
Accelerating AI Applications using Analog In-Memory
Computing: Challenges and Opportunities

Shravya Channamadhavuni, Sven Thijssen, Sumit Kumar Jha, and Rickard Ewetz
University of Central Florida, Orlando, USA

University of Texas at San Antonio, San Antonio, USA

ABSTRACT

Linear transformations are the dominating computation within

many artificial intelligence (AI) applications. The natural multi-

ply and accumulate feature of resistive crossbar arrays promise

unprecedented processing capabilities to resistive dot-product en-

gines (DPEs), which can accelerate approximate matrix-vector mul-

tiplication using analog in-memory computing. Unfortunately, the

functional correctness of the accelerated AI applications may be

compromised by various sources of errors. In this paper, we will

outline the most pressing robustness challenges, the limitations of

state-of-the-art solutions, and future opportunities for research.

CCS CONCEPTS

·Hardware→Emerging architectures; ·Computingmethod-

ologies → Artificial intelligence.

KEYWORDS

Analog in-memory computing, memristor, analog matrix-vector

multiplication, variations, reliability, robustness.

ACM Reference Format:

Shravya Channamadhavuni, Sven Thijssen, Sumit Kumar Jha, and Rickard

Ewetz. 2021. Accelerating AI Applications using Analog In-Memory Com-

puting: Challenges and Opportunities. In Proceedings of the Great Lakes

Symposium on VLSI 2021 (GLSVLSI ’21), June 22ś25, 2021, Virtual Event, USA.

ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3453688.3461746

1 INTRODUCTION

With the exponential growth and availability of digital data, we

have entered an era dominated by data-driven artificial intelligence

(AI) applications. As a result, the demand for data to be analyzed

and processed has rapidly increased to exascale (1018 bytes/s). Un-

fortunately, these computing needs cannot be met through fur-

ther technology scaling using traditional silicon technology and

von-Neumann architecture. Mainly, due to the separation of com-

puting units and memory units, which translates into power hun-

gry and bandwidth limited data transfer [40]. Recently, numerous

large-scale research programs and research efforts have been de-

voted to improving energy-efficiency and reducing data movement,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GLSVLSI ’21, June 22ś25, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8393-6/21/06. . . $15.00
https://doi.org/10.1145/3453688.3461746

by rethinking all layers of the computing stack, including hard-

ware, software and hardware/software fundamental approaches

and schemes [1, 2, 4].

Due to promises of simultaneous dense storage and energy-

efficient analog processing, in-memory computing based on non-

volatile resistive technology has emerged as an appealing solu-

tion to overcome the aforementioned challenges. A non-volatile

resistive device is a two terminal device with programmable resis-

tance, which may be realized using memristor [11, 35], resistive

random access memory (ReRAM) [23, 38], phase change memory

(PCM) [20, 39], or spin-transfer torque magnetic random access

memory (STT-RAM) [18, 31]. By integrating the emerging devices

into resistive crossbar arrays (RCAs), approximate matrix-vector

multiplication (MVM) can be executed in the analog domain. This

is promising because the computation is significantly (orders of

magnitude) more energy-efficient than in the digital domain [17].

Data movement is also substantially reduced by storing the ma-

trix in-memory and performing the computation in-situ [9, 32].

Moreover, MVM is the dominating computation in many AI ap-

plications such as deep learning [22], image processing [24], and

graph analytics [34].

The main challenge of leveraging analog in-memory computing

is that the computational accuracy may be degraded by various

sources of errors and variations. This includes device write errors,

non-zero array parasitics, limited device yield, resistance drift, tem-

perature variations, random telegraph noise, and limited device

endurance. Moreover, any error introduced in the analog domain

may compromise the functional correctness of the accelerated ap-

plications. For example, the hardware classification accuracy of a

neural network may be significantly lower than the software level.

In contrast, robustness issues within digital computing systems

only introduce timing violations, which can be alleviated using

dynamic voltage frequency scaling (DVFS).

To provide guarantees on the system level performance, syner-

gistic innovations on the device level, algorithm level, and software

application level are required. While device level researchers con-

tinuously attempt to improve the characteristics of the fabricated

devices, it is becoming urgent to develop the required algorithm

and software level support.

In this paper, we review the challenges, solutions, and future

research directions for accelerating AI applications using analog

in-memory computing. The basic concept of analog matrix-vector

multiplication, target AI applications, and the modeling of different

errors is discussed in Section 2. The state-of-the-art solutions to

improving the robustness to errors on the algorithm and software

level are reviewed in Section 3. Opportunities for future research

are outlined in Section 4. The paper is concluded in Section 5.

Session 8A: Towards Energy-efficient Machine Learning:

Algorithm, Hardware and Computing Paradigm

GLSVLSI '21, June 22–25, 2021, Virtual Event, USA

379

a11 a12 a13 x1 y1

a21 a22 a23 x2 y2

a31 a32 a33 x3 y3

=

mapped to

resitive devices

mapped to

input voltages

decoded from

output currents
TIAs

In
p
u
t:

 v
e
c
to

r
x

Output: vector y

D
A

C
s

ADCs

v
in

vout

v
in

iout

access transistor

(a) (b) (c)

Figure 1: (a) Digital MVM (b) Analog MVM (c) RCA circuit for analog MVM.

2 BACKGROUND

In this section, we review how analog MVM can be performed using

RCAs. Next, we outline target AI applications and sources of errors.

2.1 Analog MVM using RCAs

The high-level concept and circuitry needed to perform MVM op-

erations (𝐴𝑥=𝑦) using an RCA is illustrated in Figure 1. The MVM

operations are accelerated using a one-time expensive initialization

phase and a fast and efficient evaluation phase. In the initialization

phase, a matrix 𝐴 is mapped to the state (or conductance) of the

multi-level resistive devices within an RCA. This is a slow and

expensive process because the conductance of each device in the

RCA is required to be accurately programmed based on the input

matrix. In the evaluation phase, MVM operations are performed fast

and efficiently by converting input vectors (𝑥) into input voltages

and decoding the output voltages/currents into output vectors (𝑦),

which is shown in Figure 1(a). Consequently, RCAs are a promising

candidate to accelerate applications where the matrix is relatively

fixed and the input vectors frequently change.

The basic principal of analog MVM is shown in Figure 1(b).

The figure shows a set of wordlines connected to a set of bitlines

using a resistive device in each intersection. The current through

each resistive device is obtained using Ohm’s law by multiplying

the input voltages applied to the wordlines with the conductance

values of the resistive devices. Next, the currents are summed along

the bitlines using Kirchhoff’s current law. The relation between

the input voltages (𝑣𝑖𝑛) and the output currents (𝑖𝑜𝑢𝑡) is equal to

𝑣𝑇𝑖𝑛𝐺 = 𝑖𝑇𝑜𝑢𝑡 , where 𝐺 is the conductance matrix realized by the

RCA. The conductance matrix 𝐺 has dimensions (𝑁)x(𝑀) for a

RCA with 𝑁 wordlines and 𝑀 bitlines. Let the conductance values

of the resistive devices (organized in a matrix form) be denoted

𝑔, where 𝑔𝑖 𝑗 ∈ [𝑔𝑚𝑖𝑛 , 𝑔𝑚𝑎𝑥] is the conductance of the resistive

devices connecting wordline 𝑖 with bitline 𝑗 . In the ideal case (no

array/input/output resistances), each entry 𝐺𝑖 𝑗 in 𝐺 is equal to 𝑔𝑖 𝑗 .

Hence, the conductance values 𝑔 are obtained by linearly mapping

the target matrix 𝐴 into [𝑔𝑚𝑖𝑛 , 𝑔𝑚𝑎𝑥].

The circuit of an RCA used for analog MVM is shown in Fig-

ure 1(c). There are digital to analog converters (DACs) attached to

the wordlines that are used to convert a digital input vector 𝑥 into

analog input voltages 𝑣𝑖𝑛 . The transimpedance amplifiers (TIAs)

attached to the bitlines amplify the output currents (𝑖𝑜𝑢𝑡) into out-

put voltages (𝑣𝑜𝑢𝑡), where 𝑣𝑜𝑢𝑡 = 𝑖𝑜𝑢𝑡𝑅𝑠 and 𝑅𝑠 is the feedback

resistance of the TIAs. Consequently, the output voltages are equal

to 𝑣𝑇𝑜𝑢𝑡 = 𝑣𝑇𝑖𝑛𝐺𝑅𝑠 . Next, output voltages 𝑣𝑜𝑢𝑡 are converted into a

digital vector 𝑦 using analog to digital converters (ADCs).

2.2 Target AI Applications

Applications such as DNNs, signal and image processing, and graph

processing can be accelerated using RCAs. All these applications

are characterized by that (i) MVM (or the associated data transfer)

is the bottleneck of the application and (ii) the matrix is relatively

fixed and the input vectors frequently change. Now we specifically

turn our attention to the acceleration of DNNs.

Deep neural networks (DNNs): DNNs have surpassed human-

level capabilities for a number of computer vision applications [22].

DNNs consist of multiple layers of neurons connected together by

synapse weights, which is shown in Figure 2. The networks operate

using a training and an inference phase. In the training phase, the

synapse weights are learned to solve a classification task. In the

inference phase, input images/objects/videos are classified into one

of multiple output categories by passing an input to the first layer

and recording the output from the last layer. The evaluation of one

layer of a neural network involves multiplying the outputs from

the previous layer with the synapse weights (a MVM operation)

and passing the result through a non-linear activation functions. It

is appealing to accelerate the inference phase of DNNs by mapping

each weight matrix to an RCA because the MVM operation and

the associated memory access is the bottleneck limiting the system

performance. Using this high-level approach, architectural level

studies have demonstrated significant improvements in power, area,

latency, and throughput [9, 32, 33].

Figure 2: DNN inference deployment on RCAs.

Session 8A: Towards Energy-efficient Machine Learning:

Algorithm, Hardware and Computing Paradigm

GLSVLSI '21, June 22–25, 2021, Virtual Event, USA

380

2.3 Sources of errors

The main challenge of leveraging MCAs to accelerate MVM oper-

ations is that various sources may introduce errors that degrade

system performance. A list of the most important sources of errors

are provided below.

• Write accuracy: Resistive devices cannot be exactly pro-

grammed to a specific conductance value due to device vari-

abilities. With respect to a desired target conductance, the

obtained device conductance exhibits a log normal distri-

bution [17]. The programming accuracy can on an abstract

level be captured using bit-accuracy 𝑏, i.e., the resistive de-

vices can be programmed to 2𝑏 distinguishable conductance

states [3, 15]. Consequently, each element in 𝑔 is a discrete

variable with states uniformly distributed between [𝑔𝑚𝑖𝑛,

𝑔𝑚𝑎𝑥], where 𝑔𝑚𝑖𝑛 and 𝑔𝑚𝑎𝑥 are the minimum and maxi-

mum conductance of programmable conductance range. De-

vice characterizations using non-uniform state distributions

have also been analyzed [30].

• Array parasitics: In the ideal case, the conductance matrix

𝐺 is equivalent to the conductance values of the resistive

devices 𝑔. However, the conductance matrix 𝐺 (𝑔, 𝑟𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐)

(or 𝐺) is in reality a highly non-linear function of 𝑔 and

the parasitics 𝑟𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐 . Let 𝑟𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐 capture the non-zero

input (driver), output (sensing), and array (wire) parasitics

that are fixed after fabrication [26]. In this paper, we inter-

changeably use 𝐺 or 𝐺 (𝑔, 𝑟𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐) to balance clarity and

brevity. Let the RCA have𝑀 and 𝑁 wordlines and 𝑁 bitlines,

respectively. The conductance matrix 𝐺 can be obtained as

follows:

𝐺 (𝑔, 𝑟𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐) = 𝑆𝑌 (𝑔, 𝑟𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐)
−1𝐵, (1)

where 𝐵, 𝑆 , and 𝑌 (𝑔, 𝑟𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐) are matrices. The 𝐵 and 𝑆

matrices respectively have dimensions (𝑀)x(2𝑁𝑀 +𝑀 +𝑁)

and (2𝑁𝑀 + 𝑀 + 𝑁)x(𝑁) and only depend on the size of

the RCA.𝑌 (𝑔, 𝑟𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐) is a matrix with dimension (2𝑀𝑁 +

𝑀 + 𝑁)x(2𝑀𝑁 + 𝑀 + 𝑁) that depends on the fixed para-

sitic properties 𝑟𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐 and the conductance values 𝑔 of

the resistive devices. The details of the matrices Eq (1) are

provided in [26].

• Device defects/Stuck-at-fault defects: A resistive device

can suffer hard defect, which implies that the device con-

ductance cannot be further programmed. The stuck-at-faults

occur at fabrication or from heavy device utilization [5, 37].

Research with insights in the spatial distribution of the de-

fects and the values have mainly focused on devices stuck

to the minimum or maximum programmable conductance

𝑔𝑚𝑖𝑛 and 𝑔𝑚𝑎𝑥 .

• DAC/ADC quantization errors: The domain interfaces

introduce errors in both the digital/analog and the ana-

log/digital conversion. The DAC quantize the value range

into 𝑏𝑑𝑎𝑐 bits or 2
𝑏𝑑𝑎𝑐 states. The ADC quantize the output

voltage range into 𝑏𝑎𝑑𝑐 bits or 2
𝑏𝑎𝑑𝑐 states. The errors intro-

duced by the DACs and ADCs are therefore proportional to

the input and output value range, respectively.

• Resistance drift: The resistance of every memristor will

be slightly changed after each MVM operation is performed

due to resistance drift [7]. Consequently, the computational

accuracy of the MVM operations will be degraded over time.

• Temperature variations: The conductance of each resis-

tive device is dependent on the temperature of the operating

environment [17]. The devices are more (less) conductive at

higher (lower) temperatures.

• Stochastic variations: Random telegraph noise (RTN) con-

ductance variations for every resistive device [10, 12]. John-

son and short noise introduce non-ideal currents through

the resistive devices and TIAs, respectively.

• Non-linear device characteristics:Non-linear device char-

acteristics result in that the resistive devices act as a non-

ideal device 𝑖 (𝑣, 𝑠) instead of an ideal resistor/conductor. Con-

sequently, the current through a resistive device 𝑖 (𝑣, 𝑠) is a

function of a state variable 𝑠 and the voltage across the device

𝑣 . Quantitatively, the resistive devices have been reported to

become more conductive devices under high voltage excita-

tions [17].

3 STATE-OF-THE-ART SOLUTIONS TO
IMPROVING ROBUSTNESS

In this section, we outline the state-of-the-art solutions to handle

array parasitics, stuck-at-fault defects, and DAC/ADC quantization

errors. We selected these errors as they tend to be the dominant

sources for many AI applications. For each source, we outline the

main techniques that can be used to improve the application level

performance. We note that many of the techniques are used to

compensate for multiple different types of errors.

3.1 Array parasitics

An overview of the techniques used to compensate for non-zero

array parasitics are shown in Table 1.

Table 1: Techniques used to compensate for array parasitics.

Work Conductance mapping Post-processing Retraining networks

[16] Yes - -

[41] Yes - -

[26] Yes Yes -

[17] Yes Yes -

[47] Yes - -

[36] Yes - -

[19] - - Yes

[14] - - Yes

Conductance mapping is the concept of mapping a matrix𝐴 into

conductance values 𝑔 such that the realized conductance matrix

𝐺 (𝑔, 𝑟𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐) is proportional to𝐴. The challenge stems from that:

(i) there is voltage drop (or IR-drop) over the array parasitics, and

(ii) currents may flow through multiple paths from an input to an

output in the RCA. Nevertheless, given the conductance values

𝑔 and the parasitics 𝑟𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐 , the realized conductance matrix

𝐺 (𝑔, 𝑟𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐) can be computed analytically using Eq (1).

Early work on conductance mapping focused on specifying the

conductance values 𝑔 while compensating for the non-zero output

resistance of the TIAs. A linear approximation technique was used

in [16]. An iterative technique was proposed in [41]. The first tech-

nique that explicitly captured the array parasitics was proposed

in [26]. The method was based on defining the matrix realized by

Session 8A: Towards Energy-efficient Machine Learning:

Algorithm, Hardware and Computing Paradigm

GLSVLSI '21, June 22–25, 2021, Virtual Event, USA

381

an RCA to be 𝐴𝑟
= 𝐺/𝛼 , where 𝛼 is scaling factor and 𝐺 is the

conductance matrix obtained using Eq (1). Next, the conductance

values 𝑔 were specified by minimizing | |𝐴 − 𝐴𝑟 | |2 using steepest

gradient decent, where | |.| |2 denotes the square of the Frobenious

norm. The limitation of that work is that the write accuracy of the

resistive devices was not considered. The run-time of that algo-

rithm was also very long1. In [17], an extremely fast conductance

mapping algorithm was proposed. First, an ideal target current

through each resistive device was determined while treating the

RCA to be ideal. Next, the conductance values of the resistive de-

vices were tuned using Newton’s algorithm to the determined target

currents. This method is a heuristic because it does not explicitly

minimize the difference between 𝐴 and 𝐴𝑟 . However, empirically

it has shown to give good results. In [47], the method in [26] was

extended to consider the write accuracy of the resistive devices.

This was performed by minimizing | |𝐴−𝐴𝑟 | | while optimizing both

the scaling factor 𝛼 and the conductance values 𝑔. This method

results in significantly higher accuracy compared with in [17] and

in [26]. In [36], the method was further extended to reduce run-time

and handle memristors arranged in a differential pair configuration.

However, the run-time of the algorithm is still longer than desired

for state-of-the-art neural networks.

An orthogonal approach to compensating for the IR-drop over

the array parasitics is to modify the application to account for the

IR-drop. In particular, retraining of the neural network weights has

been explored [14, 19]. Our understanding is that the retraining

was performed by linearly mapping the neural network weights

into conductance values and computing the weight matrix that is

effectively realized. In [19], the accurate model in Eq (1) was used

to model the array parasitics. In [14], an approximate statistical

model was used to reduce the run-time of the technique.

3.2 Device defects/Stuck-at-fault defects

An overview of the techniques used to compensate for stuck-at-

fault defects is shown in Table 2.

Table 2: Stuck-at-fault mitigation techniques.

Work Retraining Hardware Data to hardware Digital Post-

redundancy assignment compensation processing

[8] Yes Yes Routers - -

[28] Yes Yes Routers - -

[14] Yes Yes - Yes -

[42] - Yes - - -

[48] - - Routers - Yes

[45] - Yes Data layout organization - -

[27] Yes Yes Routers - -

[43] Yes - Data layout organization - -

[46] optional Yes Data layout organization - -

[44] - Yes Data layout organization - -

Hardware-aware training aims to train the weights of a neu-

ral network in software to mimic the defects in the RCA hard-

ware [8, 28]. The main limitation is that each neural network ap-

plication must be retrained based on the unique defect pattern of

each RCA based platform. Digital co-processing is the concept of

compensating for the defects using a digital co-processor [14]. This

technique can be used to compensate for any number of defective

devices but is expected to introduce significant performance and

1The long run-time was observed by the authors when reimplementing the algorithm.

hardware overhead. Stuck-at-fault defects can also be compensated

for using redundant hardware, which involves representing each

matrix element using multiple parallel resistive devices [42]. In [48],

post-processing techniques were used to minimize the errors using

a first order polynomial. In [45], it was observed that the constant

term of the polynomial can be captured by using the weights with-

out any overhead. In [27], it was observed that the negative impact

of stuck-at-fault defects can be reduced by optimizing the data to

hardware assignment. In [27], small (large) matrix elements were

assigned to devices stuck-off (stuck-on). The assignment was real-

ized by permuting rows using routers. The matrix row to RCA row

assignment was guided by a greedy algorithm. In [8], the mapping

was formulated as an assignment problem, which can be solved

optimally using the Hungarian algorithm. In [43], it was observed

that the data to hardware assignment could be performed without

hardware overhead by reordering the neurons in each layer of neu-

ral network applications, which can be referred to as data layout

organization. In [42], data layout organization was performed by

solving an assignment problem for the neurons in each layer of a

neural network. The technique also seamlessly incorporated the use

of hardware redundancy. The main drawback is that there are few

opportunities to perform data layout organization when weights

are shared in modern neural networks. In [44], it was shown that

additional opportunities for data layout organization are created

when weights are replicated to improve throughput. The main

drawback of that approach is that the run-time becomes long for

larger DNNs.

Wl

n neurons

in layer l

(n!)2

permutations

n neurons

in layer l

n!

permutations

Wl+1 Wl Wl+1

router

(a) (b)

Figure 3: Data to hardware assignment (a) using routers and

(b) using data layout organization. The figure is adapted

from [46].

3.3 DAC/ADC quantization errors

An overview of the techniques used to reduce the impact of DAC/ADC

quantization errors is shown in Table 3.

Table 3: Techniques for DAC/ADC quantization errors.

Work Bit-slicing Computational restructuring Fully analog

[6] Yes - -

[32] Yes - -

[13] Yes - -

[25] - Yes -

[29] - - Yes

The precision of the DAC and ADCs is limited to 8-bits. However,

many scientific computing applications require 16-bit fixed-point

Session 8A: Towards Energy-efficient Machine Learning:

Algorithm, Hardware and Computing Paradigm

GLSVLSI '21, June 22–25, 2021, Virtual Event, USA

382

or floating point. To overcome this limitation, many architectural

level studies have adopted bit-slicing techniques to emulate high

precision [6, 13, 32]. The concept is based on decomposing both

the input vector and the matrix into bit-slices. Next, each of the

bit-slices are multiplied and added together using a shift-and-add

reduction network. The concept of bit-slicing of a matrix is shown

below:
[

2 1

7 3

]

= 22
[

0 0

1 0

]

+ 21
[

1 0

1 1

]

+ 20
[

0 1

1 1

]

The limitation of bit-slicing is that the paradigm is highly vulnerable

to errors. Specifically, small analog errors may be amplified into

large digital errors by the shift operations.

Two alternative methods to minimizing DAC/ADC quantization

errors is based on computational reconstruction and fully-analog.

In [25], the neural network was trained to minimize the impact

of quantization errors, i.e., the functional computation was recon-

structed. In [29], multiple crossbars were connected together with-

out intermediate digital interfaces. Consequently, a neural network

can be implemented only using DACs and ADCs before the first

and after last layer, respectively.

4 FUTURE RESEARCH OPPORTUNITIES

In this section, we outline three future research directions. The first

two are related to the challenges described in this paper and the

last has a broader perspective.

Solutions to simultaneously handlingmultiple sources of

errors: Many research studies are focused on handling a single

source of errors, which is a natural starting point to addressing ro-

bustness and reliability issues for an emerging technology. However,

when multiple sources of errors are simultaneously considered, it

is crucial that different error mitigation techniques are compatible.

For example, it is easy to understand that bit-slicing techniques

(the concept of shifting and adding results) can reduce the preci-

sion requirements on the digital/analog and analog/digital domain

interfaces. However, the shift operations will amplify any small

analog error into large digital error, which will certainly impact

the application level functional correctness. Consequently, there is

an urgent need to rethink how to mitigate the negative impact of

errors while considering the interplay between different sources

of errors. In particular, it may be important to understand how

the techniques used to compensate for non-zero array parasitics

interplay with the techniques used to handle the other robustness

issues.

Standardisation of modeling, simulation, and evaluation

frameworks and tools: While the device models for resistive de-

vices are still emerging, it is still possible to standardize evaluation

frameworks and modeling/simulation tools based on well thought-

out assumptions. This may be particularly important for RCA based

computing systems with a noisy analog component, which behaves

fundamentally different from a deterministic digital systems. With-

out clear assumptions, it is very difficult to analyse the real capabili-

ties and limitations of analog in-memory computing. Consequently,

there is a risk that academic researchers are not focusing on the

critical issues that are preventing the technology from reaching

commercial deployment. Moreover, due to the lack open-source

tools, it is very difficult (or impossible) to benchmark alternative

solutions and reproduce previously published results. We believe

that the establishment of open-source evaluation frameworks and

modeling/simulation tools has the potential to improve the overall

quality of the research in the academic community and reduce the

infrastructure building efforts for each independent research group.

Mapping of new applications to RCAs and characteriza-

tion of hardware requirements: The mapping of new applica-

tions to resistive technology is of high interest to both the industry

and the academic community. In particular, the mapping of new

mathematical kernels that enable new families of applications to

be solved. For example, the technique of solving linear equations

through iterative refinement is a brilliant innovation that enables

linear systems of equations to solved using resistive computing

system [21]. A different piece of the puzzle that is missing is the

characterization of the hardware requirements of various applica-

tions. Currently, experiments in resistive hardware have mainly

demonstrated promising results for image processing and small

neural networks on the MNIST data set. It would be useful to truly

understand the device level properties that limit larger applica-

tions (or more error sensitive applications) deployed on resistive

hardware. This would provide insight and feedback to device level

researchers on what properties are the most urgent to improve.

5 CONCLUSIONS

A departure from silicon technology and the von-Neumann ar-

chitecture is required to accelerate modern AI applications that

are driven by big data. While analog in-memory computing using

emerging non-volatile resistive technology promises reductions in

data movement and significant (orders of magnitude) improvements

in power-efficiency, the functional correctness of the accelerated

applications may be compromised by errors. In this paper, we have

reviewed the state-of-the-art techniques to improve the robust-

ness and reliability of resistive computing systems to errors. We

concluded the paper with our vision of opportunities for future

research within analog in-memory computing.

ACKNOWLEDGMENTS

This work was partly supported by NSF awards 1755825, 1908471,

2113307, and Cyber-Florida grant 3910-1011-00-E.

REFERENCES
[1] [n.d.]. Exascale Proxy Applications. https://proxyapps.exascaleproject.org.
[2] [n.d.]. Joint University Microelectronics Program (JUMP). https://www.darpa.

mil/program/joint-university-microelectronics-program.
[3] Fabien Alibart, Ligang Gao, Brian D Hoskins, and Dmitri B Strukov. 2012. High

Precision Tuning of State for Memristive Devices by Adaptable Variation-tolerant
Algorithm. Nanotechnology 23, 7 (2012), 075201.

[4] Cornelia I Bargmann andWilliam TNewsome. 2014. The Brain Research Through
Advancing Innovative Neurotechnologies (BRAIN) Initiative and Neurology.
JAMA neurology 71, 6 (2014), 675ś676.

[5] Karsten Beckmann, Josh Holt, Harika Manem, Joseph Van Nostrand, and
Nathaniel C Cady. 2016. Nanoscale Hafnium Oxide RRAM Devices Exhibit
Pulse Dependent Behavior and Multi-level Resistance Capability. Mrs Advances
1, 49 (2016), 3355ś3360.

[6] Mahdi Nazm Bojnordi and Engin Ipek. 2016. Memristive Boltzmann Machine: A
Hardware Accelerator for Combinatorial Optimization and Deep Learning. In
HPCA’16. IEEE, 1ś13.

[7] Ting Chang, Sung-Hyun Jo, andWei Lu. 2011. Short-TermMemory to Long-Term
Memory Transition in a Nanoscale Memristor. ACS nano 5, 9 (2011), 7669ś7676.

[8] Lerong Chen, Jiawen Li, Yiran Chen, Qiuping Deng, Jiyuan Shen, Xiaoyao Liang,
and Li Jiang. 2017. Accelerator-friendly Neural-network Training: Learning
Variations and Defects in RRAM Crossbar. In DATE’17. IEEE, 19ś24.

Session 8A: Towards Energy-efficient Machine Learning:

Algorithm, Hardware and Computing Paradigm

GLSVLSI '21, June 22–25, 2021, Virtual Event, USA

383

[9] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu
Wang, and Yuan Xie. 2016. PRIME: A Novel Processing-in-memory Architecture
for Neural Network Computation in ReRAM-basedMainMemory. ACM SIGARCH
Computer Architecture News 44, 3 (2016), 27ś39.

[10] Shinhyun Choi, Yuchao Yang, and Wei Lu. 2014. Random telegraph noise and
resistance switching analysis of oxide based resistive memory. Nanoscale 6, 1
(2014), 400ś404.

[11] Leon Chua. 1971. Memristor-The Missing Circuit Element. IEEE Transactions on
circuit theory 18, 5 (1971), 507ś519.

[12] R Degraeve, A Fantini, N Raghavan, L Goux, S Clima, B Govoreanu, A Belmonte,
D Linten, and M Jurczak. 2015. Causes and consequences of the stochastic aspect
of filamentary RRAM. Microelectronic Engineering 147 (2015), 171ś175.

[13] Ben Feinberg, Uday Kumar Reddy Vengalam, Nathan Whitehair, Shibo Wang,
and Engin Ipek. 2018. Enabling scientific computing on memristive accelerators.
In ISCA’18. IEEE, 367ś382.

[14] Zhezhi He, Jie Lin, Rickard Ewetz, Jiann-Shiun Yuan, and Deliang Fan. 2019. Noise
Injection Adaption: End-to-end ReRAM Crossbar Non-ideal Effect Adaption for
Neural Network Mapping. In DAC’19. 1ś6.

[15] Miao Hu, Catherine E Graves, Can Li, Yunning Li, Ning Ge, Eric Montgomery, No-
raica Davila, Hao Jiang, R Stanley Williams, J Joshua Yang, et al. 2018. Memristor-
BasedAnalog Computation andNeural Network Classificationwith a Dot Product
Engine. Advanced Materials 30, 9 (2018), 1705914.

[16] Miao Hu, Hai Li, Yiran Chen, QingWu, Garrett S Rose, and RichardW Linderman.
2014. Memristor Crossbar-Based Neuromorphic Computing System: A Case
Study. IEEE TNNLS 25, 10 (2014), 1864ś1878.

[17] Miao Hu, John Paul Strachan, Zhiyong Li, Emmanuelle M Grafals, Noraica
Davila, Catherine Graves, Sity Lam, Ning Ge, Jianhua Joshua Yang, and R Stanley
Williams. 2016. Dot-Product Engine for Neuromorphic Computing: Programming
1T1M Crossbar to Accelerate Matrix-Vector Multiplication. In ACM/EDAC/IEEE
DAC’16. IEEE, 1ś6.

[18] Yiming Huai. 2008. Spin-Transfer Torque MRAM (STT-MRAM): Challenges and
Prospects. AAPPS bulletin 18, 6 (2008), 33ś40.

[19] Shubham Jain, Abhronil Sengupta, Kaushik Roy, and Anand Raghunathan. 2020.
RxNN: A Framework for Evaluating Deep Neural Networks on Resistive Cross-
bars. IEEE TCAD (2020).

[20] Brian G Johnson and Charles H Dennison. 2004. Phase change memory. US
Patent 6,791,102.

[21] Manuel Le Gallo, Abu Sebastian, Roland Mathis, Matteo Manica, Heiner Giefers,
Tomas Tuma, Costas Bekas, Alessandro Curioni, and Evangelos Eleftheriou. 2018.
Mixed-Precision In-Memory Computing. Nature Electronics 1, 4 (2018), 246ś253.

[22] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436ś444.

[23] HY Lee, PS Chen, TY Wu, YS Chen, CC Wang, PJ Tzeng, CH Lin, F Chen, CH
Lien, and M-J Tsai. 2008. Low Power and High Speed Bipolar Switching with
A Thin Reactive Ti Buffer Layer in Robust HfO2 Based RRAM. In IEEE IEDM’08.
IEEE, 1ś4.

[24] Can Li, Yunning Li, Hao Jiang, Wenhao Song, Peng Lin, Zhongrui Wang, J Joshua
Yang, Qiangfei Xia, Miao Hu, Eric Montgomery, et al. 2018. Large Memristor
Crossbars for Analog Computing. In ISCAS’18. IEEE, 1ś4.

[25] Beiye Liu, Miao Hu, Hai Li, Zhi-Hong Mao, Yiran Chen, Tingwen Huang, and
Wei Zhang. 2013. Digital-Assisted Noise-Eliminating Training for Memristor
Crossbar-based Analog Neuromorphic Computing Engine. In ACM/EDAC/IEEE
DAC’13. IEEE, 1ś6.

[26] Beiye Liu, Hai Li, Yiran Chen, Xin Li, Tingwen Huang, Qing Wu, and Mark
Barnell. 2014. Reduction and IR-drop Compensations Techniques for Reliable
Neuromorphic Computing Systems. In ICCAD’14. IEEE, 63ś70.

[27] Beiye Liu, Hai Li, Yiran Chen, Xin Li, QingWu, and Tingwen Huang. 2015. Vortex:
Variation-aware Training for Memristor X-bar. In ACM/EDAC/IEEE DAC’15. 1ś6.

[28] Chenchen Liu, Miao Hu, John Paul Strachan, and Hai Li. 2017. Rescuing
Memristor-based Neuromorphic Design with High Defects. In ACM/EDAC/IEEE
DAC’17. IEEE, 1ś6.

[29] Xiaoxiao Liu, MengjieMao, Beiye Liu, Hai Li, Yiran Chen, Boxun Li, YuWang, Hao
Jiang, Mark Barnell, Qing Wu, et al. 2015. RENO: A High-efficient Reconfigurable
Neuromorphic Computing Accelerator Design. In DAC’15. 1ś6.

[30] Yun Long, Xueyuan She, and Saibal Mukhopadhyay. 2019. Design of Reliable
DNN Accelerator with Un-reliable ReRAM. In DATE’19. IEEE, 1769ś1774.

[31] Stuart Parkin, Xin Jiang, Christian Kaiser, Alex Panchula, Kevin Roche, and
Mahesh Samant. 2003. Magnetically Engineered Spintronic Sensors and Memory.
Proc. IEEE 91, 5 (2003), 661ś680.

[32] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek Srikumar. 2016.
ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arith-
metic in Crossbars. ACM SIGARCH Computer Architecture News 44, 3 (2016),
14ś26.

[33] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. 2017. PipeLayer: A Pipelined
ReRAM-Based Accelerator for Deep Learning. In HPCA’17. IEEE, 541ś552.

[34] Linghao Song, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen. 2018. GraphR:
Accelerating Graph Processing Using ReRAM. In HPCA’18. IEEE, 531ś543.

[35] Dmitri B Strukov, Gregory S.Snider, Duncan R.Stewart, and R.Stanley Williams.
2009. The missing memristor found. Nature 453, 12 (2009), 80ś83.

[36] Necati Uysal, Baogang Zhang, Sumit Kumar Jha, and Rickard Ewetz. 2020.
DP-MAP: Towards Resistive Dot-Product Engines with Improved Precision. In
IEEE/ACM ICCAD’20. IEEE, 1ś9.

[37] A van de Goor and Y Zorian. 1993. Effective March Algorithms for Testing Single-
Order Addressed Memories. In 1993 European Conference on Design Automation
with the European Event in ASIC Design. IEEE, 499ś505.

[38] H-S PhilipWong, Heng-Yuan Lee, Shimeng Yu, Yu-Sheng Chen, YiWu, Pang-Shiu
Chen, Byoungil Lee, Frederick T Chen, and Ming-Jinn Tsai. 2012. Metalśoxide
RRAM. Proc. IEEE 100, 6 (2012), 1951ś1970.

[39] H-S Philip Wong, Simone Raoux, SangBum Kim, Jiale Liang, John P Reifenberg,
Bipin Rajendran, Mehdi Asheghi, and Kenneth E Goodson. 2010. Phase Change
Memory. Proc. IEEE 98, 12 (2010), 2201ś2227.

[40] Wm A Wulf and Sally A McKee. 1995. Hitting the Memory Wall: Implications of
the Obvious. ACM SIGARCH computer architecture news 23, 1 (1995), 20ś24.

[41] Lixue Xia, Peng Gu, Boxun Li, Tianqi Tang, Xiling Yin,Wenqin Huangfu, Shimeng
Yu, Yu Cao, Yu Wang, and Huazhong Yang. 2016. Technological Exploration of
RRAM Crossbar Array for Matrix-Vector Multiplication. JCST 31, 1 (2016), 3ś19.

[42] Lixue Xia, Wenqin Huangfu, Tianqi Tang, Xiling Yin, Krishnendu Chakrabarty,
Yuan Xie, YuWang, and Huazhong Yang. 2018. Stuck-at Fault Tolerance in RRAM
Computing Systems. IEEE JETCAS 8, 1 (2018), 102ś115.

[43] L. Xia, Mengyun Liu, Xuefei Ning, K. Chakrabarty, and Yu Wang. 2017. Fault-
Tolerant Training with On-Line Fault Detection for RRAM-Based Neural Com-
puting Systems. In Proc. Design Automation Conference. 1ś6.

[44] Baogang Zhang and Rickard Ewetz. 2020. Towards Resilient Deployment of
In-Memory Neural Networks with High Throughput. In DAC’21. 1ś9.

[45] Baogang Zhang, Necati Uysal, and Rickard Ewetz. 2019. STAT:Mean and Variance
Characterization for Robust Inference of DNNs on Memristor-based Platforms.
In GLSVLSI. 339ś342.

[46] Baogang Zhang, Necati Uysal, Deliang Fan, and Rickard Ewetz. 2019. Handling
Stuck-at-Fault Defects Using Matrix Transformation for Robust Inference of
DNNs. IEEE TCAD 39, 10 (2019), 2448ś2460.

[47] Baogang Zhang, Necati Uysal, Deliang Fan, and Rickard Ewetz. 2020. Repre-
sentable Matrices: Enabling High Accuracy Analog Computation for Inference
of DNNs using Memristors. In ASP-DAC’20. IEEE, 538ś543.

[48] Fan Zhang and Miao Hu. 2020. Defects Mitigation in Resistive Crossbars for
Analog Vector Matrix Multiplication. In ASP-DAC’20. IEEE, 187ś192.

Session 8A: Towards Energy-efficient Machine Learning:

Algorithm, Hardware and Computing Paradigm

GLSVLSI '21, June 22–25, 2021, Virtual Event, USA

384

	Abstract
	1 Introduction
	2 Background
	2.1 Analog MVM using RCAs
	2.2 Target AI Applications
	2.3 Sources of errors

	3 State-of-the-art solutions to improving Robustness
	3.1 Array parasitics
	3.2 Device defects/Stuck-at-fault defects
	3.3 DAC/ADC quantization errors

	4 Future Research Opportunities
	5 Conclusions
	Acknowledgments
	References

