduce non-ideal currents through
the resistive devices and TIAs, respectively.

¢ Non-linear device characteristics: Non-linear device char-
acteristics result in that the resistive devices act as a non-
ideal device i(v, s) instead of an ideal resistor/conductor. Con-
sequently, the current through a resistive device i(v, s) is a
function of a state variable s and the voltage across the device
v. Quantitatively, the resistive devices have been reported to
become more conductive devices under high voltage excita-
tions [17].

3 STATE-OF-THE-ART SOLUTIONS TO
IMPROVING ROBUSTNESS

In this section, we outline the state-of-the-art solutions to handle
array parasitics, stuck-at-fault defects, and DAC/ADC quantization
errors. We selected these errors as they tend to be the dominant
sources for many Al applications. For each source, we outline the
main techniques that can be used to improve the application level
performance. We note that many of the techniques are used to
compensate for multiple different types of errors.

3.1 Array parasitics

An overview of the techniques used to compensate for non-zero
array parasitics are shown in Table 1.

Table 1: Techniques used to compensate for array parasitics.

Work | Conductance mapping | Post-processing | Retraining networks
[16] Yes - -
[41] Yes - -
[26] Yes Yes -
[17] Yes Yes -
[47] Yes - -
[36] Yes - -
[19] - - Yes
[14] - - Yes

Conductance mapping is the concept of mapping a matrix A into
conductance values g such that the realized conductance matrix
G(9, Tparasitic) is proportional to A. The challenge stems from that:
(i) there is voltage drop (or IR-drop) over the array parasitics, and
(ii) currents may flow through multiple paths from an input to an
output in the RCA. Nevertheless, given the conductance values
g and the parasitics 7parasitic, the realized conductance matrix
G(9, rparasitic) can be computed analytically using Eq (1).

Early work on conductance mapping focused on specifying the
conductance values g while compensating for the non-zero output
resistance of the TIAs. A linear approximation technique was used
in [16]. An iterative technique was proposed in [41]. The first tech-
nique that explicitly captured the array parasitics was proposed
in [26]. The method was based on defining the matrix realized by
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an RCA to be A" = G/a, where « is scaling factor and G is the
conductance matrix obtained using Eq (1). Next, the conductance
values g were specified by minimizing ||A — A”||? using steepest
gradient decent, where ||.||> denotes the square of the Frobenious
norm. The limitation of that work is that the write accuracy of the
resistive devices was not considered. The run-time of that algo-
rithm was also very long!. In [17], an extremely fast conductance
mapping algorithm was proposed. First, an ideal target current
through each resistive device was determined while treating the
RCA to be ideal. Next, the conductance values of the resistive de-
vices were tuned using Newton’s algorithm to the determined target
currents. This method is a heuristic because it does not explicitly
minimize the difference between A and A”. However, empirically
it has shown to give good results. In [47], the method in [26] was
extended to consider the write accuracy of the resistive devices.
This was performed by minimizing ||A— A" || while optimizing both
the scaling factor « and the conductance values g. This method
results in significantly higher accuracy compared with in [17] and
in [26]. In [36], the method was further extended to reduce run-time
and handle memristors arranged in a differential pair configuration.
However, the run-time of the algorithm is still longer than desired
for state-of-the-art neural networks.

An orthogonal approach to compensating for the IR-drop over
the array parasitics is to modify the application to account for the
IR-drop. In particular, retraining of the neural network weights has
been explored [14, 19]. Our understanding is that the retraining
was performed by linearly mapping the neural network weights
into conductance values and computing the weight matrix that is
effectively realized. In [19], the accurate model in Eq (1) was used
to model the array parasitics. In [14], an approximate statistical
model was used to reduce the run-time of the technique.

3.2 Device defects/Stuck-at-fault defects

An overview of the techniques used to compensate for stuck-at-
fault defects is shown in Table 2.

Table 2: Stuck-at-fault mitigation techniques.

Work | Retraining | Hardware Data to hardware Digital Post-
redundancy assignment compensation | processing

[8] Yes Yes Routers - -
[28] Yes Yes Routers -
[14] Yes Yes - Yes -
[42] - Yes - -
[48] - - Routers - Yes
[45] - Yes Data layout organization - -
[27] Yes Yes Routers -
[43] Yes - Data layout organization - -
[46] optional Yes Data layout organization
[44] - Yes Data layout organization - -

Hardware-aware training aims to train the weights of a neu-
ral network in software to mimic the defects in the RCA hard-
ware [8, 28]. The main limitation is that each neural network ap-
plication must be retrained based on the unique defect pattern of
each RCA based platform. Digital co-processing is the concept of
compensating for the defects using a digital co-processor [14]. This
technique can be used to compensate for any number of defective
devices but is expected to introduce significant performance and

The long run-time was observed by the authors when reimplementing the algorithm.
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hardware overhead. Stuck-at-fault defects can also be compensated
for using redundant hardware, which involves representing each
matrix element using multiple parallel resistive devices [42]. In [48],
post-processing techniques were used to minimize the errors using
a first order polynomial. In [45], it was observed that the constant
term of the polynomial can be captured by using the weights with-
out any overhead. In [27], it was observed that the negative impact
of stuck-at-fault defects can be reduced by optimizing the data to
hardware assignment. In [27], small (large) matrix elements were
assigned to devices stuck-off (stuck-on). The assignment was real-
ized by permuting rows using routers. The matrix row to RCA row
assignment was guided by a greedy algorithm. In [8], the mapping
was formulated as an assignment problem, which can be solved
optimally using the Hungarian algorithm. In [43], it was observed
that the data to hardware assignment could be performed without
hardware overhead by reordering the neurons in each layer of neu-
ral network applications, which can be referred to as data layout
organization. In [42], data layout organization was performed by
solving an assignment problem for the neurons in each layer of a
neural network. The technique also seamlessly incorporated the use
of hardware redundancy. The main drawback is that there are few
opportunities to perform data layout organization when weights
are shared in modern neural networks. In [44], it was shown that
additional opportunities for data layout organization are created
when weights are replicated to improve throughput. The main
drawback of that approach is that the run-time becomes long for
larger DNNS.
(nh)?
permutations

n!
permutations

router I j 8ﬁ__
o~ O~
O
n neurons n neurons
W in layer | Wi W in layer | Wi
(a) (b)

Figure 3: Data to hardware assignment (a) using routers and
(b) using data layout organization. The figure is adapted
from [46].

3.3 DAC/ADC quantization errors

An overview of the techniques used to reduce the impact of DAC/ADC
quantization errors is shown in Table 3.

Table 3: Techniques for DAC/ADC quantization errors.

Work | Bit-slicing | Computational restructuring | Fully analog
[6] Yes - -
[32] Yes - -
[13] Yes - -
[25] - Yes -
[29] - - Yes

The precision of the DAC and ADCs is limited to 8-bits. However,
many scientific computing applications require 16-bit fixed-point
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or floating point. To overcome this limitation, many architectural
level studies have adopted bit-slicing techniques to emulate high
precision [6, 13, 32]. The concept is based on decomposing both
the input vector and the matrix into bit-slices. Next, each of the
bit-slices are multiplied and added together using a shift-and-add
reduction network. The concept of bit-slicing of a matrix is shown

below:
2 1] ,f0 o] i1 o] [0 1
R A R
The limitation of bit-slicing is that the paradigm is highly vulnerable
to errors. Specifically, small analog errors may be amplified into
large digital errors by the shift operations.

Two alternative methods to minimizing DAC/ADC quantization
errors is based on computational reconstruction and fully-analog.
In [25], the neural network was trained to minimize the impact
of quantization errors, i.e., the functional computation was recon-
structed. In [29], multiple crossbars were connected together with-
out intermediate digital interfaces. Consequently, a neural network
can be implemented only using DACs and ADCs before the first
and after last layer, respectively.

4 FUTURE RESEARCH OPPORTUNITIES

In this section, we outline three future research directions. The first
two are related to the challenges described in this paper and the
last has a broader perspective.

Solutions to simultaneously handling multiple sources of
errors: Many research studies are focused on handling a single
source of errors, which is a natural starting point to addressing ro-
bustness and reliability issues for an emerging technology. However,
when multiple sources of errors are simultaneously considered, it
is crucial that different error mitigation techniques are compatible.
For example, it is easy to understand that bit-slicing techniques
(the concept of shifting and adding results) can reduce the preci-
sion requirements on the digital/analog and analog/digital domain
interfaces. However, the shift operations will amplify any small
analog error into large digital error, which will certainly impact
the application level functional correctness. Consequently, there is
an urgent need to rethink how to mitigate the negative impact of
errors while considering the interplay between different sources
of errors. In particular, it may be important to understand how
the techniques used to compensate for non-zero array parasitics
interplay with the techniques used to handle the other robustness
issues.

Standardisation of modeling, simulation, and evaluation
frameworks and tools: While the device models for resistive de-
vices are still emerging, it is still possible to standardize evaluation
frameworks and modeling/simulation tools based on well thought-
out assumptions. This may be particularly important for RCA based
computing systems with a noisy analog component, which behaves
fundamentally different from a deterministic digital systems. With-
out clear assumptions, it is very difficult to analyse the real capabili-
ties and limitations of analog in-memory computing. Consequently,
there is a risk that academic researchers are not focusing on the
critical issues that are preventing the technology from reaching
commercial deployment. Moreover, due to the lack open-source
tools, it is very difficult (or impossible) to benchmark alternative
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solutions and reproduce previously published results. We believe
that the establishment of open-source evaluation frameworks and
modeling/simulation tools has the potential to improve the overall
quality of the research in the academic community and reduce the
infrastructure building efforts for each independent research group.
Mapping of new applications to RCAs and characteriza-
tion of hardware requirements: The mapping of new applica-
tions to resistive technology is of high interest to both the industry
and the academic community. In particular, the mapping of new
mathematical kernels that enable new families of applications to
be solved. For example, the technique of solving linear equations
through iterative refinement is a brilliant innovation that enables
linear systems of equations to solved using resistive computing
system [21]. A different piece of the puzzle that is missing is the
characterization of the hardware requirements of various applica-
tions. Currently, experiments in resistive hardware have mainly
demonstrated promising results for image processing and small
neural networks on the MNIST data set. It would be useful to truly
understand the device level properties that limit larger applica-
tions (or more error sensitive applications) deployed on resistive
hardware. This would provide insight and feedback to device level
researchers on what properties are the most urgent to improve.

5 CONCLUSIONS

A departure from silicon technology and the von-Neumann ar-
chitecture is required to accelerate modern Al applications that
are driven by big data. While analog in-memory computing using
emerging non-volatile resistive technology promises reductions in
data movement and significant (orders of magnitude) improvements
in power-efficiency, the functional correctness of the accelerated
applications may be compromised by errors. In this paper, we have
reviewed the state-of-the-art techniques to improve the robust-
ness and reliability of resistive computing systems to errors. We
concluded the paper with our vision of opportunities for future
research within analog in-memory computing.

ACKNOWLEDGMENTS

This work was partly supported by NSF awards 1755825, 1908471,
2113307, and Cyber-Florida grant 3910-1011-00-E.

REFERENCES

[1] [n.d.]. Exascale Proxy Applications. https://proxyapps.exascaleproject.org.

[2] [n.d.]. Joint University Microelectronics Program (JUMP). https://www.darpa.
mil/program/joint-university-microelectronics-program.

[3] Fabien Alibart, Ligang Gao, Brian D Hoskins, and Dmitri B Strukov. 2012. High
Precision Tuning of State for Memristive Devices by Adaptable Variation-tolerant
Algorithm. Nanotechnology 23, 7 (2012), 075201.

[4] CornelialBargmann and William T Newsome. 2014. The Brain Research Through

Advancing Innovative Neurotechnologies (BRAIN) Initiative and Neurology.

JAMA neurology 71, 6 (2014), 675-676.

Karsten Beckmann, Josh Holt, Harika Manem, Joseph Van Nostrand, and

Nathaniel C Cady. 2016. Nanoscale Hafnium Oxide RRAM Devices Exhibit

Pulse Dependent Behavior and Multi-level Resistance Capability. Mrs Advances

1, 49 (2016), 3355-3360.

Mahdi Nazm Bojnordi and Engin Ipek. 2016. Memristive Boltzmann Machine: A

Hardware Accelerator for Combinatorial Optimization and Deep Learning. In

HPCA’16. IEEE, 1-13.

Ting Chang, Sung-Hyun Jo, and Wei Lu. 2011. Short-Term Memory to Long-Term

Memory Transition in a Nanoscale Memristor. ACS nano 5, 9 (2011), 7669-7676.

Lerong Chen, Jiawen Li, Yiran Chen, Qiuping Deng, Jiyuan Shen, Xiaoyao Liang,

and Li Jiang. 2017. Accelerator-friendly Neural-network Training: Learning

Variations and Defects in RRAM Crossbar. In DATE’17. IEEE, 19-24.



Session 8A: Towards Energy-efficient Machine Learning;:

Algorithm, Hardware and Computing Paradigm

(9]

[10

[11]

[12]

=
&

[14]

[15

[16

[17]

(18]

[19

[20]

[21

[22]

[23

[24]

[25]

[26]

[27

Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu
Wang, and Yuan Xie. 2016. PRIME: A Novel Processing-in-memory Architecture
for Neural Network Computation in ReRAM-based Main Memory. ACM SIGARCH
Computer Architecture News 44, 3 (2016), 27-39.

Shinhyun Choi, Yuchao Yang, and Wei Lu. 2014. Random telegraph noise and
resistance switching analysis of oxide based resistive memory. Nanoscale 6, 1
(2014), 400-404.

Leon Chua. 1971. Memristor-The Missing Circuit Element. IEEE Transactions on
circuit theory 18, 5 (1971), 507-519.

R Degraeve, A Fantini, N Raghavan, L Goux, S Clima, B Govoreanu, A Belmonte,
D Linten, and M Jurczak. 2015. Causes and consequences of the stochastic aspect
of filamentary RRAM. Microelectronic Engineering 147 (2015), 171-175.

Ben Feinberg, Uday Kumar Reddy Vengalam, Nathan Whitehair, Shibo Wang,
and Engin Ipek. 2018. Enabling scientific computing on memristive accelerators.
In ISCA’18. IEEE, 367-382.

Zhezhi He, Jie Lin, Rickard Ewetz, Jiann-Shiun Yuan, and Deliang Fan. 2019. Noise
Injection Adaption: End-to-end ReRAM Crossbar Non-ideal Effect Adaption for
Neural Network Mapping. In DAC’19. 1-6.

Miao Hu, Catherine E Graves, Can Li, Yunning Li, Ning Ge, Eric Montgomery, No-
raica Davila, Hao Jiang, R Stanley Williams, J Joshua Yang, et al. 2018. Memristor-
Based Analog Computation and Neural Network Classification with a Dot Product
Engine. Advanced Materials 30, 9 (2018), 1705914.

Miao Hu, Hai Li, Yiran Chen, Qing Wu, Garrett S Rose, and Richard W Linderman.
2014. Memristor Crossbar-Based Neuromorphic Computing System: A Case
Study. IEEE TNNLS 25, 10 (2014), 1864-1878.

Miao Hu, John Paul Strachan, Zhiyong Li, Emmanuelle M Grafals, Noraica
Davila, Catherine Graves, Sity Lam, Ning Ge, Jianhua Joshua Yang, and R Stanley
Williams. 2016. Dot-Product Engine for Neuromorphic Computing: Programming
1T1M Crossbar to Accelerate Matrix-Vector Multiplication. In ACM/EDAC/IEEE
DAC’16. IEEE, 1-6.

Yiming Huai. 2008. Spin-Transfer Torque MRAM (STT-MRAM): Challenges and
Prospects. AAPPS bulletin 18, 6 (2008), 33-40.

Shubham Jain, Abhronil Sengupta, Kaushik Roy, and Anand Raghunathan. 2020.
RxNN: A Framework for Evaluating Deep Neural Networks on Resistive Cross-
bars. IEEE TCAD (2020).

Brian G Johnson and Charles H Dennison. 2004. Phase change memory. US
Patent 6,791,102.

Manuel Le Gallo, Abu Sebastian, Roland Mathis, Matteo Manica, Heiner Giefers,
Tomas Tuma, Costas Bekas, Alessandro Curioni, and Evangelos Eleftheriou. 2018.
Mixed-Precision In-Memory Computing. Nature Electronics 1, 4 (2018), 246-253.
Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436-444.

HY Lee, PS Chen, TY Wu, YS Chen, CC Wang, PJ Tzeng, CH Lin, F Chen, CH
Lien, and M-J Tsai. 2008. Low Power and High Speed Bipolar Switching with
A Thin Reactive Ti Buffer Layer in Robust HfO; Based RRAM. In IEEE IEDM08.
IEEE, 1-4.

Can Li, Yunning Li, Hao Jiang, Wenhao Song, Peng Lin, Zhongrui Wang, J Joshua
Yang, Qiangfei Xia, Miao Hu, Eric Montgomery, et al. 2018. Large Memristor
Crossbars for Analog Computing. In ISCAS’18. IEEE, 1-4.

Beiye Liu, Miao Hu, Hai Li, Zhi-Hong Mao, Yiran Chen, Tingwen Huang, and
Wei Zhang. 2013. Digital-Assisted Noise-Eliminating Training for Memristor
Crossbar-based Analog Neuromorphic Computing Engine. In ACM/EDAC/IEEE
DAC’13. IEEE, 1-6.

Beiye Liu, Hai Li, Yiran Chen, Xin Li, Tingwen Huang, Qing Wu, and Mark
Barnell. 2014. Reduction and IR-drop Compensations Techniques for Reliable
Neuromorphic Computing Systems. In ICCAD’14. IEEE, 63-70.

Beiye Liu, Hai Li, Yiran Chen, Xin Li, Qing Wu, and Tingwen Huang. 2015. Vortex:
Variation-aware Training for Memristor X-bar. In ACM/EDAC/IEEE DAC’15. 1-6.

384

[28

[29

[30

[31

@
&,

[33

[34

[35

[36

[37

[40]

(41

[42

[43]

S
it

[45

[46

[47

(48

GLSVLSI '21, June 22-25, 2021, Virtual Event, USA

Chenchen Liu, Miao Hu, John Paul Strachan, and Hai Li. 2017. Rescuing
Memristor-based Neuromorphic Design with High Defects. In ACM/EDAC/IEEE
DAC’17. IEEE, 1-6.

Xiaoxiao Liu, Mengjie Mao, Beiye Liu, Hai Li, Yiran Chen, Boxun Li, Yu Wang, Hao
Jiang, Mark Barnell, Qing Wu, et al. 2015. RENO: A High-efficient Reconfigurable
Neuromorphic Computing Accelerator Design. In DAC’15. 1-6.

Yun Long, Xueyuan She, and Saibal Mukhopadhyay. 2019. Design of Reliable
DNN Accelerator with Un-reliable ReRAM. In DATE’19. IEEE, 1769-1774.
Stuart Parkin, Xin Jiang, Christian Kaiser, Alex Panchula, Kevin Roche, and
Mahesh Samant. 2003. Magnetically Engineered Spintronic Sensors and Memory.
Proc. IEEE 91, 5 (2003), 661-680.

Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek Srikumar. 2016.
ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arith-
metic in Crossbars. ACM SIGARCH Computer Architecture News 44, 3 (2016),
14-26.

Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. 2017. PipeLayer: A Pipelined
ReRAM-Based Accelerator for Deep Learning. In HPCA’17. IEEE, 541-552.
Linghao Song, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen. 2018. GraphR:

Accelerating Graph Processing Using ReRAM. In HPCA’18. IEEE, 531-543.
Dmitri B Strukov, Gregory S.Snider, Duncan R.Stewart, and R.Stanley Williams.

2009. The missing memristor found. Nature 453, 12 (2009), 80-83.

Necati Uysal, Baogang Zhang, Sumit Kumar Jha, and Rickard Ewetz. 2020.
DP-MAP: Towards Resistive Dot-Product Engines with Improved Precision. In
IEEE/ACM ICCAD’20. IEEE, 1-9.

A van de Goor and Y Zorian. 1993. Effective March Algorithms for Testing Single-
Order Addressed Memories. In 1993 European Conference on Design Automation
with the European Event in ASIC Design. IEEE, 499-505.

H-S Philip Wong, Heng-Yuan Lee, Shimeng Yu, Yu-Sheng Chen, Yi Wu, Pang-Shiu
Chen, Byoungil Lee, Frederick T Chen, and Ming-Jinn Tsai. 2012. Metal-oxide
RRAM. Proc. IEEE 100, 6 (2012), 1951-1970.

H-S Philip Wong, Simone Raoux, SangBum Kim, Jiale Liang, John P Reifenberg,
Bipin Rajendran, Mehdi Asheghi, and Kenneth E Goodson. 2010. Phase Change
Memory. Proc. IEEE 98, 12 (2010), 2201-2227.

Wm A Wulf and Sally A McKee. 1995. Hitting the Memory Wall: Implications of
the Obvious. ACM SIGARCH computer architecture news 23, 1 (1995), 20-24.
Lixue Xia, Peng Gu, Boxun Li, Tianqi Tang, Xiling Yin, Wenqin Huangfu, Shimeng
Yu, Yu Cao, Yu Wang, and Huazhong Yang. 2016. Technological Exploration of
RRAM Crossbar Array for Matrix-Vector Multiplication. JCST 31, 1 (2016), 3-19.
Lixue Xia, Wenqin Huangfu, Tiangi Tang, Xiling Yin, Krishnendu Chakrabarty,
Yuan Xie, Yu Wang, and Huazhong Yang. 2018. Stuck-at Fault Tolerance in RRAM
Computing Systems. IEEE JETCAS 8, 1 (2018), 102-115.

L. Xia, Mengyun Liu, Xuefei Ning, K. Chakrabarty, and Yu Wang. 2017. Fault-
Tolerant Training with On-Line Fault Detection for RRAM-Based Neural Com-
puting Systems. In Proc. Design Automation Conference. 1-6.

Baogang Zhang and Rickard Ewetz. 2020. Towards Resilient Deployment of
In-Memory Neural Networks with High Throughput. In DAC’21. 1-9.

Baogang Zhang, Necati Uysal, and Rickard Ewetz. 2019. STAT: Mean and Variance
Characterization for Robust Inference of DNNs on Memristor-based Platforms.
In GLSVLSI. 339-342.

Baogang Zhang, Necati Uysal, Deliang Fan, and Rickard Ewetz. 2019. Handling
Stuck-at-Fault Defects Using Matrix Transformation for Robust Inference of
DNNG. IEEE TCAD 39, 10 (2019), 2448-2460.

Baogang Zhang, Necati Uysal, Deliang Fan, and Rickard Ewetz. 2020. Repre-
sentable Matrices: Enabling High Accuracy Analog Computation for Inference
of DNNs using Memristors. In ASP-DAC’20. IEEE, 538-543.

Fan Zhang and Miao Hu. 2020. Defects Mitigation in Resistive Crossbars for
Analog Vector Matrix Multiplication. In ASP-DAC’20. IEEE, 187-192.



	Abstract
	1 Introduction
	2 Background
	2.1 Analog MVM using RCAs
	2.2 Target AI Applications
	2.3 Sources of errors

	3 State-of-the-art solutions to improving Robustness
	3.1 Array parasitics
	3.2 Device defects/Stuck-at-fault defects
	3.3 DAC/ADC quantization errors

	4 Future Research Opportunities
	5 Conclusions
	Acknowledgments
	References

