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Abstract15

The natural process of self-assembly has been studied through various abstract models due to the16

abundant applications that benefit from self-assembly. Many of these different models emerged in17

an effort to capture and understand the fundamental properties of different physical systems and18

the mechanisms by which assembly may occur. A newly proposed model, known as Tile Automata,19

offers an abstract toolkit to analyze and compare the algorithmic properties of different self-assembly20

systems. In this paper, we show that for every Tile Automata system, there exists a Signal-passing21

Tile Assembly system that can simulate it. Finally, we connect our result with a recent discovery22

showing that Tile Automata can simulate Amoebot programmable matter systems, thus showing23

that the Signal-passing Tile Assembly can simulate any Amoebot system.24
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1 Introduction33

In this paper we explore the connection between two previously studied models of active self-34

assembly: the Signal-Passing Tile Assembly Model (STAM) [5, 6, 8, 10], a tile self-assembly35

model in which signals are passed based on a DNA strand-displacement mechanism [11], and36

the Tile Automata (TA) model [1, 2, 3], a recently proposed mathematical abstraction of37

active self-assembly that merges tile self-assembly and asynchronous Cellular Automata [7].38

We show that any TA system can be simulated by a corresponding STAM system.39

Tile Automata and the Signal-Passing Tile Assembly model are models of active self-40

assembly that serve two different purposes. The STAM provides a method for tiles within41

a self-assembly system to turn glues on and off based on glue attachments, which are42

motivated by a simple DNA strand-displacement mechanism. Due to its direct tie to a43
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DNA implementation, along with successful experimental implementation [11], the STAM44

provides a direct path to implement active tile self-assembly constructions with DNA strand-45

replacement methods. Tile Automata, on the other hand, is an intentional mathematical46

abstraction designed to implement the key features of active algorithmic self-assembly while47

avoiding specifics tied to any one particular implementation (using state change rules and48

tile attachments/detachments based on local affinities between states). By abstracting away49

implementation details, TA strives to serve as a proving ground for exploring the power of50

active algorithmic self-assembly, along with providing a central hub model through which51

various disparate models of self-assembly can be related by way of comparison to TA. One52

recent example of this type of application includes [1] in which TA is shown capable of53

simulating the Amoebots model [4] of programmable matter.54

As Tile Automata seeks to serve as a model for examining the intrinsic power of active self-55

assembly systems, it is crucial that the features of the model are based on an experimentally56

plausible foundation. Obtaining this foundation is exactly the focus of this paper: we show57

that any TA system may be implemented with a STAM system, which has a direct connection58

to a DNA strand-replacement implementation. Since the features of TA are quite natural59

and may have numerous potential implementations, ours may not be the only or simplest.60

However, this connection gives one such path for implementation explicitly. Further, this61

provides a new way to program for STAM systems by allowing a programmer to solve62

a problem with the simpler and more powerful rules of a TA system, and then compile63

the system into a STAM system. As more models are connected to TA, this expands the64

programming languages available for STAM systems. For example, with this work and the65

work of [1], we now have a proposed DNA implementation of Amoebots [4], as well as a new66

method for which to program the STAM through a powerful model of programmable matter.67

To show that STAM simulates TA, our approach has three key steps. First, we define68

a limited subset of TA based on the key features of TA that are particularly difficult to69

simulate within STAM. Second, we prove that this limited version of TA can still simulate70

regular TA at scale. Third, we use macro-tiles in the STAM to implement this limited version71

of TA at scale. With these components, we get STAM simulating TA.72

Limited Tile Automata. The limited version of TA addresses the following features.73

STAM tiles send signals based on DNA strand-displacement mechanisms. However, based74

on the motivating implementation, these signals are used up after each firing, implying75

that each STAM tile has a limited number of signals it may fire before becoming inert.76

In contrast, TA tiles may cycle through a given state arbitrarily many times without77

becoming used up. To bring TA closer to STAM, we focus on freezing TA systems [3]78

which limit state transition rules so that a tile may not revisit a state, implying that each79

TA tile will eventually become inert (or freeze).80

General TA includes the ability to flip the state of a pair of tiles in a single step. In81

contrast, STAM system signal passing must adjust each of a pair of STAM tiles one at82

a time, in some order, causing an inaccurate simulation, as well as race conditions. To83

address this we consider TA systems with limited rule sets that never change both states84

of an adjacent pair within a single rule.85

Motivated by the DNA strand-displacement implementation, STAM signals fire as a result86

of a bonding between two glues, implying signals are only fired between two tiles which87

are stuck together by some positive strength force. In response, we consider limited TA88

rules which only induce state changes between state pairs with positive strength affinities.89

Preventing race conditions among the sides of a STAM tile is difficult when attempting to90

adjust the state of a STAM tile in a single conceptual step. To address this, we consider91
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