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Detecting Overlapping Communities in Networks Using Spectral Methods\ast 

Yuan Zhang\dagger , Elizaveta Levina\ddagger , and Ji Zhu\ddagger 

Abstract. Community detection has been well studied in network analysis, but the more realistic case of
overlapping communities remains a challenge. Here we propose a general, flexible, and interpretable
generative model for overlapping communities, which can be viewed as generalizing several previous
models in different ways. We develop an efficient spectral algorithm for estimating the community
memberships, which deals with the overlaps by employing the K-medians algorithm rather than the
usual K-means for clustering in the spectral domain. We show that the algorithm is asymptotically
consistent when the network is not too sparse and the overlaps between communities are not too large.
Numerical experiments on both simulated networks and many real social networks demonstrate that
our method performs well compared to a number of benchmark methods for overlapping community
detection.

Key words. network analysis, community detection, overlapping clusters

AMS subject classifications. 62F10, 62F12, 62H12, 62H30

DOI. 10.1137/19M1272238

1. Introduction. The problem of community detection in networks has been actively stud-
ied in several distinct fields, including physics, computer science, statistics, and the social sci-
ences. Its applications include understanding social interactions of people [63, 51] and animals
[38], discovering functional regulatory networks of genes [7, 64], and even designing parallel
computing algorithms [9, 20]. Community detection is a challenging task outside of simplified
special cases. The challenges include defining what a community is (commonly taken to be
a group of nodes that have more connections to each other than to the rest of the network,
although other types of communities are possible), formulating realistic and tractable statis-
tical models of networks with communities, and designing fast scalable algorithms for fitting
such models.

In this paper, we focus on network models with overlapping communities, with nodes
potentially belonging to more than one community at a time. This is common in real-world
networks [47, 48], and yet much of the literature to date has focused on partitioning the net-
work into nonoverlapping communities, with some notable exceptions discussed below. Our
goal is to design an overlapping community model that is flexible, interpretable, and compu-
tationally feasible. We will thus focus on models which can be fitted by spectral methods, one
of the most scalable tools for fitting nonoverlapping community models available.

We start with a brief review of relevant work in community detection for nonoverlapping

\ast Received by the editors July 5, 2019; accepted for publication (in revised form) February 3, 2020; published
electronically April 6, 2020.

https://doi.org/10.1137/19M1272238
Funding: The second author was partially funded by NSF grant DMS-1521551 and ONR grant N000141612910.

\dagger Department of Statistics, Ohio State University, Columbus, OH 43210 USA (yzhanghf@stat.osu.edu).
\ddagger Department of Statistics, University of Michigan, Ann Arbor, MI 48109 (elevina@umich.edu, jizhu@umich.edu).

265

D
ow

nl
oa

de
d 

07
/0

1/
21

 to
 3

5.
7.

43
.1

29
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1137/19M1272238
mailto:yzhanghf@stat.osu.edu
mailto:elevina@umich.edu
mailto:jizhu@umich.edu
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communities, which mainly falls into one of two broad categories: algorithmic methods, based
on optimizing some criterion reflecting desirable properties of a partition over all possible
partitions (see [15] for a review), and model fitting, where a generative model with communities
is postulated for the network and its parameters are estimated from the observed adjacency
matrix (see [18] for a review). Perhaps the most popular and best studied generative model
for community detection is the stochastic block model (SBM) [22, 21]. The SBM views the
n\times n network adjacency matrix \bfitA , defined by Aij = 1 if there is an edge between i and j and
0 otherwise, as a random graph with independent Bernoulli-distributed edges. The Bernoulli
probabilities for the edges depend on the node labels ci which take values in \{ 1, . . . ,K\} and the
K\times K matrix \bfitB containing the probabilities of edges forming between different communities.
The node labels can be represented by an n \times K binary community membership matrix \bfitZ 
with exactly one ``1"" in each row, Zik = 1[ci = k] for all i, k. Then the probabilities of edges
are given by \bfitW \equiv \BbbE (\bfitA ) = \bfitZ \bfitB \bfitZ T . In this model, a node's label determines its behavior
entirely, and thus all nodes in the same community are ``stochastically equivalent"" and in
particular have the same expected degree. This is known to be often violated in practice
due to commonly present ``hub"" nodes with many more connections than other nodes in
their community. The degree-corrected stochastic block model (DCSBM) [29] was proposed
to address this limitation, multiplying the probability of an edge between nodes i and j
by the product of node-specific positive ``degree parameters"" \theta i\theta j . Both the SBM and the
DCSBM can be consistently estimated by maximizing the likelihood [5, 67], but directly
optimizing the likelihood over all label assignments is not computationally feasible. A number
of faster algorithms for fitting these models have been proposed in recent years, including
pseudo-likelihood [2], belief propagation [14], spectral approximations to the likelihood [44, 35],
convexified modularity [12], spectral clustering on eigenvector ratios to fit DCSBM [25], generic
spectral clustering [57] (used by many and analyzed, for example, in [52] and [55]), and recently
spectral clustering with subsequent refinement [16] which achieves minimax estimation rates
under assortative block models. It was further shown that regularization improves on spectral
clustering substantially [2, 10], and its theoretical properties have been further analyzed by
[50] and [28]. While for specific likelihoods one can develop methods that are both fast and
more accurate than spectral clustering, such as pseudo-likelihood [2], for general purposes
spectral methods remain the most scalable option available.

While the majority of the existing models and algorithms for community detection focus
on nonoverlapping communities, there has been a growing interest in exploring the overlapping
scenario, although both extending the existing models to the overlapping case and developing
brand new models remain challenging. Like methods for nonoverlapping community detection,
most existing approaches for detecting overlapping communities can be categorized as either
algorithmic or model-based methods. For a comprehensive review, see [61]. Model-based
methods focus on specifying how node community memberships determine edge probabili-
ties. For example, the overlapping stochastic block model (OSBM) [33] extends the SBM
by allowing the entries of the membership matrix \bfitZ to be independent Bernoulli variables,
thus allowing multiple ``1""s in one row, or all ``0""s. The mixed membership SBM [1] draws
membership vectors \bfitZ i\cdot from a Dirichlet prior. The membership vector is drawn again to
generate every edge, instead of being fixed for the node, so the community membership for
node i varies depending on which node j it is interacting with. For further algorithmic and
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OVERLAPPING COMMUNITY DETECTION 267

theoretical developments on the mixed membership model, see [3] and [53]. The ``colored
edges"" model [4], also referred to as the Ball--Karrer--Newman (BKN) model, allows continu-
ous community memberships by relaxing the binary \bfitZ to a matrix with nonnegative entries
(with some normalization constraints for identifiability) and discarding the matrix \bfitB . The
Bayesian nonnegative matrix factorization model [49] is related to this model, with some
notable differences.

Algorithmic methods for overlapping community detection mostly rely on local greedy
searches and intuitive criteria. Current approaches include detecting each community sepa-
rately by maximizing a local measure of goodness of the estimated community [32], updat-
ing an initial estimate of the community membership by neighborhood vote [19], and other
heuristic-based algorithms [60, 30, 59, 23]. Local methods typically rely heavily on a good
starting value. Global algorithmic approaches include computing a nonnegative matrix factor-
ization approximation to the adjacency matrix and extracting a binary membership matrix
from one of the factors [58, 17]. Many heuristic methods do not take heterogeneous node
degrees into account, and we found empirically they can perform poorly in the presence of
hubs (see section 5). A Bayesian approach was recently proposed in [24].

In this paper, we propose a new generative model for overlapping communities, the over-
lapping continuous community assignment model (OCCAM). It allows a node to belong to
different communities to a different extent, via the membership vector \bfitZ i\cdot with nonnegative
entries which represent how strongly a node is associated with various communities. We also
allow arbitrary degree distributions in a manner similar to the DCSBM, and we retain the
K\times K matrix \bfitB , which allows us to interpret connections between communities and compare
them. All the model parameters (membership vectors, degree corrections, and community-
level connectivity) are identifiable under certain constraints which we will state explicitly. We
also develop a fast spectral algorithm to fit OCCAM. Typically, spectral clustering projects
the adjacency matrix or its Laplacian onto the K leading eigenvectors representing the nodes'
latent positions and performs K-means in that lower-dimensional space to estimate commu-
nity memberships. Our key insight here is that when the nodes come from a mixture of
clusters (as they would with multiple community memberships), K-means suffers from bias in
estimating cluster centers if the proportion of the nodes in overlapping communities is non-
vanishing; but as long as there are enough pure nodes in each community, K-medians will still
be able to identify the cluster centers correctly by ignoring the ``mixed"" nodes on the bound-
aries. We show that our method produces asymptotically consistent parameter estimates as
the number of nodes grows as long as there are enough pure nodes and the network is not too
sparse. We also employ a simple regularization scheme, since it is by now well known that
regularizing spectral clustering substantially improves its performance, especially in sparse
networks [10, 2, 50]. We provide an explicit rate for the regularization parameter, implied by
our consistency analysis, and show that the overall performance is robust to the choice of the
constant multiplier in the regularization parameter as long as the rate is specified correctly.

Since an early version of this manuscript was posted online, there has been some follow-up
work on models similar to ours but with different identification constraints [27, 39, 40], as well
as some theoretical studies of the minimax estimation error rates under specific models [26]
inspired by the nonoverlapping case [65]. Many of these methods adopted our idea of first
identifying the pure nodes (sometimes referred to as ``core nodes"") in each community and
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268 YUAN ZHANG, ELIZAVETA LEVINA, AND JI ZHU

determine the membership coefficients of nodes in the overlap by explaining their estimated
latent node position as a linear or nonlinear combination of the positions of pure nodes in
different communities.

The rest of the paper is organized as follows. We introduce the model and discuss parame-
ter identifiability in section 2, present the two-stage spectral clustering algorithm in section 3,
and state consistency results and describe the choice of the regularization parameter in section
4. Some simulation results are presented in section 5, where we investigate robustness of our
method to the choice of regularization parameter and compare it to a number of benchmark
methods for overlapping community detection. We apply the proposed method to a large
number of real social ego-networks (networks consisting of all friends of one or several users)
from Facebook, Twitter, and GooglePlus in section 6. Section 7 concludes the paper with
a brief discussion of contributions, limitations, and future work. All proofs are given in the
supplemental materials (supplement.pdf [local/web 386KB]).

2. The overlapping continuous community assignment model.

2.1. The model. Recall that we represent the network by its n\times n adjacency matrix \bfitA ,
a binary symmetric matrix with \{ Aij , i < j\} independent Bernoulli variables and \bfitW \equiv \BbbE (\bfitA ).
We will assume that \bfitW has the form

(2.1) \bfitW = \alpha n\Theta \bfitZ \bfitB \bfitZ T\Theta .

We call this formulation the overlapping continuous community assignment model (OCCAM).
The factor \alpha n is a global scaling factor that controls the overall edge probability, and the
only component that depends on n. As is commonly done in the literature, for theoretical
analysis we will let \alpha n \rightarrow 0 at a certain rate; otherwise the network becomes completely dense
as n \rightarrow \infty . The n \times n diagonal matrix \Theta = diag(\theta 1, . . . , \theta n) contains nonnegative degree
correction terms that allow for heterogeneity in the node degrees, in the same fashion as
under the DCSBM. We will later assume that \theta i's are generated from a fixed distribution \scrF \Theta 

which does not depend on n. The n \times K community membership matrix \bfitZ is the primary
parameter of interest; the ith row \bfitZ i\cdot represents node i's propensities towards each of the K
communities. We assume Zik \geq 0 for all i, k, and \| \bfitZ i\cdot \| 2 = 1 for identifiability. Formally,
a node is ``pure"" if Zik = 1 for some k. Later, we will also assume that the rows \bfitZ i\cdot are
generated independently from a fixed distribution \scrF Z that does not depend on n. Finally,
the K \times K matrix \bfitB represents (scaled) probabilities of connections between pure nodes of
all communities. Since we are already using \alpha n and \Theta , we constrain all diagonal elements
of \bfitB to be 1 for identifiability. Other constraints are also needed to make the model fully
identifiable; we will discuss them in section 2.2.

Note that the general form (2.1) can, with additional constraints, incorporate many of the
other previously proposed models as special cases. If all nodes are pure and \bfitZ has exactly one
``1"" in each row, we get DCSBM; if we further assume all \theta i's are equal, we have the regular
SBM. If the constraint \| \bfitZ i\cdot \| 2 = 1 is removed and the entries of \bfitZ are required to be 0 or 1,
and all \theta i's are equal, we have the OSBM of [33]. Alternatively, if we set \bfitB = \bfitI , we have the
``colored edges"" model of [4]. This is true for our model if \bfitB is semipositive definite, since then
we can uniquely define \bfitX 0 =

\surd 
\alpha n\Theta \bfitZ \bfitB 1/2. OCCAM is thus more general than all of these

models and yet fully identifiable and interpretable. Our model is also related to the random dot
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OVERLAPPING COMMUNITY DETECTION 269

product graph model (RDPG) [46, 62], which stipulates that \bfitW = \bfitX 0\bfitX 
T
0 for some (usually

low-rank) \bfitX 0, and can be viewed as a special case of the generalized random dot product
model [45]; however, the latter does not offer an interpretation in terms of communities.

2.2. Identifiability. The parameters in (2.1) obviously need to be constrained to guarantee
identifiability of the model. All models with communities, including the SBM, are considered
identifiable if they are identifiable up to a permutation of community labels. To show the
interplay between the model parameters, we first state identifiability conditions treating all of
\alpha n, \Theta , \bfitZ , and \bfitB as constant parameters, and then we discuss what happens if \Theta and \bfitZ are
treated as random variables, as we do in the asymptotic analysis. The following conditions
are sufficient for identifiability:

(I1) \bfitB is full rank and strictly positive definite, with Bkk = 1 for all k.
(I2) All Zik \geq 0, \| \bfitZ i\cdot \| 2 = 1 for all i = 1, . . . , n, and there is at least one ``pure"" node

in every community; i.e., for each k = 1, . . . ,K, there exists at least one i such that
Zik = 1.

(I3) The degree parameters \theta 1, . . . , \theta n are all positive and n - 1
\sum n

i=1 \theta i = 1.

Theorem 2.1. If conditions (I1), (I2), and (I3) hold, the model is identifiable; i.e., if a
given probability matrix \bfitW corresponds to a set of parameters (\alpha n,\Theta ,\bfitZ ,\bfitB ) through (2.1),
these parameters are unique up to a permutation of community labels.

The proof of Theorem 2.1 is given in the supplemental materials (supplement.pdf [local/
web 386KB]). In general, identifiability is nontrivial to establish for most overlapping commu-
nity models, since, roughly speaking, an edge between two nodes can be explained by either
their common memberships in many of the same communities, or the high probability of edges
between their two different communities, a problem that does not occur in the nonoverlap-
ping case. Among previously proposed models, the OSBM was shown to be identifiable [33],
but their argument does not extend to our model since they only considered \bfitZ with binary
entries. The identifiability of the BKN model was not discussed by [4], but it is relatively
straightforward (though still nontrivial) to show that it is identifiable as long as there are pure
nodes in each community.

While Theorem 2.1 makes the model in (2.1) well defined, it is also common practice
in the community detection literature to treat some of the model components as random
quantities. For example, [21] treats community labels under the SBM as sampled from a
multinomial distribution, and [67] treats the degree parameters \theta i's in DCSBM as sampled
from a general discrete distribution. For our consistency analysis, treating \theta i's and \bfitZ i\cdot 's as
random significantly simplifies conditions and allows for an explicit choice of rate for the
tuning parameter \tau n, which will be defined in section 3. We will thus treat \Theta and \bfitZ as
random and independent of each other for the purpose of theory, assuming that the rows of \bfitZ 
are independently generated from a distribution \scrF Z on the unit sphere, and \theta i's are i.i.d. from
a distribution \scrF \Theta on positive real numbers. The conditions (I2) and (I3) are then replaced
with the following two conditions, respectively:
(RI2) \scrF Z = \pi p\scrF p + \pi o\scrF o is a mixture of a multinomial distribution \scrF p on K categories for

pure nodes and an arbitrary distribution \scrF o on \{ \bfitz \in \BbbR K : \bfitz k \geq 0, \| \bfitz \| 2 = 1\} for nodes
in the overlaps, and \pi p > 0.
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270 YUAN ZHANG, ELIZAVETA LEVINA, AND JI ZHU

(RI3) \scrF \Theta is a probability distribution on (0,\infty ) satisfying
\int \infty 
0 t d\scrF \Theta (t) = 1.

The distribution \scrF o can in principle be any distribution on the positive quadrant of the unit
sphere. For example, one could first specify that with probability \pi k1,...,km , node i belongs
to communities \{ k1, . . . , km\} , and then set Zik = 1\surd 

m
1 (k \in \{ k1, . . . , km\} ). Alternatively,

one could generate values for the m nonzero entries of \bfitZ i\cdot from an m-dimensional Dirichlet
distribution and set the rest to 0.

3. A spectral algorithm for fitting the model. The primary goal of fitting this model is
to estimate the membership matrix \bfitZ from the observed adjacency matrix \bfitA , although other
parameters may also be of interest. Since computational scalability is one of our goals, we
focus on algorithms based on spectral decompositions, one of the most scalable approaches
available. Recall that spectral clustering typically works by first representing all data points
(the n nodes) by an n \times K matrix \bfitX consisting of leading eigenvectors of a matrix derived
from the data, which we call \bfitG for now, and then applying K-means clustering to the rows of
\bfitX . For example, under the SBM, the matrix \bfitG should be chosen to have eigenvectors \bfitX that
approximate the eigenvectors \bfitX 0 of \bfitW = \BbbE (\bfitA ) as closely as possible, since the eigenvectors
of \bfitW are piecewise constant and contain all the community information. The choice \bfitG = \bfitA 
is intuitively appealing and works best for dense networks [56]; for sparse networks, which
are prevalent in practice, the graph Laplacian \bfitL = \bfitD  - 1/2\bfitA \bfitD  - 1/2, where \bfitD = diag(\bfitA 1),
or its various regularized versions, have been shown to work better [55, 2, 10, 50, 28]. An
additional step of normalizing the rows of \bfitX before performing K-means is often appropriate
if the underlying model is assumed to be the DCSBM [50].

Regardless of the matrix chosen to estimate the eigenvectors of \bfitW , the key difference
between the regular SBM under which spectral clustering is usually studied and our model is
that under the SBM there are only K unique rows in \bfitX 0, and thus K-means can be expected
to accurately cluster the rows of \bfitX , which is a noisy version of \bfitX 0. Under our model, the
rows of \bfitX 0 are linear combinations of the ``pure"" rows corresponding to ``centers"" of the
K communities. Thus, even if we could recover \bfitX 0 exactly, K-means is not expected to
work, and it is in fact straightforward to show that the K-means algorithm does not recover
the positions of pure nodes correctly unless nonpure nodes either vanish in proportion or
converge to pure nodes' latent positions as n grows (proof omitted here as it is not needed for
our main argument). The key idea of our algorithm is to replace K-means with K-medians
clustering: if the proportion of pure nodes is not too low, then the latent positions of the
cluster centers can still be recovered correctly, and therefore the coefficients of mixed nodes
can be estimated accurately by projecting onto the pure nodes. Other details of the algorithm
involve regularization and normalization, which are necessary for dealing with sparse networks
and heterogeneous degrees.

Our algorithm for fitting the OCCAM takes as input the adjacency matrix \bfitA and a
regularization parameter \tau n > 0 which we use to regularize the estimated latent node positions
directly. This is easier to handle technically than regularizing the Laplacian, and we will give
an explicit rate for \tau n that guarantees asymptotic consistency in section 4. The algorithm
proceeds as follows:

1. Compute \^\bfitU A
\^\bfitL A

\^\bfitU T
A , where \^\bfitL A is the K\times K diagonal matrix containing the K leading

eigenvalues of \bfitA , and \^\bfitU A is the n\times K matrix containing the corresponding eigenvec-
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OVERLAPPING COMMUNITY DETECTION 271

tors. While the true \bfitW = \BbbE (\bfitA ) is positive definite, in practice some of the eigenvalues

of \bfitA may be negative; if that happens, we truncate them to 0. Let \^\bfitX \equiv \^\bfitU A
\^\bfitL 
1/2
A be

the estimated latent node positions.
2. Compute \^\bfitX \ast , a normalized and regularized version of \^\bfitX , the rows of which are given

by \^\bfitX \ast 
i\cdot =

1
\| \^\bfitX i\cdot \| 2+\tau n

\^\bfitX i\cdot .

3. Perform K-medians clustering on the rows of \^\bfitX \ast and obtain K estimated cluster
centers \bfits 1, . . . , \bfits K \in \BbbR K , i.e.,

(3.1) \{ \bfits 1, . . . , \bfits K\} = arg min
\bfits 1,...,\bfits K

1

n

n\sum 
i=1

min
\bfits \in \{ \bfits 1,...,\bfits K\} 

\bigm\| \bigm\| \bigm\| \^\bfitX \ast 
i\cdot  - \bfits 

\bigm\| \bigm\| \bigm\| 
2
.

Form the K\times K matrix \^\bfitS with rows equal to the estimated cluster centers \^\bfits 1, . . . , \bfits K .
4. Project the rows of \^\bfitX \ast onto the span of \bfits 1, . . . , \bfits K ; i.e., compute the matrix \^\bfitX \ast \^\bfitS  - 1

and normalize its rows to have norm 1 to obtain the estimated community membership
matrix \^\bfitZ .

This algorithm can also be used to obtain other types of community assignments. For exam-
ple, to obtain binary rather than continuous community membership, we can threshold each
element of \^\bfitZ to obtain \^Z0

ik = 1( \^Zik > \delta K) (see sections 5 and 6). To obtain assignments to

nonoverlapping communities, we can set \^ci = argmax1\leq k\leq K
\^Zik.

4. Asymptotic consistency.

4.1. Main result. In this section, we show consistency of our algorithm for fitting the
OCCAM as the number of nodes n and possibly the number of communities K increase. For
the theoretical analysis, we treat \bfitZ and \Theta as random variables, as was done by [67]. We first
state regularity conditions on the model parameters.
(A1) The distribution \scrF \Theta is supported on (0,M\theta ) and for all \delta > 0 satisfies \delta  - 1

\int \delta 
0 d\scrF \Theta (t) \leq 

C\theta , where M\theta > 0 and C\theta > 0 are global constants.
(A2) Let \lambda 0 and \lambda 1 be the smallest and the largest eigenvalues of \BbbE [\theta 2i\bfitZ T

i\cdot \bfitZ i\cdot \bfitB ], respectively.
Then there exist global constants M\lambda 0 > 0 and M\lambda 1 > 0 such that K\lambda 0 \geq M\lambda 0 and
\lambda 1 \leq M\lambda 1 .

(A3) There exists a global constant mB > 0 such that \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\bfitB ) \geq mB.
A key ingredient of our algorithm is K-medians clustering, and consistency of K-medians

requires its own conditions on clusters being well separated in the appropriate metric. The
sample loss function for K-medians is defined by

\scrL n(\bfitQ ;\bfitS ) =
1

n

n\sum 
i=1

min
1\leq k\leq K

\| \bfitQ i\cdot  - \bfitS k\cdot \| 2,

where \bfitQ \in \BbbR n\times K is a matrix whose rows \bfitQ i\cdot are vectors to be clustered, and \bfitS \in \BbbR K\times K is a
matrix whose rows \bfitS k\cdot are cluster centers.

Assuming the rows of \bfitQ are i.i.d. random vectors sampled from a distribution \scrG , we
similarly define the population loss function for K-medians by

\scrL (\scrG ;\bfitS ) =
\int 

min
1\leq k\leq K

\| \bfitx  - \bfitS k\cdot \| 2d\scrG .D
ow
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272 YUAN ZHANG, ELIZAVETA LEVINA, AND JI ZHU

Finally, we define the Hausdorff distance, which is used here to measure the dissimilar-
ity between two sets of cluster centers. Specifically, for \bfitS ,\bfitT \in \BbbR K\times K , let DH(\bfitS ,\bfitT ) =
min\sigma maxk \| \bfitS k\cdot  - \bfitT \sigma (k)\cdot \| 2, where \sigma ranges over all permutations of \{ 1, . . . ,K\} .

Define \bfitX i\cdot = \theta i\bfitZ i\cdot \bfitB 
1/2 and \bfitX \ast 

i\cdot = \| \bfitX i\cdot \|  - 1
2 \bfitX i\cdot = \| \bfitZ i\cdot \bfitB 

1/2\|  - 1
2 \bfitZ i\cdot \bfitB 

1/2, and let \scrF de-
note the distribution of \bfitX \ast 

i\cdot . If the distribution \scrF of these linear combinations puts enough
probability mass on the pure nodes (rows of \bfitB 1/2), the rows of \bfitB 1/2 will be recovered by
K-medians clustering, and then the \bfitZ i\cdot 's will be recovered via projection. Bearing this in
mind, we assume the following condition on \scrF holds:

(B) Let \bfitS \scrF = argmin\bfitS \scrL (\scrF ;\bfitS ) be the global minimizer of the population K-medians loss
function \scrL (\scrF ;\bfitS ). Then \bfitS \scrF = \bfitB 1/2 up to a row permutation. Further, there exists a
global constant M such that, for all \bfitS , \scrL (\scrF ;\bfitS ) - \scrL (\scrF ;\bfitS \scrF ) \geq MK - 1DH(\bfitS ,\bfitS \scrF ).

Condition (B) essentially states that the population K-medians loss function, which is
determined by \scrF , has a unique minimum at the right place and there is curvature around the
minimum.

Theorem 4.1 (main theorem). Assume that the identifiability conditions (I1), (RI2), (RI3)
and regularity conditions (A1)--(A3), (B) hold. If n1 - \alpha 0\alpha n \rightarrow \infty for some 0 < \alpha 0 < 1,
K = O(log n), and the tuning parameter is set to

(4.1) \tau n = C\tau 
\alpha 0.2
n K1.5

n0.3
,

where C\tau is a constant, then the estimated community membership matrix \^\bfitZ is consistent in
the sense that

(4.2) \BbbP 
\biggl( 

1\surd 
n
\| \^\bfitZ  - \bfitZ \| F \leq C(n1 - \alpha 0\alpha n)

 - 1
5

\biggr) 
\geq 1 - P (n, \alpha n,K),

where C is a global constant, and P (n, \alpha n,K) \rightarrow 0 as n \rightarrow \infty .

Remark. The condition n1 - \alpha 0\alpha n \rightarrow \infty is slightly stronger than n\alpha n \rightarrow \infty , which was
required for weak consistency of nonoverlapping community detection with fixed K using
likelihood or modularities by [5], [67], and others, and which is in fact necessary under the
SBM [42]. The rate at which K is allowed to grow works out to be K = (n\alpha n)

\delta for a small \delta 
(see details in the supplemental materials, supplement.pdf [local/web 386KB]), which is slower
than the rates of K allowed in previous work that considered a growing K [52, 13]. However,
these results are not really comparable since we are facing additional challenges of overlapping
communities and estimating a continuous rather than a binary membership matrix.

4.2. Example: Checking conditions. The planted partition model is a widely studied
special case which we use to illustrate our conditions and their interpretation. Let \bfitB =
(1 - \rho )\bfitI K+\rho 11T , 0 \leq \rho < 1, where \bfitI K is the K\times K identity matrix, K \geq 3, and 1 is a column
vector of all ones. Then \bfitB 1/2 is a K\times K matrix with diagonal entries K - 1(

\sqrt{} 
(K  - 1)\rho + 1+

(K  - 1)
\surd 
1 - \rho ) and off-diagonal entries K - 1(

\sqrt{} 
(K  - 1)\rho + 1  - 

\surd 
1 - \rho ). We restrict the

overlap to two communities at a time and generate the rows of the community membership
matrix \bfitZ by

(4.3) \bfitZ i\cdot =

\Biggl\{ 
\bfite k, 1 \leq k \leq K, w. prob. \pi (1) ,
1\surd 
2
(\bfite k + \bfite l), 1 \leq k < l \leq K, w. prob. \pi (2) ,
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where \bfite k is a row vector that contains a one in the kth position and zeros elsewhere, and
K\pi (1)+ 1

2K(K - 1)\pi (2) = 1. We set \theta i \equiv 1 for all i; therefore conditions (RI2) and (RI3) hold.
For a K \times K matrix of the form (a  - b)\bfitI K + b11T , a, b > 0, the largest eigenvalue is

a+(K - 1)b and all other eigenvalues are a - b. Thus \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\bfitB ) = 1+(K - 1)\rho , \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\bfitB ) = 1 - \rho ,
and conditions (I1) and (A3) hold. To verify condition (A2), note that \BbbE [\theta 2i\bfitZ T

i\cdot \bfitZ i\cdot \bfitB ] =
\BbbE [\bfitZ T

i\cdot \bfitZ i\cdot ]\bfitB , and since

\bfitZ T
i\cdot \bfitZ i\cdot =

\Biggl\{ 
\bfite Tk \bfite k, 1 \leq k \leq K, w. prob. \pi (1),
1
2(\bfite k + \bfite l)

T (\bfite k + \bfite l), 1 \leq k < l \leq K, w. prob. \pi (2),

we have \BbbE [\bfitZ T
i\cdot \bfitZ i\cdot ] =

\bigl( 
\pi (1) + K - 2

2 \pi (2)
\bigr) 
\bfitI K + \pi (2)

2 11T . Therefore,

\lambda \mathrm{m}\mathrm{a}\mathrm{x}(\BbbE [\bfitZ T
i\cdot \bfitZ i\cdot ]) = \pi (1) + (K  - 1)\pi (2) \leq 2

K
,

\lambda \mathrm{m}\mathrm{i}\mathrm{n}(\BbbE [\bfitZ T
i\cdot \bfitZ i\cdot ]) = \pi (1) +

K  - 2

2
\pi (2) \geq 1

2K
.

Since \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\BbbE [\bfitZ T
i\cdot \bfitZ i\cdot ]\bfitB ) \leq \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\BbbE [\bfitZ T

i\cdot \bfitZ i\cdot ])\lambda \mathrm{m}\mathrm{a}\mathrm{x}(\bfitB ) and \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\BbbE [\bfitZ T
i\cdot \bfitZ i\cdot ]\bfitB ) \geq \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\BbbE [\bfitZ T

i\cdot \bfitZ i\cdot ])
\cdot \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\bfitB ), condition (A2) holds.

It remains to check condition (B). Given \bfitx \in \BbbR K with \| \bfitx \| 2 = 1, for any \bfitS , let \bfits (\bfitx )
and \bfits \scrF (\bfitx ) be the best approximations to \bfitx in the \ell 2 norm among the rows of \bfitS and \bfitS \scrF ,
respectively. Then we have

\scrL (\scrF ;\bfitS ) - \scrL (\scrF ;\bfitB 1/2) =

\Biggl\{ 
\pi (1)DH(\bfitS ,\bfitB 1/2) +

\int 
\bfitx \not =(\bfitB 1/2)k\cdot ,1\leq k\leq K

\| \bfitx  - \bfits (\bfitx )\| 2d\scrF 

\Biggr\} 

 - 

\Biggl\{ \int 
\bfitx \not =(\bfitB 1/2)k\cdot ,1\leq k\leq K

\| \bfitx  - \bfits \scrF (\bfitx )\| 2d\scrF 

\Biggr\} 

\geq \pi (1)DH(\bfitS ,\bfitB 1/2) - 
\int 
\bfitx \not =(\bfitB 1/2)k\cdot ,1\leq k\leq K

\| \bfits (\bfitx ) - \bfits \scrF (\bfitx )\| 2d\scrF 

\geq \pi (1)DH(\bfitS ,\bfitB 1/2) - 
\int 
\bfitx \not =(\bfitB 1/2)k\cdot ,1\leq k\leq K

DH(\bfitS ,\bfitB 1/2)d\scrF 

=

\biggl( 
\pi (1)  - K(K  - 1)

2
\pi (2)

\biggr) 
DH(\bfitS ,\bfitB 1/2)

=
\Bigl( 
(K + 1)\pi (1)  - 1

\Bigr) 
DH(\bfitS ,\bfitB 1/2).(4.4)

We then see that in order for (B) to hold, i.e., for the right-hand side of (4.4) to be nonnegative
and equal to zero only when DH(\bfitS ,\bfitS \scrF ) = 0, we need

(4.5) \pi (1) >
1

K + 1

\biggl( 
1 +

M

K

\biggr) 
.

This gives a precise condition on the proportion of pure nodes for this example. In general, the
proportion of pure nodes cannot always be expressed explicitly other than through condition
(B).

D
ow

nl
oa

de
d 

07
/0

1/
21

 to
 3

5.
7.

43
.1

29
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s
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5. Evaluation on synthetic networks. Our experiments on synthetic networks focus on
two issues: the choice of constant in the regularization parameter \tau n, and comparisons of
OCCAM to other overlapping community detection methods. Since many other methods only
output binary membership vectors, we use a performance measure based on binary overlapping
membership vectors. Following [31], we measure performance by an extended version of
the normalized variation of information (exNVI). Consider two binary random vectors \Gamma =
(\Gamma 1, . . . ,\Gamma K) and \^\Gamma = (\^\Gamma 1, . . . , \^\Gamma K), which indicate whether a node belongs to community k
in the true and estimated communities, respectively. Define

\=H(\^\Gamma l| \Gamma k) =
H(\^\Gamma l| \Gamma k)

H(\^\Gamma k)
, where

H(\Gamma k) =  - 
\sum 
z

\BbbP (\Gamma k = z) log\BbbP (\Gamma k = z),

H(\^\Gamma l| \Gamma k) = H(\Gamma k, \^\Gamma l) - H(\Gamma k), and

H(\Gamma k, \^\Gamma l) =  - 
\sum 
z,\^z

\BbbP (\Gamma k = z, \^\Gamma l = \^z) log\BbbP (\Gamma k = z, \^\Gamma l = \^z),(5.1)

where H(\Gamma k), H(\^\Gamma l| \Gamma k), and H(\Gamma k, \^\Gamma l) are commonly called individual, conditional, and joint
entropies. It can be seen that \=H(\^\Gamma l| \Gamma k) takes values between 0 and 1, with 0 corresponding
to \^\Gamma l and \Gamma k being independent and 1 to a perfect match. We then define the overall exNVI
between \Gamma and \^\Gamma to be

(5.2) \=H(\Gamma , \^\Gamma ) = 1 - min
\sigma 

1

2K

K\sum 
k=1

\Bigl[ 
\=H(\^\Gamma \sigma (k)| \Gamma k) + \=H(\Gamma k| \^\Gamma \sigma (k))

\Bigr] 
,

where \sigma ranges over all permutations on \{ 1, . . . ,K\} . We also define the sample versions of all
the quantities in (5.1) with probabilities replaced with frequencies, e.g., \^H(\Gamma k) =  - 

\sum 1
z=0 | \{ i :

\Gamma ik = z\} | /n \cdot log (| \{ i : \Gamma ik = z\} | /n), etc.

5.1. Choice of constant for the regularization parameter. The regularization parameter
\tau n is defined by (4.1), up to a constant, as a function of n, K, and the unobserved \alpha n.
Absorbing a constant factor into C\tau , we estimate \alpha n by

(5.3) \^\alpha n =

\sum 
i \not =j Aij

n(n - 1)K

and investigate the effect of the constant C\tau empirically.
For this simulation, we generate networks with n = 500 or 2000 nodes with K = 3

communities. We consider two settings for \theta i's: (1) \theta i = 1 for all i (no hubs), and (2)
\BbbP (\theta i = 1) = 0.8 and \BbbP (\theta i = 20) = 0.2 (20\% hub nodes). We generate \bfitZ as follows: for
1 \leq k1 < \cdot \cdot \cdot < km \leq K, we assign n \cdot \pi k1\cdot \cdot \cdot km nodes to the intersection of communities
k1, . . . , km, and for each node i in this set we set Zik = m - 1/21(k \in \{ k1, . . . , km\} ). Let
\pi 1 = \pi 2 = \pi 3 = \pi (1), \pi 12 = \pi 13 = \pi 23 = \pi (2), \pi 123 = \pi (3), and set (\pi (1), \pi (2), \pi (3)) =
(0.3, 0.03, 0.01). Finally, we choose \alpha n so that the expected average node degree \=d is either
20 or 40. We vary the constant factor C\tau in (4.1) in the range \{ 2 - 12, 2 - 10, . . . , 210, 212\} .
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OVERLAPPING COMMUNITY DETECTION 275

To use exNVI, we convert both the estimated \^\bfitZ and \bfitZ to a binary overlapping community
assignment by thresholding its elements at 1/K. The results, shown in Figure 1, indicate that
the performance of OCCAM is stable over a wide range of the constant factor (2 - 12 - 25) and
degrades only for very large values of C\tau . Based on this empirical evidence, we recommend
setting

(5.4) \tau n = 0.1
\^\alpha 0.2
n K1.5

n0.3
.

(a) \rho = 0.1, n = 500 (b) \rho = 0.1, n = 2000

(c) \rho = 0.25, n = 500 (d) \rho = 0.25, n = 2000

Figure 1. Performance of OCCAM measured by exNVI as a function of C\tau .

5.2. Comparison to benchmark methods. To compare OCCAM to other methods for
overlapping community detection, we fix n = 500 and use the same settings for K, \bfitZ , \theta i's,
and \alpha n as in section 5.1. We set Bkk\prime = \rho for k \not = k\prime , with \rho = 0, 0.05, 0.10, . . . , 0.5, and set
(\pi (1), \pi (2), \pi (3)) to be either (0.3, 0.03, 0.01) or (0.25, 0.07, 0.04). The regularization parameter
\tau n is set to the recommended value (5.4), and detection performance is measured by exNVI.

We compare OCCAM to both algorithmic methods and model-based methods that can be
thought of as special cases of our model. Algorithmic methods we compare include the order
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statistics local optimization method (OSLOM) by [32], the community overlap propagation
algorithm (COPRA) by [19], the nonnegative matrix factorization (NMF) on \bfitA computed
via the algorithm of [17], and the Bayesian nonnegative matrix factorization (BNMF) [49].
Model-based methods we compare include two special cases of our model, the BKN overlapping
community model [4] and the overlapping stochastic block model (OSBM) [33]; the geometric
nonnegative matrix factorization method (GeoNMF) [39]; and the mixed membership model
fitting method based on SCORE (MixedScore) [27]. For methods that produce continuous
community membership values, thresholding was applied for the purpose of comparisons. For
OCCAM and BNMF, where the membership vector is constrained to have norm 1, we use
the threshold of 1/K; for NMF, where there are no such constraints to guide the choice of
threshold, we simply use a small positive number 10 - 3; and for BKN, we follow the scheme
suggested by the authors and assign node i to community k if the estimated number of edges
between i and nodes in community k is greater than 1. For each parameter configuration, we
repeat the experiment 200 times. Results are shown in Figure 2.

As one might expect, all methods degrade as (1) the between-community edge probability
approaches the within-community edge probability (i.e., \rho increases); (2) the overlap between
communities increases; and (3) the average node degree decreases. OCCAM performs overall
the best, but we should also keep in mind that the networks were generated from the OCCAM
model. BKN and BNMF perform well when \rho is small but degrade much faster than OCCAM
as \rho increases, possibly because they require shared community memberships for nodes to be
able to connect, thus eliminating connections between pure nodes from different communities;
NMF requires this too. OSLOM detects communities by locally modifying initial estimates,
and when \rho increases beyond a certain threshold, the connections between pure nodes blur the
``boundaries"" between communities and lead OSLOM to assign all nodes to all communities.
COPRA, a local voting algorithm, is highly sensitive to \rho for the same reasons as OSLOM and
additionally suffers from numerical instability that sometimes prevents convergence. OSBM
performs well under the homogeneous node degree setting (when all \theta i = 1), where OSBM
correctly specifies the data generating mechanism, but its performance degrades quickly in the
presence of hubs. GeoNMF did not perform well relative to OCCAM, possibly because of the
slight model misspecification. MixedScore, somewhat unexpectedly, performed competitively
when node degrees were homogeneous but not as well in the presence of hub nodes. This
appears to be in part due to numerical difficulties experienced by the convex hull algorithm
MixedScore depends on, and may in part be due to the slight model misspecification as well.
Overall, in this set of simulations OCCAM has a clear advantage over most competitors,
including some very recent methods.

6. Application to SNAP ego-networks. The ego-network datasets [36] contain more than
1000 ego-networks from Facebook, Twitter, and GooglePlus. In an ego-network, all the nodes
are friends of one central user, and the friendship groups or circles (depending on the platform)
set by this user can be used as ground truth communities. This dataset was introduced by
[36], which also proposed an algorithm for overlapping community detection, which we will
refer to as ML. We did not include this method in simulation studies because it uses additional
node features which all other algorithms under comparison do not; however, we include it in
comparisons in this section. Before comparing the methods, we carried out some preprocessing

D
ow

nl
oa

de
d 

07
/0

1/
21

 to
 3

5.
7.

43
.1

29
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



OVERLAPPING COMMUNITY DETECTION 277

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
E
xN
V
I

OCCAM
OSLOM
COPRA
NMF
BNMF
BKN
OSBM
GeoNMF
MixScore

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
xN
V
I

(a) A, d = 20, with hub nodes (b) A, d = 40, with hub nodes
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(c) B, d = 20, with hub nodes (d) B, d = 40, with hub nodes
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(e) A, d = 20, no hub nodes (f) A, d = 40, no hub nodes
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(g) B, d = 20, no hub nodes (h) B, d = 40, no hub nodes

Figure 2. A: (\pi (1), \pi (2), \pi (3)) = (0.3, 0.03, 0.03); B: (\pi (1), \pi (2), \pi (3)) = (0.25, 0.07, 0.04).
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to make sure the test cases do in fact have a substantial community structure. First, we
``cleaned"" each network by (1) dropping nodes that are not assigned to any community; (2)
dropping isolated nodes; and (3) dropping communities whose pure nodes are less than 10\%
of the network size. Note that step (3) is done iteratively; i.e., after dropping the smallest
community that does not meet this criterion, we inspect all remaining communities again
and continue until either all communities meet the criterion or only one community remains.
After this process is complete, we select cleaned networks that (a) contain at least 30 nodes;
(b) have at least 2 communities; and (c) have Newman--Girvan modularities [43] on the true
communities of no less than 0.05, indicating some assortative community structure is present.
These three rules (a) eliminated 19, 45, and 28 networks, respectively, of the 132 GooglePlus
networks, and 455, 236, and 99 networks, respectively, out of 973 Twitter networks, and
(b) eliminated 3 out of 10 Facebook networks. The remaining 40 GooglePlus networks, 183
Twitter networks, and 7 Facebook networks were used in all comparisons, using exNVI to
measure performance.

To get a better sense of what the different social networks look like and how different
characteristics potentially affect performance, we report the following summary statistics for
each network: (1) density

\sum 
ij Aij/(n(n  - 1)), i.e., the overall edge probability; (2) average

node degree d; (3) the coefficient of variation of node degrees (the standard deviation divided
by the mean) \sigma d/d, which measures the amount of heterogeneity in the node degrees; (4) the
proportion of overlapping nodes ro; (5) Newman--Girvan modularity. Even though modularity
was defined for nonoverlapping communities, it still reflects the strength of the community
structure in the networks in this dataset, which only have a modest number of overlaps. We
report the means and standard deviations of these measures for each of the social networks
in Table 1. Note that Facebook and GooglePlus networks tend to be larger than Twitter
networks, while Twitter networks tend to be denser, with more homogeneous degrees as
reflected by \sigma d/d, though their smaller size makes these measures less reliable.

To compare methods, we report the average performance over each of the social platforms
and the corresponding standard deviation in Table 2. We also report the mean pairwise
difference between OCCAM and each of the other methods, along with its standard deviation
in Table 3.

Table 1
Mean (SD) of summary statistics for ego-networks.

\#Networks n K Density d \sigma d/d ro Modularity

FB 7 224 3.3 0.14 28 0.64 0.03 0.418
- (221) (0.8) (0.05) (29) (0.14) (0.02) (0.15)

G+ 40 414 2.3 0.17 53 1.04 0.06 0.17
- (330) (0.5) (0.11) (34) (0.47) (0.08) (0.11)

TW 183 62 2.8 0.26 15 0.60 0.04 0.20
- (31) (0.9) (0.26) (8) (0.15) (0.06) (0.12)

As in simulation studies, we observe that OCCAM outperforms other methods. Google-
Plus networks on average have the most heterogeneous node degrees and thus are challenging
for COPRA, OSBM, and GeoNMF, which performs well on the relatively degree-homogeneous
Facebook networks, while OCCAM is relatively robust to node degree heterogeneity. Mixed-
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Table 2
Mean (SD) of exNVI for all methods.

OCCAM OSLOM COPRA NMF BNMF BKN OSBM ML GeoNMF M.Score

FB \bfzero .\bffive \bfeight 0.21 0.39 0.31 0.50 0.48 0.47 0.13 0.49 0.30
(0.12) (0.07) (0.12) (0.08) (0.09) (0.11) (0.11) (0.03) (0.30) (0.32)

G+ \bfzero .\bffive \bfzero 0.13 0.11 0.29 0.39 0.36 0.33 0.18 0.24 0.16
(0.04) (0.02) (0.04) (0.04) (0.05) (0.03) (0.04) (0.02) (0.21) (0.27)

TW \bfzero .\bffour \bffive 0.21 0.23 0.21 0.44 0.35 0.35 0.20 0.24 0.21
(0.02) (0.01) (0.02) (0.01) (0.02) (0.02) (0.02) (0.01) (0.24) (0.28)

Table 3
Mean (SD) of pairwise differences in exNVI between OCCAM and other methods.

OSLOM COPRA NMF BNMF BKN OSBM ML GeoNMF M.Score

FB 0.36 0.18 0.26 0.08 0.10 0.10 0.44 0.08 0.28
(0.09) (0.08) (0.07) (0.07) (0.05) (0.03) (0.13) (0.06) (0.42)

G+ 0.38 0.39 0.21 0.11 0.15 0.17 0.33 0.12 0.21
(0.04) (0.04) (0.04) (0.04) (0.02) (0.03) (0.04) (0.11) (0.25)

TW 0.24 0.22 0.24 0.01 0.10 0.10 0.25 0.09 0.12
(0.02) (0.02) (0.02) (0.01) (0.01) (0.01) (0.02) (0.09) (0.24)

Score is affected by the stability of the convex hull algorithm it uses, which can fail in the
presence of negative leading eigenvalues of A. When it produces nontrivial solutions, its per-
formance is usually similar to that of GeoNMF. Further, GooglePlus networks tend to have
higher proportions of overlapping nodes than Facebook networks; this creates difficulties for
all methods. Empirically, we also found that OSLOM and COPRA are prone to convergence
to degenerate community assignments, assigning all nodes to one community. NMF, BNMF,
and BKN often create substantial overlaps compared to other methods, likely because they
do not allow connections between pure nodes from different communities. The results suggest
that OCCAM works well when the overlap is not large, even when modularity is relatively
low, while other methods are more sensitive to modularity, which measures the strength of
an assortative community structure. On the other hand, large overlaps between communities
cause the performance of OCCAM to deteriorate, which is consistent with our theoretical
results. ML is not readily comparable to others since it uses both network information and
node features when fitting the model, and one would expect it do to better since it makes use
of more information; however, using node features that are uncorrelated with the community
structure can in fact worsen community detection, which may explain its poor performance
on some of the networks.

A fair comparison of computing times is difficult because the methods compared here are
implemented in different languages. Qualitatively, we can say that the most expensive part of
OCCAM is the K-medians clustering, which involves gradient descent and is about one order
of magnitude slower than NMF. The computational cost of OCCAM is comparable to that of
BNMF, BKN, and COPRA and is at least two orders of magnitude less than that of OSLOM,
OSBM, and ML.
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7. Discussion. This paper makes two major contributions, the model and the algorithm.
The model we proposed for overlapping communities, OCCAM, is identifiable, interpretable,
and flexible; it addresses limitations of several earlier approaches by allowing continuous com-
munity membership, allowing for pure nodes from different communities to be connected, and
accommodating heterogeneous node degrees. Our goals in designing an algorithm to fit the
model were scalability and of course accuracy, and therefore we made a number of modifica-
tions to spectral clustering to deal with the overlaps, most importantly replacing K-means
with K-medians. Empirically we found the algorithm is a lot faster than most of its competi-
tors, and it performs well on both synthetic and real networks. We also showed estimation
consistency under conditions that articulate the appropriate setting for our method; the over-
laps are not too large, and the network is not too sparse (the latter being a general condition
for all community detection consistency, and the former specific to our method).

In addition to its many advantages, our method has a number of limitations. The upper
bound on the amount of overlap is a restriction, expressed by implicit condition (B), which
may not be easy to verify except in special cases. It is clear, however, that some limit on
the amount of overlap is necessary for any model to be identifiable. Like all other spectral
clustering based methods, OCCAM works best when communities have roughly similar sizes;
this is implied by condition (B), which implicitly excludes communities of size o(n/K) as n and
K grow. We obtained theoretical guarantees for the case of assortative communities (assuming
the matrix of probabilities B to be positive definite). In practice, multiple ad hoc approaches
are available for applying the same algorithm to networks with negative eigenvalues (setting
negative eigenvalues to 0, taking absolute values, or squaring the matrix A). Recently, [39, 41]
showed identifiability of related overlapping community models (mixed-membership SBM and
its degree-corrected version) without requiring positive definiteness of B, which leads us to
conjecture our results can be extended to this case as well; we leave this direction for future
work.

Like the vast majority of existing community detection methods, we assume that the
number of communities K is given as input to the algorithm. There has been some recent
work on choosing K by hypothesis testing [6], a BIC-type criterion [54], an eigenvalue-based
estimator [34], or cross-validation [11, 37] for the nonoverlapping case; testing these methods
and adapting them to the overlapping case is a topic for future work. Another interesting and
difficult challenge is detecting communities in the presence of ``outliers"" that do not belong
to any community, considered by [66] and [8]. Our algorithm may be able to do this with
additional regularization. Finally, incorporating node features when they are available into
overlapping community detection is another challenging task for the future, since the features
may introduce both additional useful information and additional noise.

Acknowledgments. We thank the reviewers and our associate editor Eric Kolaczyk for
their insightful comments, which led us to improve the paper.
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