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SPATIAL STATIONARITY, ERGODICITY, AND CLT FOR
PARABOLIC ANDERSON MODEL WITH DELTA INITIAL

CONDITION IN DIMENSION d � 1⇤

DAVAR KHOSHNEVISAN† , DAVID NUALART‡ , AND FEI PU§

Abstract. Suppose that {u(t , x)}t>0,x2Rd is the solution to a d-dimensional parabolic Anderson
model with delta initial condition and driven by a Gaussian noise that is white in time and has a
spatially homogeneous covariance given by a nonnegative-definite measure f which satisfies Dalang’s
condition. Let pt(x) := (2⇡t)�d/2 exp{�kxk2/(2t)} denote the standard Gaussian heat kernel on
Rd. We prove that for all t > 0, the process U(t) := {u(t , x)/pt(x) : x 2 Rd} is stationary using

the Feynman–Kac formula and is ergodic under the additional condition f̂{0} = 0, where f̂ is the
Fourier transform of f . Moreover, using the Malliavin–Stein method, we investigate various central
limit theorems (CLTs) for U(t) based on the quantitative analysis of f . In particular, when f is
given by the Riesz kernel, i.e., f(dx) = kxk��dx, we obtain a multiple phase transition for the CLT
for U(t) from � 2 (0 , 1) to � = 1 to � 2 (1 , d ^ 2).

Key words. parabolic Anderson model, ergodicity, central limit theorem, stationarity, Malliavin
calculus, Stein method
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1. Introduction. Consider the following parabolic Anderson model:

(1.1)

"
@tu(t , x) =

1
2�u(t , x) + u(t , x)⌘(t , x) for (t , x) 2 (0 ,1)⇥ Rd

subject to u(0) = �0,

where ⌘ denotes a centered, generalized Gaussian random field with

E[⌘(t , x)⌘(s , y)] = �0(t� s)f(x� y) [s, t � 0, x, y 2 Rd]

for a nonzero, nonnegative-definite, tempered Borel measure f on Rd. As in Walsh
[24], by a “solution” to (1.1) we mean a solution to the integral equation,

u(t , x) = pt(x) +
(0,t)⇥Rd

pt�s(x� y)u(s , y) ⌘(ds dy) a.s. for all t > 0 and x 2 Rd,

(1.2)

where pt(x) denotes the heat kernel; that is,

pt(x) = (2⇡t)�d/2e�kxk2/(2t) for t > 0 and x 2 Rd.

The existence and uniqueness problem for (1.1) and of its variations has been studied
extensively by many authors [3,5,10]. In the present particular setting, it is easy to see
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that (1.2) has a (unique) predictable solution u i↵ there exists a (unique) predictable
solution U to the following:

U(t , x) = 1 +
(0,t)⇥Rd

pt�s(x� y)ps(y)

pt(x)
U(s , y) ⌘(ds dy),(1.3)

where the pairing (u , U) is given by

U(t , x) :=
u(t , x)

pt(x)
for t > 0 and x 2 Rd.(1.4)

It is possible to check directly that

pt�s(a)ps(b)

pt(a+ b)
= ps(t�s)/t

⇣
b�

s

t
(a+ b)

⌘
for all 0 < s < t and a, b 2 Rd.(1.5)

In fact, both sides represent the probability density of (Xt�s , Xs) where X denotes a
Brownian bridge that emanates from zero and is conditioned to reach a+ b at time t.

With the preceding in mind, (1.3) can be recast as the following linear integral
equation:

U(t , x) = 1 +
(0,t)⇥Rd

ps(t�s)/t

⇣
y �

s

t
x
⌘
U(s , y) ⌘(ds dy).(1.6)

In order to present the basic existence, uniqueness result for (1.6), hence also (1.1),
let us introduce the following function ⌥ : (0 ,1) ! (0 ,1]:

⌥(�) :=
1

(2⇡)d Rd

f̂(dy)

� + kyk2
for all � > 0,(1.7)

where f̂ denotes the Fourier transform of f .
Then we have the following result, which is a variation on a celebrated theorem

of Dalang [10] to the linear setting of (1.1), started at initial measure �0.

Theorem 1.1. Suppose ⌥(�) < 1 for one, hence all, � > 0. Then, the integral

equation (1.6) has a solution U = {U(t , x)}t>0,x2Rd that is a predictable random field.

Moreover, U is the only predictable solution to (1.6) that satisfies the following for all

" 2 (0 , 1), t > 0, and k � 2:

sup
x2Rd

E
�
|U(t , x)|k

�


✓
2

"

◆k

exp

⇢
tk

4
⌥�1

✓
1� "

4z2k

◆�
:= ct,k,(1.8)

where zk denotes the optimal constant in the Burkholder–Davis–Gundy (BDG) in-

equality for continuous Lk(⌦)-martingales. Finally, U(t) := {U(t , x)}x2Rd is a sta-

tionary random field for every t > 0, and limt!0 U(t , x) = 1 in Lk(⌦) for every

x 2 Rd
and for all k � 2.

From now on, we always assume the following:

⌥(1) < 1 and f(Rd) > 0.(1.9)

Thanks to (1.4) and Theorem 1.1, the finiteness of ⌥(1) implies that (1.1) has a
predictable solution u that uniquely satisfies that u(t , x) = (1 + o(1))pt(x) in Lk(⌦)
as t ! 0 for every x 2 Rd and for all k � 2. Furthermore, the strict positivity of
the total mass of f is assumed merely to avoid degeneracies in (1.1). Before we delve
deeper into that topic, however, let us pause and make a few remarks.
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2086 DAVAR KHOSHNEVISAN, DAVID NUALART, AND FEI PU

Remark. When d = 1 and ⌘ denotes space-time white noise [f = �0], the existence
and uniqueness of u, hence also U , are especially well known; see, for example, [3]. In
that case, the stationarity of U(t) was proved first by Amir, Corwin, and Quastel [1],
who used the fact that {⌘(t , x)}t,x has the same law as {⌘(t , x+ at)}t,x for all a 2 R.
Our proof of stationarity relies on the Feynman–Kac formula and works in the present
much more general setting.

Remark. It is possible to prove, using ideas from Dalang [10], that the (d + 1)-
parameter random field U has a version that is continuous in Lk(⌦) for every k � 2. In
turn, this fact and a suitable extension of Doob’s separability theory (see Doob [13])
together show that U has a measurable version that solves (1.6). From now on, we
always choose this version of U (and denote it also by U).

With (1.9) in place and the above remarks under way, we return to the topic at
hand and present the first novel contribution of this paper.

Theorem 1.2. If f̂{0} = 0, then U(t) is ergodic for all t > 0.

According to Theorem 1.1 in Chen et al. [6], the condition f̂{0} = 0 determines
the spatial ergodicity of the solution to (1.1) with flat initial condition. In the case of
delta initial condition, f̂{0} = 0 also implies the spatial ergodicity of U according to
Theorem 1.2. For each fixed N � e, we introduce the spatial average

SN,t =
1

Nd
[0,N ]d

[U(t, x)� 1] dx.(1.10)

Then, condition f̂{0} = 0, Theorem 1.2, and the ergodic theorem together imply the
following law of large numbers: For every t > 0,

lim
N!1

SN,t = 0 a.s. and in Lk(⌦) for all k � 2.

The main result of this paper is a corresponding central limit theorem (CLT),
which turns out to hold in the strongest possible sense of convergence in total varia-
tion. Let Z denote the standard Gaussian random variable, and recall that the total
variation distance between random variables X and Y on R is defined as

dTV(X ,Y ) = sup |P(X 2 B)� P(Y 2 B)|,

where the supremum is take over all Borel subsets B of R.
Recall that the condition f(Rd) < 1 implies a CLT for the spatial averages of the

solution to (1.1) with flat/constant initial data [7, Theorem 1.1]. The situation is much
more involved in the present setting where the initial condition is a delta mass. In this
setting, we first must analyze the asymptotic behavior of Var(SN,t) under di↵erent
assumptions on the covariance measure f . In the case of a flat initial condition, the
condition f(Rd) < 1 implies that the variance of the spatial average of the solution
is of the order N�d as N ! 1; see [7, Proposition 5.2]. By contrast, we will see in
section 5 that, in the present setting, the normalization of Var(SN,t) depends on the
detailed structure of the covariance measure f , as well as on the spatial dimension
d. Moreover, in order to prove the CLT, we appeal to the Malliavin–Stein method
(see Proposition 2.1 below), from which we will deduce how the covariance measure
f characterizes the CLT for the spatial average of U(t) in various ways. In the case
of a flat initial condition, it has been proved in [9, Theorem 2.4] that the convergence
rate for CLT in terms of total variation is N�d/2, while for the delta initial condition,
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the convergence rate for CLT is determined not only by spatial dimension d but also
by the behavior of f .

We start by introducing the following quantity associated with f :

R(f) :=
1

⇡d

1

0
ds

Rd

f̂(dz)
dY

j=1

1� cos(szj)

(szj)2
.(1.11)

The following theorem states that the finiteness of R(f) ensures the CLT for the
spatial average of U(t) and the convergence rate is N�1/2 regardless of the spatial
dimension d.

Theorem 1.3. If R(f) < 1, then for all fixed t > 0 there exists C = C(t) > 0
such that

dTV

 
SN,tp

Var(SN,t)
,Z

!


C
p
N

for every N � e.

The asymptotic behavior of Var(SN,t) will be discussed in detail in Theorem 5.1
below. It follows from that analysis and from Theorem 1.3 that if R(f) < 1, then

p

NSN,t =
1

Nd�(1/2)
[0,N ]d

[U(t , x)� 1] dx
d
�! N(0 , tR(f)) as N ! 1,

where “
d
�!” denotes convergence in distribution.

We will see in Lemma 5.9 below thatR(f) < 1 only if d � 2. Thus, the preceding
CLT has no content in dimension one. When d = 1, we are able to derive a CLT under
the additional constraint f(R) < 1. According to Theorem 1.1 in Chen et al. [7], the
finiteness condition f(R) < 1 implies a CLT for the solution to (1.1) with flat initial
condition. The same holds in the present setting of delta initial condition, except the
rate is di↵erent (and so are many of the underlying arguments).

Theorem 1.4 (d = 1). If f(R) < 1 and d = 1, then for all fixed t > 0 there

exists C = C(t) > 0 such that

dTV

 
SN,tp

Var(SN,t)
,Z

!
 C

r
logN

N
for all N � e.

In particular, Theorem 1.4 and Theorem 5.2 below together imply that if d = 1
and f = a�0 for some a > 0, then
r

N
logN

SN,t =
1p

N logN

N

0

[U(t, x)� 1] dx
d�! N(0 , 2tf(R)) = N(0 , 2ta) as N ! 1.

On the other hand, if the measure f is finite, as well as a Rajchman measure,1 then
s

N

logN
SN,t =

1
p
N logN

N

0
[U(t , x)� 1] dx

d
�! N(0 , tf(R)) as N ! 1.

The above results give a more or less comprehensive idea of the CLT for U(t)
when R(f) < 1, especially when the measure f is in addition finite. By contrast

1We recall that a finite measure f is Rajchman if its Fourier transform Rd 3 x 7! f̂(x) :=

Rd eix·y f(dy) vanishes at infinity; that is, limkxk!1 f̂(x) = 0. Lyons [19] discusses a survey of the

rich subject of Rajchman measures. Note that, in the present setting, f̂ : Rd ! R is a nonnegative,
nonnegative-definite, uniformly bounded, and continuous function.
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2088 DAVAR KHOSHNEVISAN, DAVID NUALART, AND FEI PU

with this case, there does not seem to be a canonical description of a CLT when
R(f) = 1. This condition occurs for any ambient dimension d, for example, when f
is given by a Riesz kernel; see Remark 5.11 below. In the following, we will present the
CLT specifically in the case that f is given by a Riesz kernel that satisfies Dalang’s
condition, ⌥(1) < 1, that is, when f(dx) = kxk�� dx where 0 < � < 2 ^ d. In
contrast with what happens in the case that the initial condition is flat (see Huang
et al. [17]), the CLT for U undergoes a multiple phase transition from � 2 (0 , 1) to
� = 1 to � 2 (1 , d ^ 2).

Theorem 1.5. If f(dx) = kxk��dx for some � 2 (0 , d ^ 2), then for all fixed

t > 0 there exists C = C(t) > 0 such that for all N � e,

dTV

 
SN,tp

Var(SN,t)
,Z

!


8
><

>:

CN��/2
if � 2 (0 , 1),

C
p
log(N)/N if � = 1,

CN�(2��)/2
if � 2 (1 , 2).

As a consequence of Theorem 1.5 and Theorem 5.4 below, we obtain the following
CLTs:

(A) if 0 < � < 1, then

N�/2
SN,t =

1

Nd�(�/2)
[0,N ]d

[U(t , x)� 1] dx
d
�! N(0 , t�0,�,d) as N ! 1;

(B) if � = 1, then
r

N
logN

SN,t =
1

Nd�(1/2)
p
logN [0,N ]d

[U(t , x)� 1] dx
d�! N(0 , t�1,�,d) as N ! 1; and

(C) if 1 < � < 2 ^ d, then

N1�(�/2)
SN,t =

1

Nd�1+(�/2)
[0,N ]d

[U(t , x)� 1] dx
d
�! N(0 , t2���2,�,d) as N ! 1,

where �0,�,d, �1,�,d, and �2,�,d are nondegenerate and defined explicitly in Theo-
rem 5.4.

The logarithmic correction that appears in Theorems 1.4 and 1.5 [� = 1] is related
to the transition functions of the Brownian bridge; see (1.5). Indeed, the conditional
probability density ps(t�s)/t(sx/t) becomes t/s after a change of variable in x. The
resulting singularity at s = 0 ultimately give rises to the logN factor in Theorems 1.4
and 1.5.

Remark. The convergence rates for the total variation distance in Theorems 1.3,
1.4, and 1.5 are natural. Indeed, one can observe that in each case the convergence
rate for the total variation distance is of the same order as

p
Var(SN,t) as N ! 1;

see Theorems 5.1, 5.2, and 5.4. A similar phenomenon can be observed in the context
of spatial CLT for other related SPDEs [8, 9, 12, 15, 16, 17, 23]. See [22] for recent
advances on the parabolic Anderson model driven by a Gaussian noise that is colored
in both its space and time variables.

Remark. One can follow the method in [8] to prove the functional CLT in time
corresponding to the CLTs below Theorems 1.3, 1.4, and 1.5, respectively. For in-
stance, one can use the argument in [8, Proposition 4.1] to compute the covariance
of the limit Gaussian process and then prove the convergence of finite dimensional
distributions and tightness. We leave these for interested readers.
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The organization of this paper is as follows. We establish the well-posedness
and spatial stationarity for the solution to (1.6) in Theorem 1.1 in section 3. The
ergodicity property in Theorem 1.2 is proved in section 4. Section 5 is devoted to
analyzing the asymptotic behavior of the variance of spatial average. Moreover, we
present the estimates on total variation distance in Theorems 1.3, 1.4, and 1.5 in
section 6. And the last section is an appendix that contains a few technical lemmas
that are used throughout the paper.

Let us conclude the introduction by setting forth some notation that will be used
throughout. We write “g1(x) . g2(x) for all x 2 X” when there exists a real number L
such that g1(x)  Lg2(x) for all x 2 X. Alternatively, we might write “g2(x) & g1(x)
for all x 2 X.” By “g1(x) ⇣ g2(x) for all x 2 X” we mean that g1(x) . g2(x) for all
x 2 X and g2(x) . g1(x) for all x 2 X. Finally, “g1(x) / g2(x) for all x 2 X” means
that there exists a real number L such that g1(x) = Lg2(x) for all x 2 X. For every
Z 2 Lk(⌦), we write kZkk instead of the more cumbersome kZkLk(⌦).

2. Preliminaries.

2.1. The BDG inequality. Let us collect a few facts about the optimal con-
stants {zk}k�2 of the BDG inequality.

First, recall from the BDG inequality that for every continuous L2(⌦)-martingale
{Mt}t�0,

E
�
|Mt|

k
�
 zkkE

⇣
hMi

k/2
t

⌘
for all t � 0 and k � 2.

Davis [11] has shown that every zk is the largest positive root of a certain special
function, in particular, that zk is the largest positive root of the monic Hermite
polynomial Hek when k is an even integer. These remarks and the appendix of
Carlen and Krée [2] together imply the following:

z2 = 1, z4 =

q
3 +

p

6 ⇡ 2.334, and sup
k�2

zk
p
k
= lim

k!1

zk
p
k
= 2.(2.1)

Moreover, the special case where the martingale M is Brownian motion shows us that

zk � kN(0 , 1)kk =
p

2


1
p
⇡
�

✓
k + 1

2

◆�1/k
for all k � 2.(2.2)

Therefore, we learn from the Stirling formula that zk is bounded from above and from
below by nondegenerate multiples of

p
k, uniformly for all k � 2.

2.2. The Clark–Ocone formula. Define H0 to be the reproducing kernel
Hilbert space, spanned by all real-valued functions on Rd, that corresponds to the
inner product h� , iH0

:= h� , ⇤fiL2(Rd), and set H := L2(R+⇥H0). The Gaussian
family {W (h)}h2H formed by the Wiener integrals

W (h) =
R+⇥Rd

h(s , x) ⌘(ds dx) [h 2 H]

defines an isonormal Gaussian process on the Hilbert space H. In this framework
we can develop the Malliavin calculus (see, for instance, [20]). We denote by D the
Malliavin derivative operator and by � the corresponding divergence operator whose
domain in L2(⌦) is denoted by Dom[�].

Let {Fs}s�0 denote the filtration generated by the infinite dimensional white noise
t 7! ⌘(t); that is, Ft is the filtration generated by all Wiener integrals of the form

(0,t)⇥Rd � d⌘ as � ranges over all test functions of rapid decrease (which are easily
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seen to be dense in H). A basic idea used in this paper is the Clark–Ocone formula
(see [6, Proposition 6.3]),

F = E[F ] +
R+⇥Rd

E [Ds,yF | Fs] ⌘(ds dz),(2.3)

valid a.s. for every random variable F in the Gaussian Sobolev space D1,2. Using
Jensen’s inequality for conditional expectation, this equality leads immediately to the
Poincaré-type inequality

|Cov(F ,G)| 
1

0
ds

Rd

dy
Rd

f(dy0) kDs,yFk2 kDs,y0+yGk2(2.4)

for F,G 2 D1,2 provided that DF and DG are real-valued random variables.

2.3. The Malliavin–Stein method. Recall that the total variation distance
between two Borel probability measures µ and ⌫ on R is defined as

dTV(µ , ⌫) = sup |µ(B)� ⌫(B)|,

where the supremum is taken over all Borel subsets B of R. We might abuse notation
and write dTV(F ,G), dTV(F , ⌫), or dTV(µ ,G) instead of dTV(µ , ⌫) whenever the
laws of F and G are respectively µ and ⌫.

A combination of Malliavin calculus and Stein’s method for normal approxima-
tions leads to the following bound on the total variation distance (see [21, Theorem
8.2.1]).

Proposition 2.1. Suppose F 2 D1,2
satisfies E[F 2] = 1 and F = �(v) for some

element v in the domain in L2(⌦) of the divergence operator �. Then,

dTV(F ,N(0 , 1))  2
p

Var (hDF , viH).(2.5)

3. Existence, uniqueness, and stationarity: Proof of Theorem 1.1. The
proof of Theorem 1.1 follows a route that is nowadays standard. Therefore, we sketch
the bulk argument, enough to make sure that the numerology of (1.8) is explained in
su�cient detail. Also, the proof does require one technical lemma that we state and
prove next. The following identity will be used several times later on:

(pr ⇤ f) (x) =
1

(2⇡)d Rd

e�rkyk2/2eix·y f̂(dy) for all r > 0 and x 2 Rd.(3.1)

Since pr is a test function of rapid decrease for every r > 0, the above identity follows
from the very definition of f̂ .

Recall the function ⌥ defined in (1.7).

Lemma 3.1.
t
0 exp{��{s ^ (t � s)}}(p2s(t�s)/t ⇤ f)(0) ds  4⌥(2�) for every

t,� > 0.

Proof. We apply the identity (3.1) with r = 2s(t� s)/t in order to find that

�
p2s(t�s)/t ⇤ f

�
(0) =

1

(2⇡)d Rd

e�s(t�s)kyk2/tf̂(dy)


1

(2⇡)d Rd

exp

✓
�
s ^ (t� s)

2
kyk2

◆
f̂(dy),
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using the elementary fact that s(t� s)/t � 1
2 [s ^ (t� s)]. Integration and symmetry

together imply

t

0
e��{s^(t�s)}

�
p2s(t�s)/t ⇤ f

�
(0) ds 

2

(2⇡)d

t/2

0
e��s ds

Rd

e�skyk2/2f̂(dy).

The bound
t/2
0 ( · · · ) 

1

0 ( · · · ) yields the lemma.

With Lemma 3.1 under way, we can start the proof of Theorem 1.1.

Proof of Theorem 1.1 (part 1): Existence and uniqueness. Throughout the proof,
define

�",k :=
1

2
⌥�1

✓
1� "

4z2k

◆
.(3.2)

We begin by proving existence and uniqueness.
The proof of existence and uniqueness works by Picard iteration, as is customary,

and uses ideas from Foondun and Khoshnevisan [14] in order to establish the moment
bound (1.8) and uniqueness.

Define for all t > 0 and x 2 Rd, U0(t , x) := 1 and

Un+1(t , x) = 1 +
(0,t)⇥Rd

ps(t�s)/t

⇣
y �

s

t
x
⌘
Un(s , y) ⌘(ds dy),(3.3)

valid for every n 2 Z+. Define, for all t > 0, n 2 N, and x 2 Rd,

Dn(t , x) := Un(t , x)� Un�1(t , x) and En(t) := sup
a2Rd

kDn(t , a)k
2
k.

We first observe that, because of the semigroup property of the heat kernel,

kD1(t , x)k
2
k =

����� (0,t)⇥Rd

ps(t�s)/t

⇣
y �

s

t
x
⌘
⌘(ds dy)

�����

2

k

 z2k

t

0
ds

Rd

dy
Rd

f(dy0) ps(t�s)/t(y)ps(t�s)/t(y
0 + y)

= z2k

t

0
ds

Rd

f(dw) p2s(t�s)/t(w).

Therefore, we may appeal to Lemma 3.1 to find that for every � > 0,

kD1(t , x)k
2
k  z2ke

�t
t

0
e��{s^(t�s)}ds

Rd

f(dw) p2s(t�s)/t(w)(3.4)

 4z2ke
�t⌥(2�).
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Next, we might observe that

kDn+1(t , x)k
2
k

=

����� (0,t)⇥Rd

ps(t�s)/t

⇣
y �

s

t
x
⌘
Dn(s , y) ⌘(ds dy)

�����

2

k

 z2k

t

0
ds

Rd

dy
Rd

f(dw) ps(t�s)/t

⇣
y �

s

t
x
⌘
ps(t�s)/t

⇥

⇣
w + y �

s

t
x
⌘
kDn(s , y)Dn(s , w + y)kk/2

 z2k

t

0
[En(s)]

2 ds
Rd

dy
Rd

f(dw) ps(t�s)/t

⇣
y �

s

t
x
⌘
ps(t�s)/t

⇣
w + y �

s

t
x
⌘

= z2k

t

0
En(s) ds

Rd

f(dw) p2s(t�s)/t(w).

Since the right-hand side does not depend on x, we may optimize to find that

e��t
En+1(t)  z2ke

��t
t

0
En(s) ds

Rd

f(dw)p2s(t�s)/t(w)

= z2k

t

0
e��{s_(t�s)}

En(s)e
��{s^(t�s)} ds

Rd

f(dw)p2s(t�s)/t(w)

 z2k

t

0
e��s

En(s)e
��{s^(t�s)} ds

Rd

f(dw)p2s(t�s)/t(w).

In particular, set

Fn(t ,�) := sup
s2(0,t]

⇥
e��s

En(s)
⇤

for all n 2 N and t,� > 0

in order to deduce from Lemma 3.1 that Fn+1(t ,�)  4z2k⌥(2�)Fn(t ,�). Plug in
� = �",k, defined in (3.2), to find inductively that

Fn+1(t ,�",k)  (1� ")Fn(t ,�",k)  · · ·  (1� ")nF1(t ,�",k).

Now, we can read o↵ from (3.4) that F1(t ,�",k) = sups2(0,t][exp{��",ks}E1(s)] 

4z2k⌥(2�",k) = 1� ". This yields Fn+1(t ,�",k)  (1� ")n+1, and hence

sup
x2Rd

kUn+1(t , x)� Un(t , x)k
2
k  (1� ")n+1e�",kt for all t > 0 and n 2 Z+.

At this point, standard arguments imply that U(t , x) := limn!1 Un(t , x) exists in
Lk(⌦) for every k � 2 and solves (1.1). Moreover,

kU(t , x)kk  kU0(t , x)kk +
1X

n=0

kUn+1(t , x)� Un(t , x)kk  1 + e�",kt/2
1X

m=1

(1� ")m/2


exp (�",kt/2)

1�
p
1� "

.

Since 1�
p
1� " � "/2, this proves (1.8).
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Proof of Theorem 1.1 (part 2): Stationarity. For every " > 0 we define a new
Gaussian noise ⌘" via its Wiener integrals,

(0,t)⇥Rd

'(y) ⌘"(ds dy) :=
(0,t)⇥Rd

(' ⇤ p") (y) ⌘(ds dy) for all t > 0 and ' 2 H0.

Because of the semigroup property of the heat kernel, ⌘" is a generalized Gaussian
random field with

Cov [⌘"(t , x) , ⌘"(s , y)] = �0(t� s)f"(x� y), where f" := p2" ⇤ f.

As is customary in distribution theory, the rapidly decreasing test function f" is
identified with a positive-definite tempered measure (also denoted by f") that, among
many other things, satisfies (1.9). In fact, the total mass of the measure f" is merely
the total integral of the function f", which is f(Rd). Let ⌥" be defined as in (1.7),
but with f replaced by f", in order to see immediately that ⌥"  ⌥ pointwise. Thus,
the already-proved portion of Theorem 1.1 applies to show that the stochastic PDE

@tu
" = 1

2�u" + u"⌘" on (0 ,1)⇥ Rd,

subject to u"(0) = �0 on Rd,

has a predictable random-field solution u" that is unique subject to

sup
(t,x,")2(0,T )⇥Rd⇥(0,1)

ku"(t , x)/pt(x)kk < 1 for every T > 0 and k � 2.

Let us expand on this a little as follows: For every z 2 Rd, consider the SPDE
"
@tu

"(t , x; z) = 1
2�xu

"(t , x ; z) + u"(t , x ; z)⌘"(t , x) on (0 ,1)⇥ Rd,

subject to u"(0 , • ; z) = �z(•) on Rd.

Then we can apply the same argument that was used in the already-proved portion of
Theorem 1.1 in order to establish the existence of a random-field solution u"(• , • ; z)
to the preceding, one for every z 2 Rd, that is unique among all that satisfy

LT,k := sup
(t,x,z,")2(0,T )⇥Rd⇥Rd⇥(0,1)

����
u"(t , x ; z)

pt(x� z)

����
k

< 1 for every T > 0 and k � 2.

We remark that u"(t , x ; 0) = u"(t , x) for all t, " > 0 and x 2 Rd.
Let U"(t , x) := u"(t , x)/pt(x) and U"(t , x ; z) := u"(t , x ; z)/pt(x � z) for all

t > 0, " 2 (0 , 1), and x, z 2 Rd; confer with (1.4). The method of Dalang [10] can be
used to show also that (t , x , z) 7! U"(t , x ; z)—hence also (t , x , z) 7! u"(t , x ; z)—is
continuous in Lk(⌦) for every k � 2 and " > 0. We skip the details and mention
only that, in particular, u" and U" both have Lebesgue-measurable versions for every
" > 0, which we always use.

Choose and fix an arbitrary nonrandom function v0 2 L1(Rd) to see from linear-
ity that

v"(t , x) :=
Rd

u"(t , x ; z)v0(z) dz [t > 0, x 2 Rd](3.5)

is the unique predictable solution to the SPDE
"
@tv

"(t , x) = 1
2�v"(t , x) + v"(t , x)⌘"(t , x) for (t , x) 2 (0 ,1)⇥ Rd,

subject to v"(0) = v0 on Rd,
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2094 DAVAR KHOSHNEVISAN, DAVID NUALART, AND FEI PU

that satisfies

L0

T,k," := sup
(t,x)2(0,T )⇥Rd

kv"(t , x)kk < 1 for every T, " > 0 and k � 2.

Recall that v" has the following mild formulation:

v"(t , x) = (pt ⇤ v0)(x) +
(0,t)⇥Rd

pt�s(y � x)v"(s , y) ⌘"(ds dy)

= (pt ⇤ v0)(x) +
(0,t)⇥Rd

✓

Rd

pt�s(y � x)v"(s , y)p"(y � z) dy

◆
⌘(ds dz),

thanks to a stochastic Fubini argument, which we skip. The spatial correlation func-
tion f" of ⌘" clearly is in S (Rd) and hence is bounded; in fact,

f"(x) = (p2" ⇤ f) (x) 
1

(2⇡)d Rd
e�"kyk2 f̂(dy) < 1 for all " 2 (0 , 1) and x 2 Rd; see (3.1).

Let B denote a standard Brownian motion that is independent of ⌘, and let EB and E⌘

denote, respectively, the conditional expectation operators given B and ⌘. According
to general theory (see Hu and Nualart [18, Proposition 5.2]), v" has a Feynman–Kac
representation

v"(t , x) = EB

"
v0(Bt + x) exp

 

(0,t)⇥Rd

p" (y � x�Bt�s) ⌘(ds dy)�
1
2 tf"(0)

!#
.

Define

Bt,w
s := Bs �

s

t
(Bt � w) for all s 2 [0 , t] and t > 0 and w 2 Rd.

We can see that Bt,w is a Brownian bridge on [0 , t], conditioned to go from the
space-time point (0 , 0) to the space-time point (t , w). And in fact,

ps(t�s)/t

⇣
y �

s

t
x
⌘

of (1.6) is the probability density of Bt,x
s at y.

Because {Bt,w
s }s2[0,t] is independent of Bt, we may disintegrate and write

v"(t , x) =
Rd

pt(z � x)EB

"
exp

 

(0,t)⇥Rd
p"

�
y � x�Bt,z

t�s

�
⌘(ds dy)� 1

2 tf"(0)

!#
v0(z) dz.

We compare the above to (3.5) in order to deduce from the fact that v0 2 L1(Rd) is
arbitrary that the following is a version of u"(t , x ; z):

u"(t , x ; z) = pt(z � x)EB

"
exp

 

(0,t)⇥Rd

p"

�
y � x�Bt,z

t�s

�
⌘(ds dy)� 1

2 tf"(0)

!#
.

We adopt this version of u"(t , x ; z) (rather than the old ones). Set z = 0 to see that
we have adopted the following versions of u"(t , x) and U"(t , x):

u"(t , x) = pt(x)EB

"
exp

 

(0,t)⇥Rd
p"

�
y � x�Bt,0

t�s

�
⌘(ds dy)� 1

2 tf"(0)

!#
, and hence

U"(t , x) = EB

"
exp

 

(0,t)⇥Rd
p"

�
y � x�Bt,0

t�s

�
⌘(ds dy)� 1

2 tf"(0)

!#
.
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According to the Malliavin-calculus method of Hu and Nualart [18] (see also [5, The-
orem 1.9(2)]), lim"!0 U"(t , x) = U(t , x) in L2(⌦) for every t > 0 and x 2 Rd. There-
fore, our goal of proving the stationarity of U(t) would follow once we demonstrate
the stationarity of U"(t) for every t, " > 0. But that is not hard to do. Indeed, by the
Itô–Walsh isometry for stochastic integrals,

E⌘

"

(0,t)⇥Rd

p"

�
y � a�Bt,0

t�s

�
⌘(ds dy)⇥

(0,t)⇥Rd

p"

�
y � b�Bt,0

t�s

�
⌘(ds dy)

#

=
t

0
ds

Rd

dy
Rd

f(dz) p"

�
y � a�Bt,�a

t�s

�
p"

�
z + y � b�Bt,�b

t�s

�

= t
Rd

f(dz) p2" (z � b+ a) [semigroup property]

= t (p2" ⇤ f) (b� a) ,

which proves the asserted stationarity of U"(t) for every t, " > 0.

Remark 3.2. As a consequence of the Feynman–Kac formula, we can see imme-
diately that U(t , x) � 0 a.s. for all t > 0 and x 2 Rd.

Proof of Theorem 1.1 (part 3): Behavior near t = 0. We now complete the proof
by showing that limt!0 U(t , x) = 1 in Lk(⌦) for every x 2 Rd. By stationarity, it
su�ces to consider only the case that x = 0. Now in accord with (1.6) and (1.8),
there exists a real number K such that, uniformly for all t 2 (0 , 1),

E
�
|U(t , 0)� 1|k

�

 E
t

0
ds

Rd

dy
Rd

f(dw) ps(t�s)/t(y)ps(t�s)/t(w + y)kU(s , y)U(s , w + y)kk/2

 K
t

0
ds

Rd

dy
Rd

f(dw) ps(t�s)/t(y)ps(t�s)/t(w + y)

= K
t

0

�
p2s(t�s)/t ⇤ f

�
(0) ds  Ke�t

t

0
e��{s^(t�s)}

�
p2s(t�s)/t ⇤ f

�
(0) ds

 4Ke�t⌥(2�) for all � > 0.

Set � = 1/t to find that E(|U(t , 0) � 1|k)  4Ke⌥(2/t) ! 0 as t ! 0, owing to the
dominated convergence theorem, (1.7), and the theorem’s condition that ⌥(�) < 1

for one, hence all, � > 0. This concludes the proof.

4. Ergodicity: Proof of Theorem 1.2. The following bound on the Malliavin
derivative of U(t , x) is a key technical result of the paper. Among other things, it
also plays a central role in our proof of Theorem 1.2.

Proposition 4.1. Choose and fix k � 2, t > 0, and x 2 Rd
. Then, U(t , x) 2

\k�2D1,k
, and for almost every (s , y) 2 (0 , t)⇥ Rd

,

kDs,yU(t , x)kk 
64

7
exp

⇢
t

2


�7/8,k +

1

2
⌥�1

✓
1

32z2k

◆��
ps(t�s)/t

⇣
y �

s

t
x
⌘

:= Ct,k ps(t�s)/t

⇣
y �

s

t
x
⌘
,(4.1)

where �",k was defined in (3.2).
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Because of (1.4), U(t , x) 2 \k�2D1,k i↵ u(t , x) 2 \k�2D1,k. Thus, portions of
the above are already included in the work of Chen, Hu, and Nualart [4, Proposition
5.1]. The point here is mainly the explicit bound for the moments of the Malliavin
derivative of U(t , x).

Remark 4.2. Properties of the Malliavin derivative, and (1.5), together imply that
the inequality of Proposition 4.1 is equivalent to the following:

kDs,yu(t , x)kk 
64

7
exp

⇢
t

2


�7/8,k +

1

2
⌥�1

✓
1

32z2k

◆��
pt(x)ps(t�s)/t

⇣
y �

s

t
x
⌘

=
64

7
exp

⇢
t

2


�7/8,k +

1

2
⌥�1

✓
1

32z2k

◆��
pt�s(x� y)ps(y).

The proof of Proposition 4.1 requires some notation and two intervening lemmas.
Define u0(t , x) = pt(x), and iteratively let

un+1(t , x) = pt(x) +
(0,t)⇥Rd

pt�r(x� z)un(r , z) ⌘(dr dz)(4.2)

for every n 2 Z+. It is easy to see that, for every n � 2, un(t , x) = pt(x)Un(t , x),
where Un was defined in the proof of Theorem 1.1, and denotes the nth stage in the
Picard iteration approximation of U . It follows from the proof of Theorem 1.1 that
un(t , x) converges to u(t , x) = pt(x)U(t , x) in Lk(⌦) as n ! 1 for every k � 2. It
also follows from basic properties of the Malliavin derivative that a.s.,

Ds,yun+1(t , x) = pt�s(x� y)un(s , y) +
(s,t)⇥Rd

pt�r(x� z)Ds,yun(r , z) ⌘(dr dz)

(4.3)

for almost every (s , y) 2 (0 , t) ⇥ Rd and all n 2 Z+ for which the right-hand side is
well defined. The following shows inductively that indeed the right-hand side is well
defined for every n and provides a bound on its Lk(⌦)-norms.

Lemma 4.3. Choose and fix n 2 N, k � 2, t > 0, and x 2 Rd
, and let � := �7/8,k,

as defined in (3.2). Then,

kDs,yun(t , x)kk  ↵ne
�(t�s)/2pt�s(x� y)ps(y)(4.4)

for almost every (s , y) 2 (0 , t)⇥ Rd
, where

↵1 := sup
m2Z+

sup
x2Rd

sup
s2(0,t]

kUm(s , x)kk<1 and ↵n :=
⇣p

8
⇥
1� 2�n

⇤
+2�n

⌘
↵1  4↵1

for the random fields {Un}
1

n=0 defined in the proof of Theorem 1.1.

The fact that ↵1 is finite is a consequence of the proof of (1.8). In fact, the proof
of Theorem 1.1 (with " = 7/8) shows that

↵1 
16

7
exp

⇢
t

4
⌥�1

✓
1

32z2k

◆�
.(4.5)

Proof of Lemma 4.3. We proceed to prove (4.4) by using induction on n.
Because Ds,yu0(t , x) = 0, it follows from (4.3) that kDs,yu1(t , x)kk  ↵1pt�s(x�

y)ps(y). In particular, (4.4) holds for n = 1. Next, we suppose (4.4) is true for some
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integer n � 1 and proceed to prove that it is true when n is replaced by n+ 1. With
this aim in mind, observe using the BDG inequality that

En+1 = En+1(s , y , t , x , k) := kDs,yun+1(t , x)k
2
k

satisfies

En+1  2↵2
1 [pt�s(x� y)ps(y)]

2 + 2z2k

t

s
dr

Rd

dz
Rd

f(dz0)

⇥ pt�r(x� z)pt�r(x� z � z0) kDs,yun(r , z)kk kDs,yun(r , z
0 + z)kk

 2↵2
1 [pt�s(x� y)ps(y)]

2 + 2z2k↵
2
n [ps(y)]

2
t�s

0
e�r dr

Rd

dz
Rd

f(dz0)

⇥ pt�s�r(x� z)pr(z � y)pt�s�r(x� z � z0)pr(z
0 + z � y),

thanks to the induction hypothesis and a change of variables (r $ r�s). Apply (1.5)
in order to find that

En+1  2↵2
1 [pt�s(x� y)ps(y)]

2

+ 2z2k↵
2
n [pt�s(x� y)ps(y)]

2
t�s

0

e�{r_(t�s�r)} dr
Rd

dz
Rd

f(dz0)

⇥ pr(t�s�r)/(t�s)

✓
z � y � r

t� s
(x� y)

◆
pr(t�s�r)/(t�s)

⇥
✓
z0 + z � y � r

t� s
(x� y)

◆

= [pt�s(x� y)ps(y)]
2

⇢
2↵2

1 + 2z2k↵
2
n

t�s

0

e�{r_(t�s�r)} �p2r(t�s�r)/(t�s) ⇤ f
�
(0) dr

�
,

where we have appealed to the semigroup property of the heat kernel for the last line.
Take square roots and apply the simple inequality (|a|+ |b|)1/2  |a|1/2+ |b|1/2—valid
for all a, b 2 R—to see that

kDs,yun+1(t , x)kk
pt�s(x� y)ps(y)


p
2↵1 + ↵n

⇢
2z2k

t�s

0

e�{r_(t�s�r)} �p2r(t�s�r)/(t�s) ⇤ f
�
(0) dr

�1/2

.

Since r _ (t� s� r) = t� s� {r ^ (t� s� r)}, this proves that

kDs,yun+1(t , x)kk
pt�s(x� y)ps(y)



p

2↵1 + ↵ne
�(t�s)/2

⇢
2z2k

t�s

0
e��{r^(t�s�r)}

�
p2r(t�s�r)/(t�s) ⇤ f

�
(0) dr

�1/2



p

2↵1 + ↵ne
�(t�s)/2

q
8z2k⌥(2�) (see Lemma 3.1)



p

2↵1 +
1
2↵ne

�(t�s)/2
 ↵n+1e

�(t�s)/2,

thanks to the definition (3.2) of � = �7/8,k and the readily checkable fact that ↵n+1 =
p
2↵1 +

1
2↵n. This proves (4.4) with n replaced by n+ 1 and concludes the inductive

stage of the argument.

Our next technical lemma implies, inductively, that un(t , x) 2 D1,2 for every
n 2 N.
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Lemma 4.4. There exist real numbers A,B > 0 such that

sup
n2N

sup
x2Rd

E
⇣
kDun(t , x)k

2
H

⌘
 At�deBt

for all t > 0.

Proof. We compute directly, using Lemma 4.3, as follows:

E
�
kDun(t , x)k2H

�
=

t

0

ds
Rd

dy
Rd

f(dy0) E [Ds,yun(t , x)Ds,y+y0un(t , x)]


t

0

ds
Rd

dy
Rd

f(dy0) kDs,yun(t , x)k2 kDs,y+y0un(t , x)k2

 c
t

0

ds
Rd

dy
Rd

f(dy0) pt�s(x� y)ps(y)pt�s(x� y � y0)ps(y + y0),

where c := 16↵2
1 exp(�7/8,2t), using the constants of Lemma 4.3. Note that ↵1 depends

on t, and in fact Theorem 1.1 ensures that c  c1 exp(c2t) where c1 and c2 do not
depend on t. Apply (1.5) to see that

E
�
kDun(t , x)k

2
H

�

 c1e
c2t[pt(x)]

2
t

0
ds

Rd

dy
Rd

f(dy0) ps(t�s)/t

⇣
y �

s

t
x
⌘
ps(t�s)/t

⇣
y + y0 �

s

t
x
⌘

= c1e
c2t[pt(x)]

2
t

0

�
p2s(t�s)/t ⇤ f

�
(0) ds


c1e(1+c2)t

(2⇡t)d

t

0
e�{s^(t�s)}

�
p2s(t�s)/t ⇤ f

�
(0) ds.

Since ⌥(2) < 1, an appeal to Lemma 3.1 completes the proof.

We are in position to verify Proposition 4.1.

Proof of Proposition 4.1. The proof is similar to that of [6, Theorem 6.4]. Choose
and fix k � 2, t > 0, and x 2 Rd. Thanks to (1.4) and (1.5), the proposition’s assertion
is equivalent to the following inequality, valid for a.e. (s , y) 2 (0 , t)⇥ Rd:

kDs,yu(t , x)kk 
64

7
exp

⇢
t

2


�7/8,k +

1

2
⌥�1

✓
1

32z2k

◆��
pt�s(x� y)ps(y),

We will prove the above reformulation of the proposition.
Thanks to Lemma 4.4 and closeablility properties of the Malliavin derivative

operator (see Nualart [20]), it follows that, after possibly moving to subsequence,
Dun(t , x) converges to Du(t , x) in the weak topology of L2(⌦ ;H). Then, we use a
smooth approximation { "}">0 to the identity in R+ ⇥Rd and apply Fatou’s lemma
and duality for Lk-spaces in order to find that, for almost every (s , y) 2 (0 , t) ⇥ Rd

and for all k � 2,

kDs,yu(t , x)kk  lim sup
"!0

����� R+⇥Rd
Ds0,y0u(t , x) "(s� s0, y � y0) ds0dy0

�����
k

 lim sup
"!0

sup
kGkk/(k�1)1

����� R+⇥Rd
E [GDs0,y0u(t , x)] "(s� s0, y � y0) ds0dy0

����� .

Choose and fix a random variable G 2 L2(⌦) such that kGkk/(k�1)  1. We can find
an unbounded subsequence n(1) < n(2) < · · · of positive integers such that
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����� R+⇥Rd

E [GDs0,y0u(t , x)] "(s� s0, y � y0) ds0dy0

�����

= lim
`!1

����� R+⇥Rd

E
⇥
GDs0,y0un(`)(t , x)

⇤
 "(s� s0, y � y0) ds0dy0

�����

 lim sup
`!1 R+⇥R

��Ds0,y0un(`)(t , x)
��
k
 "(s� s0, y � y0) ds0dy0

 sup
n2N

↵n
(0,t)⇥Rd

e�(t�s0)/2pt�s0(x� y0)ps0(y
0) "(s� s0, y � y0) ds0dy0

 4↵1e
�t/2

(0,t)⇥Rd

pt�s0(x� y0)ps0(y
0) "(s� s0, y � y0) ds0dy0;

see Lemma 4.3. Let "! 0 and appeal to (4.5) in order to finish.

The second, and final, step of the proof of Theorem 1.2 is a Poincaré-type in-
equality for certain nonlinear functionals of U . In order to describe that inequality,
let us first choose and fix points ⇣1, . . . , ⇣k 2 Rd and bounded Lipschitz-continuous
functions g1, . . . , gk 2 C1

b (R) such that

gj(0) = 0 and Lip(gj) = 1 for every j = 1, . . . , k.(4.6)

Then define for every t,N > 0 and x 2 Rd,

G(t , x) :=
kY

j=1

gj
�
U(t , x+ ⇣j)

�
.(4.7)

Lemma 4.5. Choose and fix an integer k � 2, points x, ⇣1, . . . , ⇣k 2 Rd
, and

functions g1, . . . , gk 2 C1
b (R) that satisfy (4.6). Then, there exists a real number

A = A(t , k , g1 , . . . , gk) given by (4.8) below such that

|Cov (G(t , 0) ,G(t , x))|  A2
kX

j0=1

kX

j1=1

t

0

�
p2s(t�s)/t ⇤ f

� ⇣s
t
(x+ ⇣j0 � ⇣j1)

⌘
ds.

Proof. By the chain rule of Malliavin calculus (see Nualart [20]),

Ds,zG(t , x)

= 1(0,t)(s)
kX

j0=1

0

BB@
kY

j=1
j 6=j0

gj
�
U(t , x+ ⇣j)

�

1

CCA g0j0
�
U(t , x+ ⇣j0)

�
Ds,zU(t , x+ ⇣j0)

for almost every (s , z) 2 (0 , t)⇥ Rd. Therefore, Proposition 4.1 ensures that

kDs,zG(t , x)kk  1(0,t)(s) max
1jk

sup
a2R

|gj(a)|
k�1

kX

j0=1

��Ds,zU(t , x+ ⇣j0)
��
k

 A1(0,t)(s)
kX

j0=1

ps(t�s)/t

⇣
z �

s

t
(x+ ⇣j0)
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with

A :=
64

7
exp

⇢
t

2


�7/8,k +

1

2
⌥�1

✓
1

32z2k

◆��
max
1jk

sup
a2R

|gj(a)|
k�1.(4.8)

It follows from the Poincaré inequality (2.4) that |Cov(G(t , x) ,G(t , 0))| is bounded
from above by

A2
kX

j0=1

kX

j1=1

t

0

ds
Rd

dy
Rd

f(dy0) ps(t�s)/t

⇣
y � s

t
(x+ ⇣j0)

⌘
ps(t�s)/t

⇣
y0 + y � s

t
⇣j1
⌘
.

Apply the semigroup property of the heat kernel together with Fubini’s theorem to
finish.

Proof of Theorem 1.2. Define

VN (t) := Var

 
1

Nd
[0,N ]d

G(t, x)dx

!
and G(x) :=

kY

j=1

gj(U(t , x+⇣j)) for all x 2 Rd,

where G(t, x) has been defined in (4.7) and the bounded functions g1, . . . , gk therein
satisfy (4.6). Since U(t) is stationary (Theorem 1.1), [6, Lemma 7.2] implies the
desired ergodicity provided that we prove that, for all t > 0,

lim
N!1

VN (t) = 0.(4.9)

For every real number N > 0, define the functions

IN (x) := N�d1[0,N ]d(x) and ĨN (x) = IN (�x) for x 2 Rd.(4.10)

By Lemma 4.5,

VN (t) =
1

N2d
[0,N ]d

dx
[0,N ]d

dy Cov [G(t , x) ,G(t , y)]

 A2

N2d

kX

j0=1

kX

j1=1

t

0

ds
[0,N ]d

dx
[0,N ]d

dy
�
p2s(t�s)/t ⇤ f

� ⇣s
t
(x� y + ⇣j0 � ⇣j1)

⌘

= A2
kX

j0=1

kX

j1=1

t

0

ds
Rd

dx
⇣
IN ⇤ ĨN

⌘
(x)
�
f ⇤ p2s(t�s)/t

� ⇣s
t
(x+ ⇣j0 � ⇣j1)

⌘
.

Therefore, (7.2) implies that

VN (t) 
k2A2

⇡d

t

0
ds

Rd

f̂(dy) e�
s(t�s)

t kyk2

dY

j=1

1� cos(Nsyj/t)

(Nsyj/t)2
.

The quantity
Qd

j=1{1 � cos(Nsyj/t)}/(Nsyj/t)2 is bounded above by 2�d and con-

verges to zero as N ! 1 for each s > 0 and y 6= 0. Since f̂{0} = 0, the dominated
convergence theorem implies that limN!1 VN (t) = 0, taking into account that

t

0
ds

Rd

f̂(dy) e�
s(t�s)

t kyk2

< 1,

which follows from Dalang’s condition ⌥(1) < 1. This proves (4.9), whence follows
ergodicity.
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5. Asymptotic variance. Recall the spatial average SN,t and the quantity
R(f) are defined in (1.10) and (1.11), respectively.

Theorem 5.1 (d � 1). For all t > 0,

lim
N!1

NVar(SN,t) = tR(f).(5.1)

The quantity on the right-hand side is strictly positive and (5.1) holds whenever R(f)
is finite or infinite.

According to the criteria in Proposition 5.8 and Lemma 5.9 below, the value of
R(f) could be finite or infinite. For example, if f(dx) = p1(x)dx and d � 2, then
R(f) < 1; if f is given by the Riesz kernel, i.e., f(dx) = kxk��dx, 0 < � < 2 ^ d,
then R(f) = 1. Moreover, it is easy to deduce from Lemma 5.9 below that, in the
case that d = 1, R(f) is always infinite, which might suggest that the above 1/N
rate of decay of Var(SN,t) is not the right one in one dimension. Indeed, this is the
case. And the following result identifies the correct rate canonically as N�1 logN in
dimension one.

Theorem 5.2 (d = 1). Assume f(R) < 1. Then for all t > 0,

tf(R)  lim inf
N!1

N

logN
Var(SN,t)  lim sup

N!1

N

logN
Var(SN,t)  2tf(R).(5.2)

Both bounds are sharp in the following sense:

1. If f = a�0 for some a > 0, then Var(SN,t) ⇠ 2tf(R)N�1 logN as N ! 1.

2. If limx!1 f̂(x) = 0, then Var(SN,t) ⇠ tf(R)N�1 logN as N ! 1.

Remark 5.3. The condition in item 2 of Theorem 5.2 is a well-known one. Indeed,
finite Borel measures whose Fourier transforms vanish at infinity are called Rajchman

measures. See Lyons [19] for the background and rich history of the work on Rajchman
measures in classical harmonic analysis.

We now turn to the Riesz kernel case. Define

'(y) :=
1� cos y

y2
for all y 2 R \ {0},(5.3)

and '(0) := 1/2 to preserve continuity.

Theorem 5.4 (Riesz kernel). Assume f(dx) = kxk��dx and f̂(dx) = �,d
kxk��ddx, where 0 < � < 2^ d and �,d is a positive constant depending on � and d.

1. If 0 < � < 1, then

lim
N!1

N�VN (t) =
t

1� � [�1,1]d
kzk��

dY

i=1

(1� |zi|)dz := t�0,�,d.(5.4)

2. If 1 = � < 2 ^ d, then

lim
N!1

N

logN
VN (t) =

2t1,d
⇡d Rd

kzk1�d
dY

j=1

'(zj)dz := t�1,�,d.(5.5)

3. If 1 < � < 2 ^ d, then

lim
N!1

N2��VN (t) =
t2�� �,d

⇡d Rd

kzk2���d
dY

j=1

'(zj)dz
1

0
r��2e�rdr

(5.6)

:= t2���2,�,d.
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We now begin to work toward proving the above theorems. First, we denote

VN (t) := Var(SN,t) =
Rd

⇣
IN ⇤ ĨN

⌘
(x)�t(x) dx,(5.7)

where IN and ĨN , defined in (4.10), are given by IN (x) := N�d1[0,N ]d(x) and ĨN (x) =
IN (�x) for x 2 Rd, and for every N, t > 0 and x 2 Rd,

�t(x) := Cov [U(t , 0) , U(t , x)] .(5.8)

Now we begin to establish a series of supporting lemmas.

Lemma 5.5 (d � 1). Let � be defined by (5.8). Then, for every t > 0 and

x 2 Rd
,

�t(x) =
t

0

�
p2s(t�s)/t ⇤ f

�
(sx/t) ds+

t

0
ds

Rd

f(dy) p2s(t�s)/t

⇣
y �

s

t
x
⌘
�s(y).

Proof. Apply (1.6) and elementary properties of the Walsh integral to see that

E [U(t , 0)U(t , x)]

= 1 +
t

0

ds
Rd

dy0

Rd
f(dy) ps(t�s)/t(y

0)ps(t�s)/t

⇣
y + y0 � s

t
x
⌘
E
⇥
U(s , y0)U(s , y + y0)

⇤

= 1 +
t

0

ds
Rd

dy0

Rd
f(dy) ps(t�s)/t(y

0)ps(t�s)/t

⇣
y + y0 � s

t
x
⌘
E [U(s , 0)U(s , y)] ,

owing to the stationarity (Theorem 1.1). This and the semigroup property of the heat
kernel together imply the lemma since E[U(t , 0)U(t , x)] = �t(x) + 1.

Our second supporting lemma describes the behavior of �t as t ! 0.

Lemma 5.6 (d � 1). limt#0 �t(x) = 0 uniformly for all x 2 Rd
.

Proof. It is easy to deduce from Lemma 5.5 and positivity of the solution (see
Remark 3.2) that

�t(x) �
t

0

�
p2s(t�s)/t ⇤ f

�
(sx/t) ds � 0 for all t > 0 and x 2 Rd.(5.9)

Now, the Cauchy–Schwarz inequality and stationarity together ensure that �t(x) 

�t(0). Therefore, it su�ces to prove that �t(0) ! 0 as t # 0. Theorem 1.1 ensures
that C := supt2(0,1) �t(0) = supt2(0,1) supx2Rd �t(x) < 1. Therefore, we deduce from
Lemma 5.5 that

�t(0)  (1 + C)
t

0

�
p2s(t�s)/t ⇤ f

�
(0) ds.

Since �t(0)  (1 + C)4e�t⌥(2�) for every �, t > 0 (Lemma 3.1), it follows that

lim sup
t!0

�t(0)  (1 + C)4 lim
�!1

⌥(2�) = 0.

This concludes the proof.

In light of (5.7) and Lemma 5.5, we write

VN (t) = Var(SN,t) = V (1)
N (t) + V (2)

N (t),(5.10)
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where

V (1)
N (t) =

t

0
ds

Rd

dx
⇣
IN ⇤ ĨN

⌘
(x)
�
p2s(t�s)/t ⇤ f

�
(sx/t),(5.11)

V (2)
N (t) =

t

0
ds

Rd

dx
⇣
IN ⇤ ĨN

⌘
(x)

Rd

f(dy) p2s(t�s)/t

⇣
y �

s

t
x
⌘
�s(y).(5.12)

As we will see, the main contribution for the asymptotic behavior of VN (t) is V (1)
N (t),

thanks to Lemma 5.6.

5.1. Analysis in dimension d � 2. The primary goal of this section is to
prove Theorem 5.1. Therefore, in this section, we will not assume that d � 2 unless
we say so explicitly. Recall the function ' defined in (5.3).

Lemma 5.7 (d � 1). For every N, t > 0,

V (1)
N (t) =

Rd

⇣
IN ⇤ ĨN

⌘
(x) dx

t

0
ds
�
p2s(t�s)/t ⇤ f

�
(sx/t)

=
t

N⇡d

N

0
ds

Rd

f̂(dz) e�tkzk2(1�s/N)s/N
dY

j=1

'(zjs).

Proof. By (7.1),

Rd

⇣
IN ⇤ ĨN

⌘
(x) dx

t

0
ds
�
p2(t�s)/t ⇤ f

�
(sx/t)

=
1

⇡d

t

0
ds

Rd

f̂(dz) e�s(t�s)kzk2/t
dY

j=1

'(Nzjs/t)

=
t

N⇡d

N

0
ds

Rd

f̂(dz) e�tkzk2(1�s/N)s/N
dY

j=1

'(zjs),

where in the second equality we use change of variable (s ! st/N).

Before we prove Theorem 5.1, we give some estimates on the quantity R(f).

Proposition 5.8 (d � 1). Recall R(f) from (1.11). Then,

21�2d
1

0
f
�
[�r , r]d

� dr
rd

 R(f) 
1

0
f
�
[�r , r]d

� dr
rd

.

Proof. We observe that
Qd

j=1 '(zjr) = 2�dr�d[(I1 ⇤ Ĩ1)(•/r)]b(z) for all z 2 Rd

and r > 0. Hence we can write

R(f) =
1

(2⇡)d

1

0

dr

rd Rd

f̂(dz)

✓
\⇣

I1 ⇤ Ĩ1
⌘
(•/r)

◆
(z).

Denote �r = (I1 ⇤ Ĩ1)(•/r) for every fixed r > 0. Choose a nonnegative smooth
function  with compact support such that Rd  (x)dx = 1. For 0 < " < 1, define
 "(x) = "�d (x/") for all x 2 Rd. It is clear that  " ⇤ �r has compact support
uniformly for all 0 < " < 1 and sup0<"<1 supx2Rd ( " ⇤ �r) (x) < 1. Moreover, we

have sup0<"<1 supx2Rd | ̂"(x)|  1 and lim"!0  ̂"(x) = 1 for all x 2 Rd. Using these
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facts and that f is locally integrable as a tempered distribution and Rd �̂r(x)f̂(dx) <
1 by Dalang’s condition, we obtain that for every fixed r > 0,

Rd

�r(x)f(dx) = lim
"!0 Rd

( " ⇤ �r) (x)f(dx) = lim
"!0

1

(2⇡)d Rd

 ̂"(x)�̂r(x)f̂(dx)

=
1

(2⇡)d Rd

�̂r(x)f̂(dx),

where the first and third equalities hold by the dominated convergence theorem and

the second by the definition of the Fourier transform and the property \ " ⇤ �r =  ̂"�̂r.
Therefore,

R(f) =
1

0

dr

rd Rd

⇣
I1 ⇤ Ĩ1

⌘
(z/r)f(dz).

Now appealing to the inequality 2�d1[�1/2,1/2]d  I1 ⇤ Ĩ1  1[�1,1]d (see [6, (3.17)]),
we obtain

21�2d
1

0
f
�
[�r , r]d

� dr
rd

 R(f) 
1

0
f
�
[�r , r]d

� dr
rd

,

which completes the proof.

Now we can prove Theorem 5.1.

Proof of Theorem 5.1. By Proposition 5.8, it is clear that R(f) is strictly positive
since we assume f(Rd) > 0 throughout the paper. Let us proceed with the proof of
(5.1).

Assume R(f) < 1 first. By Lemma 5.7 and the dominated convergence theorem,

lim
N!1

NV (1)
N (t) = lim

N!1

N
Rd

⇣
IN ⇤ ĨN

⌘
(x)dx

t

0
ds
�
p2(t�s)/t ⇤ f

�
(sx/t) = tR(f).

In light of (5.12), it remains to prove that

lim
N!1

N
Rd

⇣
IN ⇤ ĨN

⌘
(x) dx

t

0
ds

Rd

f(dy) p2s(t�s)/t

⇣
y �

s

t
x
⌘
�s(y) = 0.(5.13)

By the Cauchy–Schwarz inequality and stationarity, �t(x)  �t(0) for all t > 0
and x 2 Rd. Therefore,

Rd

⇣
IN ⇤ ĨN

⌘
(x) dx

t

0
ds

Rd

f(dy) p2s(t�s)/t

⇣
y �

s

t
x
⌘
�s(y)



t

0
�s(0) ds

Rd

⇣
IN ⇤ ĨN

⌘
(x) dx

Rd

f(dy) p2s(t�s)/t

⇣
y �

s

t
x
⌘

for every N, t > 0. Repeat the computation of Lemma 5.7 to find that, for every
N, t > 0,

Rd

⇣
IN ⇤ ĨN

⌘
(x) dx

t

0
ds

Rd

f(dy) p2s(t�s)/t

⇣
y �

s

t
x
⌘
�s(y)(5.14)


t

N⇡d

N

0
ds�st/N (0)

Rd

f̂(dz) e�tkzk2(1�s/N)s/N
dY

j=1

'(zjs).
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Since sup0<rt �r(0) < 1 and limN!1 �st/N (0) = 0 for all s > 0 (see Lemma 5.6),
the equality (5.14) and the dominated convergence theorem together imply (5.13).
This completes the proof of the theorem when R(f) < 1.

We now assume that R(f) = 1 and aim to prove (5.1). Thanks to (5.9) and

Lemma 5.5, �t(x) �
t
0 (p2s(t�s)/t ⇤ f)(sx/t) ds. Therefore, (5.10) and Lemma 5.7

together imply that, for every N, t > 0,

NVar(SN,t) �
t

⇡d

N

0
ds

Rd

f̂(dz) e�tkzk2(1�s/N)s/N
dY

j=1

'(zjs).

Now we apply Fatou’s lemma to conclude lim infN!1 NVar(SN,t) � tR(f) = 1.
This implies (5.13).

In the following, we give some criteria for the finiteness of R(f).

Lemma 5.9. If d = 1, R(f) = 1. If d � 2, R(f) < 1 is equivalent to one of the

following:

1.
1

0 r�df([�r , r]d) dr < 1;

2. Rd kxk1�d f(dx) < 1;

3. Rd kzk�1f̂(dz) < 1.

Proof. Let d = 1. According to (1.9), there exists R > 0 such that f([�R,R]) > 0.
Hence by Proposition 5.8,

R(f) �
1

2

1

0
r�1f([�r , r]) dr � f([�R ,R])

1

R
r�1 dr = 1.

Assume d � 2. By Proposition 5.8, we only need to prove that items 1, 2, and
3 are equivalent. Let Br = {x 2 Rd : kxk  r} to see that Br ✓ [�r , r]d ✓ Br

p

d,
whence

1

0

f(Br)

rd
dr 

1

0
f
�
[�r , r]d

� dr
rd

 (
p

d)d�1
1

0

f(Br)

rd
dr.

This proves the equivalence of 1 and 2 since Fubini’s theorem ensures that

1

0

f(Br)

rd
dr =

1

d� 1 Rd

f(dx)

kxkd�1
.

Next, we prove the equivalence of 1 and 3. We observe that for all r > 0 and
z 2 Rd,

dY

j=1

sin2(rzj)

(rzj)2
= 2�dr�d

⇥�
1[�1,1]d ⇤ 1[�1,1]d

�
(•/r)

⇤
b(z).

Using the same approximation argument as in the proof of Proposition 5.8, we have

1

0
dr

Rd

f̂(dz)
dY

j=1

sin2(rzj)

(rzj)2
= 2�d

1

0

dr

rd Rd

f̂(dz)
⇥�
1[�1,1]d ⇤ 1[�1,1]d

�
(•/r)

⇤
b(z)

= ⇡d
1

0

dr

rd Rd

f(dz)
�
1[�1,1]d ⇤ 1[�1,1]d

�
(z/r).

Now we apply the inequality 1[�1,1]d  1[�1,1]d ⇤ 1[�1,1]d  2d1[�2,2]d and use Lemma
5.10 to conclude the equivalence of 1 and 3.
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Lemma 5.10. The following relation holds:

1

0

dY

j=1

sin2(rzj)

(rzj)2
dr ⇣ kzk�1.

Proof. On one hand, we can write

dY

j=1

sin2(rzj)

(rzj)2


dY

j=1

(1 ^ (r|zj |)
�2)  1 ^ (r max

1jd
|zj |)

�2
 1 ^ (d�1/2rkzk)�2,

which implies

1

0

dY

j=1

sin2(rzj)

(rzj)2
dr  kzk�1

1

0
dr (1 ^ (d�1r�2)).

On the other hand,

1

0

dY

j=1

sin2(rzj)

(rzj)2
dr �

rkzk1

dY

j=1

sin2(rzj)

(rzj)2
dr � kzk�1 inf

0<|x|1

✓
sinx

x

◆2d

.

Remark 5.11. From item 2 of Lemma 5.9, we deduce that R(f) = 1 if f is given
by a Riesz kernel that satisfies Dalang’s condition, ⌥(1) < 1, i.e., f(dx) = kxk��dx
for some 0 < � < d ^ 2.

5.2. Analysis in dimension d = 1. Set d = 1 and repeat the computations in
the proof of Lemmas 5.5 and 5.7 to see that

Var(SN,t) =
t

⇡N

t

0

dr

r

1

�1

dz '(z)e�
t(t�r)

r
z2

N2 f̂

✓
tz

Nr

◆

+
t

0
ds

R
f(dy)�s(y)

Rd

(IN ⇤ ĨN )(x)p2s(t�s)/t

⇣
y �

s

t
x
⌘
dx

:= V (1)
N (t) + V (2)

N (t),(5.15)

where ' and �s(y) are defined in (5.3) and (5.8), respectively.

Lemma 5.12. For all t > 0, V (2)
N (t) = o(log(N)/N) as N ! 1.

Proof. Choose and fix " > 0. Since supy2Rd �s(y) = �s(0), we apply Lemma 7.1
and the change of variables z 7! tz/(Ns) to see that

N

logN
V (2)
N (t) 

t

⇡ logN R
dz '(z)

t

0
ds

�s(0)

s
f̂

✓
tz

Ns

◆
exp

⇢
�
t(t� s)

N2s
z2
�


tf(R)
⇡ logN R

dz '(z)
t

0
ds

�s(0)

s
exp

⇢
�
t(t� s)

N2s
z2
�

:= T2,1 + T2,2,

where

T2,1 =
tf(R)
⇡ logN R

dz '(z)
t

0

ds

s
1{stN�"}�s(0) exp

⇢
�
t(t� s)

N2s
z2
�
,

T2,2 =
tf(R)
⇡ logN R

dz '(z)
t

0

ds

s
1{s>tN�"}�s(0) exp

⇢
�
t(t� s)

N2s
z2
�
.
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By Lemma A.1 in Chen et al. [8], for all " > 0,

T2,1 
7t log+(1/t)f(R)

⇡
sup

0stN�"

�s(0)
R
dz '(z) log+(1/|z|).

Hence by Lemma 5.6, for all " > 0,

lim sup
N!1

T2,1 = 0.(5.16)

Similarly, using Theorem 1.1 and the fact that R '(z)dz = ⇡, we deduce

T2,2  tf(R) sup
0st

�s(0)
log t� log(tN�")

logN
.(5.17)

Therefore, we conclude from (5.16) and (5.17) that, for all " > 0,

lim sup
N!1

N

logN
V (2)
N (t)  tf(R) sup

0st
�s(0)",

which proves this lemma by letting "! 0.

Proof of Theorem 5.2. In the case that f = �0, item 1 of Theorem 5.2 was proved
in Chen et al. [8]. The same proof works for the more general f of the form a�0.
Therefore, we prove only (5.2) and item 2.

We recall that, from Lemma 7.1,

V (1)
N (t) =

t

N⇡ R
dz '(z)

t

0

ds

s
exp

⇢
�
t(t� s)

N2s
z2
�
f̂

✓
tz

Ns

◆
.

Since f̂ is maximized at 0,

V (1)
N (t) 

tf(R)
⇡N R

dz '(z)
t

0

ds

s
exp

⇢
�
t(t� s)

N2s
z2
�
.

Hence Lemma A.1 of [8] and Lemma 5.12 imply the third inequality in (5.2).
On the other hand, using change of variables s = trN�2,

V (1)
N (t) =

t

⇡N

N2

0

dr

r R
dz '(z) exp

⇢
�tz2


1� (r/N2)

r

��
f̂

✓
zN

r

◆

=
t

⇡N
(T1,1 + T1,2),(5.18)

where

T1,1 :=
1

0

dr

r R
dz '(z) exp

⇢
�tz2


1� (r/N2)

r

��
f̂

✓
zN

r

◆
,

T1,2 :=
N2

1

dr

r R
dz '(z) exp

⇢
�tz2


1� (r/N2)

r

��
f̂

✓
zN

r

◆
.

It is easy to see that, for all N � 1 and for all a > 0

1

0
exp

⇢
�a


1� (r/N2)

r

��
dr

r


1

0
exp

⇢
�a


1� r

r

��
dr

r

= ea
1

a

e�s ds

s
 log+(e/a),
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where log+(x) = log(e + x) for x > 0. Since sup f̂ = f̂(0) = f(R), it follows that

T1,1  f(R)
R
'(z) log+

⇣ e

tz2

⌘
dz < 1.

Therefore,

lim sup
N!1

T1,1

logN
= 0.(5.19)

So all of the asymptotic behavior of V (1)
N (t) is captured via the asymptotic behavior

of T1,2. Now

T1,2 =
1

�1

dz '(z)
1

1/N2

ds

s
exp

⇢
�tz2


1� s

sN2

��
f̂
⇣ z

sN

⌘

= T1,2,1 + T1,2,2,

where

T1,2,1 :=
logN

� logN
dz '(z)

1

1/N2

ds

s
exp

⇢
�tz2


1� s

sN2

��
f̂
⇣ z

sN

⌘
,

T1,2,2 :=
|z|>logN

dz '(z)
1

1/N2

ds

s
exp

⇢
�
tz2

N2


1� s

s

��
f̂
⇣ z

sN

⌘
.

Now,

0  T1,2,2  f(R) log(N2)
|z|>logN

dz

✓
1� cos z

z2

◆
= o(logN).(5.20)

So all of the asymptotic behavior of V (1)
N (t) is captured via the asymptotic behavior

of T1,2,1. To study that term, we rescale one more time (but slightly di↵erently from
before) in order to see that

T1,2,1 =
logN

� logN
dz '(z)

N

1/N

dr

r
exp

⇢
�
tz2

N


1

r
�

1

N

��
f̂
⇣z
r

⌘

� exp

⇢
�
t| logN |

2

N

� logN

� logN
dz '(z)

N

1

dr

r
f̂
⇣z
r

⌘
.

Hence,

T1,2,1 � (1 + o(1))
logN

� logN
dz

✓
1� cos z

z2

◆ N

(logN)2

dr

r
f̂
⇣z
r

⌘

= (f(R) + o(1))
logN

� logN
dz

✓
1� cos z

z2

◆ N

(logN)2

dr

r

= (f(R) + o(1))
1

�1

✓
1� cos z

z2

◆
dz logN

= (⇡f(R) + o(1)) logN.
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This proves that

⇡f(R)  lim inf
N!1

1

logN
T1,2,1.(5.21)

Therefore, Lemma 5.12 and the relations (5.18), (5.19), (5.20), and (5.21) prove the
first inequality in (5.2).

It remains to prove item 2. We assume that f̂ vanishes at infinity. Combining
Lemma 5.12 and the above arguments, the problem is reduced to the following:

lim sup
N!1

T1,2,1

logN
 ⇡f(R).(5.22)

With this in mind, let us recall from the definition of T1,2,1 that

T1,2,1 

logN

� logN
'(z) dz

N

1/N

dr

r
f̂(z/r).

Because

logN

� logN
'(z) dz

N

(logN)2

dr

r
f̂(z/r)  ⇡f(R)

N

(logN)2

dr

r
⇠ ⇡f(R) logN,

as N ! 1, this and symmetry reduce our goal (5.22) to proving that, when f̂ vanishes
at infinity,

logN

0
'(z) dz

(logN)2

1/N

dr

r
f̂(z/r) = o(logN) as N ! 1.

Since
(logN)2

1/
p
logN

r�1 dr = o(logN), we can further reduce our goal to proving the

following: When f̂ vanishes at infinity,

logN

0
'(z) dz

1/
p
logN

1/N

dr

r
f̂(z/r) = o(logN) as N ! 1.

But this is so since (1)

logN

1/(logN)1/4
'(z) dz

1/
p
logN

1/N

dr

r
f̂(z/r)  ⇡ sup

w�(logN)1/4
f̂(w) logN = o(logN),

(5.23)

and (2) because '  1,

1/(logN)1/4

0
'(z) dz

1/
p
logN

1/N

dr

r
f̂(z/r) 

f(R)
(logN)1/4

1/
p
logN

1/N

dr

r
= o(logN).

This proves item 2.

5.3. Analysis of Riesz kernel case. We now aim to prove Theorem 5.4. As-
sume f(dx) = kxk��dx and f̂(dx) = �,d kxk��ddx, where 0 < � < 2 ^ d and �,d
is a positive constant depending on � and d. In this case, we first provide another
supporting lemma on the behavior of �t(x) as x ! 1.
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Lemma 5.13. Recall (5.8). For all t > 0, limx!1 �t(x) = 0.

Proof. By the Poincaré inequality (2.4),

|�t(x)| = |Cov(U(t , 0) , U(t , x))|



t

0
ds

Rd

f(dy)
Rd

dy0 kDs,y0U(t , 0)k2kDs,y+y0U(t , x)k2

 C2
t,2

t

0
ds

Rd

f(dy)
Rd

dy0 ps(t�s)/s (y
0)ps(t�s)/s

⇣
y0 + y �

s

t
x
⌘

= C2
t,2

t

0
ds

R2

f(dy)p2s(t�s)/s

⇣
y �

s

t
x
⌘
=

t

0
ds
�
p2s(t�s)/s ⇤ f

� ⇣s
t
x
⌘
,

where in the second inequality we use Proposition 4.1 and in the first equality we use
semigroup property. Now we apply (3.1) to see that

|�t(x)|  C2
t,2

t

0
ds

Rd

f̂(dz) exp

⇢
�
s(t� s)kzk2

t
+ i
⇣s
t

⌘
z · x

�

= �,dC
2
t,2

t

0
ds

Rd

dz kzk��d exp

⇢
�
s(t� s)kzk2

t
+ i
⇣s
t

⌘
z · x

�
.

Since
t
0 ds Rd dz kzk��d exp{�s(t� s)kzk2/t} < 1, the dominated convergence the-

orem and the Riemann–Lebesgue lemma together imply that limx!1 �t(x) = 0.

Proof of Theorem 5.4, part 1: 0 < � < 1. Let  (x) :=
Qd

i=1(1 � |xi|) for all x 2

Rd. We observe that (IN ⇤ Ĩ)(x) = N�d (x/N)1[�N,N ]d(x) for all x 2 Rd. Recall
(5.11) and (5.12). Since f(dx) = kxk��dx, we can write

V (1)
N (t) =

1

Nd
[�N,N ]d

dx (x/N)
t

0
ds

Rd

dy kyk��ppp2s(t�s)/t

⇣
y �

s

t
x
⌘
,

V (2)
N (t) =

1

Nd
[�N,N ]d

dx (x/N)
t

0
ds

Rd

dy kyk��ppp2s(t�s)/t

⇣
y �

s

t
x
⌘
�s(y).

The term V (1)
N (t) can be expressed as

V (1)
N (t) =

1

Nd
[�N,N ]d

dx  (x/N)
t

0
dsE

0

@
�����

r
2s(t� s)

t
Z �

s

t
x

�����

��
1

A

= N��

[�1,1]d
dz  (z)

t

0
ds E

0

@
�����
1

N

r
2s(t� s)

t
Z �

s

t
z

�����

��
1

A ,

where we have made the change of variable x = Nz and Z denotes a d-dimensional
standard normal random variable. An easy exercise shows that limN!1(p1/N ⇤

k · k
��)(x) = kxk�� for all x 2 Rd

\ {0}, which implies that for any s 2 (0 , t]
and z 2 Rd

\ {0},

lim
N!1

E

 ����
1

N

p
2s(t� s)/tZ �

s

t
z

����
��
!

= t�s��
kzk�� .

Moveover, according to Lemma 3.1 of [17],

sup
N�1

E

0

@
�����
1

N

r
2s(t� s)

t
Z �

s

t
z

�����

��
1

A  Ct�s��
kzk�� .
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Because � < 1, the dominated convergence theorem implies that

lim
N!1

N�V (1)
N (t) =

[�1,1]d
dz  (z)

t

0
ds t�s��

kzk�� < 1.

Finally to complete the proof of (5.4) it su�ces to show that

lim
N!1

N�V (2)
N (t) = 0.(5.24)

Using the same arguments as before and recalling �s(y) in (5.8), we can write

N�V (2)
N (t) 

[�1,1]d
dz  (z)

t

0
ds E

"
�s

 r
2s(t� s)

t
Z �

s

t
Nz

!

����
1

N

p
2s(t� s)/tZ �

s

t
z

����
��
#
.

Thus, we can conclude (5.24) from the fact that �s(
p

2s(t� s)/tZ � (sNz)/t) is
uniformly bounded (Theorem 1.1) and converges to zero almost surely as N ! 1

(Lemma 5.13).

Before we move on to proving part 2 and part 3, we express the quantities V (1)
N (t)

and V (2)
N (t) using f̂(dx) = �,dkxk��ddx. In fact, from (5.11) and using the identity

(7.1), we see that

V (1)
N (t) =

�,d
⇡d

t

0
ds

Rd

e�s(t�s)kzk2/t
dY

j=1

1� cos(Nzjs/t)

(Nzjs/t)2
kzk��ddz

=
�,d
⇡dN�

t

0
ds

t�

s� Rd

dz kzk��d
dY

j=1

'(zj) exp

⇢
�
t(t� s)

N2s
kzk2

�

=
t�,d
⇡dN� Rd

dz kzk��d
dY

j=1

'(zj)
1

0
dr (1 + r)��2 exp

⇢
�
rtkzk2

N2

�
(5.25)

=
t2�� �,d
⇡dN2�� Rd

dz kzk2���d
dY

j=1

'(zj)
1

0
dr

✓
tkzk2

N2
+ r

◆��2

e�r,(5.26)

where ' is defined in (5.3) and we use change of variables in the last three equalities.
Similarly, using change of variables and (5.12)

V (2)
N (t) 

t�,d
⇡dN� Rd

dz kzk��d
dY

j=1

'(zj)
1

0
dr (1 + r)��2e�r· tkzk

2

N2 �t(1+r)�1(0)

(5.27)

=
t2�� �,d
⇡dN2�� Rd

dz kzk2���d
dY

j=1

'(zj)
1

0
dr

✓
tkzk2

N2
+ r

◆��2

⇥ e�r�t(1+rN2/(tkzk2))�1(0).

D
ow

nl
oa

de
d 

04
/2

3/
21

 to
 1

67
.1

72
.1

65
.1

25
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2112 DAVAR KHOSHNEVISAN, DAVID NUALART, AND FEI PU

Proof of Theorem 5.4, part 2: � = 1. Using (5.26) with � = 1, we have

N

logN
V (1)
N (t) =

1,d
⇡d Rd

dz kzk1�d
dY

j=1

'(zj)
t

logN

1

0
dr

✓
tkzk2

N2
+ r

◆�1

e�r.

(5.28)

According to Lemma A.1 of Chen et al. [8], we have

t

logN

1

0
dr

✓
tkzk2

N2
+ r

◆�1

e�r =
t

logN

t

0
exp

✓
�
(t� s)t

s
·
kzk2

N2

◆
ds

s

 7t log+(1/t) log+(1/kzk) for all N � e,(5.29)

where log+(a) = log(e + a) for a > 0, and

lim
N!1

t

logN

1

0
dr

✓
tkzk2

N2
+ r

◆�1

e�r = 2t for all z 2 Rd
\ {0}.(5.30)

Therefore, since Rd kzk1�d
Qd

j=1 '(zj) log+(1/kzk)dz < 1, by (5.28)–(5.30) and the
dominated convergence theorem,

lim
N!1

N

logN
V (1)
N (t) =

2t1,d
⇡d Rd

kzk1�d
dY

j=1

'(zj)dz.

In light of (5.5), it su�ces to prove

lim
N!1

N

logN
V (2)
N (t) = 0.(5.31)

Similarly, letting � = 1 in (5.27),

N

logN
V (2)
N (t) 

1,d
⇡d Rd

dz kzk1�d
dY

j=1

'(zj)
t

logN

1

0
dr

✓
tkzk2

N2
+ r

◆�1

(5.32)

⇥ e�r�t(1+rN2/(tkzk2))�1(0).

Choose and fix 0 < " < 2. We see from (5.32) and (5.29) that

N
logN

V (2)
N (t)  1,d

⇡d
sup

0st
�s(0)

Rd
dz kzk1�d

dY

j=1

'(zj)
t

logN

N�"

0

dr

✓
tkzk2

N2
+ r

◆�1

+
1,d

⇡d
7t log+(1/t)

Rd
dz kzk1�d

dY

j=1

'(zj) log+(1/kzk) sup
0st2kzk2/N2�"

�s(0).

Letting N ! 1 and using Lemma 5.6 and the dominated convergence theorem, we
conclude that for every 0 < " < 2,

lim sup
N!1

N

logN
V (2)
N (t) 

t(2� ")1,d
⇡d

sup
0st

�s(0)
Rd

dz kzk1�d
dY

j=1

'(zj).

Since the choice of 0 < " < 2 is arbitrary, we let " ! 2 to obtain (5.31). This proves
(5.5).
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Proof of Theorem 5.4, part 3: 1 < � < 2. Recall (5.26). Under the condition 1 <

� < 2, we have Rd kzk2���d
Qd

j=1 '(zj)dz < 1 and
1

0 r��2e�rdr < 1. Hence by
the dominated convergence theorem,

lim
N!1

N2��V (1)
N (t) =

t2�� �,d
⇡d Rd

kzk2���d
dY

j=1

'(zj)dz
1

0
r��2e�rdr.(5.33)

Moreover, from (5.27), Lemma 5.6, and the dominated convergence theorem

lim sup
N!1

N2��V (2)
N (t)

 t2�� �,d

⇡d
Rd
dz kzk2���d

dY

j=1

'(zj)
1

0

dr e�r lim
N!1

✓
tkzk2

N2
+r

◆��2

�t(1+rN2/(tkzk2))�1(0)

= 0,

which together with (5.33) proves (5.6).

6. Total variation distance. In this section, we will estimate the total variation
distance and prove Theorems 1.3–1.5.

We recall that

SN,t =
1

Nd
[0,N ]d

[U(t , x)� 1] dx and VN (t) = Var(SN,t).

We can estimate the total variation distance between the normalized random variable

eSN,t := SN,t/
p
VN (t)

and an N(0 , 1) random variable Z using the inequality (2.5). According to the in-
equality (2.5), we need to express the random variable eSN,t as a divergence or as an

Itô–Walsh stochastic integral. From (1.6) we obtain eSN,t = VN (t)�1/2�(vN ), where

vN (s, y) =
1

Nd
U(s , y)

[0,N ]d
ps(t�s)/t

⇣
y �

s

t
x
⌘
dx.(6.1)

In this way, inequality (2.5) yields

dTV( eSN,t, Z) 
2

VN (t)

q
Var (hDSN,t, vN iH).(6.2)

The Malliavin derivative of SN,t can be computed as follows:

Ds,ySN,t =
1

Nd

 

[0,N ]d
ps(t�s)/t

⇣
y �

s

t
x
⌘
dx

!
U(s , y)

+
1

Nd
(s,t)⇥Rd

 

[0,N ]d
pr(t�r)/t

⇣
w �

s

t
x
⌘
dx

!
Ds,yU(r , w) ⌘(dr, dw).(6.3)

From (6.1) and (6.3), we obtain

hDSN,t , vN iH =
1

N2d

t

0
ds

R2d

f(dz)dy
[0,N ]2d

dxdx0

ps(t�s)/t

⇣
y �

s

t
x
⌘
ps(t�s)/t

⇣
y + z �

s

t
x
⌘
U(s , y)U(s , y + z)

+
1

N2d

t

0 Rd

⌘(dr , dw)
r

0
ds

R2d

f(dz)dy
[0,N ]2d

dxdx0

pr(t�r)/t

⇣
w �

r

t
x
⌘
ps(t�s)/t

⇣
y + z �

s

t
x0

⌘
U(s , y + z)Ds,yU(r , w),
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where we use the stochastic Fubini’s theorem in the second equality. As a consequence,

Var (hDSN,t, vN iH) 
2

N4d

⇣
�(1)

N + �(2)
N

⌘
,(6.4)

where

�(1)
N =

[0,t]2
ds1ds2

R4d
f(dz1)f(dz2)dy1dy2

⇥
[0,N ]4d

dx1dx
0

1dx2dx
0

2 ps1(t�s1)/t

⇣
y1 �

s1
t
x1

⌘

⇥ ps1(t�s1)/t

⇣
y1 + z1 �

s1
t
x0

1

⌘
ps2(t�s2)/t

⇣
y2 �

s2
t
x2

⌘
ps2(t�s2)/t

⇣
y2 + z2 �

s2
t
x0

2

⌘

⇥ Cov (U(s1 , y1)U(s1 , y1 + z1) , U(s2 , y2)U(s2 , y2 + z2)) ,

and

�(2)
N =

t

0
dr

[0,r]2
ds1ds2

R6d

f(db)dwf(dz1)dy1f(dz2)dy2
[0,N ]4d

dx1dx
0

1dx2dx
0

2

⇥ pr(t�r)/t

⇣
w �

r

t
x1

⌘
ps1(t�s1)/t

⇣
y1 + z1 �

s1
t
x0

1

⌘

⇥ pr(t�r)/t

⇣
w + b�

r

t
x2

⌘
ps2(t�s2)/t

⇣
y2 + z2 �

s2
t
x0

2

⌘

⇥ E [U(s1 , y1 + z1)Ds1,y1
U(r , w)U(s2 , y2 + z2)Ds2,y2

U(r , w + b)] .

We are going to estimate the terms �(1)
N and �(2)

N . Using the Poincaré inequality (2.4),
we can write

�(1)
N 

[0,t]2
ds1ds2

s1^s2

0

dr
R6d

f(dz1)f(dz2)f(db)dady1dy2
[0,N ]4d

dx1dx
0

1dx2dx
0

2

⇥ ps1(t�s1)/t

⇣
y1 �

s1
t
x1

⌘
ps1(t�s1)/t

⇣
y1 + z1 �

s1
t
x0

1

⌘

⇥ ps2(t�s2)/t

⇣
y2 �

s2
t
x2

⌘
ps2(t�s2)/t

⇣
y2 + z2 �

s2
t
x0

2

⌘

⇥
⇣
kDr,aU(s1 , y1)k4 kU(s1 , y1 + z1)k4 + kU(s1 , y1)k4 kDr,aU(s1 , y1 + z1)k4

⌘

⇥
⇣
kDr,a+bU(s2 , y2)k4 kU(s2 , y2 + z2)k4 + kU(s2 , y2)k4 kDr,a+bU(s2 , y2 + z2)k4

⌘
.

The estimates (1.8) and (4.1) and the semigroup property yield

�(1)
N  4C2

t,4c
2
t,4

[0,t]2
ds1ds2

s1^s2

0

dr
R5d

f(dz1)f(dz2)f(db)dy1dy2
[0,N ]4d

dx1dx
0

1dx2dx
0

2

⇥ ps1(t�s1)/t

⇣
y1 �

s1
t
x1

⌘
ps1(t�s1)/t

⇣
y1 + z1 �

s1
t
x0

1

⌘

⇥ ps2(t�s2)/t

⇣
y2 �

s2
t
x2

⌘
ps2(t�s2)/t

⇣
y2 + z2 �

s2
t
x0

2

⌘

⇥
"
pr(s1�r)/s1+r(s2�r)/s2

✓
b� r

s2
y2 +

r
s1

y1

◆
+ pr(s1�r)/s1+r(s2�r)/s2

⇥
✓
b� r

s2
(y2 + z2) +

r
s1

y1

◆

+ pr(s1�r)/s1+r(s2�r)/s2 ⇥
✓
b� r

s2
y2 +

r
s1

(y1 + z1)

◆

+ pr(s1�r)/s1+r(s2�r)/s2

✓
b� r

s2
(y2 + z2) +

r
s1

(y1 + z1)

◆#
.
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By symmetry, we conclude that

�(1)
N  16C2

t,4c
2
t,4

[0,t]2
ds1ds2

s1^s2

0

dr
R5d

f(dz1)f(dz2)f(db)dy1dy2
[0,N ]4d

dx1dx
0

1dx2dx
0

2

(6.5)

⇥ ps1(t�s1)/t

⇣
y1 �

s1
t
x1

⌘
ps1(t�s1)/t

⇣
y1 + z1 �

s1
t
x0

1

⌘

⇥ ps2(t�s2)/t

⇣
y2 �

s2
t
x2

⌘
ps2(t�s2)/t

⇣
y2 + z2 �

s2
t
x0

2

⌘

⇥ pr(s1�r)/s1+r(s2�r)/s2

✓
b� r

s2
y2 +

r
s1

y1

◆
.

As for �(2)
N , similarly, by the Cauchy–Schwarz inequality and the estimates (1.8)

and (4.1), one sees that

�(2)
N  C2

t,4c
2
t,4

t

0

dr
[0,r]2

ds1ds2
R6d

f(db)dwf(dz1)dy1f(dz2)dy2
[0,N ]4d

dx1dx
0

1dx2dx
0

2

(6.6)

⇥ pr(t�r)/t

⇣
w � r

t
x1

⌘
ps1(t�s1)/t

⇣
y1 + z1 �

s1
t
x0

1

⌘
pr(t�r)/t

⇣
w + b� r

t
x2

⌘

⇥ ps2(t�s2)/t

⇣
y2 + z2 �

s2
t
x0

2

⌘
ps1(r�s1)/r

⇣
y1 �

s1
r
w
⌘
ps2(r�s2)/r

⇣
y2 �

s2
r
(w + b)

⌘

= C2
t,4c

2
t,4

t

0

dr
[0,r]2

ds1ds2
R4d

f(db)dwf(dz1)f(dz2)
[0,N ]4d

dx1dx
0

1dx2dx
0

2

⇥ pr(t�r)/t

⇣
w � r

t
x1

⌘
ps1(t�s1)/t+s1(r�s1)/r

⇣
z1 �

s1
t
x0

1 +
s1
r
w
⌘

⇥ pr(t�r)/t

⇣
w + b� r

t
x2

⌘
ps2(t�s2)/t+s2(r�s2)/r

⇣
z2 �

s2
t
x0

2 +
s2
r
(w + b)

⌘
,

where we use a semigroup property in the equality.
In the following, we will prove Theorems 1.3–1.5 separately. The identity below

will be used several times later on:

pt(�x) = ��dpt/�2(x) for all x 2 Rd and t, � > 0.(6.7)

6.1. Proof of Theorem 1.3.

Proof of Theorem 1.3. With the notation introduced in (6.4) and according to
Theorem 5.1, it su�ces to show that

N�4d+3
⇣
�(1)

N + �(1)
N

⌘
 C(6.8)

for all N � e and for some constant C depending on t.

We will start with the expression for �(1)
N given in (6.5). Using the elementary

relation

ppp�(x)ppp�(y) = 2dppp2�(x+ y)ppp2�(x� y), � > 0, x, y 2 Rd,(6.9)

we can write

ps1(t�s1)/t

⇣
y1 �

s1
t
x1

⌘
ps1(t�s1)/t

⇣
y1 + z1 �

s1
t
x0

1

⌘

= 2dp2s1(t�s1)/t

⇣
2y1 + z1 �

s1
t
(x1 + x0

1)
⌘
p2s1(t�s1)/t

⇣
z1 �

s1
t
(x0

1 � x1)
⌘

= ps1(t�s1)/(2t)

⇣
y1 +

z1
2

�
s1
2t

(x1 + x0

1)
⌘
p2s1(t�s1)/t

⇣
z1 �

s1
t
(x0

1 � x1)
⌘
,

D
ow

nl
oa

de
d 

04
/2

3/
21

 to
 1

67
.1

72
.1

65
.1

25
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2116 DAVAR KHOSHNEVISAN, DAVID NUALART, AND FEI PU

where in the second equality we used the scaling property (6.7). In the same way, we
obtain

ps2(t�s2)/t

⇣
y2 �

s2
t
x2

⌘
ps2(t�s2)/t

⇣
y2 + z2 �

s2
t
x0

2

⌘

= ps2(t�s2)/(2t)

⇣
y2 +

z2
2

�
s2
2t

(x2 + x0

2)
⌘
p2s2(t�s2)/t

⇣
z2 �

s2
t
(x0

2 � x2)
⌘
.

Therefore,

L :=
R2d

dy1dy2 ps1(t�s1)/t

⇣
y1�

s1
t
x1

⌘
ps1(t�s1)/t

⇣
y1+z1 �

s1
t
x0

1

⌘
ps2(t�s2)/t

⇣
y2�

s2
t
x2

⌘

⇥ ps2(t�s2)/t

⇣
y2 + z2 �

s2
t
x0

2

⌘
pr(s1�r)/s1+r(s2�r)/s2

✓
b� r

s2
y2 +

r
s1

y1

◆

=
⇣s1
r

⌘d
ps1(t�s1)/t

⇣
z1 �

s1
t
(x0

1 � x1)
⌘
ps2(t�s2)/t

⇣
z2 �

s2
t
(x0

2 � x2)
⌘

⇥
R2d

dy1dy2 ps1(t�s1)/(2t)

⇣
y1 +

z1
2

� s1
2t

(x1 + x0

1)
⌘
ps2(t�s2)/(2t)

⇥
⇣
y2 +

z2
2

� s2
2t

(x2 + x0

2)
⌘
p(s1/r)2[r(s1�r)/s1+r(s2�r)/s2]

✓
s1
r
b� s1

s2
y2 + y1

◆
.

With the notation

M = p2s1(t�s1)/t

⇣
z1 �

s1
t
(x0

1 � x1)
⌘
p2s2(t�s2)/t

⇣
z2 �

s2
t
(x0

2 � x2)
⌘

integrating in y1 and using the semigroup property yields

L =
⇣s1
r

⌘d
M

Rd

dy2 ps2(t�s2)/(2t)

⇣
y2 +

z2
2

�
s2
2t

(x2 + x0

2)
⌘

⇥ ps1(t�s1)/(2t)+(s1/r)2[r(s1�r)/s1+r(s2�r)/s2]

✓
s1
r
b�

s1
s2

y2 �
z1
2

+
s1
2t

(x1 + x0

1)

◆

=
⇣s2
r

⌘d
M

Rd

dy2 ps2(t�s2)/(2t)

⇣
y2 +

z2
2

�
s2
2t

(x2 + x0

2)
⌘

⇥ p(s2/s1)2{s1(t�s1)/(2t)+(s1/r)2[r(s1�r)/s1+r(s2�r)/s2]}

⇥

✓
s2
r
b� y2 �

s2
2s1

z1 +
s2
2t

(x1 + x0

1)

◆
,

where in the second equality we used the scaling property (6.7). Integrating in y2 and
using the semigroup property we finally get

L =
⇣s2
r

⌘d
Mp↵1

✓
s2
r
b�

s2
2s1

z1 +
s2
2t

(x1 + x0

1 � x2 � x0

2) +
z2
2

◆
,

where

↵1 =
s2(t� s2)

2t
+

✓
s2
s1

◆2⇢s1(t� s1)

2t
+
⇣s1
r

⌘2 r(s1 � r)

s1
+

r(s2 � r)

s2

��
.

A further application of the scaling property (6.7) yields

L = Mp↵2

✓
b�

r

2s1
z1 +

r

2s2
z2 +

r

2t
(x1 + x0

1 � x2 � x0

2)

◆
,
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where

↵2 =

✓
r

s2

◆2

↵1 =
r2(t� s2)

2ts2
+

r2(t� s1)

2ts1
+

r(s1 � r)

s1
+

r(s2 � r)

s2
.

Making the change of variables xi ! Nxi we obtain

N�4d+3�(1)
N

 N316C2
t,4c

2
t,4

[0,1]4d
dx1dx

0

1dx2dx
0

2
R3d

f(dz1)f(dz2)f(db)
[0,t]2

ds1ds2
s1^s2

0

dr

⇥ p2s1(t�s1)/t

✓
z1 �

Ns1
t

(x0

1 � x1)

◆
p2s2(t�s2)/t

✓
z2 �

Ns2
t

(x0

2 � x2)

◆

⇥ p↵2

✓
b� r

2s1
z1 +

r
2s2

z2 +
Nr
2t

(x1 + x0

1 � x2 � x0

2)

◆
.

With a further change of variables s1 = t
N r1, s2 = t

N r2, r = t
N �, we can write

N�4d+3�(1)
N = 16C2

t,4c
2
t,4t

3

[0,1]4d
dx1dx

0

1dx2dx
0

2
R3d

f(dz1)f(dz2)f(db)
[0,N ]2

dr1dr2

⇥ p 2tr1
N (1�

r1
N ) (z1 � r1(x

0

1 � x1))p 2tr2
N (1�

r1
N ) (z2 � r2(x

0

2 � x2))

⇥

r1^r2

0
d� p�3,N

✓
b�

�

2r1
z1 +

�

2r2
z2 +

�

2
(x1 + x0

1 � x2 � x0

2)

◆
,

where

�3,N =
t�2

2N

✓
1

r1
+

1

r2
�

2

N

◆
+

t�

N

✓
2�

�

r1
�
�

r2

◆
.

We also set

�1,N =
2tr1
N

⇣
1�

r1
N

⌘
, �2,N =

2tr2
N

⇣
1�

r2
N

⌘
.

With the notation y1 = r1(x0

1 � x1), y2 = r2(x0

2 � x2), y3 = �
2 (x1 + x0

1 � x2 � x0

2), the
Fourier transform of the function

 1(z1, z2, b) := p�1,N (z1 � y1)p�2,N (z2 � y2)p�3,N

✓
b�

�

2r1
z1 +

�

2r2
z2 + y3

◆

is given by

 ̂1(⇠1, ⇠2, ⇠3) = exp

 
�
�1,N
2

����⇠1 +
�

2r1
⇠3

����
2

�
�2,N
2

����⇠2 �
�

2r2
⇠3

����
2

�
�3,N
2

k⇠3k
2

!

⇥ exp

✓
i

✓
⇠1 +

�

2r1
⇠3

◆
· y1 + i

✓
⇠2 �

�

2r2
⇠3

◆
· y2 � i⇠3 · y3

◆
.

Notice that
✓
⇠1 +

�

2r1
⇠3

◆
· y1 +

✓
⇠2 �

�

2r2
⇠3

◆
· y2 � ⇠3 · y3

= �x1 · (r1⇠1 + �⇠3)� x2 · (r2⇠2 � �⇠3) + x0

1 · (r1⇠1) + x0

2 · (r2⇠2) .

Set

�1(⇠1, ⇠2, ⇠3) :=
[0,1]4d

dx1dx
0

1dx2dx
0

2

exp
�
i
�
�x1 · (r1⇠1 + �⇠3)� x2 · (r2⇠2 � �⇠3) + x0

1 · (r1⇠1) + x0

2 · (r2⇠2)
��

.
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Then, Parseval’s identity implies that

N�4d+3�(1)
N

 16C2
t,4c

2
t,4t

3 1

(2⇡)3d [0,N ]2
dr1dr2

r1^r2

0
d�

R3d

f̂(d⇠1)f̂(d⇠2)f̂(d⇠3)�1(⇠1, ⇠2, ⇠3)

⇥ exp

 
�
�1,N
2

����⇠1 +
�

2r1
⇠3

����
2

�
�2,N
2

����⇠2 �
�

2r2
⇠3

����
2

�
�3,N
2

k⇠3k
2

!

 C
[0,1)3

d�dr1dr2
R3d

f̂(d⇠1)f̂(d⇠2)f̂(d⇠3)|�1(⇠1, ⇠2, ⇠3)|.

Taking into account that R(f) < 1, which is equivalent by Lemma 5.9 to Rd kzk�1

f̂(dz) < 1, it su�ces to show that

[0,1)3
d�dr1dr2|�1(⇠1, ⇠2, ⇠3)|  C(k⇠1kk⇠2kk⇠3k)

�1(6.10)

for some constant C not depending on t. We have

|�1(⇠1, ⇠2, ⇠3)|

=
dY

j=1

|e�ir1⇠
j
1 � 1|

r1|⇠
j
1|

|e�ir2⇠
j
2 � 1|

r2|⇠
j
2|

|ei(r1⇠
j
1
+�⇠j

3
)
� 1|

|r1⇠
j
1 + �⇠j3|

|ei(r2⇠
j
2
��⇠j

3
)
� 1|

|r2⇠
j
2 � �⇠j3|

 24d
dY

j=1

(1 ^ (r1|⇠
j
1|)

�1)(1 ^ (r2|⇠
j
2|)

�1)(1 ^ |r1⇠
j
1 + �⇠j3|

�1)(1 ^ |r2⇠
j
2 � �⇠j3|

�1).

For any x 2 Rd, we have

dY

i=1

�
1 ^ |xj

|
�1
�
 1 ^

✓
max
1jd

|xj |

◆�1

 1 ^ d�1/2
kxk�1

 1 ^ kxk�1.(6.11)

As a consequence,

|�1(⇠1, ⇠2, ⇠3)|  (1^(r1k⇠1k)
�1)(1^(r2k⇠2k)

�1)(1^kr1⇠1+�⇠3k
�1)(1^kr2⇠2��⇠3k

�1),

which implies

[0,1)3
d�dr1dr2 |�(⇠1, ⇠2, ⇠3)|  C(k⇠1kk⇠2kk⇠3k)

�1

⇥

[0,1)3
dxdydz (1 ^ x�1)(1 ^ y�1)(1 ^ kxe1 + ze3k

�1)(1 ^ kye2 � ze3k
�1),

where the last inequality follows from a change of variable, and ei, i = 1, 2, 3, are unit
vectors. Note that

kxe1 + ze3k
2 = x2 + z2 + 2xzhe1, e3i � x2 + z2 � 2xz = (x� z)2.

Therefore,

[0,1)3
dxdydz (1 ^ x�1)(1 ^ y�1)(1 ^ kxe1 + ze3k

�1)(1 ^ kye2 � ze3k
�1)



R3

dxdydz (1 ^ |x|�1)(1 ^ |y|�1)(1 ^ |x� z|�1)(1 ^ |y � z|�1).
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Finally, applying Hölder and Young’s inequality, we obtain

R3

dxdydz (1 ^ |x|�1)(1 ^ |y|�1)(1 ^ |x� z|�1)(1 ^ |y � z|�1)

 k(1 ^ | • |
�1) ⇤ (1 ^ | • |

�1)k2L2(R)  k1 ^ | • |
�1

k
4
L4/3(R) < 1.

Let us turn now to the analysis of �(2)
N given in (6.6). Because the variable w

appears in four heat kernels and three of them have di↵erent variances, we cannot

proceed as in the case of �(1)
N . Then, we start making the changes of variables without

integrating in w. The first change of variables is xi ! Nxi, which yields

N�4d+3�(2)
N

= N3C2
t,4c

2
t,4

t

0
dr

[0,r]2
ds1ds2

R4d

f(db)dwf(dz1)f(dz2)
[0,1]4d

dx1dx
0

1dx2dx
0

2

⇥ pr(t�r)/t

✓
w �

rN

t
x1

◆
ps1(t�s1)/t+s1(r�s1)/r

✓
z1 �

s1N

t
x0

1 +
s1
r
w

◆

⇥ pr(t�r)/t

✓
w + b�

rN

t
x2

◆
ps2(t�s2)/t+s2(r�s2)/r

✓
z2 �

s2N

t
x0

2 +
s2
r
(w + b)

◆
.

Next we make the change of variables s1 = t
N r1, s2 = t

N r2, and r = t
N �, in order to

obtain

N�4d+3�(2)
N

= t3C2
t,4c

2
t,4

[0,N ]
d�

[0,�]2
dr1dr2

R4d

f(db)dwf(dz1)f(dz2)
[0,1]4d

dx1dx
0

1dx2dx
0

2

⇥ p t�
N (1� �

N ) (w � �x1)p tr1
N (1�

r1
N )+

tr1
N� (��r1)

⇣
z1 � r1x

0

1 +
r1
�
w
⌘

⇥ p t�
N (1� �

N ) (w + b� �x2)p tr2
N (1�

r2
N )+

tr2
N� (��r2)

⇣
z2 � r2x

0

2 +
r2
�
(w + b)

⌘
.

To simplify the presentation, we set

�0,N =
t�

N

⇣
1�

�

N

⌘
, �1,N =

tr1
N

⇣
1�

r1
N

⌘
+

tr1
N�

(� � r1)

and

�2,N =
tr2
N

⇣
1�

r2
N

⌘
+

tr2
N�

(� � r2).

With the change of variables z = w��x1 and the notation y1 = x0

1�x1, y2 = x0

2�x1,
and y3 = x2 � x1, we can write

 2(z1, z2, b) :=
Rd

dw p�0,N (w � �x1)p�1,N

⇣
z1 � r1x

0

1 +
r1
�
w
⌘

⇥ p�0,N (w + b� �x2)p�2,N

⇣
z2 � r2x

0

2 +
r2
�
(w + b)

⌘

=
Rd

dz p�0,N (z)p�1,N

⇣
z1 � r1y1 +

r1
�
z
⌘

⇥ p�0,N (z + b� �y3)p�2,N

⇣
z2 � r2y2 +

r2
�
(z + b)

⌘
.
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The Fourier transform of the function  2(z1, z2, b) is equal to

 ̂2(⇠1, ⇠2, ⇠3)

=
Rd

dzp�0,N (z) exp

✓
�
1

2
�1,Nk⇠1k

2
�

1

2
�0,N

���⇠2 �
r2
�
⇠3
���
2
�

1

2
�2,Nk⇠3k

2

◆

⇥ exp
⇣
i⇠1 ·

⇣
r1y1 �

r1
�
z
⌘
+ i
⇣
⇠2 �

r2
�
⇠3
⌘
· (�y3 � z) + i⇠3 ·

⇣
r2y2 �

r2
�
z
⌘⌘

= exp

✓
�
1

2
�1,Nk⇠1k

2
�

1

2
�0,N

���⇠2 �
r2
�
⇠3
���
2
�

1

2
�2,Nk⇠3k

2
�

1

2
�0,N

���
r1
�
⇠1 + ⇠2

���
2
◆

⇥ exp (ir1⇠1 · y1 + i (�⇠2 � r2⇠3) · y3 + ir2⇠3 · y2) .

Set

�2(⇠1, ⇠2, ⇠3) :=
[0,1]4d

dx1dx
0

1dx2dx
0

2

exp (ir1⇠1 · (x
0

1 � x1) + i (�⇠2 � r2⇠3) · (x2 � x1) + ir2⇠3 · (x
0

2 � x1)) .

Then, Parseval’s identity implies that

N�4d+3�(1)
N

= C2
t,4c

2
t,4t

3 1
(2⇡)3d [0,N ]

d�
[0,�]2

dr1dr2
R3d

f̂(d⇠1)f̂(d⇠2)f̂(d⇠3)�1(⇠1, ⇠2, ⇠3)

⇥ exp

✓
�1
2
�1,Nk⇠1k2 �

1
2
�0,N

���⇠2 �
r2
�
⇠3
���
2
� 1

2
�2,Nk⇠3k2 �

1
2
�0,N

���
r1
�
⇠1 + ⇠2

���
2
◆

 C
[0,1)3

d�dr1dr2
R3d

f̂(d⇠1)f̂(d⇠2)f̂(d⇠3)|�2(⇠1, ⇠2, ⇠3)|.

Taking into account that R(f) < 1, which is equivalent by Lemma 5.9 to Rd kzk�1

f̂(dz) < 1, it su�ces to show that

[0,1)3
d�dr1dr2|�2(⇠1, ⇠2, ⇠3)|  C(k⇠1kk⇠2kk⇠3k)

�1(6.12)

for some constant C not depending on t. Taking into account that

|�2(⇠1, ⇠2, ⇠3)| =
dY

j=1

|e�i(r1⇠
j
1
+r2⇠

j
3
| � 1

|r1⇠j1 + r2⇠
j
3|

|eir1⇠
j
1 � 1|

|r1⇠j1|
|ei(�⇠j

2
�r2⇠

j
3
) � 1|

|�⇠j2 � r2⇠
j
3|

|eir2⇠
j
3 � 1|

|r2⇠j3|

 (1 ^ kr1⇠1 + r2⇠3k�1)(1 ^ kr1⇠1k�1)(1 ^ k�⇠2 � r2⇠3k�1)(1 ^ kr2⇠3k�1),

the proof of (6.12) can be done by the same arguments as in the proof of (6.10). The
proof of Theorem 1.3 is now complete.

6.2. Proof of Theorem 1.4.

Proof of Theorem 1.4. By Theorem 5.2 and Proposition 2.1, we need to show
that there exists a constant C > 0 such that for all N � e,

Var (hDSN,t, vN iH)  C

✓
logN

N

◆3

.(6.13)

We recall the decomposition (6.4) of Var (hDSN,t, vN iH).
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Estimation of �(1)
N . According to (6.5), we integrate x0

1 and x0

2 on R and obtain

�(1)
N  16C2

t,4c
2
t,4f(R)2

[0,t]2
ds1ds2

t2

s1s2

s1^s2

0
dr

R3

f(db)dy1dy2
[0,N ]2

dx1dx2

⇥ ps1(t�s1)/t

⇣
y1 �

s1
t
x1

⌘
ps2(t�s2)/t

⇣
y2 �

s2
t
x2

⌘
pr(s1�r)/s1+r(s2�r)/s2

⇥

✓
b�

r

s2
y2 +

r

s1
y1

◆

= 16C2
t,4c

2
t,4f(R)2

[0,t]2
ds1ds2

t2

s2

s1^s2

0
dr

1

r R3

f(db)dy1dy2
[0,N ]2

dx1dx2

⇥ ps1(t�s1)/t

⇣
y1 �

s1
t
x1

⌘
ps2(t�s2)/t

⇣
y2 �

s2
t
x2

⌘

⇥ p[r(s1�r)/s1+r(s2�r)/s2]/(r2/s21)

✓
s1
r
b�

s1
s2

y2 + y1

◆
,

where in the equality we use property (6.7) with d = 1. Hence, by the semigroup
property, we see that

�(1)
N  16C2

t,4c
2
t,4f(R)2

[0,t]2
ds1ds2

t2

s2

s1^s2

0
dr

1

r R2

f(db)dy2
[0,N ]2

dx1dx2

⇥ ps2(t�s2)/t

⇣
y2 �

s2
t
x2

⌘
ps1(t�s1)/t+[r(s1�r)/s1+r(s2�r)/s2]/(r2/s21)

⇥

✓
s1
r
b�

s1
s2

y2 +
s1
t
x1

◆
.

We repeat the use of (6.7) with d = 1 and the semigroup property to obtain

�(1)
N  16C2

t,4c
2
t,4f(R)2

[0,t]2
ds1ds2

t2

s1

s1^s2

0

dr
1
r R2

f(db)dy2
[0,N ]2

dx1dx2

⇥ ps2(t�s2)/t

⇣
y2 �

s2
t
x2

⌘
p[s1(t�s1)/t+[r(s1�r)/s1+r(s2�r)/s2]/(r2/s

2

1
)]/(s2

1
/s2

2
)

⇥
⇣s2
r
b� y2 +

s2
t
x1

⌘

= 16C2
t,4c

2
t,4f(R)2

[0,t]2
ds1ds2

t2

s1

s1^s2

0

dr
1
r R

f(db)
[0,N ]2

dx1dx2

⇥ ps2(t�s2)/t+[s1(t�s1)/t+[r(s1�r)/s1+r(s2�r)/s2]/(r2/s
2

1
)]/(s2

1
/s2

2
)

⇣s2
r
b+

s2
t
x1 �

s2
t
x2

⌘

= 16C2
t,4c

2
t,4f(R)2

[0,t]2
ds1ds2

t2

s1s2

s1^s2

0

dr
R
f(db)

[0,N ]2
dx1dx2 p2r(t�r)/t

⇥
⇣
b+

r
t
(x1 � x2)

⌘
,

where in the second equality we use the relation

2r(t� r)/t = [s2(t� s2)/t+ [s1(t� s1)/t+ [r(s1 � r)/s1 + r(s2 � r)/s2]/(r
2/s21)]/

(s21/s
2
2)]/(s

2
2/r

2).
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Now, using the notation IN = 1
N 1[0,N ] and Plancherel’s identity, we conclude that

�(1)
N  16C2

t,4c
2
t,4N

2f(R)2
[0,t]2

ds1ds2
t2

s1s2

s1^s2

0

dr
⇣
IN ⇤ ĨN ⇤

⇣
f ⇤ p2r(t�r)/t

⇣r
t
(·)
⌘⌘⌘

(0)

= 16C2
t,4c

2
t,4

N2

⇡
f(R)2

[0,t]2
ds1ds2

t3

rs1s2

s1^s2

0

dr
R
dz

1� cos(Nz)
N2z2

f̂

✓
tz
r

◆
e�

t(t�r)
r z2

 16C2
t,4c

2
t,4

N
⇡
f(R)3

[0,t]2
ds1ds2

t3

rs1s2

s1^s2

0

dr
R
dz

1� cos(z)
z2

e�
t(t�r)

r
z2

N2

= 32C2
t,4c

2
t,4

N
⇡
f(R)3

0s1s2t

ds1ds2dr
t3

rs1s2

s1^s2

0

dr
R
dz

1� cos(z)
z2

e�
t(t�r)

r
z2

N2 .

Integrating in the variables s1 and s2 yields

�(1)
N  32C2

t,4c
2
t,4

N

⇡
f(R)3

t

0
dr

t3

r

✓
log

✓
t

r

◆◆2

R
e�

t(t�r)
r

z2

N2 '(z)dz,

where we recall that '(z) = (1 � cos z)/z2. Making the change of variables t�r
r = ✓

allows us to write

�(1)
N  32C2

t,4c
2
t,4

N

⇡
t3f(R)3

R
'(z)dz

1

0
d✓

1

✓ + 1
(log(✓ + 1))2 e�

t✓z2

N2 .

Integrating by parts and using the fact that

✓
1

3
(log(✓ + 1))3e�

t✓z2

N2

◆✓=1

✓=0

= 0,

we obtain

�(1)
N  32C2

t,4c
2
t,4

N

3⇡
t3

R
'(z)dz

1

0
d✓ (log(✓ + 1))3 e�

t✓z2

N2
tz2

N2

= 32C2
t,4c

2
t,4

N

3⇡
t3

R
'(z)dz

1

0
d✓

✓
log

✓
N2

tz2
✓ + 1

◆◆3

e�✓.

Using the inequality

log

✓
N2

tz2
✓ + 1

◆
 2 logN + log(✓ + 1) + log

✓
1

t
+ 1

◆
+ log

✓
1

z2
+ 1

◆



✓
2 logN + log

✓
1

t
+ 1

◆◆✓
1 + log(✓ + 1) + log

✓
1

z2
+ 1

◆◆
,

and taking into account that

C :=
R
'(z)dz

1

0
d✓

✓
1 + log(✓ + 1) + log

✓
1

z2
+ 1

◆◆3

e�✓ < 1,

we finally get

�(1)
N . C2

t,4c
2
t,4t

3N

✓
2 logN + log

✓
1

t
+ 1

◆◆3

,

which provides the desired estimate.
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Estimation of �(2)
N . Recall the estimate in (6.6). Notice that we should not

integrate the variables x0

1 and x0

2 on the whole real line, because this would produce
a factor (s1s2)�1 which is not integrable on [0, r]2. For this reason, we choose to
integrate the variables x1 and x2 on R and we obtain, using (6.7) with d = 1,

�(2)
N  C2

t,4c
2
t,4

t

0
dr

t2

r2 [0,r]2
ds1ds2

R4

f(db)dwf(dz1)f(dz2)
[0,N ]2

dx0

1dx
0

2

⇥ ps1(t�s1)/t+s1(r�s1)/r

⇣
z1 �

s1
t
x0

1 +
s1
r
w
⌘
ps2(t�s2)/t+s2(r�s2)/r

⇥

⇣
z2 �

s2
t
x0

2 +
s2
r
(w + b)

⌘

= C2
t,4c

2
t,4

t

0
dr

t2

s1s2 [0,r]2
ds1ds2

R3

f(db)f(dz1)f(dz2)
[0,N ]2

dx0

1dx
0

2

⇥ p↵

✓
r

s2
z2 �

r

s1
z1 + b�

r

t
(x0

2 � x0

1)

◆

= C2
t,4c

2
t,4

t

0
dr

t2

s1s2 [0,r]2
ds1ds2

R2

f(dz1)f(dz2)
[0,N ]2

dx0

1dx
0

2

⇥ (f ⇤ p↵)

✓
r

t
(x0

2 � x0

1) +
r

s1
z1 �

r

s2
z2

◆
,

where

↵ = [s1(t� s1)/t+ s1(r � s1)/r]/(s
2
1/r

2) + [s2(t� s2)/t+ s2(r � s2)/r]/(s
2
2/r

2).

Using IN = 1
N 1[0,N ], we write

�(2)
N  N2C2

t,4c
2
t,4

t

0
dr

t2

s1s2 [0,r]2
ds1ds2

R2

f(dz1)f(dz2)

⇥

✓
IN ⇤ ĨN ⇤

✓
(f ⇤ p↵)

✓
r

t
(·) +

r

s1
z1 �

r

s2
z2

◆◆◆
(0).

We apply Plancherel’s identity to conclude that

�(2)
N

 N2

⇡
C2

t,4c
2
t,4

t

0

dr
t3

rs1s2 [0,r]2
ds1ds2

R2

f(dz1)f(dz2)
R
dz

⇥ 1� cos(Nz)
N2z2

e
iz

⇣
t
s2

z2�
t
s1

z1
⌘

f̂

✓
tz
r

◆
e�

↵t2

2r2
z2

=
N
⇡
C2

t,4c
2
t,4

t

0

dr
t3

rs1s2 [0,r]2
ds1ds2

R
dz

1� cos(z)
z2

f̂

✓
tz
s2

◆
f̂

✓
� tz
s1

◆
f̂

✓
tz
r

◆
e�

↵t2

2r2
z2

N2

 N
⇡
C2

t,4c
2
t,4f(R)3

t

0

dr
t3

rs1s2 [0,r]2
ds1ds2

R
dz

1� cos(z)
z2

e�
↵t2

2r2
z2

N2 .

Denote

� :=
↵t2

r2
= t(t� s1)/s1 + t2(r � s1)/(rs1) + t(t� s2)/s2 + t2(r � s2)/(rs2).
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Recalling '(z) = (1� cos(z))/z2, we can write

�(2)
N 

N

⇡
C2

t,4c
2
t,4f(R)3

R
'(z)dz

t

0 [0,r]2
ds1ds2dr

t3

rs1s2
e�

�z2

2N2

=
N

⇡
C2

t,4c
2
t,4f(R)3

R
'(z)dz

t

0
dr

t3

r

✓ r

0
ds

1

s
e�

[t(t�s)/s+t2(r�s)/(rs)]z2

2N2

◆2

.

Making the change of variables (r � s)/s = ✓ yields

r

0
ds

1

s
e�

[t(t�s)/s+t2(r�s)/(rs)]z2

2N2 =
1

0

1

1 + ✓
e�

tz2

2N2
(2✓t+t�r)/r)d✓.

As a consequence,

�(2)
N 

N

⇡
C2

t,4c
2
t,4t

3f(R)3
R
'(z)dz

t

0

1

r
e�

z2

N2
t(t�r)/r

✓
1

0

1

1 + ✓
e�

t2z2✓
rN2 d✓

◆2

dzdr.

With the further change of variable t�r
r = ⇠, we obtain

�(2)
N 

N

⇡
C2

t,4c
2
t,4t

3f(R)3
R
'(z)dz

1

0

1

1 + ⇠
e�

tz2⇠

N2

✓
1

0

1

1 + ✓
e�

t(⇠+1)z2✓

N2 d✓

◆2

dzd⇠


N

⇡
C2

t,4c
2
t,4t

3f(R)3
R
'(z)dz

✓
1

0

1

1 + ✓
e�

tz2✓
N2 d✓

◆3

dz

=
N

⇡
C2

t,4c
2
t,4t

3f(R)3
R
'(z)dz

 
1

0

1

✓ + tz2

N2

e�✓d✓

!3

dz.

We have
1

0

1

✓ + tz2

N2

e�✓d✓ 
1

1
e�✓d✓ +

1

0

1

✓ + tz2

N2

d✓ = e�1 + log

✓
1 +

N2

tz2

◆

 e�1 + 2 logN + log(1 + 1/t) + log(1 + z�2).

Taking into account that

R
'(z)(1 + log(1 + z�2))3dz < 1,

we obtain the desired estimate for the term �(2)
N . This completes the proof of the

estimate (6.13).

6.3. Proof of Theorem 1.5.

6.3.1. Estimation of �(1)
N . Recalling (6.5) and using change of variables y1 �

s1
t x1 = ↵1, y2�

s2
t x2 = ↵2, y1+z1�

s1
t x

0

1 = ↵3, y2+z2�
s2
t x

0

2 = ↵4, b�
r
s2
y2+

r
s1
y1 = ↵5,

yields that

�(1)
N  16C2

t,4c
2
t,4

[0,t]2
ds1ds2

s1^s2

0
dr

R5d

d↵1d↵2d↵3d↵4d↵5
[0,N ]4d

dx1dx
0

1dx2dx
0

2

⇥ ps1(t�s1)/t (↵1)ps2(t�s2)/t (↵2)ps1(t�s1)/t (↵3)ps2(t�s2)/t (↵4)

⇥ pr(s1�r)/s1+r(s2�r)/s2 (↵5)

⇥ k↵3 � ↵1 �
s1
t
(x1 � x0

1)k
��

k↵4 � ↵2 �
s2
t
(x2 � x0

2)

⇥ k
��

k↵5 +
r

s2
↵2 �

r

s1
↵1 +

r

t
(x2 � x1)k

�� .
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Let Z1, Z2, Z3, Z4, Z5 be independent and identically distributed N(0, 1). We can write

�(1)
N  16C2

t,4c
2
t,4

[0,t]2
ds1ds2

s1^s2

0
dr

[0,N ]4d
dx1dx

0

1dx2dx
0

2(6.14)

⇥ E

"���
p
s1(t� s1)/tZ3 �

p
s1(t� s1)/tZ1 �

s1
t
(x1 � x0

1)
���
��

⇥

���
p
s2(t� s2)/tZ4 �

p
s2(t� s2)/tZ2 �

s2
t
(x2 � x0

2)
���
��

⇥

����
p
r(s1 � r)/s1 + r(s2 � r)/s2Z5 +

r

s2

p
s2(t� s2)/tZ2

�
r

s1

p
s1(t� s1)/tZ1 +

r

t
(x2 � x1)

����
��
#

= 16C2
t,4c

2
t,4N

4d�3�

[0,t]2
ds1ds2

s1^s2

0
dr

✓
t

r

◆� ✓ t

s1

◆� ✓ t

s2

◆�

⇥

[0,1]4d
dx1dx

0

1dx2dx
0

2

⇥ E

"����
t

Ns1

p
s1(t� s1)/tZ3 �

t

Ns1

p
s1(t� s1)/tZ1 � (x1 � x0

1)

����
��

⇥

����
t

Ns2

p
s2(t� s2)/tZ4 �

t

Ns2

p
s2(t� s2)/tZ2 � (x2 � x0

2)

����
��

⇥

����
t

Nr

p
r(s1 � r)/s1 + r(s2 � r)/s2Z5 +

t

Ns2

p
s2(t� s2)/tZ2

�
t

Ns1

p
s1(t� s1)/tZ1 + (x2 � x1)

����
��
#
,

where in the second equality we have made a change of variables.
Case 1. 0 < � < 1. Applying Lemma 3.1 of [17] to the random variables Z5, Z4, Z3

in this order, we see that the spatial integral in (6.14) is bounded above by

C E

"

[0,1]4d
dx1dx

0

1dx2dx
0

2

����
t

Ns2

p
s2(t� s2)/tZ2 �

t
Ns1

p
s1(t� s1)/tZ1 + (x2 � x1)

����
��

⇥
����

t
Ns1

p
s1(t� s1)/tZ1 + (x1 � x0

1)

����
�� ����

t
Ns2

p
s2(t� s2)/tZ2 + (x2 � x0

2)

����
��
#

 C E

"

[�1,1]3d
dy1dy2dy3

����
t

Ns2

p
s2(t� s2)/tZ2 �

t
Ns1

p
s1(t� s1)/tZ1 + y3

����
��

⇥
����

t
Ns1

p
s1(t� s1)/tZ1 + y1

����
�� ����

t
Ns2

p
s2(t� s2)/tZ2 + y2

����
��
#

 C

 
sup
z2Rd [�1,1]d

kz + yk��dy

!3

= C0 < 1,

where in the first inequality we use a change of variables and in the second inequality
we use the fact (see also [17, (3.10)])

sup
z2Rd [�1,1]d

kz + yk��dy < 1.(6.15)
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Denote

At =
[0,t]2

ds1ds2
s1^s2

0
dr

✓
t

r

◆� ✓ t

s1

◆� ✓ t

s2

◆�

.

Condition � < 1 implies At < 1. Therefore, in the case 0 < � < 1, we conclude that

�(1)
N  C 0C2

t,4c
2
t,4At N

4d�3� .(6.16)

Case 2. 1 < � < 2. Recall (6.14). Applying Lemma 7.2 to Z5, Z4, Z3, using the
change of variables (x0

1 = x1 � y1, x0

2 = x2 � y2, x1 = x2 � y3) and the fact that for
all c1 > 0 and z 2 Rd

[�1,1]d
c1 ^ kz + y1k

��dy1  2d
 
c1 ^

[�1,1]d
kz + y1k

��dy1

!

. c1 ^ 1, see (6.15),(6.17)

we obtain that

�(1)
N . C2

t,4c
2
t,4N

4d�3�

[0,t]2
ds1ds2

s1^s2

0
dr

"h
N�(s1(t� s1)/t)

��/2
i
^

✓
t

s1

◆�
#

⇥

"h
N�(s2(t� s2)/t)

��/2
i
^

✓
t

s2

◆�
#

⇥

"h
N�(r(s1 � r)/s1 + r(s2 � r)/s2)

��/2
i
^

✓
t

r

◆�
#
.

The change of variables s1 !
ts1
N2 , s2 !

ts2
N2 , and r !

tr
N2 allows us to write

�(1)
N . N4d+3��6

[0,N ]2
ds1ds2

s1^s2

0
dr
hh
(s1(1� s1/N

2))��/2
i
^ s��

1

i

⇥

hh
(s2(1� s2/N

2))��/2
i
^ s��

2

i ""
r��/2

✓
1�

r

2s1
�

r

2s2

◆��/2
#
^ r��

#
.

For the integral in the variable r we make the further change of variables r( 1
2s1

+ 1
2s2

) =
� in order to obtain

�(1)
N . N4d+3��6

[0,N2]2
ds1ds2

hh
(s1(1� s1/N

2))��/2
i
^ s��

1

i
(6.18)

⇥

hh
(s2(1� s2/N

2))��/2
i
^ s��

2

i

⇥

✓
1

2s1
+

1

2s2

◆��1 1

0
d���

�
2

 "✓
1

2s1
+

1

2s2

◆��/2

(1� �)�
�
2

#
^ ��

�
2

!
.

From (6.18), we apply Lemma 7.4 to conclude that in the case 1 < � < 2,

�(1)
N . N4d+3��6.(6.19)

Case 3. � = 1. Notice that the estimate in (6.18) still holds for � = 1. Now we
apply Lemma 7.5 to conclude that in the case � = 1

�(1)
N . N4d�3(logN)3.(6.20)
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6.3.2. Estimation of �(2)
N . Recall (6.6). Using the change of variables w� r

tx1 =
↵1, w + b� r

tx2 = ↵2, z1 �
s1
t x

0

1 +
s1
r w = ↵3, z2 �

s2
t x

0

2 +
s2
r (w + b) = ↵4, we obtain

�(2)
N  C2

t,4c
2
t,4

t

0

dr
[0,r]2

ds1ds2
R4d

d↵1d↵2d↵3d↵4
[0,N ]4d

dx1dx
0

1dx2dx
0

2

⇥ pr(t�r)/t (↵1)pr(t�r)/t (↵2)ps1(t�s1)/t+s1(r�s1)/r (↵3)ps2(t�s2)/t+s2(r�s2)/r (↵4)

⇥
���↵2 � ↵1 +

r
t
(x2 � x1)

���
�� ���↵3 �

s1
r
↵1 +

s1
t
(x0

1 � x1)
���
��

⇥
���↵4 �

s2
r
↵2 +

s2
t
(x0

2 � x2)
���
��

= C2
t,4c

2
t,4

t

0

dr
[0,r]2

ds1ds2
[0,N ]4d

dx1dx
0

1dx2dx
0

2

⇥ E

"�����

r
r(t� r)

t
Z2 �

r
r(t� r)

t
Z1 +

r
t
(x2 � x1)

�����

��

⇥

�����

r
s1(t� s1)

t
+

s1(r � s1)
r

Z3 �
s1
t

r
r(t� r)

t
Z1 +

s1
t
(x0

1 � x1)

�����

��

⇥

�����

r
s2(t� s2)

t
+

s2(r � s2)
r

Z4 �
s2
t

r
r(t� r)

t
Z2 +

s2
t
(x0

2 � x2)

�����

�� #
.

Now, using a change of variables yields that

�(2)
N  C2

t,4c
2
t,4N

4d�3�
t

0
dr

[0,r]2
ds1ds2

✓
t

r

◆� ✓ t

s1

◆� ✓ t

s2

◆�

[0,1]4d
dx1dx

0

1dx2dx
0

2

(6.21)

⇥ E

"�����
t

Nr

r
r(t� r)

t
Z2 �

t

Nr

r
r(t� r)

t
Z1 + (x2 � x1)

�����

��

⇥

�����
t

Ns1

r
s1(t� s1)

t
+

s1(r � s1)

r
Z3 �

1

N

r
r(t� r)

t
Z1 + (x0

1 � x1)

�����

��

⇥

�����
t

Ns2

r
s2(t� s2)

t
+

s2(r � s2)

r
Z4 �

1

N

r
r(t� r)

t
Z2 + (x0

2 � x2)

�����

�� #
.

Case 1. 0 < � < 1. We first apply Lemma 3.1 of [17] for Z4, Z3, then use a
change of variables and (6.15) to conclude

�(2)
N  C ĀtC

2
t,4c

2
t,4N

4d�3� ,(6.22)

where Āt =
t
0 dr [0,r]2 ds1ds2 (t/r)�(t/s1)�(t/s2)� < 1 since � < 1.

Case 2. 1 < � < 2. In this case, recalling (6.21), we proceed in the following
order: applying Lemma 7.2 for Z4, Z3, using the change of variables (x0

1 = y1 + x1,
x0

2 = y2 + x2) and (6.17), then applying Lemma 7.2 for Z2 and using change of
variables x2 = y3 + x1 and (6.17), to obtain that
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�(2)
N . C2

t,4c
2
t,4N

4d�3�
t

0

dr
[0,r]2

ds1ds2
hh
N�(r(t� r)/t)��/2

i
^ (t/r)�

i
(6.23)

⇥
hh
N�(s1(t� s1)/t+ s1(r � s1)/r)

��/2
i
^ (t/s1)

�
i

⇥
hh
N�(s2(t� s2)/t+ s2(r � s2)/r)

��/2
i
^ (t/s2)

�
i

. N4d�3�
1

0

dr
[0,r]2

ds1ds2
hh
N�(r(1� r))��/2

i
^ r��

i

⇥
hh
N�(s1(r � s1)/r)

��/2
i
^ s��

1

i hh
N�(s2(r � s2)/r)

��/2
i
^ s��

2

i

= N4d�3�
1

0

dr
hh
N�(r(1� r))��/2

i
^ r��

i  r

0

hh
N�(s(r � s)/r)��/2

i
^ s��

i
ds

�2
,

where the second inequality follows by a change of variables. Using a change of
variables again, we see from (6.23) that

�(2)
N . N4d�3�

1

0
dr
hh
N�(r(1� r))��/2

i
^ r��

i
r2�2�

⇥

 1

0

hh
(Nr1/2)�(s(1� s))��/2

i
^ s��

i
ds

�2

= 2N4d+3��6
N

0
d↵↵5�4�

hh
(↵2(1� ↵2/N2))��/2

i
^ ↵�2�

i

⇥

 1

0

hh
↵�(s(1� s))��/2

i
^ s��

i
ds

�2
.(6.24)

We apply Lemma 7.6 to conclude that in the case 1 < � < 2,

�(2)
N . N4d+3��6.(6.25)

Case 3. � = 1. Notice that the estimate in (6.24) still holds for � = 1. We apply
Lemma 7.7 to conclude that in the case � = 1

�(2)
N . N4d�3(logN)3.(6.26)

6.3.3. Proof of Theorem 1.5.

Proof of Theorem 1.5. Recall (6.2) and (6.4). The case 0 < � < 1 follows from
Theorem 5.4, item 1, (6.16), and (6.22); the case � = 1 follows from Theorem 5.4,
item 2, (6.20), and (6.26); the case 1 < � < 2 follows from Theorem 5.4, item 3,
(6.19), and (6.25).

7. Appendix.

Lemma 7.1. Let IN and ĨN be defined in (4.10). Then for all s < t and w 2 Rd
,

Rd

dx
⇣
IN ⇤ ĨN

⌘
(x)
�
f ⇤ p2s(t�s)/t

� ⇣s
t
x+ w

⌘

=
1

⇡d Rd

e�s(t�s)kzk2/t
dY

j=1

1� cos(Nzjs/t)

(Nzjs/t)2
eiz·wf̂(dz)(7.1)


1

⇡d Rd

e�s(t�s)kzk2/t
dY

j=1

1� cos(Nzjs/t)

(Nzjs/t)2
f̂(dz).(7.2)
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Proof. Clearly, it su�ces to prove (7.1), which is a consequence of the identity

(3.1) and the fact that the Fourier transform of IN ⇤ ĨN is 2d
Qd

j=1
1�cos(Nzj)

(Nzj)2
.

Lemma 7.2. Let Z ⇠ N(0, 1). There exists a constant C > 0 such that for all

s > 0 and y 2 Rd

Rd

ps(x+ y)kxk��dx = E
⇥
k
p
sZ + yk��

⇤
 C

⇣
s��/2

^ kyk��
⌘
.(7.3)

Proof. Since the convolution between ps and k · k
�� is nonnegative-definite and

maximized at 0, using a change of variable we can write

sup
y2Rd Rd

ps(x+ y)kxk��dx =
Rd

ps(x)kxk
��dx = s��/2

Rd

p1(x)kxk
��dx.

This together with Lemma 3.1 of [17] implies (7.3).

Lemma 7.3. Fix 1  � < 2. Then we have for all ↵ > 0,

1

0
���/2

⇣h
↵�(1� �)��/2

i
^ ���/2

⌘
d� ⇣

(
1{0<↵<1}↵+ 1{↵�1} log↵, � = 1,

1{0<↵<1}↵
� + 1{↵�1}↵

2��2, 1 < � < 2.

(7.4)

Proof. We observe that

↵�(1� �)��/2
 ���/2

, � 
1

1 + ↵2
.

Hence,

1

0
���/2

⇣h
↵�(1� �)��/2

i
^ ���/2

⌘
d�

= ↵�
1/(1+↵2)

0
���/2(1� �)��/2d�+

1

1/(1+↵2)
���d�.

Case 1. � = 1. In this case, for 0 < ↵ < 1,

↵
1/(1+↵2)

0
��1/2(1� �)�1/2d� ⇣ ↵

and

1

1/(1+↵2)
��1d� = log(1 + ↵2) ⇣ ↵2.

On the other hand, for ↵ � 1,

↵
1/(1+↵2)

0
��1/2(1� �)�1/2d� ⇣ ↵

1/(1+↵2)

0
��1/2d� ⇣ 1

and

1

1/(1+↵2)
��1d� = log(1 + ↵2) ⇣ log↵.
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This proves the first part of (7.4).
Case 2. 1 < � < 2. In this case, for 0 < ↵ < 1,

↵�
1/(1+↵2)

0
���/2(1� �)��/2d� ⇣ ↵�

and
1

1/(1+↵2)
���d� =

1

� � 1
((1 + ↵2)��1

� 1) ⇣ ↵2.

On the other hand, for ↵ � 1,

↵�
1/(1+↵2)

0
���/2(1� �)��/2d� ⇣ ↵�

1/(1+↵2)

0
���/2d� ⇣ ↵2��2.

This proves the second part of (7.4) and hence completes the proof.

Lemma 7.4. Fix 1 < � < 2. Then

sup
N�e [0,N2]2

ds1ds2
hh
(s1(1� s1/N

2))��/2
i
^ s��

1

i hh
(s2(1� s2/N

2))��/2
i
^ s��

2

i
(7.5)

⇥

✓
1

2s1
+

1

2s2

◆��1 1

0
d���

�
2

 "✓
1

2s1
+

1

2s2

◆��/2

(1� �)�
�
2

#
^ ��

�
2

!
< 1.

Proof. Applying Lemma 7.3 (second part) with ↵ = ( 1
2s1

+ 1
2s2

)�1/2, for all N � e,
the above integral is bounded above by a constant times

[0,N2]2
ds1ds2

hh
(s1(1� s1/N

2))��/2
i
^ s��

1

i hh
(s2(1� s2/N

2))��/2
i
^ s��

2

i

⇥
✓

1
2s1

+
1
2s2

◆��1
 
1
{

1

2s1
+ 1

2s2
>1}

✓
1
2s1

+
1
2s2

◆
��/2

+ 1
{

1

2s1
+ 1

2s2
1}

✓
1
2s1

+
1
2s2

◆1��
!
.

For (s1, s2) 2 [0, 1]2, the above integrand is bounded above by

s��/2
1 (1� 1/N2)��/2s��/2

2 (1� 1/N2)��/2

✓
1

2s1
+

1

2s2

◆�/2�1

,

whence for all N � e the integral over [0, 1]2 is bounded above by

(1� 1/e2)��

[0,1]2
s��/2
1 s��/2

2

✓
1

2s1
+

1

2s2

◆�/2�1

ds1ds2

.
1

0
s��/2
2 ds2

1

0
s��/2
1 s1��/2

1 ds1 < 1.

Moreover, for (s1, s2) 2 [0, 1] ⇥ (1, N2], the integrand is bounded above by a
constant times

s��/2
1 (1� 1/N2)��/2s��

2

"✓
1

2s1
+

1

2s2

◆�/2�1

+ 1

#

. (1� 1/e2)��/2
⇣
s1��
1 s��

2 + s��/2
1 s��

2

⌘
,
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whence for all N � e the integral over [0, 1]⇥ (1, N2] is bounded above by a constant
times

1

0
s1��
1 ds1

1

1
s��
2 ds2 +

1

0
s��/2
1 ds1

1

1
s��
2 ds2 < 1.

Similarly, the integral over (1, N2]⇥ [0, 1] is also finite uniformly for N � e.
Furthermore, for (s1, s2) 2 (1, N2]2, the integrand is bounded above by s��

1 s��
2 ,

which implies that the integral over (1, N2]2 is also finite uniformly for N � e. The
proof is complete.

Lemma 7.5. There exists a constant C > 0 such that for all N � e

[0,N2]2
ds1ds2

hh
(s1(1� s1/N

2))�1/2
i
^ s�1

1

i hh
(s2(1� s2/N

2))�1/2
i
^ s�1

2

i
(7.6)

⇥

1

0
d���

1

2

 "✓
1

2s1
+

1

2s2

◆�1/2

(1� �)�
1

2

#
^ ��

1

2

!

 C (logN)3.

Proof. The proof is similar to that of Lemma 7.4.
Applying Lemma 7.3 (first part) with ↵ = ( 1

2s1
+ 1

2s2
)�1/2, for all N � e, the

above integral is bounded above by a constant times

[0,N2]2
ds1ds2

hh
(s1(1� s1/N

2))�1/2
i
^ s�1

1

i hh
(s2(1� s2/N

2))�1/2
i
^ s�1

2

i

⇥

 
1
{

1

2s1
+ 1

2s2
>1}

✓
1

2s1
+

1

2s2

◆�1/2

+ 1
{

1

2s1
+ 1

2s2
1} log

"✓
1

2s1
+

1

2s2

◆�1/2
#!

.

For (s1, s2) 2 [0, 1]2, the above integrand is bounded above by

s�1/2
1 (1� 1/N2)�1/2s�1/2

2 (1� 1/N2)�1/2

✓
1

2s1
+

1

2s2

◆�1/2

,

whence for all N � e the integral over [0, 1]2 is bounded above by a constant times

(1� 1/e2)�1

[0,1]2
s�1/2
1 s�1/2

2

✓
1

2s1
+

1

2s2

◆�1/2

ds1ds2

.
1

0
s�1/2
2 ds2

1

0
s�1/2
1 s1/21 ds1 < 1.

Moreover, for (s1, s2) 2 [0, 1]⇥ (1, N2], the integrand is bounded above by

s�1/2
1 (1� 1/N2)�1/2s�1

2

"✓
1

2s1
+

1

2s2

◆�1/2

+ log

"✓
1

2s1
+

1

2s2

◆�1/2
##

. (1� 1/e2)�1/2
⇣
s�1
2 + s�1/2

1 s�1
2 log(2s2)

⌘
,

whence for all N � e the integral over [0, 1]⇥ (1, N2] is bounded above by a constant
times

N2

1
s�1
2 ds2 +

1

0
s�1/2
1 ds1

N2

1

log(2s2)

s2
ds2 ⇣ (logN)2.
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Similarly, the integral over (1, N2] ⇥ [0, 1] is also bounded above by C (logN)2 for
N � e.

Furthermore, the integral over (1, N2]2 is bounded above by

(1,N2]2
ds1ds2 s

�1
1 s�1

2 log

"✓
1

2s1
+

1

2s2

◆�1/2
#

= 2
N2

1
ds1

s1

1
ds2 s

�1
1 s�1

2 log

"✓
1

2s1
+

1

2s2

◆�1/2
#



N2

1
ds1

s1

1
ds2 s

�1
1 s�1

2 log s1 =
N2

1

(log s1)2

s1
ds1 ⇣ (logN)3.

The proof is complete.

Lemma 7.6. Fix 1 < � < 2. Then,

sup
N�e

N

0

d↵↵5�4�
hh
(↵2(1�↵2/N2))��/2

i
^ ↵�2�

i✓ 1

0

hh
↵�(s(1�s))��/2

i
^ s��

i
ds

◆2

< 1.

(7.7)

Proof. By Lemma 7.3, for all N � e, the above integral is bounded above by a
constant times

1

0
d↵↵5�2�

hh
(↵2(1� 1/N2))��/2

i
^ ↵�2�

i

+
N

1
d↵↵

hh
(↵2(1� ↵2/N2))��/2

i
^ ↵�2�

i

 (1� 1/e2)��/2
1

0
↵5�3�d↵+

1

1
↵1�2�d↵ < 1.

Lemma 7.7. There exists a constant C > 0 such that for all N � e,

N

0
d↵↵

hh
(↵2(1� ↵2/N2))�1/2

i
^ ↵�2

i✓ 1

0

hh
↵(s(1� s))�1/2

i
^ s�1

i
ds

◆2
(7.8)

 C (logN)3.
(7.9)

Proof. Thanks to Lemma 7.3 (first part), the integral in (7.8) is bounded above
by a constant times

(1� 1/e2)�1/2
1

0
↵1�1+2d↵+

N

1
↵1�2(log↵)2d↵ ⇣ (logN)3.
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