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SPATIAL STATIONARITY, ERGODICITY, AND CLT FOR
PARABOLIC ANDERSON MODEL WITH DELTA INITIAL
CONDITION IN DIMENSION d > 17

DAVAR KHOSHNEVISANT, DAVID NUALART?#, AND FEI PU$

Abstract. Suppose that {u(t,2)},~¢ ,crd is the solution to a d-dimensional parabolic Anderson
model with delta initial condition and driven by a Gaussian noise that is white in time and has a
spatially homogeneous covariance given by a nonnegative-definite measure f which satisfies Dalang’s
condition. Let p,(x) := (27t)~%2 exp{—||z||?/(2t)} denote the standard Gaussian heat kernel on
R%. We prove that for all t > 0, the process U(t) := {u(t,z)/p,(x) : x € R%} is stationary using
the Feynman—Kac formula and is ergodic under the additional condition f{O} = 0, where f is the
Fourier transform of f. Moreover, using the Malliavin—Stein method, we investigate various central
limit theorems (CLTs) for U(t) based on the quantitative analysis of f. In particular, when f is
given by the Riesz kernel, i.e., f(dz) = ||x||"#dz, we obtain a multiple phase transition for the CLT
for U(t) from g € (0,1) to B=1to S € (1,dN2).
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1. Introduction. Consider the following parabolic Anderson model:

du(t,z) = SAu(t,z) + u(t,z)n(t,z) for (t,z) € (0,00) x R
subject to u(0) = do,

(1.1)

where 7 denotes a centered, generalized Gaussian random field with

E[n(t7x)n(s7y)} = 50(t - S)f(SC - y) [Svt > 07 T,y € Rd]

for a nonzero, nonnegative-definite, tempered Borel measure f on R%. As in Walsh
[24], by a “solution” to (1.1) we mean a solution to the integral equation,

(1.2)

u(t,z) = pe(xz) + / pi_s(x —y)u(s,y)n(dsdy) as. for all t >0 and 2 € R?,
(0,¢) xRY

where p;(x) denotes the heat kernel; that is,
pi(z) = (27Tt)_d/2e_“x”2/(2t) for t > 0 and z € R,

The existence and uniqueness problem for (1.1) and of its variations has been studied
extensively by many authors [3,5,10]. In the present particular setting, it is easy to see
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that (1.2) has a (unique) predictable solution u iff there exists a (unique) predictable
solution U to the following:

(1.3) Ut,z) =1+ /( s £ ”(j);j))” W) 175, y) n(ds ay),

where the pairing (u,U) is given by
u(t, )
pi(x)
It is possible to check directly that

for t > 0 and z € R%.

(1.4) Ult,z) =

Pt—s (G)Ps (b)
o (Cl + b)

In fact, both sides represent the probability density of (X;_,, X,) where X denotes a
Brownian bridge that emanates from zero and is conditioned to reach a + b at time t.

With the preceding in mind, (1.3) can be recast as the following linear integral
equation:

(1.6) U(t,z) = 1+/

(0,t)xR4

(1.5) = Ps(t—s)/t (b — %(a + b)) for all 0 < s < t and a,b € RY.

S
Ps(t—s)/t (y - gx) U(s,y) n(dsdy).

In order to present the basic existence, uniqueness result for (1.6), hence also (1.1),
let us introduce the following function Y : (0, 00) — (0, o0

1 f(dy) .
(1.7) T(B) = L /RdﬂHIyIP for all 3> 0,

where f denotes the Fourier transform of f.
Then we have the following result, which is a variation on a celebrated theorem
of Dalang [10] to the linear setting of (1.1), started at initial measure do.

THEOREM 1.1. Suppose Y(8) < oo for one, hence all, § > 0. Then, the integral
equation (1.6) has a solution U = {U(t,x)}4>0 zere that is a predictable random field.
Moreover, U is the only predictable solution to (1.6) that satisfies the following for all
e€(0,1),t>0, and k > 2:

2\* th. 1 (1—c¢
sy s EWEnh) < (2) eo{ 1 ()} an

where zj, denotes the optimal constant in the Burkholder—Davis—Gundy (BDG) in-
equality for continuous L*(Q)-martingales. Finally, U(t) := {U(t, )} cpa s a sta-
tionary random field for every t > 0, and limy_oU(t,z) = 1 in L*(Q) for every
x € R4 and for all k > 2.

From now on, we always assume the following:

(1.9) T(1) <oo and f(R?) > 0.

Thanks to (1.4) and Theorem 1.1, the finiteness of Y(1) implies that (1.1) has a
predictable solution u that uniquely satisfies that u(t,z) = (1 + o(1))pi(z) in L*(Q)
as t — 0 for every € R? and for all k¥ > 2. Furthermore, the strict positivity of
the total mass of f is assumed merely to avoid degeneracies in (1.1). Before we delve
deeper into that topic, however, let us pause and make a few remarks.
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Remark. When d = 1 and 1 denotes space-time white noise [f = dp], the existence
and uniqueness of u, hence also U, are especially well known; see, for example, [3]. In
that case, the stationarity of U (¢) was proved first by Amir, Corwin, and Quastel [1],
who used the fact that {n(¢, z)}; , has the same law as {n(t,x + at)}; , for all a € R.
Our proof of stationarity relies on the Feynman—Kac formula and works in the present
much more general setting.

Remark. 1t is possible to prove, using ideas from Dalang [10], that the (d + 1)-
parameter random field U has a version that is continuous in L¥(Q) for every k& > 2. In
turn, this fact and a suitable extension of Doob’s separability theory (see Doob [13])
together show that U has a measurable version that solves (1.6). From now on, we
always choose this version of U (and denote it also by U).

With (1.9) in place and the above remarks under way, we return to the topic at
hand and present the first novel contribution of this paper.

THEOREM 1.2. If f{()} =0, then U(t) is ergodic for all t > 0.

According to Theorem 1.1 in Chen et al. [6], the condition f{0} = 0 determines
the spatial ergodicity of the solution to (1.1) with flat initial condition. In the case of
delta initial condition, f {0} = 0 also implies the spatial ergodicity of U according to
Theorem 1.2. For each fixed N > e, we introduce the spatial average

1
1.10 S :—/ U(t,x) — 1] dx.
(1.10) se=a [0 -1

Then, condition f {0} =0, Theorem 1.2, and the ergodic theorem together imply the
following law of large numbers: For every ¢ > 0,

lim Sy+=0 a.s. and in Lk(Q) for all &k > 2.
N—o0

The main result of this paper is a corresponding central limit theorem (CLT),
which turns out to hold in the strongest possible sense of convergence in total varia-
tion. Let Z denote the standard Gaussian random variable, and recall that the total
variation distance between random variables X and Y on R is defined as

drv(X ,Y) =sup |[P(X € B) - P(Y € B)],

where the supremum is take over all Borel subsets B of R.

Recall that the condition f(R?) < oo implies a CLT for the spatial averages of the
solution to (1.1) with flat/constant initial data [7, Theorem 1.1]. The situation is much
more involved in the present setting where the initial condition is a delta mass. In this
setting, we first must analyze the asymptotic behavior of Var(Sy:) under different
assumptions on the covariance measure f. In the case of a flat initial condition, the
condition f(R%) < oo implies that the variance of the spatial average of the solution
is of the order N~% as N — oo; see [7, Proposition 5.2]. By contrast, we will see in
section b that, in the present setting, the normalization of Var(Sy ) depends on the
detailed structure of the covariance measure f, as well as on the spatial dimension
d. Moreover, in order to prove the CLT, we appeal to the Malliavin—Stein method
(see Proposition 2.1 below), from which we will deduce how the covariance measure
f characterizes the CLT for the spatial average of U(t) in various ways. In the case
of a flat initial condition, it has been proved in [9, Theorem 2.4] that the convergence
rate for CLT in terms of total variation is N~%2 while for the delta initial condition,
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the convergence rate for CLT is determined not only by spatial dimension d but also
by the behavior of f.
We start by introducing the following quantity associated with f:

(1.11) /ds fdz)H 1= coslszy)

Rd e (sz)?

The following theorem states that the finiteness of R(f) ensures the CLT for the
spatial average of U(t) and the convergence rate is N —1/2 yegardless of the spatial
dimension d.

THEOREM 1.3. If R(f) < oo, then for all fized t > 0 there exists C = C(t) > 0

such that
SNt c
d —— 7| < — or every N > e.
w < Var(Sn ¢) ) ~ VN f v =

The asymptotic behavior of Var(Sy ) will be discussed in detail in Theorem 5.1
below. It follows from that analysis and from Theorem 1.3 that if R(f) < oo, then

1
NSy = m/ U(t,2) — 1]de 5 NO,(R(f))  as N — oo,
f0.N74

where “55” denotes convergence in distribution.

We will see in Lemma 5.9 below that R(f) < oo only if d > 2. Thus, the preceding
CLT has no content in dimension one. When d = 1, we are able to derive a CLT under
the additional constraint f(R) < co. According to Theorem 1.1 in Chen et al. [7], the
finiteness condition f(R) < oo implies a CLT for the solution to (1.1) with flat initial
condition. The same holds in the present setting of delta initial condition, except the
rate is different (and so are many of the underlying arguments).

THEOREM 1.4 (d =1). If f(R) < oo and d = 1, then for all fized t > 0 there
exists C = C(t) > 0 such that

doy [ =N 7} <o fCN N e
Var(SMt) N

In particular, Theorem 1.4 and Theorem 5.2 below together imply that if d = 1
and f = ady for some a > 0, then

N
\/%SN \/W/ }dx-)N(() 2tf(R)) = N(0,2ta) as N — oo.

On the other hand, if the measure f is finite, as well as a Rajchman measure,! then

N
N N .
HlogNSNt NlogN ]dx—> (0,tf(R)) as N — o0

The above results give a more or less comprehensive idea of the CLT for U(t)
when R(f) < oo, especially when the measure f is in addition finite. By contrast

1We recall that a finite measure f is Rajchman if its Fourier transform RY 3 z — f(z) :=
Jra €Y f(dy) vanishes at infinity; that is, lim) ;| e f(z) = 0. Lyons [19] discusses a survey of the

rich subject of Rajchman measures. Note that, in the present setting, f : R? — R is a nonnegative,
nonnegative-definite, uniformly bounded, and continuous function.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/23/21 to 167.172.165.125. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

2088 DAVAR KHOSHNEVISAN, DAVID NUALART, AND FEI PU

with this case, there does not seem to be a canonical description of a CLT when
R(f) = co. This condition occurs for any ambient dimension d, for example, when f
is given by a Riesz kernel; see Remark 5.11 below. In the following, we will present the
CLT specifically in the case that f is given by a Riesz kernel that satisfies Dalang’s
condition, YT(1) < oo, that is, when f(dz) = ||z||"?dz where 0 < 8 < 2Ad. In
contrast with what happens in the case that the initial condition is flat (see Huang
et al. [17]), the CLT for U undergoes a multiple phase transition from g € (0,1) to
B=1top e (l,dN2).

THEOREM 1.5. If f(dz) = |lz||=Pdx for some B € (0,d A 2), then for all fived
t > 0 there exists C = C(t) > 0 such that for all N > e,

CN—B/2 if B€(0,1),
SNt
dTV ( 7Z>

\/W << Cy/log(N)/N if =1,

CN-C=H/2  ifge(1,2).
As a consequence of Theorem 1.5 and Theorem 5.4 below, we obtain the following
CLTs:
(A)if 0 < 8 < 1, then

1

B/2 —
N°FShe = N

/ d[U(tw) —1]dz 4, N(0,to0,84) as N — oo;
[0,N]
(B) if 8 =1, then

N 1 d
1/ Sni = Ul(t —1]d N(0,¢t s N ; and
log N Nt Nd=(1/2)/log N /[O,N]d[ (t,z) |dz — N(0,to1,8,4) as N — oo; an

(C)if 1 < B <2Ad, then

1
Nd—1+(5/2)

N8y, = / U(t,z)—1]dz 4 N(0,t*Poy54) as N — oo,
[0,N]4

where 09 g4, 01,84, and o2 3,4 are nondegenerate and defined explicitly in Theo-

rem 5.4.

The logarithmic correction that appears in Theorems 1.4 and 1.5 [ = 1] is related
to the transition functions of the Brownian bridge; see (1.5). Indeed, the conditional
probability density p,—s)/(sz/t) becomes t/s after a change of variable in x. The
resulting singularity at s = 0 ultimately give rises to the log IV factor in Theorems 1.4
and 1.5.

Remark. The convergence rates for the total variation distance in Theorems 1.3,
1.4, and 1.5 are natural. Indeed, one can observe that in each case the convergence
rate for the total variation distance is of the same order as /Var(Sy) as N — oo;
see Theorems 5.1, 5.2, and 5.4. A similar phenomenon can be observed in the context
of spatial CLT for other related SPDEs [8,9,12,15,16,17,23]. See [22] for recent
advances on the parabolic Anderson model driven by a Gaussian noise that is colored
in both its space and time variables.

Remark. One can follow the method in [8] to prove the functional CLT in time
corresponding to the CLTs below Theorems 1.3, 1.4, and 1.5, respectively. For in-
stance, one can use the argument in [8, Proposition 4.1] to compute the covariance
of the limit Gaussian process and then prove the convergence of finite dimensional
distributions and tightness. We leave these for interested readers.
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The organization of this paper is as follows. We establish the well-posedness
and spatial stationarity for the solution to (1.6) in Theorem 1.1 in section 3. The
ergodicity property in Theorem 1.2 is proved in section 4. Section 5 is devoted to
analyzing the asymptotic behavior of the variance of spatial average. Moreover, we
present the estimates on total variation distance in Theorems 1.3, 1.4, and 1.5 in
section 6. And the last section is an appendix that contains a few technical lemmas
that are used throughout the paper.

Let us conclude the introduction by setting forth some notation that will be used
throughout. We write “g1(z) < go(z) for all z € X” when there exists a real number L
such that g;(x) < Lga(z) for all x € X. Alternatively, we might write “g2(z) 2 g1(z)
for all x € X.” By “g1(x) =< go(x) for all z € X” we mean that g;(z) < go(x) for all
x € X and go(z) < g1(z) for all z € X. Finally, “g1(z) x g2(z) for all z € X” means
that there exists a real number L such that ¢1(z) = Lga(z) for all x € X. For every
Z € L*(Q), we write || Z||), instead of the more cumbersome [|Z] 1 (q)-

2. Preliminaries.

2.1. The BDG inequality. Let us collect a few facts about the optimal con-
stants {2y }x>2 of the BDG inequality.

First, recall from the BDG inequality that for every continuous L?(2)-martingale
{Mi}io,

E (|M|*) < 2k (<M>ff/2) for all t > 0 and k > 2.

Davis [11] has shown that every zj is the largest positive root of a certain special
function, in particular, that zp is the largest positive root of the monic Hermite
polynomial Hej when k is an even integer. These remarks and the appendix of
Carlen and Krée [2] together imply the following:

2k . 2k
2.1 zo=1, =z :\/3—&—\/6%2.334, and sup— = lim — = 2.
@1) ’ ! ixh VE koo VE

Moreover, the special case where the martingale M is Brownian motion shows us that

1 (k+1\]"*
(2.2) 20> N0, Do = v2 | —=r (22 for all k > 2.
NS 2
Therefore, we learn from the Stirling formula that z; is bounded from above and from
below by nondegenerate multiples of v/k, uniformly for all k > 2.

2.2. The Clark—Ocone formula. Define Hy to be the reproducing kernel
Hilbert space, spanned by all real-valued functions on R¢, that corresponds to the
inner product (¢, ¥)#, = (¢, ¥ * f) L2(re), and set H := L?(Ry x Hp). The Gaussian
family {W(h)}rey formed by the Wiener integrals

W(h) = /}R iy h(s,z)n(dsdx) [h € H]

defines an isonormal Gaussian process on the Hilbert space H. In this framework
we can develop the Malliavin calculus (see, for instance, [20]). We denote by D the
Malliavin derivative operator and by § the corresponding divergence operator whose
domain in L?(Q) is denoted by Dom][d].

Let {Fs}s>0 denote the filtration generated by the infinite dimensional white noise
t — n(t); that is, F; is the filtration generated by all Wiener integrals of the form
I (0,6) xR ¢ dn as ¢ ranges over all test functions of rapid decrease (which are easily
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seen to be dense in H). A basic idea used in this paper is the Clark—-Ocone formula
(see [6, Proposition 6.3]),

(2.3) F =E[F] +/ E D, F | Fs)n(dsdz),

R+ xRd
valid a.s. for every random variable F in the Gaussian Sobolev space D':2. Using
Jensen’s inequality for conditional expectation, this equality leads immediately to the
Poincaré-type inequality

@4 (P < [ as [y [ f@) 100, FIL D0 Gl

for F,G € DY2 provided that DF and DG are real-valued random variables.

2.3. The Malliavin—Stein method. Recall that the total variation distance
between two Borel probability measures ¢ and v on R is defined as

dTV(:uﬂV) = Sup':u(B) - V(B)‘7

where the supremum is taken over all Borel subsets B of R. We might abuse notation
and write dpy(F',G), dyy(F ,v), or dry(u, Q) instead of dpy (i, v) whenever the
laws of F' and G are respectively p and v.

A combination of Malliavin calculus and Stein’s method for normal approxima-
tions leads to the following bound on the total variation distance (see [21, Theorem
8.2.1]).

PROPOSITION 2.1. Suppose F € DV? satisfies E[F?] =1 and F = §(v) for some
element v in the domain in L*(Q) of the divergence operator . Then,

(2.5) drv(F,N(0,1)) < 2y/Var ((DF ,v)%).

3. Existence, uniqueness, and stationarity: Proof of Theorem 1.1. The
proof of Theorem 1.1 follows a route that is nowadays standard. Therefore, we sketch
the bulk argument, enough to make sure that the numerology of (1.8) is explained in
sufficient detail. Also, the proof does require one technical lemma that we state and
prove next. The following identity will be used several times later on:

1

B 0N = G

/ efr”yll2/2e”'yf(dy) for all » > 0 and z € R%.
Rd

Since p; is a test function of rapid decrease for every r > 0, the above identity follows
from the very definition of f.
Recall the function Y defined in (1.7).

LEMMA 3.1. fg exp{—B{s A (t = 8)}}(P2st—s);t * [)(0)ds < 4Y(20) for every
t,f>0.

Proof. We apply the identity (3.1) with r = 2s(¢t — s)/t in order to find that
(Posiesyye * ) (0) = / o=/t fqy)
s(t=s)/ (2m)¢ Jga

< o [ oo (<007 fa
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using the elementary fact that s(t —s)/t > 1[s A (t — s)]. Integration and symmetry
together imply

t - ~ 2 t/2 B _ 5 e A
/ e B{sA(t—s)} (p2s(t—s)/t % f) (0) ds < 7[1/ e Ps dS/ e sllyll /Qf(dy)
o (2m)? Jo Rd

/2,

The bound [,/“(--+) < [;°(---) yields the lemma. 0

0

With Lemma 3.1 under way, we can start the proof of Theorem 1.1.

Proof of Theorem 1.1 (part 1): Existence and uniqueness. Throughout the proof,
define

(3.2) Be g = %T—l (1 - 5) .

2
4z

We begin by proving existence and uniqueness.

The proof of existence and uniqueness works by Picard iteration, as is customary,
and uses ideas from Foondun and Khoshnevisan [14] in order to establish the moment
bound (1.8) and uniqueness.

Define for all t > 0 and = € R%, Uy(t, ) := 1 and

S

33 U0 =1+ [ pg (v o) Unls,n)ndsdy)

(0,t)xRd
valid for every n € Z,. Define, for all t > 0, n € N, and x € R?,

Dy(t,z) :=Un(t,z) —Up_1(t,z) and &,(t):= sup ||Dn(t,a)l?.
a€Rd

We first observe that, because of the semigroup property of the heat kernel,

2

S
Due = | [ b (- 5o) atdsdy)
(0,t) x R4 &
t
<22 / ds / dy / F(@Y') Puesy e )Psit—sy e +9)
0 R4 R4

t
:z,%/ ds/ f(dw) pas(i—s)/e(w).
0 Rd

Therefore, we may appeal to Lemma 3.1 to find that for every 8 > 0,

t
B4 IDit, @) < 2™ / e NN ds | F(dw) Pase—sy/e(w)
0 R

< 422P17(2p).
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Next, we might observe that

2
D1t )l

S
/(0 xR Ps(t—s)/t (y - Ex) Dy (s,y)n(dsdy)
;U)X

t
S
< 21?;/ ds/ dy [ f(dw) Psi—s)t (y - ;33) Ps(t—s)/t
0 Rd R4

S
% (w+y = 22) [Pals,)Dals 0+ )l

¢ s s
<Zk/ [En(s ds/Rd dy/ f(dw) py—s)/t (y—;x) Ps(t—s)/t <w+y7¥x)
—Z;g/ Enl dé’/ J(dw) pasp—s) /e (w).

Since the right-hand side does not depend on z, we may optimize to find that

2

k

t
eiﬁtgn—k—l(t) < Z}?eiﬁt/ 5n(5) ds /d f(dw) p2s(t—s)/t(w)
0 R

t
_ 2 / e PV g, (e PN ds [ F(dw) pasa—sye(w)
0 Rd

t
<22 / eB5E, (5)o PN} g / F(dw) Pasiesy o (w):
]Rd

0

In particular, set

Fu(t,B) = sup [e_ﬁsc‘fn(s)} forallmeNandt,5>0
s€(0,t]

in order to deduce from Lemma 3.1 that F,41(t,3) < 422Y(28)F,(t,B). Plug in
B = Bek, defined in (3.2), to find inductively that

n+1( /BE k) (1_5) ( Be k) (1_5)n]:1(t755,k)-

Now, we can read off from (3.4) that Fi(t, 8 x) = sup,e(olexp{—Bers}é1(s)] <
4227 (2B k) = 1 — €. This yields F,11(t, Bex) < (1 — €)™t and hence

sup |Upns1(t,x) — Un(t,x)Hi < (1 —g)ntlefent forallt>0and n e Zy.
z€eR

At this point, standard arguments imply that U(t,z) := lim, o Up(t, ) exists in
L¥(Q) for every k > 2 and solves (1.1). Moreover,

U, 2)lle < 1Uo(t, @)k + D WUnsa(t,2) = Un(t, @)l < 1+ ePr 2y 7 (1 —e)m/2
n=0 m=1
< exp (ﬂs,kt/z)
T 1-V1-¢
Since 1 — /1 — e > ¢/2, this proves (1.8). d
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Proof of Theorem 1.1 (part 2): Stationarity. For every ¢ > 0 we define a new
Gaussian noise n° via its Wiener integrals,

/ o(y) n°(dsdy) = / (¢ *pe) (y) n(ds dy) for all £ > 0 and ¢ € Ho.
(0,t) xRR4 (0,t)xR4

Because of the semigroup property of the heat kernel, n° is a generalized Gaussian
random field with

Cov[n®(t,z), n°(s,y)] = do(t — s)fe(x —y), where fe := po. * f.

As is customary in distribution theory, the rapidly decreasing test function f. is
identified with a positive-definite tempered measure (also denoted by f¢) that, among
many other things, satisfies (1.9). In fact, the total mass of the measure f. is merely
the total integral of the function f., which is f(R?). Let Y. be defined as in (1.7),
but with f replaced by f., in order to see immediately that Y. < Y pointwise. Thus,
the already-proved portion of Theorem 1.1 applies to show that the stochastic PDE

Ou® = LAu® + utnf on (0,00) x RY,
subject to uf(0) =, on RY,
has a predictable random-field solution u® that is unique subject to

sup luf(t,z)/pe() |l < o0 for every T'> 0 and k > 2.
(t,z,e)€(0,T) xR x (0,00)

Let us expand on this a little as follows: For every z € R?, consider the SPDE
Out(t, a5 2) = $Au(t, x5 2) +us(t,z;2)n°(t, z) on (0,00) x RY,
subject to u°(0,e;2) = d.(e) on R%

Then we can apply the same argument that was used in the already-proved portion of

Theorem 1.1 in order to establish the existence of a random-field solution u®(e,e;z)
to the preceding, one for every z € R?, that is unique among all that satisfy

us(t,x;2)

< 00 for every T'> 0 and k > 2.
pi(x — z)

k

Lty = sup
(t,2,2,6)€(0,T) xRIxR4 X (0,00)

We remark that u(¢,x;0) = u*(¢t,z) for all t,e > 0 and = € R%.

Let Us(t,x) := us(t,z)/pe(x) and Us(t,x;2) = u®(t,z;2)/p(x — z) for all
t>0,e€(0,1), and 2,z € R? confer with (1.4). The method of Dalang [10] can be
used to show also that (t,x,z2) — U®(t,z;z)—hence also (t,x,2) — u®(t,z;z)—is
continuous in LF(Q) for every £ > 2 and ¢ > 0. We skip the details and mention
only that, in particular, u® and U® both have Lebesgue-measurable versions for every
€ > 0, which we always use.

Choose and fix an arbitrary nonrandom function vy € L°°(R%) to see from linear-
ity that

(3.5) v (t,x) = /Rd u®(t,z;2)vg(z) dz [t >0,z €RY

is the unique predictable solution to the SPDE
[&gve(t,x) = AV (t,z) + 0% (t, 2)n°(t, z) for (t,z) € (0,00) x RY,

subject to v°(0) = vy on RY,
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that satisfies

T = sup |[v°(t,z)||x < oo  for every T,e >0 and k > 2.
Y (t,2)€(0,T) x R4

Recall that v* has the following mild formulation:

Vta) = (o)) + [ pr(y - a)o(s0) 77 (dsdy)
(0,¢) xR¢
=@+ [ ([ ety e = 2 ) i)

thanks to a stochastic Fubini argument, which we skip. The spatial correlation func-
tion f. of n° clearly is in .#(R?) and hence is bounded; in fact,

fe(x) = (p2e * f) (x) < / efE”yHQf(dy) < oo foralle € (0,1) and = € R%; see (3.1).
Rd

1
(2m)¢
Let B denote a standard Brownian motion that is independent of 7, and let Eg and E,,
denote, respectively, the conditional expectation operators given B and 7. According
to general theory (see Hu and Nualart [18, Proposition 5.2]), v® has a Feynman—Kac
representation

ve(t,z) =Ep

vo (Bt + ) exp (/(O - Pe (y — 2 — Bi_s)n(dsdy) — étfe(0)>
,t)xRd

Define

BYY = B, — ;(Bt —w) for all s € [0,¢] and ¢t > 0 and w € R%.

We can see that B"* is a Brownian bridge on [0,¢], conditioned to go from the
space-time point (0,0) to the space-time point (¢,w). And in fact,

Ds(t—s)/t (y — ;x> of (1.6) is the probability density of BL* at y.
Because {Bﬁ’w}se[o,t] is independent of B;, we may disintegrate and write
v (t, ) = / pi(z — z)Ep |:exp </ p-(y — = — By, )n(dsdy) — ;tfg(())>:| vo(2) dz.
R4 (0,t) xRd

We compare the above to (3.5) in order to deduce from the fact that vy € L>(R) is
arbitrary that the following is a version of u® (¢, ;2):

exp (/ pe(y — 2z — By )n(dsdy) — étfe(O)ﬂ :
(0,¢) xR¢

We adopt this version of u®(t,x; z) (rather than the old ones). Set z = 0 to see that
we have adopted the following versions of u®(t,x) and U®(t,x):

u®(t,z;2) =pi(z — 2)Ep

u®(t,z) = pi(x)Ep [exp </ p-(y—z— Bffs)n(ds dy) — ;tfg(0)>:| , and hence
(0,t) xRd

Ut(t,z) =Ep |:exp (/(0 na pg(y —x — B:fs)r](dsdy) — ;tfg(())):| .
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According to the Malliavin-calculus method of Hu and Nualart [18] (see also [5, The-
orem 1.9(2)]), lim._,o U (¢,x) = U(t, x) in L*(Q) for every t > 0 and = € R%. There-
fore, our goal of proving the stationarity of U(t) would follow once we demonstrate
the stationarity of U¢(t) for every ¢, > 0. But that is not hard to do. Indeed, by the
1t6—Walsh isometry for stochastic integrals,

E, / pe(y —a— BiZ,)n(ds dy) x / pe(y —b— Bi%,)n(ds dy)
(0,t)xRR4 (0,t)xR4
¢
= / dS/ dy/ f(d2) pe(y —a— B2 )p(2+y —b— BZ))
0 RY R4
= t/ f(dz) pac (z — b+ a) [semigroup property]
Rd
= t(p2e* f) (b—a),
which proves the asserted stationarity of U*(t) for every t,e > 0. |

Remark 3.2. As a consequence of the Feynman—Kac formula, we can see imme-
diately that U(t,z) > 0 a.s. for all t > 0 and = € R

Proof of Theorem 1.1 (part 3): Behavior near t = 0. We now complete the proof
by showing that lim, o U(¢,x) = 1 in L*(Q) for every € R%. By stationarity, it
suffices to consider only the case that x = 0. Now in accord with (1.6) and (1.8),
there exists a real number K such that, uniformly for all ¢ € (0, 1),

E (|U<t70) - 1|k)
<

t
B s [y [ 50) b0 a0 + IV )50+ ) a2
0
t
<K [ [ dn [ 5@ paea Pt +)
0 d d

t t
= K/ (pQS(tfs)/t * f) (O) ds < Keﬁt/ eiﬁ{SA(tis)} (p25(t75)/t * f) (0) ds
0 0

<4KeP'r(28)  forall B> 0.

Set 8 = 1/t to find that E(|U(¢,0) — 1|¥) < 4KeY(2/t) — 0 as t — 0, owing to the
dominated convergence theorem, (1.7), and the theorem’s condition that Y(5) < co
for one, hence all, 8 > 0. This concludes the proof. 0

4. Ergodicity: Proof of Theorem 1.2. The following bound on the Malliavin
derivative of U(t,x) is a key technical result of the paper. Among other things, it
also plays a central role in our proof of Theorem 1.2.

PROPOSITION 4.1. Choose and fizr k > 2, t > 0, and v € R, Then, U(t,x) €
Nk>2DY* . and for almost every (s,y) € (0,t) x RY,

64 t 1. 1 S
DUl < e { [+ 377 (35 )| Foaacan (- 3)

(4.1) = Crk Ps(t—s)/t (y - gx) ;

where Be  was defined in (3.2).
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Because of (1.4), U(t,x) € Nk>2DYF iff u(t,x) € Nk>2DY*. Thus, portions of
the above are already included in the work of Chen, Hu, and Nualart [4, Proposition
5.1]. The point here is mainly the explicit bound for the moments of the Malliavin
derivative of U(t, z).

Remark 4.2. Properties of the Malliavin derivative, and (1.5), together imply that
the inequality of Proposition 4.1 is equivalent to the following:

64 t 1. 1 S
[ Dsyu(t, )|l < 2 exXp {2 {B?/&k + ?r ! <322£>} }pt(z)ps(t—s)/t (y - ;1’)

64 1 1
= - exp {; |:57/8,k + §T71 (322%>:| }pt—s(ﬂf —y)Ps(y)-

The proof of Proposition 4.1 requires some notation and two intervening lemmas.
Define ug(t,z) = p:(x), and iteratively let

A

(4.2) Unt1(t,x) = pe(x) + / Pi—r(z — 2)up(r, z) n(drdz)

(0,t) xRR4
for every n € Z4. It is easy to see that, for every n > 2, u,(t,z) = p(z)Un(t, x),
where U,, was defined in the proof of Theorem 1.1, and denotes the nth stage in the
Picard iteration approximation of U. It follows from the proof of Theorem 1.1 that
un(t, ) converges to u(t,r) = pi(z)U(t,x) in L*¥(Q) as n — oo for every k > 2. Tt
also follows from basic properties of the Malliavin derivative that a.s.,

(4.3)

Ds,yun+1(t ) 33) = pt,s(x - y)’u/n(s ) y) + / B ptf'r<x - Z)Ds,yun(r 9 Z) W(dr dZ)
(s,t) xR

for almost every (s,y) € (0,t) x R and all n € Z, for which the right-hand side is
well defined. The following shows inductively that indeed the right-hand side is well
defined for every n and provides a bound on its L*(Q2)-norms.

LEMMA 4.3. Choose and fixn € N, k> 2,t >0, and x € R?, and let 3 := B8,k
as defined in (3.2). Then,

(44) ||Ds,yun(t ; -/L‘)Hk < aneﬁ(t_s)/th—S(x - y)ps(y)

for almost every (s,y) € (0,t) x RY, where

ap:= sup sup sup [|[Un(s,z)||xr<oo and ayp:= <\/§ [1- 2‘"]—1—2‘") a1 <4day
meZy v€R? s€(0,t]

for the random fields {U,}52, defined in the proof of Theorem 1.1.

The fact that o is finite is a consequence of the proof of (1.8). In fact, the proof
of Theorem 1.1 (with ¢ = 7/8) shows that

16 t 1
4. <= e .
- weFen{iT (53))

Proof of Lemma 4.3. We proceed to prove (4.4) by using induction on n.
Because D yuo(t,z) = 0, it follows from (4.3) that | Ds yu1 (¢, 2) ||k < a1pi—s(z—
y)Ps(y). In particular, (4.4) holds for n = 1. Next, we suppose (4.4) is true for some
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integer n > 1 and proceed to prove that it is true when n is replaced by n 4+ 1. With
this aim in mind, observe using the BDG inequality that

gn+1 = 5n+1(573/ata17»k) = ||D87yun+1(t7x)”§:

satisfies

Ent1 < QCV% [Pi—s(z — y)ps + QZk/ dr/ dz f( dz)
R R4

X Prr( = 2)prr(® — 2 = 2) | Ds ytun (r, 2)II}, |1 Ds yun(r, 2" + 2) I

<203 fpra - o+ 2802 [ e [ as [ pa)

X pt—s—r(-73 - Z)pr(z - y)pt—s—r(x -z Z/)pr(zl +z— y);

thanks to the induction hypothesis and a change of variables (r <» r —s). Apply (1.5)
in order to find that

Ent1 < 207 [pr—s(z — y)ps(y)]?

t—s
+ 22202 [pe_s( — 1)ps ()] / PUVi—s=n} g, / a [ )
0

R4 R4

T
X Pr(t—s—r)/(t—s) (Z —Yy- m(l‘ - y)> Pr(t—s—r)/(t—s)

x (z’-i—z—y—tis(x—y))

t—s
= [pi—s(z — y)ps(y)] {20@ + 222&3/ PV (po ey (s * £) (0) dT} :
0

where we have appealed to the semigroup property of the heat kernel for the last line.
Take square roots and apply the simple inequality (|a| 4 |b|)'/? < |a|'/? + |b|*/?—valid
for all a,b € R—to see that

- 1/2
HDS yu'rr‘-l(tyx)“k { Q/t 3 B{rv(t—s—r)}
: < V201 +an {2z e Dor(t—s—m)/(t—s) * f) (0)dr .
(@ — 1)pa(y) A (P2r(t—s—r)/t—s) * f) (0)

Since rV (t—s—r)=t—s—{rA(t—s—r)}, this proves that

| Ds yuns1(t, )|k
Pi—s(x —y)ps(y)

t—s
< \/5041 +aneﬂ(t—s)/2 {2213/ e Blrn(t—s—r)} (pw(t_s_r)/(t_s) * f) (0) dr}
0

< V201 + a,e? 7972, /8227 (28) (see Lemma 3.1)

< V2a + %aneﬂ(t_s)m < an+1€ﬂ(t_s)/27

1/2

thanks to the definition (3.2) of 8 = 75 5, and the readily checkable fact that a1 =

V21 + 2ay,. This proves (4.4) with n replaced by n + 1 and concludes the inductive
stage of the argument. 0

Our next technical lemma implies, inductively, that u,(t,z) € DY? for every
n e N.
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LEMMA 4.4. There exist real numbers A, B > 0 such that

sup sup E (||Dun(t,x)||§_t) < At~ dePt for allt > 0.
neN zeR4

Proof. We compute directly, using Lemma 4.3, as follows:
t
B(1Dun(t.)l3) = [ ds [ dy [ 1(@y) BIDoyua(t.0)Dsunt o)
0 R R
t
< [as [ ay [ 5@ 1Deyun(t Dl 1Dt
0 R4 R4
t
< 0/ dS/ dy/ F(dY) pe—s(@ — y)ps(W)pi—s(z —y — vy )ps(y + ¥/),
0 Rd R4

where ¢ := 1603 exp(f7/s,2t), using the constants of Lemma 4.3. Note that o;; depends
on t, and in fact Theorem 1.1 ensures that ¢ < ¢; exp(cat) where ¢; and ¢o do not
depend on t. Apply (1.5) to see that

E (I[Dun(t, 2)|3)

t
< orelat 2 / _ s r_ 8
< c1e®'[py(z)] /0 ds /Rd dy/Rd f(AY') Dst—s) 1 (y tx) Ds(t—s)/t (y+y tar)

t

= c1e'[py(2)]? / (Pas(i—sy/e * f) (0)ds
0

Cle(1+62)t

t
S WA e~ {sn(t=s)} (p2s(t—s)/t *f) (0) ds.

Since T(2) < oo, an appeal to Lemma 3.1 completes the proof. ]
We are in position to verify Proposition 4.1.

Proof of Proposition 4.1. The proof is similar to that of [6, Theorem 6.4]. Choose
and fix k > 2, ¢ > 0, and 2 € R%. Thanks to (1.4) and (1.5), the proposition’s assertion
is equivalent to the following inequality, valid for a.e. (s,%y) € (0,¢) x R%:

64 t 1. 1
Dt < S exp{ 5 |ss+ 517 (35 ) | oot = wimato)

We will prove the above reformulation of the proposition.

Thanks to Lemma 4.4 and closeablility properties of the Malliavin derivative
operator (see Nualart [20]), it follows that, after possibly moving to subsequence,
Duy,(t, ) converges to Du(t,z) in the weak topology of L?(€2;H). Then, we use a
smooth approximation {¢.}.~¢ to the identity in R, x R? and apply Fatou’s lemma
and duality for L*-spaces in order to find that, for almost every (s,y) € (0,t) x R?
and for all k > 2,

|Ds,yu(t,z)||x < limsup

/ } Dsgy/u(t s :E)’l/)e (S — S/, Yy — yl) ds/dy/
Ry xR

e—0
k
< lim sup sup / E[GDyyu(t,x)]ve(s — s,y —y')ds'dy’| .
€20 |Gl (k—1)<1 |/Ry xRE

Choose and fix a random variable G € L?(Q2) such that [|G|/—1) < 1. We can find
an unbounded subsequence n(1) < n(2) < --- of positive integers such that
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/ E[GDyyult, )] (s — &',y — ') ds'dy/
R4 xR4

= lim
L—00

/ E [G-Ds’ y’ Un(0) (t ) 1’)] ¢e(5 - 8/7 Yy — y/) dS/dy/
R, xRd ’

< lim SUP/]R " HDS’,y’un(é) (t ) x)Hk %(S - Sl7 Y- yl> ds/dy/
X

{— 00

< Sip On / =N 2p, (&~ )py (i )e(s — 8"y — ) ds'dy’
(0,t)xR4

neN
< daye’t/? / Py (= y)ps (¥ )0e(s — 8"y — y) ds'dy’;
(0,t) x R4
see Lemma 4.3. Let ¢ — 0 and appeal to (4.5) in order to finish. |

The second, and final, step of the proof of Theorem 1.2 is a Poincaré-type in-
equality for certain nonlinear functionals of U. In order to describe that inequality,
let us first choose and fix points ¢',...,¢* € R? and bounded Lipschitz-continuous
functions g1, ..., gx € C}(R) such that

(4.6) g;(0) =0 and Lip(g;) =1 for every j =1,... k.

Then define for every ¢t, N > 0 and = € R,
k .
(47) g(tax) = ng (U(t,l‘+<j)) .
j=1

LEMMA 4.5. Choose and fix an integer k > 2, points =, (', ..., ¢F € R?, and
functions g1,...,gr € CL(R) that satisfy (4.6). Then, there exists a real number
A=At k,q1,...,9k) given by (4.8) below such that

k k t
Cov (@(0,0).6(6. )| < 42 3 3 [ (asmay s ) (Gl ¢ =) s

Jo=1j1=1
Proof. By the chain rule of Malliavin calculus (see Nualart [20]),
Ds,zg(t ) Lﬂ)

k k
= 1(O,t) (S) Z 9j (U(t , T+ <J)) gé'o (U<t , T+ Cjo)) Ds7zU(t , T+ Cjo)
1

jo=1 | j=1
J#3jo

for almost every (s, z) € (0,t) x RY. Therefore, Proposition 4.1 ensures that

k
||Ds>zg(t7$)”k < 1(0,t)(3) max sup ‘gj(aﬂk_l Z ||Ds,zU(t=$ + CjO)Hk

1<j<k a€R

Jjo=1
k < _
< Alg)(s) Z Ps(t—s)/t (Z - g(ﬂf + CJO))

Jo=1
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with

64 t 1. 1 _
(4.8) A= 7exp{2 [57/8,;c + §T 1 (322%)}} max sup |gj(a)|k L

1<j<k a€R

It follows from the Poincaré inequality (2.4) that | Cov(G(¢t,x),G(t,0))| is bounded
from above by

A2Z Z/ ds/ddy/ F(AY) pei—s) 1 (y—f(m-f—CJ ))pg(t )/t (y +ty - C“)

Jjo=1j1=1

Apply the semigroup property of the heat kernel together with Fubini’s theorem to
finish. 0

Proof of Theorem 1.2. Define

1
V Var / G(t,x)dz | and G(x g;(U(t,z+¢%)) for all z € RY,
w(t) = (Nd 600 ) H] )

where G(t,z) has been defined in (4.7) and the bounded functions g1, ..., gx therein
satisfy (4.6). Since U(t) is stationary (Theorem 1.1), [6, Lemma 7.2] implies the
desired ergodicity provided that we prove that, for all ¢ > 0,

(4.9) lim Vi (t) = 0.

N—o00

For every real number N > 0, define the functions
(4.10) Iy(z) = N_dl[O’N]d(x) and  Iy(z) = In(—x) for z € RY.

By Lemma 4.5,

1
Vi) = T/[ e aucovigw. ) 9.

k

< NQd Z Z/ dS/ dm/ e dy (P2si— s)/t*f)( (@ —y+¢° - Ch))

Jjo=171=1
= A2 ]Ozljlzl/ ds/ IN *IN ( )(f*pZS(t—s)/t) (;(m_FCjO _ le)).

Therefore, (7.2) implies that

Vn(t) < kQAQ/ ds | | f(dy) e==F b)lyFHW'
Jj=1

The quantity H?Zl{l — cos(Nsy;/t)}/(Nsy;/t)? is bounded above by 27¢ and con-
verges to zero as N — oo for each s > 0 and y # 0. Since f{O} = 0, the dominated
convergence theorem implies that limpy_, ., Vv (¢) = 0, taking into account that

t
/ ds | f(dy) e
0 R4

which follows from Dalang’s condition T(1) < oo. This proves (4.9), whence follows
ergodicity. 0

s(t—s) 2
— 1Y
I < o,
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5. Asymptotic variance. Recall the spatial average Sy, and the quantity
R(f) are defined in (1.10) and (1.11), respectively.

THEOREM 5.1 (d > 1). For allt >0,
(5.1) lim NVar(Sn,.) =t R(f).

N—oc0

The quantity on the right-hand side is strictly positive and (5.1) holds whenever R(f)
is finite or infinite.

According to the criteria in Proposition 5.8 and Lemma 5.9 below, the value of
R(f) could be finite or infinite. For example, if f(dz) = pi(x)dr and d > 2, then
R(f) < oo; if f is given by the Riesz kernel, i.e., f(dz) = |z[|7?dz,0 < 8 < 2 A d,
then R(f) = oo. Moreover, it is easy to deduce from Lemma 5.9 below that, in the
case that d = 1, R(f) is always infinite, which might suggest that the above 1/N
rate of decay of Var(Sy ) is not the right one in one dimension. Indeed, this is the
case. And the following result identifies the correct rate canonically as N~ 'log N in
dimension one.

THEOREM 5.2 (d=1). Assume f(R) < co. Then for all t > 0,

N
(5.2) tf(R) < liminf N Var(Sn,¢) < limsup

Var(S < 2tf(R).
N—oo log Nooo log N ar( N7t) - f( )

Both bounds are sharp in the following sense:
L. If f = ady for some a > 0, then Var(Sn ) ~ 2tf(R)N~'log N as N — co.
2. If lim, o0 f(x) =0, then Var(Sn,) ~ tf(R)N~'log N as N — co.

Remark 5.3. The condition in item 2 of Theorem 5.2 is a well-known one. Indeed,
finite Borel measures whose Fourier transforms vanish at infinity are called Rajchman
measures. See Lyons [19] for the background and rich history of the work on Rajchman
measures in classical harmonic analysis.

We now turn to the Riesz kernel case. Define
1—
(5.3) oly) = % for all y € R\ {0},

and ¢(0) := 1/2 to preserve continuity.

THEOREM 5.4 (Riesz kernel).  Assume f(dz) = |z||"Pdz and f(dz) = kgq
|lz||?~4dz, where 0 < B < 2Ad and kg 4 is a positive constant depending on 3 and d.
1. If0 < B <1, then

d
t
; 8 — B — =
(54)  lim N°Vy(t) —3 ||z|| H1 (1 —|zi|)dz ==t oo g.a-
2. If1=08<2Ad, then
N 2t K1,q 1-d
65)  Jm o = gt [l ]le 2z =ty
3. If1 < B<2Nd, then
(5.6)
Jim N?PVie(r) = "Bd/ 122~ dH@ / L
= t2 60'2713751.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/23/21 to 167.172.165.125. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

2102 DAVAR KHOSHNEVISAN, DAVID NUALART, AND FEI PU

We now begin to work toward proving the above theorems. First, we denote

(5.7) Vi (t) := Var(Sy) = /

R (IN * fN) (x)x¢(x) de,

where Iy and Iy, defined in (4.10), are given by Iy (z) := N~ nja(z) and In(z) =
In(—2) for x € RY, and for every N,t > 0 and € R?,

(5.8) xt(z) := Cov[U(t,0), U(t,z)].

Now we begin to establish a series of supporting lemmas.

LEMMA 5.5 (d > 1). Let x be defined by (5.8). Then, for every t > 0 and
z € R?,

xt(z) = /Ot (P2s(t—s)t * [) (sz/t)ds + /Ot ds /Rd F(dy) Pasii—s)/t (y - ;x) Xs(y)-

Proof. Apply (1.6) and elementary properties of the Walsh integral to see that
E[U(t,0)U(t,z)]

t
/ ’ S
=1 +/ dS/ dy’/ F(dY) Ps—s)/¢ (Y )Pst—s) /¢ (y +y' - ;x) E[U(s, ¥ U(s,y+¥)]
0 R4 Rd

t
S
=1 +/ dS/ dy'/ F(AY) Ps—s)/e (Y )Ps— s/t (y+y' - ;l’) E[U(s,0)U(s,y)],
0 R4 Rd

owing to the stationarity (Theorem 1.1). This and the semigroup property of the heat
kernel together imply the lemma since E[U(¢,0)U (¢, z)] = x(x) + 1. O

Our second supporting lemma describes the behavior of x; as t — 0.
LEMMA 5.6 (d>1). limyox:(z) = 0 uniformly for all x € R,

Proof. Tt is easy to deduce from Lemma 5.5 and positivity of the solution (see
Remark 3.2) that

t
(5.9) xe(x) > / (P2s(t—s)t * [) (sz/t)ds > 0 for all t > 0 and = € RY.
0

Now, the Cauchy—Schwarz inequality and stationarity together ensure that y:(z) <
Xt(0). Therefore, it suffices to prove that x:(0) — 0 as t | 0. Theorem 1.1 ensures
that C' := sup,¢(9,1) X¢(0) = SupPye(g,1) SUP,era Xt () < 00. Therefore, we deduce from
Lemma 5.5 that

t
0 < (140) [ (o £) 0)ds
0
Since x¢(0) < (1 + C)4e’*Y(28) for every B,¢ > 0 (Lemma 3.1), it follows that

limsup x:(0) < (1 + C’)4ﬂlim T(28) = 0.
—o0

t—0

This concludes the proof. 0
In light of (5.7) and Lemma 5.5, we write

(5.10) Vi (t) = Var(Sn.) = VP () + VP (1),
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where
(5.11) V]E,U(t) = At ds /Rd dz (IN * jN) () (Pas(i—s)/t * ) (sz/t),
(5.12) V@) = /0 s /}R do (1w +In) (@) /]R J(dy) Pasa-s (v- ;x> Xs(y)-

As we will see, the main contribution for the asymptotic behavior of Vi (¢) is Vjsfl) (t),
thanks to Lemma 5.6.

5.1. Analysis in dimension d > 2. The primary goal of this section is to
prove Theorem 5.1. Therefore, in this section, we will not assume that d > 2 unless
we say so explicitly. Recall the function ¢ defined in (5.3).

LEMMA 5.7 (d > 1). For every N,t > 0,
0 ; '
Vi (t) = / (IN * IN) () dx/ ds (Pas(i—s) /e * f) (sz/t)
Rd 0
t N ; 2(1—s/N)s/N 2
_ wad/o as [ Fdz) eI A=5/N5/N T (z5).

Jj=1

Proof. By (7.1),
/Rd (IN * fN> (x) dxfot ds (pg(t_s)/t * f) (sx/t)

1 ! £ —s(t—s)|z||?/t i
:ﬁ/o ds Rdf(dz)e (E=oli=l"/ jl;[lga(szs/t)

14 N R 7tz2lfstNd
:W/O as [ Fae)e 1212 =5/M5/N T p(z5),

Jj=1

where in the second equality we use change of variable (s — st/N). |
Before we prove Theorem 5.1, we give some estimates on the quantity R(f).
PROPOSITION 5.8 (d > 1). Recall R(f) from (1.11). Then,

2720 [T () G =R < [ () 5

Proof. We observe that ]_[?:1 o(zjr) = 2= =4I, * I) (e /7)]"(2) for all z € R?
and r > 0. Hence we can write

R = o |5 [ i) ((neh) om) )

Denote ¢, = (I * I;)(e/r) for every fixed r > 0. Choose a nonnegative smooth
function ¢ with compact support such that fRd Y(x)der = 1. For 0 < € < 1, define
Yo (x) = eNp(x/e) for all x € RY. Tt is clear that 1. x ¢, has compact support
uniformly for all 0 < & < 1 and supg..; SUp,epa (Ye * ¢r) () < co. Moreover, we
have supy«.«q SUpPgcpd lthe(x)] < 1 and lim._,0 () = 1 for all # € R%. Using these
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facts and that f is locally integrable as a tempered distribution and [, br(z)f(dz) <
oo by Dalang’s condition, we obtain that for every fixed r > 0,

. . 1 A N A
[ or@rtan) = tim [ wer o) @110 = tim g [ (@)dn(@) ()
1 . .
= (o o)
where the first and third equalities hold by the dominated convergence theorem and

the second by the definition of the Fourier transform and the property 9. * ¢, = 1.y
Therefore,

R(Y= [" 5% [ (1) G,

Now appealing to the inequality 2"11[_1/271/2]d <ILxL < 1i_q,13¢ (see [6, (3.17)]),
we obtain

_ > dr > dr
22 [ () G <R < [ f (erl?)
0 r 0 r
which completes the proof. ]

Now we can prove Theorem 5.1.

Proof of Theorem 5.1. By Proposition 5.8, it is clear that R(f) is strictly positive
since we assume f(R?) > 0 throughout the paper. Let us proceed with the proof of
(5.1).

Assume R(f) < oo first. By Lemma 5.7 and the dominated convergence theorem,

¢
lim NV]S,D(t) im N (IN * 1:N> (x)dm/ ds (pag—s) e * [) (sz/t) =tR(f).
R4 0

=1
N—o0 N—o00

In light of (5.12), it remains to prove that

(5.13) lim N (IN * iN) (z)dx /Otds /Rd F(AY) Posi—s) /e (y - %C) Xs(y) = 0.

N—o00 R4

By the Cauchy—Schwarz inequality and stationarity, x:(z) < x+(0) for all ¢ > 0
and = € R%. Therefore,

[ (et @ae [ as [ ) pueoge (v 20) w0
< /Ot xs(0) ds /Rd (IN *jN) () dx /]Rd f(dY) Pasi—s) 1 (y - ;:c)

for every N,t > 0. Repeat the computation of Lemma 5.7 to find that, for every
N,t >0,

(5.14) /Rd (IN * fN) (z)da /Ot ds g f(dy) Pos—s) 1 (y — ;x) Xs(y)

t N ~ ¢ 2 d
L —t]z]*(1—s/N)s/N .
< Nﬂd/o ds xst/n (0) /Rdf(dZ)e j|:|1<ﬂ(238)~
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Since supg,<; Xr(0) < 00 and limy 0 Xs¢/n(0) = 0 for all s > 0 (see Lemma 5.6),
the equality (5.14) and the dominated convergence theorem together imply (5.13).
This completes the proof of the theorem when R(f) < cc.

We now assume that R(f) = oo and aim to prove (5.1). Thanks to (5.9) and

Lemma 5.5, x¢(z) > fo D2s(t—s)/t * [)(sx/t)ds. Therefore, (5.10) and Lemma 5.7
together imply that for every N,t > 0,

t [N ; d
NVar(SMt) > F/0 ds . f(dz) e—tHzH?(l—s/N)s/N H (,O(st).
j=1
Now we apply Fatou’s lemma to conclude liminfy_ oo NVar(Sy;) > tR(f) = oo.
This implies (5.13). d
In the following, we give some criteria for the finiteness of R(f).
LEMMA 5.9. Ifd=1, R(f) =o0c. Ifd > 2, R(f) < oo is equivalent to one of the
following:
L[5S f([=r,r]?) dr < oo;
2 Lmnxw'{fo><oq
3. fRd Iz]| 7L f(dz) < oo.
Proof. Let d = 1. According to (1.9), there exists R > 0 such that f([-R, R]) > 0
Hence by Proposition 5.8,

oo

1 o0
RUN =5 [ e adr= f(-RaR) [t =
0 R
Assume d > 2. By Proposition 5.8, we only need to prove that items 1, 2, and
3 are equivalent. Let B, = {z € R?: |[z| < r} to see that B, C [-r,r]? C B,
whence

f / ay dr d-1 f(Br)
d < — — < (Vd
r f([ r,r])Tdf(\f) | o
This proves the equivalence of 1 and 2 since Fubini’s theorem ensures that

<fB), 1 [ f)
| S e

Next, we prove the equivalence of 1 and 3. We observe that for all » > 0 and
z € R?,

d
H sin? TZJ —9—d.—d [(1[7171](1 * 1[,1,1]d) (‘/T)] (2).

TZJ

Using the same approximation argument as in the proof of Proposition 5.8, we have

d
/dr f(d2) Hsm TZJ =2 d/ dr fdz)[( (1,104 * 1| 11]d)(o/r)] “(2)

Rd
=7 / f (dz) ( _1,14 % 1[_171]d) (z/1).

Now we apply the inequality 1_y 1ja < 1j_q qja* 11 150 < 2d1[_2,2]d and use Lemma
5.10 to conclude the equivalence of 1 and 3. 0
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LEMMA 5.10. The following relation holds:

/ Hsm "25) G s |12
TZJ

Proof. On one hand, we can write

1<5<d
Jj=1

which implies

d .
I g [ -
/0 E e O <l /0 dr (1A (d71r72)).

On the other hand,

. 2d
/ Hsm rzj dr>/ Hsm sz)dr> I2]~! inf sinx
= ”<1 ’I“Z]) 0<|z|<1 x

d sin?(rz;) d
175 <TTOACED™) < 146 max =)™ < 1A @)

d

Remark 5.11. From item 2 of Lemma 5.9, we deduce that R(f) = oo if f is given
by a Riesz kernel that satisfies Dalang’s condition, T(1) < oo, i.e., f(dz) = ||z|~Pdx

for some 0 < B < d A 2.

5.2. Analysis in dimension d = 1. Set d = 1 and repeat the computations in

the proof of Lemmas 5.5 and 5.7 to see that

t Edr [ tit—r) 22 ~ [ tz
= — —_ T P
Var(Sn+) 7T'N/O " [m dz ¢(2)e N7 f <Nr>

+ [ as [ st [ e I (v - 52) as

(5.15) =V +vP ),
where ¢ and x;(y) are defined in (5.3) and (5.8), respectively.
LEMMA 5.12. For allt > 0, VZS,Q)(t) = 0(log(N)/N) as N — oo.

Proof. Choose and fix ¢ > 0. Since sup,cga Xs(y) = Xxs(0), we apply Lemma 7.1

and the change of variables z — tz/(Ns) to see that

N @ t / /t xs(0) - [ tz tt—s) ,
< AS\E ol _
logNVN (t)_wlogN dz ¢(2) 0 ds s / Ns ) &P N2s ©
t
xs(0) tt—s) o
< AP A S
_WlogN/d )/0 ds . exp{ N
=Ty 1 +Ts,
where
tt—s) ,
Ton = 7710 N / Lis<in—<3xs(0 )eXP{—st z }7

t(R) [ Ht—s)
Too = —1 —e — .
2,2 mlog N Rdz ©(2) o s {s>tN }Xs(o) eXp NZs z
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By Lemma A.1 in Chen et al. [8], for all € > 0,

Ty < (LB WDIR) 0 (0) / dz (2) log, (1/]:).

™ 0<s<tN-—¢

Hence by Lemma 5.6, for all € > 0,

(5.16) limsup Ty = 0.

N —oc0

Similarly, using Theorem 1.1 and the fact that [, ¢(z)dz = 7, we deduce

logt — log(tN~¢)
5.17 T o <tf(R s(0 .
(5.17) 22 Stf( )Oitir;tx (0) Tog N

Therefore, we conclude from (5.16) and (5.17) that, for all € > 0,

. N @
lim su V() <tf(R) su s(0)e,
msup SV () < ) s xa(0)

which proves this lemma by letting ¢ — 0. ]

Proof of Theorem 5.2. In the case that f = dg, item 1 of Theorem 5.2 was proved
in Chen et al. [8]. The same proof works for the more general f of the form ady.
Therefore, we prove only (5.2) and item 2.

We recall that, from Lemma 7.1,

t(t—s »f tz
V]S,U = Na /dzgo Sexp{ (NQS)ZQ}f(]VS)

Since f is maximized at 0,

V() < @ /]R dz ¢(2) | Cfexp{—t(fvlf)f}

™

Hence Lemma A.1 of [8] and Lemma 5.12 imply the third inequality in (5.2).
On the other hand, using change of variables s = trN 2,

0= 5 foeeem e [ ()

(5.18) (T11 + T 2),

:7TN

Ty = /1C1r/dz <p(z)exp{—tz2 [1_(’"/N2)]}f(
e [ om0 )

It is easy to see that, for all N > 1 and for all ¢ > 0

[oofa[ < o[

oo 7sd
et [ % <log, (/o)

where
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where log, () = log(e + z) for z > 0. Since sup f = f(0) = f(R), it follows that
Ti1 < f(R)/ (z) log (i) dz < oo.
T R + tZ2

Therefore,

T,
(5.19) lim sup —=— =0

So all of the asymptotic behavior of Vjs,l)(t) is captured via the asymptotic behavior

of TLQ. Now
00 1
ds 1—s Al Z
Ti.=] d = —tz? =
o [ [ en{-e L]} ()

=Ti21+T122,

where
log N b gs 1—s N
Tioq:= d — —t2? S
b2t /;logN Z@(Z)/I/N2 S exp{ ‘ |:5N2:|}f(5 )7
1 2
ds tz¢ [1—s N
T = d — - — ).
22 /|z|>logN ‘ QO(Z) /1/N2 S exp{ N2 l: s :|}f <SN>
Now,
1—
(5.20) 0 < Tiao < f(R)log(N?) / dz ((;OSZ) = o(log N).
|z|>log N Z

So all of the asymptotic behavior of Vjs,l)(t) is captured via the asymptotic behavior
of Th 2,1. To study that term, we rescale one more time (but slightly differently from
before) in order to see that

log N Nodr 22
Ty 2.1 :/ dz go(z)/ exp{— {
—log N 1N T N

t|10gN|2}/1°gN / dr ,
> ex i e—— dz z — .
o p{ N log N QP( ) 1 r f( >

Hence,
log N 1—cosz N dr , /2
Tipq > (1 +0(1))/ dz <2)/ —f (*)
—log N z (logN)2 T r

log N _ . N d
(@ o) [ a (1 ) /( o
—log og

@) [ (175 d e

= (mf(R) 4+ o(1))log N.
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This proves that

1
. < liminf —— .
(5.21) mf(R) < lﬂlgof 10gNT1’2’1

Therefore, Lemma 5.12 and the relations (5.18), (5.19), (5.20), and (5.21) prove the
first inequality in (5.2).

It remains to prove item 2. We assume that f vanishes at infinity. Combining
Lemma 5.12 and the above arguments, the problem is reduced to the following;:

T,
(5.22) lim sup blg% < 7f(R).

N—oc0 -

With this in mind, let us recall from the definition of 7T} 2 ; that
logN N dT’ R
Tiza< [ e [ e,
—log N yyn T
Because

log N N dr - N dr
/ o(2)dz /( & fafr) < nf(R) /( &2 fR)log N,

—log N ogN)2 T logN)2 T

as N — o0, this and symmetry reduce our goal (5.22) to proving that, when f vanishes
at infinity,

log N (logN)2 dr -
/ o(z)dz / — f(z/r) = o(log N) as N — oo.
0 1/N r

2
Since ff}% r~ldr = o(log N), we can further reduce our goal to proving the

following: When f vanishes at infinity,
log N 1/+/Tog N dr -
/ o(z)dz / — f(z/r) = o(log N) as N — oo.
0 1/N r
But this is so since (1)
(5.23)

log N 1/y/log N dr - R
/ ey U feyry<n s fw)logN = oflogN),
1/(log N)1/4 1/N r w>(log N)1/4

and (2) because ¢ < 1,
1/(log N)*/* 1/VIegN 4, f(R 1/VIogN g,
/ eIy L jem < 2 | & oflog V).
0 1/N r (log V) 1/N r
This proves item 2. 0

5.3. Analysis of Riesz kernel case. We now aim to prove Theorem 5.4. As-
sume f(dz) = ||z]|"Pdz and f(dz) = kg4 |z|?~%dz, where 0 < 8 < 2 A d and g 4
is a positive constant depending on  and d. In this case, we first provide another
supporting lemma on the behavior of x;(z) as © — oco.
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LEMMA 5.13. Recall (5.8). For all t > 0, lim,_,o x¢(z) = 0.
Proof. By the Poincaré inequality (2.4),
Ixt(z)] = [Cov(U(¢,0),U(t,x))|

t
< / ds / f(dy) / Ay |Day Ut 0) 2l Dayay Ut 2)]|2
0 R4 Rd
t S
< Cf,z/ dS/ f(dy)/ Y Pst—s)/s YU') Pst—s) /s (y’+y— ;fﬂ)
0 R4 R4

t t
2 _ 5 = s
- Ct,Q/O ds 2 f(dy) Das(t—s)/s (y tx) = /0 ds (p23(t75)/s * f) (tx) )

where in the second inequality we use Proposition 4.1 and in the first equality we use
semigroup property. Now we apply (3.1) to see that

¢ A s(t—s)||z]|? s
[x:(x)] < Ct2,2/0 ds g f(dz) exp{_(lfzf)””+i(t)z.x}

! _ s(t—3s)|z|*> /s
—aCls [ s [ s a1t { - i (52 0}

Since fg ds [pa dz [|z]|P~ @ exp{—s(t — s)||z||?/t} < oo, the dominated convergence the-
orem and the Riemann-Lebesgue lemma together imply that lim, . x:(z) =0. 0O

Proof of Theorem 5.4, part 1: 0 < 8 < 1. Let ¢(x) := H;j:l(l — |z;|) for all z €
RY. We observe that (Iy * I)(z) = N=%(x/N)1_y nja(x) for all 2 € R Recall
(5.11) and (5.12). Since f(dz) = ||lz||~?dx, we can write

t
My - L N/ / -5 _s
0= [ e [ [ anll e (v 5),

t
@)y L N/ / -8 _s
0= [ e s [ aulol e (- o) )

The term V]S,I)(t) can be expressed as

-B
1 t 2s(t — s) s

V(l)t:—/ d N/dE A G2y S

N ()= ~a - a P(z/N) S BELY L
-8

t —
:N*B/ dz w(z)/ as B2y 208, 8, ,
[,Llld 0 N t t

where we have made the change of variable x = Nz and Z denotes a d-dimensional
standard normal random variable. An easy exercise shows that limy_ o (p; /N *
|- I7%) (@) = ||=||7? for all # € R4\ {0}, which implies that for any s € (0,1]
and z € R?\ {0},

lim E (H]if\/%(t —s)/tZ — iz

N—oc0

-B
= tﬁs_'@HzH_'B.

Moveover, according to Lemma 3.1 of [17],

-8
1 28(7573)2 s
—\—Z - -z

t

~ - < CtPsP|z||7P.

sup E
N>1
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Because 8 < 1, the dominated convergence theorem implies that
t
lim NPV (1) = / d21/1(z)/ ds 757 P||z|7F < oco.
N—o00 [—1,1]4 0

Finally to complete the proof of (5.4) it suffices to show that

(5.24) lim N°V{P (1) = 0.

N—oc0

Using the same arguments as before and recalling x(y) in (5.8), we can write

2s(t — s) s
ﬁ‘|

1
HN\/Qs(t —8)/tZ — %z
Thus, we can conclude (5.24) from the fact that xs(1/2s(t — s)/tZ — (sNz)/t) is
uniformly bounded (Theorem 1.1) and converges to zero almost surely as N — oo
(Lemma 5.13). 0

t
NPV (1) g/ dzq/)(z)/ ds E
[—1,1]¢ 0

Before we move on to proving part 2 and part 3, we express the quantities V]E,D (t)
and VP (1) using f(dz) = rp.qllz]|®~?dz. In fact, from (5.11) and using the identity
(7.1), we see that

- 1 —cos(Nzjs/t) _
vV = "“'Bd ds stt=s)l=l2/e TT Lo cosN2i8/t) \ s—ay,
" Ra ]Hl e 1
t B B
5. t f—d tt—s),
= ds— | d . _
7Tcz]\m/o S /Rd z |2l ]ngo(zj)exp{ e 2|
52) =1 [ g o [Tt [ ar ey { <L
. TdNB R sy J 0 N2
B0 g : = (R, N
5.26 = — d 2—B—d . / d Ui=ll _r
(5.26) mdN2-5 /Rd z ] jl;[l‘p(zj) . "\ N2 +r e ",

where ¢ is defined in (5.3) and we use change of variables in the last three equalities.
Similarly, using change of variables and (5.12)

(5.27)

d
2 tKp.d _ > o _ptlz]?
P < M@B | azlel? ‘et [ araen e 0

“ﬂd 2—4—d ]|z o
- szﬂ dz||z|| H(p dr ( =z +7

xe” Xt<1+rN2/<tnzn2>>—1(0)~

N
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Proof of Theorem 5.4, part 2: = 1. Using (5.26) with 8 = 1, we have

(5.28)

—1
N 1 /ﬁd/ 1-d tHZHQ -
— d "

1ogN z Il Htp logN tr ¢

According to Lemma A.1 of Chen et al. [§], we have

el - / o (=9 2P ds
logN " logN ¢ s N2 s
(5.29) < Ttlog, (1/t)log, (1/]|z|) forall N >e,

where log, (a) = log(e 4 a) for a > 0, and

tz)> .\
(5.30) lim logN / ( =] + 7“) e " =2t forall z€ R\ {0}.

N—oc0

Therefore, since [p, ||z[|*~¢ H?Zl ¢(z;)log, (1/]]z])dz < oo, by (5.28)—(5.30) and the
dominated convergence theorem,

N 1 Qtlﬁd
lim v M () = /|| - dHM

N—o0 log N

In light of (5.5), it suffices to prove

(5.31) lim viP ) =o.

N—o logN N
Similarly, letting 5 =1 in (5.27),

-1
N v <5 [ s e < (e
532) ——~ V@) < il [ g dr (220
(5:32) N~ B =3 A H@ logN "\ T

x e Xt<1+rN2/(tuzu2>>—l(0)-

Choose and fix 0 < € < 2. We see from (5.32) and (5.29) that

TV < s . (0) [ ds H /N_ el )
log N - qd p Xs(0 4 logN

K
+ 071 log, (11 / & A ooz, (V1) s xa(0)

e 0<s<t2]|2]|2 /N2 =2

Letting N — oo and using Lemma 5.6 and the dominated convergence theorem, we
conclude that for every 0 < € < 2,

N (2) t(2 E)li d d
lim su VP ) < A2 s(0 / dz ||z||* ¢ Zi).
msup oV (1) < =5 sup xa(0) | dz [l 1:[90( 7)

Since the choice of 0 < & < 2 is arbitrary, we let £ — 2 to obtain (5.31). This proves
(5.5). O
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Proof of Theorem 5.4, part 3: 1 < 8 < 2. Recall (5.26). Under the condition 1 <
B <2, we have [p, [|z]|>7#~¢ H?Zl ¢(zj)dz < oo and [} r?~2e7"dr < co. Hence by
the dominated convergence theorem,

(5.33) hm N2~ BV(l)() Hﬁd/ H2H2 p- ng@ / rP=2e="dr.

Moreover, from (5.27), Lemma 5.6, and the dominated convergence theorem

lim sup N276V1£,2) (t)

N — oo

B—2
P d . tllz]|?
< ﬁ /dz |E: \|2 - ngo / dre ]\}gnoo (lj‘vingr) Xt(14rN2/(¢]2)12))~1 (0)

=0,
which together with (5.33) proves (5.6). |
6. Total variation distance. In this section, we will estimate the total variation

distance and prove Theorems 1.3-1.5.
We recall that

1
Syt = W/ [U(t,z)—1]dz and Vn(t) = Var(Sn.).
[0,N]

We can estimate the total variation distance between the normalized random variable

Snt = Sni/VVn(t)

and an N(0,1) random variable Z using the inequality (2.5). According to the in-
equality (2.5), we need to express the random variable :S'VNJ as a divergence or as an
It6- Walsh stochastic integral. From (1.6) we obtain Sy, = Vi (t)~"/26(vy), where
(6'1) UN(S’y) = %U(S ) y) / Ds(t—s)/t (y - 737) dz.

[0,N]¢
In this way, inequality (2.5) yields

(6.2) drv (S, Z) < %(t)\/\/ar ((DSn.0, v )30)-

The Malliavin derivative of Sy ; can be computed as follows:

1
D ySnye = N </[0,N]d Ps(t—s)/t (y - *LU) dx) U(s,y)

1
6.3 — (i —Zg)dz | D, U, dr, dw).
(6.3) FN) ( /[O’N]dp,@ o (w=32) ) SU(rw)n(dr, dw)

From (6.1) and (6.3), we obtain
1 t
(DSN.t,vN)H = W/ ds f(dz)dy/ dzdz’
0 R2d [0, N]2d

Ps(t—s)/t (y - %T) Ps(t—s)/t (i‘/ +z— %x) U(s,y)U(s,y+z)

1 ¢ T
+72d/ / 7)(d7",dw)/ ds f(dz)dy/ dzdz’
N 0 JR4 0 R2d [0,N]2d
r

S
DPrt—r)/t (U} ;.I‘) DPs(t—s)/t (y +z— gl‘/) U(S Y+ Z)Ds,yU(T ) w)7
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where we use the stochastic Fubini’s theorem in the second equality. As a consequence,
2 1 2
(6.4) Var ((DSxsvn)) < g (<1>§V) + <1>§V>) ,

where

() = / dsidss f(dz1) f(dz2)dyrdys
[O,t]2 R4d

s
X / dz1dz dzoda) Dy (t—s1)/t (y1 — —1361)
[O,N]‘M t

S1 S2 82 4
X Psy(t—s1)/t (?—11 + 21— 71’1) Dsy(t—sq)/t (y2 — 7962) Dsy(t—s2)/t (yz + z2 — ?1’2)
x Cov (U(s1,y1)U(s1,y1 +21),U(s2,42)U(s2,y2 + 22))
and

t
Y = / dr / dsidsy | f(db)dwf (dzr)dys f(dzn)dys / dzyda) dzadal
0 [0,r]2 RS

[0.]¢

r S1
X Pr(t—r)/t (U) - Exl) Ds,(t—s1)/t (?Jl + 21— 7951)

r s
X Pr(t—r)/t (w +b— ;932) Pso(t—s2)/t (yz + 22 — 7233'2)
X E[U(s1,y1 4+ 21)Ds, 5, U(r ,w)U(s2,y2 + 22)Ds, o, U(r,w + b)) .

We are going to estimate the terms CI)E\I,) and ‘IJ%). Using the Poincaré inequality (2.4),
we can write

EERAY:-D)
<I>§§) §/ ds1d52/ dr f(dzl)f(dZQ)f(db)dady1dy2/ dxidz)deodah
[0,t]2 0 R64 [0

N4

S1 S1
X Psy(t—s1)/t (y1 - ?331) Psq(t—s1)/t (yl +z1 — ?1»‘1)

EP) S2
X Psg(t—s2)/t (yz - 7$2) Psy(t—s2)/t (Z/z + 22 — 7962)

X (||DMU(51 YOI 10 (1,91 + 20, + 1U(s1,y10) 4 |1 DraU (1,91 + 21)||4)
X ( | Drat+6U (52, y2)ll, 1U (52, y2 + 22) |, + 1U (52, y2) |4 | DroatsU(s2, y2 + 22)\|4)~

The estimates (1.8) and (4.1) and the semigroup property yield

‘I’S\}) < 40752,405,4/

[0,]2

ESWAY:-D)
dsidss / dr f(dz1) f(dz2) f(db)dy:1dy- / dzdz) daadah
0 R5d [0,N]4d

S1 51
X Ps(t—s1)/t (3/1 - 7«’31) Psy(t—s1)/t (y1 + 21— ?xl)

S2 S2 4
X Pso(t—s2)/t (y2 — 73&2) Dsy(t—s2)/t (y2 + 22 — ?932)

T T
X | Pr(sy—r)/s1+r(sa—1)/s2 (b - ;yz + ;y1> + Pr(sy—r)/s1+r(sa—1)/s2

r T
X (b — —(y2 + 22) + *y1>
S2 S1
T r
+ Pr(sy—r)/s147(s2—1) /52 X (b ——ypt+_—(+ Zl))
S2 S1

T T
+ Pr(si—r)/s14r(sa—r) /52 (b — g(yz + 22) + g(yl +2z1) ) |-
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By symmetry, we conclude that

(6.5)
eh 2 2 s1/%2 , ,
oy < 16Ct,40t,4 dsidse dr f(dzl)f(dzz)f(db)dyldyg dzda dzodah
[0,t]2 0 R5d [0,N]4d
S1 S1
X Psi(t—s1)/t (yl - 7551) Psi(t—s1)/t (y1 + 21— ?xl)
82 S2
x p*§2(t_52)/t (y2 - TIZ) pSQ(t—Sz)/t (yQ + 220 — ?ng)

T T
X Pr(si—r)/si+r(so—r)/s2 b— —y2+ —y1 .
S2 S1

As for q)g\z,), similarly, by the Cauchy—Schwarz inequality and the estimates (1.8)
and (4.1), one sees that

(6.6)
t

o <2, / dr / dsidss F(db)dw f(dz1)dy: f(dz2)dy2 / dzde’ dzaday
0 [0,7]2 R6d [0,N]4d

r S1 r
X Pr(t—r)/t (w - ;xl) Psy(t—s1)/t (yl + 21— 7%) Pr(t—r)/t (w +b— ;wz)

So S1 S2
X Psy(t—s2)/t (yz + 22 — 7$’2) Psy(r—s1)/r (yl - 710) Pso(r—ss)/r (y2 - 7(70 + b))

t
=074ty / dr / dsidss f(db)dwf(dz1) f(dz2) / dzyda’ dzodah
0 [0,7]2 R4d

[0,N]44
T S1 S1
X Pr(t—r)/t (w - ;1:1) Psq(t—s1)/t+s1(r—s1)/7 (Zl - 7561 + 71“)
T S2 S2
X Pr(t—r)/t (U} +b— ;xQ) Psy(t—s2)/t+sa(r—s2) /7 (Z2 - ?xé + T(w + b)) )

where we use a semigroup property in the equality.
In the following, we will prove Theorems 1.3-1.5 separately. The identity below
will be used several times later on:

(6.7) pi(0x) =0 p;p2(x) for allz € R? and t, o > 0.

6.1. Proof of Theorem 1.3.

Proof of Theorem 1.3. With the notation introduced in (6.4) and according to
Theorem 5.1, it suffices to show that

(6.8) N (o) o)) <

for all N > e and for some constant C depending on ¢.

We will start with the expression for @g\}) given in (6.5). Using the elementary
relation

(6.9) Po ()P (y) = 2%p2o (x + Y)P2o(x —y), 0 >0,z,y €RY,

we can write

S1 S1
Dsy(t—s1)/t (yl - *$1> Dsi(t—s1)/t (y1 + 21 — *%)

t t
S S
=2%pog (1—s1) /8 (2y1 +21 — %(m + x/l)) D2s, (t—s1)/t (Z1 - %(x/l - $1))
21 S1 51
= Psy(t—s1)/(20) (y1 +o - 5(3?1 + 56/1)) D2s, (t—s1) /t (Z1 - 7(:5’1 - 331)) ,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/23/21 to 167.172.165.125. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

2116 DAVAR KHOSHNEVISAN, DAVID NUALART, AND FEI PU

where in the second equality we used the scaling property (6.7). In the same way, we
obtain

S92 s2
Psa(t—s2)/t (y2 - 7f2> Psy(t—s2)/t (yz + 22— ?%)

S2 52
= Py (t—s2)/(20) <y2 + 5 - 27(582 + x’g)) D2ss(t—s0)/t (Zz - 7(96’2 - xz)) :

Therefore,

S1 S1 52
L= /2d dy1dy2 Ps, (t—s1)/t (yl—?xl) Doy (t—s1)/t (y1 +21 — 796/1) Dy (t—s2)/t (Z/Z*?fm)
R

82 r r
X Psy(t—sa)/t (Z/2 + 22 — ?xQ) Pr(s1—r)/s14+7(s2—7)/s2 b— ;yQ + —u
2 S1

s1\¢ S1, 4 S2., 4
= (7) Dsy(t—s1)/t (Zl - 7(901 - 5701)) DPsy(t—sg)/t (22 - 7($2 - $2))
X / dy1dyz Ps; (t—s1)/(20) (yl + = 2 - j(xl + fﬂl)) Py (t—s2)/(2t)
R2d t

zZ2
(w5 - 5 (@2 25)) Plos /r121r(o1 ) fo1 4702 /] ( b— *y2 + yl)

With the notation

s s
M = D2s, (t—s1)/t (Zl - 71(17/1 - 171)) DP2s,y(t—s2)/t (Zz - ?2(17/2 - 552))
integrating in y; and using the semigroup property yields
S
L= (*1 M/ dy2 Dy (t—s0)/(20) (yz + = 2 ~ 3 (962 +$2)>
S1 S1 z1 S1
X Dsy (t—s1)/(26)+(s1/7)2[r(51—1)/s1+7(52—7) /2] (rb LT3 + 5(961 + xﬁ))

52

d 29 S5
= (7) M /Rd dy2 Dy (t—s5)/(2t) <y2 + 3~ 2—t(a:2 + xé))
X P(sa/s1)2{s1(t—s1)/(2t)+(s1/7)2[r(s1—7)/s1+7(52—7)/52]}
S2 S9 So ,
2p e — 22 52
X (T Yo 25121+2t(x1 +x1)),

where in the second equality we used the scaling property (6.7). Integrating in yo and
using the semigroup property we finally get

S9 d 22
£:<7> Mpal( b—2—&21+2 (x1+x’1—x2—x’2)+2>,

where

- 2 () (000 (2 [ o)),

A further application of the scaling property (6.7) yields

r
E:Mpaz( 2121+2222+2(1‘1+1‘/1—$2—1‘/2)>,
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where

oy — <r>2a1 _Pt—s)  rPtms)  rlsimn) | rls 1)

S92 2t82 2t81 S1 S9
Making the change of variables x; — Nx; we obtain

—4d+3 5 (1)
N0

< N°16C7 4¢3 4 / daz1dz) deadah f(dz1)f(dz2) £(db) /

[0,1]4d R3d [0,¢)2

ERWAY:-D)
d51d52/ dr
0
N81

’ Nsa, ,
X Pasy (t—s1)/t (2’1 - 7(331 - 331)) D2so(t—s0)/t <22 - T(Iz - wz))

T Nr
TZQ"‘ —(z1 + 2] — T2 —a:/g)) .
2

r
X Pas (b - —2z1 + o7

281 2
With a further change of variables s; = %Th SS9 = %7’2, r= %07 we can write
N=4+390) = 160262 4t / dayda)dzedal, [ f(dz1)f(dzs)f(db) / drydry
[071]411 R3d [071\[]2

X P2iryq_ry (z1 —ri(2) — xl))pﬁ(l,g) (22 — ra(ah — x2))
N N N N

r1AT2
g g g
x dop,.  (b— —2; + 20+ = (21 + 2, — 29 — 2"
/O p'YJ,N( TR 2( 1+T] — w2 — ) ),

_to? (1 N 1 2 N to s 0 O
V3N = 2N T1 T2 N N T1 T2 '

2tT1 T1 2tT2 T2
W1,N=7(1—*)7 72,N=T(1—*>-

With the notation y; = r1 (2] —21), y2 = r2(25 — 22), y3 = F(21 + 2] — 22 — 25), the
Fourier transform of the function

where

We also set

Wi (21, 22,0) = Dy, x (21 = Y1) Proy (22 = ¥2) Pyan (b - 2%121 + i@ + y3>
is given by
o P 2 ~ o 2 ~
Uy (&1, 82,83) = exp <%2’N ‘ &1+ 27153 - 22’N & — 27253 - 32’N|§3||2>

X exp (z (51 + 2"“53> g+ (52 = 2"7,253) Yo — ik -yg) .

Notice that

<§1 + 2053> Sy F (fz - Ufs) ‘Yo — &3 Y3
T1 27‘2
= —x1- (& +0&3) — w2 - (roéa — 0bs) + a7 - (r1&y) + x5 - (1262) .

Set

A1(&1,82,83) = / dzdz)dzadeh

[0,1]4¢

exp (i (—a1 - (r1&1 + 0€s) — x2 - (r2ba — 0&s) + @) - (Mm&) + ah - (r262))) .
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Then, Parseval’s identity implies that
—4d+3 (1)
N~

1 T1AT2 R R R
< 1603,405,4’53(277)&1/[071\[]2 dﬁd?“Q/o do o f(d&r) f(d€2) f(d€3)Ar(&r, &2, E3)

T1,N V3,N
X €xp ( 2||53||2>

<C o0 dCfdﬁdTQ/ F(A€1) F(AE) F(AE) AL (1,62, E3)].
0,00

2 2
o o
&+ ?53 & — %53 -

Taking into account that R(f) < oo, which is equivalent by Lemma 5.9 to [5, [z ~*
f(dz) < oo, it suffices to show that

(6.10) /[O . dodridra| A (61,6, 6)] < C(l& €€l

for some constant C' not depending on ¢. We have

|A (51352;53”
H le=inél — 1| [e=ir2&d — 1| |ei(m&l+o8d) _ 1] |eilr2él—0&d) _ 1|
r1)¢]] ra|&3] &l + o8l |raéd — g

< 2 [T A (600 A Gl )0 A i+ 0810 A Il — o8]

Jj=1

For any = € R?, we have

d —1
(6.11) H (LAl27]7Y) <1A <1@?§d|x]|> <TAdY?|z| 7P <1 A 2|7t
=1

As a consequence,

1A1(61,82,&3)| < AA(rIGI) ) ANl ID D QA& +osll ) (LAlIreéa—agsl| ),

which implies
/[ : dodridry [A(61,82,&3)| < CIG 1&g
0,00)3
X / dedydz (1 Az HA Ay DA A |zer + zes|| (1A |lyes — zes|| ™),
[0,00)3

where the last inequality follows from a change of variable, and e;, i = 1,2, 3, are unit
vectors. Note that

lzer + zes||? = 2% + 2% 4+ 2x2(e1, e3) > 2% + 2% — 222 = (x — 2)%

Therefore,

/[ . dzdydz (1A xil)(l A yil)(l A ||lxer + zengl)(l A lyea — Z€3||71)
0,00)°

S/ dadydz (LA 2] 7HAA [ITHAA |z = 2 THA Ay = 27,
R3
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Finally, applying Holder and Young’s inequality, we obtain

[, dadudz (1A 7)1 AL ALz =7 ALy = 2|

<AL+ (AT T F2@) < NLATO T T 0y < oo

Let us turn now to the analysis of @g\?) given in (6.6). Because the variable w
appears in four heat kernels and three of them have different variances, we cannot

proceed as in the case of @g\}). Then, we start making the changes of variables without
integrating in w. The first change of variables is ; — Nx;, which yields

—4d (2)
N 4 +3(I)N

t
:N30t2,4ct2,4/ dr/ d51d52/ f(db)dwf(dzl)f(dzg)/ dzidzdzodey
0 [0,7]2 Rad

[0’1]4d

rIN siN , s
X Prt—r)/t | W — chl Psi(t—s1)/t+s1(r—s1)/r | 21 — Tll + 710

SQN ’ S9

rN
X Pr(t—ryt | W+b— T3 T2 | Psa(t—sa) /ttsa(r—s2)/r | 72 = T2 + 7(711 +0) .

Next we make the change of variables s; = %rl, S9 = %7"2, and r = %0’, in order to
obtain

_ 2
N 4d+3¢)5\l)

=13C?,c2, / do / dridry f(db)dw f(dz1) f(dz2) / dzidz)dzodry
o, (0,02 Rd

[0,1]44
X ( ) _ AN 1
Pig-g) (W—0r) Py _ryin o (20— 1) w

1
No

T2
X Ppro_gy(w+b— ng)p%(li%H%(airz) (22 — rowy + ;(w + b)) .

To simplify the presentation, we set

to o trq 1 trq
e (O R
"o.N N( N TN =N A aCAaeY

and

t’I“Q T2 t’r‘g
= — 1_ 7) - .
2N =N ( Nt NO'(U r2)

With the change of variables z = w —ox; and the notation y; = | —x1, y2 = xh — 21,
and y3 = xo — 1, we can write

\I/Q(Zl,ZQ,b) = /

T1

A
A0 0 0 (51— it + )
]Rd

r
X Pryon (W+b—022) Py (22 — Toxh + f(w + b))
1
= dz Do, N (z) Dy v (Zl — My + *Z)
R4 o

r
X Pyo,n (z+b—0Y3)Pyan (2’2 —Troys + ;2(2 + b)) .
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The Fourier transform of the function ¥o(z1, 22, b) is equal to
Uy (1,82, 63)

1 2 1 T9 2 1 2
= | azpa () exp (—3nanl&ll? - S0 [ - 26| - Srmlél
Rd g 2

: r ~ r ) r
X exp (151 : ( Ty — ;12) +1 (52 - ;253) (oys —2) +i&s - (7"22/2 - ;Qz))
1 1 T 2 1 1 r 2
— exp ( —5mwlal® = 50w & = 26| - 3w lEl - S0 | S + &
2 2 o 2 2 o
X exp (Z"I"lgl “Y1 + 1 (0'§2 — 7“253) - Y3 + 7;7“253 . yg) .

Set

As(&1,&2,83) = / dzydz) dzaday
[0)1]4(1

exp (ir1&1 - (2] — 21) + i (0& — 1283) - (w2 — 1) + 11283 - (25 — 21)) .
Then, Parseval’s identity implies that
N74d+3¢%)

- 2ict 5# g marz f 1 f 2 f 1\¢15, Q2
= Chuckal s [ o [ ans [ a6 fag fag)nu6n 6.6

“ovel)

1 1 ro, |2 1 1
X exp (—Qw,NHanZ = 50 ||&2 = 26| = Sramli&sl® = S0 |

<C dodrdrs /R (a6 F(dga) f(d€a)|Aaler, o, 0).

[0,00)3

Taking into account that R(f) < oo, which is equivalent by Lemma 5.9 to [5, [z ~*

f(dz) < o0, it suffices to show that

(6.12) /[0 . dodridra|As (1,6, 83)| < C(ll&lllIElEs]) ™

for some constant C' not depending on ¢. Taking into account that

*i(T1€{+T2§§\ -1 ‘eiﬁ&{ _ 1| |ei(0'§';*r2§§) _ 1‘ |eiT2§§ _ 1|

d
Aaer, 0,6)] = [

1 ImE 4 g ]| o€} — 263 |ra&3|
< (AA[Ir& 4ol HAA &l ™A A lloge — rasl| (LA [Ir2&s] ™),

the proof of (6.12) can be done by the same arguments as in the proof of (6.10). The
proof of Theorem 1.3 is now complete. ]
6.2. Proof of Theorem 1.4.

Proof of Theorem 1.4. By Theorem 5.2 and Proposition 2.1, we need to show
that there exists a constant C' > 0 such that for all N > e,

log N 3
N .

(613) Var (<DSN’t, UN>’H) S C (

We recall the decomposition (6.4) of Var ((DSw ¢, Un)#)-
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Estimation of CIDS\l,). According to (6.5), we integrate zj and x5, on R and obtain

2 S$1/A\S2

o)) <16C2,2, f(R)? / dsydsy — dr [ f(db)dy;dys / dzydas
T [0,]2 8182 Jo RS [0,N]2

51 52
X Psy(t—s1)/t (yl - 71‘11) DPsy(t—s2)/t (y2 - ?1‘2) DPr(si—7r)/s1+r(sa—1)/s2

T T
X\ b= —y2+ —un
S92 S1
2 S$1/A\S2

1
=16C?,c? ,f(R)? / dsydsy — dr= [ f(db)dy,dys / dx,dzy
o [0,4]2 $2 Jo " Jr3 [0,N]2

S1 S
X psl(tfsl)/t (yl - 7331) p52(t782)/t <y2 _ ?Z‘g)

S1 S1
X Plr(si=r)/sir(sa=r)/sal/(2/s3) 70— T 92 F 00 )

where in the equality we use property (6.7) with d = 1. Hence, by the semigroup
property, we see that

2 S1AS2

1
o)) <16C2,2, f(R)? / dsydsy — dr= | f(db)dy, / daydz,
A [0,4]2 S2 Jo T Jr2 [0,N]2

52
X Psy(t—s2)/t (yz - 7172) DPs,(t—s1)/t+[r(s1—r)/s14r(sa—7)/s2]/(r2/s2)
X <Slb - ﬂy2 + Slh) .
r So t

We repeat the use of (6.7) with d = 1 and the semigroup property to obtain

2 s1/A\s2

o) < 16024c§,4f(R)2/ dsidsy — drt f(db)dyz/ dzdzs
T Jr2 [0,N]2

[0,£]2 51 Jo
S2
X Psy(t—s2)/t (y2 - 7:@) Plsy(t—s1)/t4[r(s1—7)/s1+7(s2—7)/52]/(r2/2)] [ (53 /s2)
X (Sbe — Y2 + sjml)
T t

t2

EEWAY:D)
= 16ci4cf,4f(R)2/ dsidss — drl/f(db)/ dz1dzs
S1 Jo T Jr [0,N]?

[0,t]2

X Psy(t—sg)/t+[s1(t—s1)/t+[r(s1—7)/s14r(s2=7)/52]/(r?/s])]/ (3 /3) (7" Tt

t2 S1/As2
= 16C7 4¢; 4 f(R)? / dsidss / dr / f(db) / da1das Pori—ry /i
0 R [0,N]2

(0,412 5182

X (b+ %(:Lj — :L’Q)) s
where in the second equality we use the relation

2r(t —7)/t = [sa(t — s2)/t + [s1(t — s1)/t + [r(s1 — 1) /s1 +7(s2 — 1) /s2]/(r*/s})]/
(s1/s3))/(s3/%).
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Now, using the notation Iy = ﬁl[o) ~] and Plancherel’s identity, we conclude that

2 ERWAYD)
1) 2 2 72 2 t [ r
'V <16C2,c2 N2 f(R) /[O’tpdsldsQ s /O dr (IN « Iy * (f * Por(t—r)/t (;(')))) (0)

N? 3 s1/52 1-— Nz) . (t _t(t=r)
=160kt f @7 [ asdsa Lo [T ar [0z 1o H 22
Ut o R N2z T

[0,t]2 TS81S82
N t3 ERRAY-D) 1— t(t r) 22
< 16C; 4034—f(R) / dsidss / dr / dz we T
[0 t]2 rsis2 Jo R z
N t3 S1Asg 1— o _t(t—r) 22
= 320,52,40?,4—)‘(]1%)3/ dsidsadr / dr / dz #we T NZ,
™ 0<s1<sp<t rs182 Jo R z

Integrating in the variables s; and so yields

N b3 V)" der) 22
@5\}) < 320,5240,524—f(R)3/ dr— (log ()) /e_ “ )ng(z)dz,
’ o 0 T r R

where we recall that ¢(z) = (1 — cos z)/z%. Making the change of variables £=- =
allows us to write

622

> 1 t
>dZ/O d6 5= (log(0 + 1)) ™3

N
B < 3208 TSR [ ol

Integrating by parts and using the fact that

5\ 0=00
(l0s0+ 025 ) o,

6=0
we obtain

_t6 t22
(b(l) < 32CE4Ct 43 / dZ/ de (log(e + ].))(3 2 ﬁ

N 3
= 32034ct43 / dz/ do <log <9 + 1)) o0

Using the inequality

N 1 1
log (9—1—1) < 2log N + log(6 + 1) + log (t + 1) + log (zz +1>

1 1
< (210gN+log (t + 1)) (1+log(9+ 1) + log (2 + 1)> ,
z

and taking into account that

1 3
C = / dz/ d0(1+log(0+l)+log<22+l>) e < o0,

we finally get
3
1
@S\%) < Ct274c§4t3N <2 log N + log <t + 1>) ,

which provides the desired estimate.
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Estimation of @g\?). Recall the estimate in (6.6). Notice that we should not
integrate the variables x] and x} on the whole real line, because this would produce
a factor (sysg)~! which is not integrable on [0,7]2. For this reason, we choose to
integrate the variables 27 and 5 on R and we obtain, using (6.7) with d = 1,

t t2
@5\27) < 03,40574/0 dr r2 /[O 12 dsidsz R4 f(db)dwf(d21)f(d22)/ deydesy

[0,N]?
S1 S1
X Psy(t—s1)/t+s1(r—s1)/r (Zl - 7.’13/1 + Tw) Dsy(t—sa)/t+s2(r—s2) /7
So S9
X (zg - 735’2 + 7(w—|— b))
t t2
= 01524034/ dr — dsidsy [ f(db)f(dz1)f(dz2) / dzyda)
7)o 8182 J10,r)2 RS [0,N]2

r r r
ST (L S R,
Pa(8222 8121+ t(xz xl))

t 2
= 0752,40%,4/ dr = d31d52/ f(dzl)f(dzg)/ dz!dz)
0 [0,r]2 R2 [0,N]?

5152

X (f * pa) (Z(m’g —ah) + Lzl _ TZQ) ,

S1 52

where
a=[s1(t —s1)/t +s1(r —51)/r]/(s7/1°) + [s2(t — 52)/t + s2(r — 52) /7] /(53/1%).
Using Iy = %1[071\[], we write

t 2
t
<I>§\27) < N20t24cf4/ dr — dsidsy [ f(dz1)f(dz2)
9 k] 0 5152 [077_]2 R2

~ r r T
X (IN * Iy ((f * Do) (t() + —2z — z2>>> (0).
S1 S92
We apply Plancherel’s identity to conclude that

o)
3

2 t
< N—c,?AcfA/ dr / dsidss f(dz1)f(d22)/dz
™ 0 rS$182 [0,7]2 R2 R

1 —cos(Nz) iz(i,@_izl) Atz _at?,2
X —————~‘¢ s2 s1 — e 22
N2z2 f r

t 3 _ . . N at? 22
- ﬁc;"AcfA/ dr / dsldSQ/dzlcigs(z)f (ti) ki <—ti) i <t5> o SR
™ 0 T8182 [O,r]2 R z S2 S1 T
t 3 e a2 52
< E024cf,4f(R)3/ dr t / ds1d52/dz 1(:7(2)5('Z)e_ﬁfNj.
™ o TS182 J[g,p2 R Z
Denote
at? 9 9
0i=—5 = tt—s1)/s1+t°(r—s1)/(rs1) +t(t — s2)/s2 + t*(r — s2)/(rsa).
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Recalling ¢(z) = (1 — cos(z))/z?, we can write
<I>(2) < —C24ct4f( / dz/ / dsidsedr %
[0, T]z T8182

N [t(t— s>/s+t <7 )/ (rs)]z
= ;Cz4cfj4f(R)3/ch( / dr— (/ dsf >

Making the change of variables (r — s)/s = 6 yields

r —s)/s+t2(r—s rs)]z2 o0
/ dsle_[t(t Mottiros)/(rs)] :/ 1 o 2N2(29t+t N/ 40,
0 S 0

1+6

As a consequence,

2 N i < 1 2220 2
oy < —Cf4cf4t3f(R)3/ SO(Z)dz/ Lo mte=n)/r (/ e~ N2 d9> dzdr.
™ R o " 0

1+46

With the further change of variable t_TT = ¢, we obtain

2
tz2 o0 t(e+1)22
! e (/ ! e 5 9d9) dzd€
+ o 1+86

tz20 3
T2 d0> dz

1
+6°
1 3
Me_9d0> dz.
N2

N
@5\21) < ?03,40?,4t3f( /

Rgo(z)dz/ooo
/R p(2)dz ( /0
| #le: ( /

R)3

N
;03,405,4t3f(R)3
R)3

IN

1
1
N (o)
_ 702 2 t3

- t,4Ct 4 f( 9

We have

1 ot ot -1 N?
0+tz2 do < de + o tzzde—e + log 1—1——
0
<e

4 2log N + log(l +1/t) +log(1 + 272).

Taking into account that
/ o(2)(1 +log(1 + 272))3dz < oo,
R

we obtain the desired estimate for the term CIDE\Q,). This completes the proof of the
estimate (6.13). ad

6.3. Proof of Theorem 1.5.
6.3.1. Estimation of @S\}). Recalling (6.5) and using change of variables y; —

S S S / S / ks T
Fr1L =0, Yo Fx2 = g, Y1+21—Fx] = 03, Yot —Fry = 0, b—Sypt Sy = o

yields that
1 81/A\S82
<I>§V) < 160,52’405’4/ d81d82/ dr/ daldagdagda4da5/ dzidz)dzoday
[0,£]? R5d [0,N]4d
X Psi(t—s1)/t (a1) Dsy(t—s2)/t (az) Ds,(t—s1)/t (a3) Dsy(t—s2)/t (aa)
X Pr(s1—r)/s147r(sa—1)/s2 (045)

S _ S
X |Jaz — a1 — 71(351 — )| 7Pl — az — 72(962 — )
713 T T 'S 75
X —ay — — — (29 — .
77 llas + 50T + t(@ )|
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Let Zy, Zo, Zs, Zy, Z5 be independent and identically distributed N(0, 1). We can write

S51/A\S82
(6.14) @g\}) < 1603’405’4/ d81d82/ dr/ dz1dz)dzoda)
0 [0,N]44

[0,4)2

H\/sl(t )/t Zs — /51 (t — s0) /121 — %(xl — )

X H\/m& - \/WZQ — Sj(xQ —z5)
—r)/sutr(s2 —r)/s2Zs + — \/ﬁZz

r r _B
—s—lma + ;(332 — 1) ’ ]

2 2 ardd—38 s1hsz AN AN AR
= 16C; 4c; 4N dsidsg dr [ - — —
o [0,4]2 0 r S1 S9

X / dzydr)dzedry
[0,1]

’—B

s Vo 0/ = /il w21 - (a1 = )

o Voalt = s2)/1Zs = /ol = 52)/12 = (22 = ))
X H]\l;\/r(& —1)/s1+1(s2 —1)/52Z5 + NL\/MZQ
r 82
-8
%@ymﬂ + (w2 xﬂ‘ ]

where in the second equality we have made a change of variables.
Case 1. 0 < 8 < 1. Applying Lemma 3.1 of [17] to the random variables Zs, Z4, Z3
in this order, we see that the spatial integral in (6.14) is bounded above by

NLmz - o Valt=s)/iZs + (22— 21)

:

-8B

-8B
CE

/ ., dz1dz) deed)
[0,1]4

" —
X Hi\/sl(t—sl)/tZ1+(l’1—:L’ll) —\/S t—SQ ZQ+ IE2—£E2
NS1

\/ o(t — s2)/ Z——\/ (t—s1)/tZ1 +ys

<CE

/ dy1 dygdyg
[,1’1]3(1

-8

t
./ _ 7
X HNS1 S1(t S1)/t 1+ 1

3
<C (sup / |z+y|ﬁdy> =C' < o0,
zeRd J[—1,1]4

where in the first inequality we use a change of variables and in the second inequality
we use the fact (see also [17, (3.10)])

-8B
t
et — s2) /12
HN82 so(t — s2)/tZ2 + y2

(6.15) sup / |2 +ylPdy < oo.
zeRd J[-1,1]4
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ESWAYD) B8 B B8
A, :/ d81d82/ dr (t) <t> (t) .
[0,t]2 0 r S1 So

Condition 8 < 1 implies A; < co. Therefore, in the case 0 < 8 < 1, we conclude that

Denote

(6.16) ol < C'C2 ¢ A NY3P,
Case 2. 1 < B < 2. Recall (6.14). Applying Lemma 7.2 to Zs, Z4, Z3, using the

change of variables (2} = 21 — y1, ¥4 = @2 — ya2, 1 = 22 — y3) and the fact that for
all ¢; > 0 and z € R?

/[ L e Az + ]| Pdy; < 2¢ <C1 /\/[ " 2+ y1||_5dy1>

(6.17) Sea Al see (6.15),
1 8182 t B
(I)gv) < 02405’4N4d_36/ d51d32/ dr [Nﬁ(sl(t — 51)/t)_ﬁ/2} A (>
[0,]2 0 81

c[pe-eanr (2)]

X[
tsy

The change of variables s; — 5\%, 52— %, and r — % allows us to write

we obtain that

—

NP (r(s1 = 1) /1 + (52— 1)/52) /2] A (tﬂ '

r

q)%) < N4d+3[3—6/
[0,N]?

X H(sz(l - 82/N2))_ﬁ/2] A s{ﬁ] HT‘W2 (1 . 2—; — 2;) B/T A r‘ﬂ] .

For the integral in the variable r we make the further change of variables r(ﬁ + ﬁ) =
A in order to obtain

dsidsz /OSMS2 dr [[(51(1 —~ 31/N2))‘5/2} A 31_’8]

(6.18)
@S\l,) < N4d+35_6/ dsidss H(sl(l - 81/N2))_B/2} A 81_'8:|
[0,N2]2

x [[(52(1 — sz/Nz))—ﬂ/ﬂ A s;ﬁ]

B-1 r1 —B/2
1 1 8 1 1 _B 8
— 4+ — dAA"2 — 4+ — 1—X) 2 A2 .
x <281 * 282) /O ’ <[(251 + 282) ( ) ‘| A 2)

From (6.18), we apply Lemma 7.4 to conclude that in the case 1 < 8 < 2,
1 d _
(6.19) o)) < N1d+36-6,

Case 3. = 1. Notice that the estimate in (6.18) still holds for 5 = 1. Now we
apply Lemma 7.5 to conclude that in the case § =1

(6.20) o'l < N3 (log N)3.
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6.3.2. Estimation of @5\2,) . Recall (6.6). Using the change of variables w—%x; =
a1, w+b— Try = ag, 21 — ) + 2w = az, 20 — 2wy + 2(w + b) = ay, we obtain

t
@5\?) < 03740374/ dr/ dsids2 daldagdagdoa;/ dzidz) dzadzh
0 0,7]2 R4d [0,N]4d

X Pr(t—r)/t (al)pr(t—r)/t (a2)psl(t—sl)/t+sl(7‘ s1)/r (043)1752(15 s9)/t+sa(r—sa)/r (054)

r -8
] R e I e A s

s s
o = Pz + et o)
t
= 03740374/ dr/ dsldsz/ dz1dz)dzeda)
0 [0,7]2 [0,N]4d
_ \/MZlJrf(m,xl)
t t
s1(t — s1) 51(7”—81 s1
R :

\/SQ(t;82)+82(T—82 [rt—r1) $2—$2)

Now, using a change of variables yields that

-8

-8

_T'

X

z) — x1)

X

(6.21)

) t ¢ B n B ¢ B
‘I)gv) < Cf4c§4N4d_35/ dr/ dsidssy () () () / dz1dz)dzodry
’ ’ 0 [0,r]2 r S1 So [0,1]44
-B
t fr(t—r) t
E| |-/ Zy— —
[ Nr t TN
t (t—s1) ( 1 [r( -
S1{t — 81 S1\r — 81
Nsq \/ t + T Zs = N Zl + (21— 2)
¢ [oat—s2) s e _ﬁ
So(t — 89 So(r — 82
Nso \/ t + r N — ) ] '

Case 1. 0 < B < 1. We first apply Lemma 3.1 of [17] for Z4, Z3, then use a
change of variables and (6.15) to conclude

1) Z1 4 (x2 — x1)

X

(6.22) oY) < CA,C2, 3 NV

where A; = fot dr f[o,rP dsidsy (t/7)P(t/s1)P(t/s2)? < oo since B < 1.

Case 2. 1 < < 2. In this case, recalling (6.21), we proceed in the following
order: applying Lemma 7.2 for Z,, Z3, using the change of variables (2} = y1 + 21,
xh = yo + x9) and (6.17), then applying Lemma 7.2 for Z; and using change of
variables 25 = y3 + 21 and (6.17), to obtain that
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(6.23)
B < 02,2, N3 /0 "ar /MQ dsads [V (=)0 "] A (1/r)]
X HN’B(sl(t —s1)/t+s1(r— 51)/7")7B/2] A (t/sl)ﬁ}
X [[VP(sa(t = s2)/t + sa(r = s2)/1) 2] A (1]52)°]
< N4d73ﬁ/0 dr /[o,r]z dsidss [[N*B(r(l — 7“))76/2] /\riﬁ]
X HNB(sl(rf sl)/r)fﬁ/Q] /\sfﬁ] HNB(SQ(T - 32)/1“)76/2] /\s;B]
= N8 /01 dr HNB(T(I —r))fﬁ/z] /\riﬁ] {/07“ HNB(S(T — s)/r)fﬁm] /\376] dsr,

where the second inequality follows by a change of variables. Using a change of
variables again, we see from (6.23) that

1
‘1)53) < N4d_3ﬁ/0 dr HNﬂ(r(l — T))—ﬁ/??} /\7“_5] r2-28

X [/01 H(erﬂ)ﬁ(s(l - s))*ﬁ/Q] A sﬂ ds]

_ 9 N4d+38-6 /N daa®48 H(az(l _ a2/N2))—B/2} A a—z/s}
0

2

1 2
(6.24) X [/ Haﬂ(s(l — s))fﬁ/z} A sfﬂ ds}
0
We apply Lemma 7.6 to conclude that in the case 1 < f < 2,
(6.25) oY) < N30,

Case 3. = 1. Notice that the estimate in (6.24) still holds for 8 = 1. We apply
Lemma 7.7 to conclude that in the case § =1
(6.26) o2 < N3 (log N3,

6.3.3. Proof of Theorem 1.5.

Proof of Theorem 1.5. Recall (6.2) and (6.4). The case 0 < 8 < 1 follows from
Theorem 5.4, item 1, (6.16), and (6.22); the case 8 = 1 follows from Theorem 5.4,
item 2, (6.20), and (6.26); the case 1 < 8 < 2 follows from Theorem 5.4, item 3,
(6.19), and (6.25). 0

7. Appendix.

LEMMA 7.1. Let I and Iy be defined in (4.10). Then for all s <t and w € RY,

/Rd dx (IN * fN) (x) (f *sz(t—s)/t) (%m + w)

d
1 —s(t— 2 1 —cos(Nzjs/t) ;o s
Nl = — s(t=s)|lz[*/t It S A AN 72X 1)
(7.1) —d Rde Jl;[l (Nzy5/0) e f(dz)
d
1 —s(t—s)[|2]2 1 —cos(Nzjs/t) »
2 <L ste—s) 122/ T L= cosWNVz5s/1) 5 o
" <) U1
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Proof. Clearly, it suffices to prove (7.1), which is a consequence of the identity
(3.1) and the fact that the Fourier transform of Iy * Iy is 2% H?Zl 1_(%(];,22’) 0

LEMMA 7.2. Let Z ~ N(0,1). There exists a constant C > 0 such that for all
5>0 andy € R?

(7.3) / pu(e+y)lal Pde = B[IV5Z+y| ] <C (s Ayl ).

Proof. Since the convolution between p, and || - |~ is nonnegative-definite and
maximized at 0, using a change of variable we can write

sup / ps(z +y)llz]|~Pda :/ ps(@)||z|Pde = S*M/ p1(@)[|z]| P da.

yeRd JRE Rd Rd

This together with Lemma 3.1 of [17] implies (7.3). |
LEMMA 7.3. Fix 1 < 3 < 2. Then we have for all a > 0,

(7.4)

1
/ AT ([045(1 - A)’w} A A’B/z) ) < JLo<e<@ Fliazyloga, —f=1,
0 Liocac13@® + 1gasp0? 72 1< g <2,

Proof. We observe that

B(1=NP2< )\ P2aor< )
o’( ) - TAS T 2

Hence,
1
/ A=A/ ([0/3(1 - A)—B/ﬂ A )\‘5/2) A
0
1/(14a?) 1
= ozB/ A1 = \)TB2q )\ +/ AP,
0 1/(14a?)
Case 1. = 1. In this case, for 0 < o < 1,
1/(1+a?)
a/ A2 - 0"V2dh = a
0
and

1
/ AHdA = log(1 + o?) < o?.
1/(1+a?)

On the other hand, for a > 1,

1/(14a?) 1/(14a?)
a/ /\‘1/2(1—/\)‘1/2d)\xa/ A2d0 =<1
0 0

and

1
/ AN = log(1 + o?) =< log .
1/(1+a?)
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This proves the first part of (7.4).
Case 2. 1 < B < 2. In this case, for 0 < a < 1,

1/(1+0?)
ozﬁ/ A2 = N)TP2d) < o
0

and

1

1

/ A Pd= ——((1+a?)P 1 —1) =
1/(1+4a?) p—1

On the other hand, for o > 1,

1/(14a?) 1/(1+a”)
0/3/ A1 = \)TA2d) =< aﬂ/ A4\ < 0?2,
0 0

This proves the second part of (7.4) and hence completes the proof. O
LEMMA 7.4. Fix 1 < 3 < 2. Then
(7.5)

sup /[07N2} dsidss, H(sl(l - 51/N2))—B/2} A Sl—ﬂ] H(S?(l _ 52/N2))‘5/2} A 52—@}

N>e
B-=1 r1 —B/2
1 1 8 1 1 _B 8
—+ — dAA" 2 — 4+ — 1-X) 2| AN 2| <o0.
% (281 + 252> /O ([(281 + 252) ( ) ‘| ) o

Proof. Applying Lemma 7.3 (second part) with a = (5% + 52 )~'/2, forall N > e,

251 282
the above integral is bounded above by a constant times

/[0 oz dsidss H(sl(l _ 81/N2))’B/2] A sfﬂ] [[(52(1 . 52/N2))’B/2} A 555]

(L DT N EEE R
251 289 {2;1+2;2>1} 281 289 {2;1+2;2S1} 251 280 ’

For (s1,52) € [0,1]?, the above integrand is bounded above by

2 2 LR T
T e e e I

whence for all N > e the integral over [0,1]? is bounded above by

B/2-1
o 2\—f -B/2 _—B/2 1 1 / ds:d
(1-1/e%) s17" s %, + 55 s1dsg
[0,1]

1 1
5/ S;IB/ZdSQ/ sfﬁ/Qsi_ﬁ/stl < 00.
0 0

Moreover, for (s1,s2) € [0,1] x (1, N?], the integrand is bounded above by a
constant times

B/2 sl 1 1A
PP —1/NATP P — 4+ — 1
5170 /N7) S 25, + 959 +

S =1/ 02 (5170557 4572557,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/23/21 to 167.172.165.125. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

STATIONARITY, ERGODICITY, AND CLT FOR PAM 2131

whence for all N > e the integral over [0,1] x (1, N?] is bounded above by a constant

times
1 e’} 1 oo
/ s%_ﬁdﬁ/ SQ_BdSQ +/ 51_5/2d31/ SQ_ﬂdSQ < 00.
0 1 0 1

Similarly, the integral over (1, N2] x [0,1] is also finite uniformly for N > e.
Furthermore, for (s1,s2) € (1, N?]?, the integrand is bounded above by s;ﬂsgﬁ,

which implies that the integral over (1, N?]? is also finite uniformly for N > e. The

proof is complete. 0

LEMMA 7.5. There exists a constant C > 0 such that for all N > e

(7.6) / dsydss [[(51(1—31/N2))—1/2} /\sfl} [[(52(1—52/N2))—1/2} /\sgl]
[0,N2]2
1 . 1 1\ Y2 .
A | —+ — 1-A)" 3
x /O A <231 + 252> ( ) AN
Proof. The proof is similar to that of Lemma 7.4.

< C (log N).
Applying Lemma 7.3 (first part) with o = (5= + 52-)~'/2, for all N > e, the

251 259
above integral is bounded above by a constant times

/[0 g dsidss H(sl(l — S1/N2))—1/2} /\Sfl} H(SQ(l _ 82/N2))—1/2} A 8271}

—1/2 —-1/2
1 1 1 1 1
X 1{221+2.12>1} 27814»@ +1{ﬁ+ﬁ§1} og 27814’2782 .

For (s1,82) € [0,1]%, the above integrand is bounded above by

Nl

1 1\ Y2
R e e (R VD (2 i 2> ’
1 2

whence for all N > e the integral over [0,1]? is bounded above by a constant times

(1 - 1/62)71 / 5—1/25—1/2 i + L o ds;dsy
[0,1]2 ! 2 281 282

1 1
S / 82_1/2(2182/ 81_1/281/2(181 < 00.
0 0

Moreover, for (s1,s2) € [0,1] x (1, N?], the integrand is bounded above by
(o) ") ]
2s1 289 251 289
S =1/ (571 + 5,257 og(2s2) )
whence for all N > e the integral over [0, 1] x (1, N?] is bounded above by a constant

times
N b N Jog(2s2) 2
/ S5 d52+/ 5 dsl/ ——=~dss =< (log N)=.
1 0 1 52

81—1/2(1 B 1/N2)_1/2551
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Similarly, the integral over (1, N?] x [0,1] is also bounded above by C (log N)? for
N >e.
Furthermore, the integral over (1, N?]? is bounded above by

) ) 1 1 —1/2
dsidsg s "s5 7 1 — 4+ —
/(1,N2]2 R <281 i 282)
N2 S1 L L 1 1 _1/2
=2 d dsg s7 s, 1 —+ —
1 81/1 8281 Sy " log (231 + 252>

N2 s1 N2 1 2
S/ d81/ dsg 57 's5 ' log s1 :/ @dsl = (log N)?.
1 1 1

S1
The proof is complete. 0
LEMMA 7.6. Fiz 1 < 8 < 2. Then,
(7.7)
N 5—483 2 2 2\\—fB/2 —28 ! B —-B/2 -8B ’
sup | daa H(a (1—a®/N7)) ] Aa } Ha (s(1-s)) ] As ]ds < 0.
N>elJo 0

Proof. By Lemma 7.3, for all N > e, the above integral is bounded above by a
constant times

1
/O dara® 2 [[(a®(1 = 1/N%) 72| Ao
N
+/1 daa H(az(l - a2/N2))_’8/2} /\a_w}
<(1- 1/632)_5/2/1 o® 3B da + /OO o= da < 0. 0
0 1

LEMMA 7.7. There exists a constant C > 0 such that for all N > e,
(7.8)

/ON daa H(a2(1 - a2/N2))—1/2} /\04_2} (/01 Ha(s(1 - S))—l/ﬂ A 5—1} ds)

(7.9)
< C(logN)3.

Proof. Thanks to Lemma 7.3 (first part), the integral in (7.8) is bounded above
by a constant times

2

1 N
(1- 1/62)_1/2/ a7 2da + / a2 (log @)*da = (log N)3. 0
0 1
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