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Background: Anthropogenic emissions are rapidly altering Earth’s climate, pushing it toward a
warmer state for which there is no historical precedent. Although no perfect analogue exists for such
a disruption, Earth’s history includes past climate states – “paleoclimates” – that hold lessons for the
future of our warming world. These periods in Earth’s past span a tremendous range of temperatures,
precipitation patterns, cryospheric extent, and biospheric adaptations, and are increasingly relevant for
improving our understanding of how key elements of the climate system are a↵ected by greenhouse gas
levels. The rise of novel geochemical and statistical methods, as well as improvements in paleoclimate
modeling, allow for formal evaluation of climate models based on paleoclimate data. In particular, given
that some of the newest generation of climate models have a high sensitivity to a doubling of atmospheric
CO2, there is a renewed role for paleoclimates in constraining equilibrium climate sensitivity (ECS) and
its dependence on climate background state.

Advances: In the past decade, an increasing number of studies have used paleoclimate temperature
and CO2 estimates to infer ECS in the deep past, in both warm and cold climate states. Recent studies
support the paradigm that ECS is strongly state-dependent, rising with increased CO2 concentrations.
Simulations of past warm climates such as the Eocene further highlight the role that cloud feedbacks play
in contributing to high ECS under elevated CO2 levels. Paleoclimates have provided critical constraints
on the assessment of future ice sheet stability and concomitant sea level rise, including the viability of
threshold processes like marine ice cli↵ instability. Beyond global-scale changes, analysis of past changes
in the water cycle have advanced our understanding of dynamical drivers of hydroclimate, which is highly
relevant for regional climate projections and societal impacts. New and expanding techniques, such as
analyses of single shells of foraminifera, are yielding sub-seasonal climate information that can be used
to study how intra- and interannual modes of variability are a↵ected by external climate forcing. Studies
of extraordinary, transient departures in paleoclimate from the background state such as the Paleocene-
Eocene Thermal Maximum provide critical context for the current, anthropogenic aberration, its impact
on the Earth system, and the timescale of recovery.

A number of advances have eroded the “language barrier” between climate model and proxy data,
facilitating more direct use of paleoclimate information to constrain model performance. It is increasingly
common to incorporate geochemical tracers – such as water isotopes – directly into model simulations
and this practice has vastly improved model – proxy comparisons. The development of new statistical
approaches rooted in Bayesian inference has led to a more thorough quantification of paleoclimate data
uncertainties. Finally, techniques like data assimilation allow for a formal combination of proxy and
model data into hybrid products. Such syntheses provide a full-field view of past climates and can put
constraints on climate variables that we have no direct proxies for, such as cloud cover or wind speed.
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Figure 1: Past climates (denoted on top) provide context for future climate scenarios (at bottom). Ma
= millions of years ago. Both past and future climates are colored by their estimated change in global
mean annual surface temperature relative to preindustrial conditions. “Sustainability”, “Middle road”,
and “High emissions” represent the estimated global temperature anomalies at 2300 from the Shared
Socioeconomic Pathways (SSPs) SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively. In both the past and
future cases, warmer climates are associated with increases in CO2.

Outlook: A common concern with using paleoclimate information as model targets is that non-CO2

forcings, such as aerosols and trace greenhouse gases, are not well known, especially in the distant past.
While evidence thus far suggests that such forcings are secondary to CO2, future improvements in both
geochemical proxies and modeling are on track to tackle this issue. New and rapidly evolving geochemi-
cal techniques have potential to provide improved constraints on the terrestrial biosphere, aerosols, and
trace gases; likewise, biogeochemical cycles can now be incorporated into paleoclimate model simulations.
Beyond constraining forcings, it is critical that proxy information is transformed into quantitative esti-
mates that account for uncertainties in the proxy system. Statistical tools have already been developed
to achieve this, which should make it easier to create robust targets for model evaluation. With this in-
crease in quantification of paleoclimate information, we suggest that modeling centers include simulation
of past climates in their evaluation and statement of their model performance. This practice is likely to
narrow uncertainties surrounding climate sensitivity, ice sheets, and the water cycle and thus improve
future climate projections.
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As the world warms, there is a profound need to improve projections1

of climate change. While the latest Earth system models o↵er an un-2

precedented number of features, fundamental uncertainties continue to3

cloud our view of the future. Past climates provide the only opportu-4

nity to observe how the Earth system responds to high CO2, underlining5

a fundamental role for paleoclimatology in constraining future climate6

change. Here, we review the relevancy of paleoclimate information for7

climate prediction and discuss the prospects for emerging methodologies8

to further insights gained from past climates. Advances in proxy methods9
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and interpretations pave the way for the use of past climates for model10

evaluation – a practice we argue should be widely adopted.11

1 Introduction12

The discipline of paleoclimatology is rooted in the peculiarities of the geological record, which has13

long hinted that Earth’s climate can change in profound ways. In possibly the first paleoclimate14

study, the 17th century English physicist Robert Hooke concluded, based on observations of15

large turtles and ammonites in Jurassic rocks, that conditions in England had once been much16

warmer than now (1). Since then, paleoclimate studies have revolutionized our view of the17

climate system (2), documenting both warm and cold worlds much di↵erent than the one we18

inhabit, and establishing the link between atmospheric CO2 and global temperature (Fig. 1).19

While paleoclimatology continues to narrate the history of Earth’s climate, it also plays an20

increasingly central role in understanding future climate change. The study of past climate has21

never been more relevant than now, as anthropogenic activities increase atmospheric greenhouse22

gas concentrations and modify the land surface and ocean chemistry at a rate and scale that23

exceed natural geologic processes. CO2 levels are higher now than at any point in at least the24

last three million years and, at the current rate of emissions, will exceed concentrations typical25

of the last 30 million years by 2300 (Fig. 1). In this context, past climates are windows into26

our future (3) – the geological record is the only observational source of information for how the27

climate system operates in a state much warmer than the present.28

The challenge for paleoclimatology is that there are few direct quantitative records of past29

climate (e.g. temperature, precipitation). Instead, we make use of “proxies,” surrogates for30

climate variables that cannot be measured directly. In some cases, the physical occurrence31

(or absence) of a proxy (like glacial deposits) reveals information about past environmental32

conditions. More often, geochemical data (such as elemental and stable isotope ratios) stored in33

fossils, minerals, or organic compounds, are used to infer past conditions. The discovery of new34

proxies, improvements in modeling and analytical techniques, and the increasing number of proxy35

records are actively expanding the utility of paleoclimate information. These innovations are36

refining our understanding of how the climate system responds to large changes in atmospheric37

CO2, and provide insights into aspects of past climates (such as seasonality and interannual38

variability) that were heretofore unknowable.39

Among the most important contributions that paleoclimatology can make is the evaluation40

of Earth system models that we rely on for projecting future climate change. The physical41

parameterizations in these sophisticated models are often tuned to fit the preindustrial or his-42

torical record (4). However, the latter is short in duration and samples a single climate state43

with a narrow CO2 range. The performance of climate models under extreme forcing very44

di↵erent than present is not commonly assessed, despite the fact that the models are used to45

project changes under high-emissions scenarios. When these models are used to simulate past46

warm climates, they often predict surface temperatures that are too cold and pole-to-equator47

temperature gradients that are too large (5). However, a new generation of models, alongside48

developments in proxy techniques and analysis, now provide opportunities to more fully exploit49

past climates for model evaluation and assessment of key metrics of the climate system.50
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2 Past climates inform key processes51

Earth’s paleoclimate record contains tremendous variability. Over the last 100 million years, the52

climate gradually transitioned from an ice-free world of exceptional warmth (the mid-Cretaceous,53

92 Ma, Fig. 1) to the cold ice ages of the past few million years, glacial worlds with kilometers-54

thick ice caps covering one-fourth of the land surface (such as the Last Glacial Maximum (LGM),55

21 ka, Fig. 1). Between Cretaceous and LGM extremes lie intermediate warm climates such as56

the early Eocene (53–49 Ma) and Pliocene (5.3–2.6 Ma) (Fig. 1). This long-term climate transi-57

tion was far from steady – short-lived hyperthermal events (6) and cold stadials (7) punctuated58

the slower trends.59

Atmospheric CO2 concentrations generally follow these swings in global temperature (Fig. 1).60

Geochemical modeling demonstrates that the balance of geological sources (degassing through61

volcanism) and sinks (weathering and sedimentation) explains the general features of CO2’s62

trajectory (8) and establishes causality – high CO2 leads to high temperatures. The apparent63

exceptions to this rule, including the end-Cretaceous and early Paleocene (70–60 Ma) and the64

Miocene (23–5.3 Ma), are areas of active research. One explanation for the decoupling of CO265

and temperature is that uncertainties associated with the proxies blur the relationship. Esti-66

mation of past CO2 is challenging. Beyond the ice core record (9), CO2 information comes67

from geochemical data, such as isotope ratios of boron and carbon, or paleobotanical indicators68

such as the density of leaf stomata. All of these proxies require assumptions about the phys-69

ical, chemical, and biological state of the past that are not completely understood, sometimes70

leading to misinterpretations of the signal (10). Proxy methodologies and assumptions continue71

to be refined, and there is some indication that CO2 at the end of the Cretaceous may have72

been higher than shown in Fig. 1 (11). It is also possible that these discrepancies have another73

explanation, such as a greater-than-expected role for non-CO2 forcings and feedbacks. If the74

paleoclimate record has taught us anything, it is that the more we probe, the more we learn.75

Past climate states were profoundly di↵erent from today. Their global mean temperatures,76

latitudinal temperature gradients, polar ice extents, regions of deep-water formation, vegetation77

types, patterns of precipitation and evaporation, and variability were all di↵erent. These dif-78

ferences are invaluable as they provide rich evidence of how climate processes operated across79

states that span the range of CO2 concentrations (400–2000 ppm) associated with future emis-80

sions scenarios (the Shared Socioeconomic Pathways (SSPs), Fig. 1). Under the sustainable81

SSP1-2.6 scenario, in which emissions are curtailed and become net-negative by the end of the82

21st century, CO2 concentrations would be stabilized near Pliocene levels (Fig. 1). In contrast,83

under the fossil-fuel intensive SSP5-8.5 scenario, CO2 concentrations would approach or even84

exceed Eocene or mid-Cretaceous levels (Fig. 1). These past warm climates therefore serve as85

targets against which to measure the increasingly complex generation of climate models that86

are used for future climate prediction.87

Past climates are not perfect analogues for future states – continental configurations are88

increasingly di↵erent with age, and they often represent equilibrium climates as opposed to89

transient changes associated with rapid greenhouse gas emissions (12). But as benchmarks for90

climate models, ancient climates need not be perfect analogues. In fact, the di↵erences are91

advantageous; they provide true out-of-sample validation for the strength and stability of key92

feedbacks; large-scale responses of the hydrological cycle; and the most ubiquitous metric of all,93
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climate sensitivity.94

3 Paleoclimate constraints on climate sensitivity95

Equilibrium climate sensitivity (ECS) has been widely adopted as a simple metric of how re-96

sponsive the Earth’s climate system is to radiative forcing. It is defined as the change in global97

near-surface air temperature resulting from a sustained doubling in atmospheric CO2 after the98

fast-acting (timescales of years to decades) feedback processes (water vapor, clouds, snow) in99

the Earth system reach equilibrium. The 5th assessment report of the IPCC determined that100

ECS was likely between 1.5 and 4.5�C, a large range that has remained essentially unchanged for101

40 years (13). Because the environmental impacts, socio-economic implications, and mitigation102

timescales are very di↵erent for a low versus a high ECS (14), narrowing its range has always103

been a high priority.104

The fact that models with either a low or high present-day ECS can match historical ob-105

servations (15) suggests that preindustrial and industrial climatic changes provide insu�cient106

constraints on this important metric. Furthermore, the emerging view is that ECS is depen-107

dent on, and changes with, the background climate state – specifically, it increases in warmer108

climates (16–19). Past warm climates therefore provide key constraints on the range of plausi-109

ble ECS values as well as the strength of feedbacks involved. Simulations of the early Eocene110

provide a salient example. Figure 2 shows a comparison between the ECS of Coupled Model In-111

tercomparison Project (CMIP) Phase 5 and Phase 6 models (used in the last and the upcoming112

IPCC assessments) and the ECS of preindustrial and Eocene simulations conducted with the113

National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM)114

version 1.2 (19). Doubling CO2 in an Eocene experiment with preindustrial CO2 (285 ppm;115

1X) yields an ECS similar to the preindustrial experiment and overlaps with the CMIP range116

(Fig. 2). This indicates that non-CO2 Eocene boundary conditions, including the position of117

the continents and the absence of continental ice sheets, do not have a large e↵ect on ECS in118

CESM1.2. In contrast, raising CO2 levels elevates ECS in the Eocene simulations to values above119

6�C (Fig. 2). This increase in ECS with increasing temperature results in accurate simulation120

of Eocene temperatures at CO2 concentrations that agree with proxy estimates (Fig. 2, inset).121

The elevated ECS under high CO2 in CESM1.2 is due to improved representation of clouds in122

the CAM5 atmospheric model, which drives a strong low-cloud positive feedback under high123

CO2 (19) – a finding in agreement with the emerging recognition that cloud feedbacks are a124

key component of warm climates (20,21). The fact that CESM1.2 simulates Eocene proxy tem-125

peratures within the bounds of proxy CO2 estimates provides support for its cloud physics and126

increases our confidence in the model’s state-dependent ECS. The Geophysical Fluid Dynamics127

Laboratory (GFDL) CM2.1 model can also simulate the large-scale features of Eocene proxy128

temperatures (22), likewise suggesting that its ECS is reasonable. On the other hand, CESM2129

(the newest version of the NCAR model) estimates Eocene temperatures that exceed the upper130

bound of proxy constraints at low CO2 levels (23), suggesting that its modern ECS of 5.3�C131

is too high. A little more than a third of the newest-generation CMIP6 models have an ECS132

higher than 4.5�C (15). From historical observations alone, it is very challenging to assess the133

plausibility of these higher ECS values. As the Eocene example highlights, warm paleoclimates134

are key in this respect.135
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The early Eocene provides an important constraint on model ECS but samples a single136

high-CO2 climate state. Given the dependence of ECS on the background climate state, other137

past climates are critical to constraining ECS and relevant physics under both lower (e.g. LGM,138

Pliocene) and higher (e.g. Eocene, Cretaceous) background CO2 levels. One concern about using139

past climates as model targets is that the forcings, especially aerosol and non-CO2 greenhouse140

gas concentrations, are uncertain and increasingly so in the distant past. While important, it is141

worth noting that these forcings are secondary to CO2 (e.g. (24)) and, for extreme climates like142

the Eocene and Cretaceous, may largely fall within the climate proxy uncertainties. Moreover,143

this concern can be mitigated by examining model responses to the potential range of under-144

constrained forcings and, as is increasingly done, by incorporating biogeochemical cycles and145

the simulation of aerosol production and transport into the models.146

4 Paleoclimate perspectives on the stability of the cryosphere147

Future projections of sea level rise have large uncertainties, mainly due to unknowns surrounding148

the stability and threshold behavior of ice sheets (25). The paleoclimate record furnishes true149

“out-of-sample” tests for understanding the sensitivity of the cryosphere to warming that can150

lower these uncertainties. The past few years have seen a number of advances on both data151

and climate modeling fronts to understand past changes in ice sheets and connect these to the152

future. Advances in the generation and interpretation of proxy indicators of ice sheet size, shape,153

and extent (26–28) are helping to refine our understanding of cryosphere dynamics in warmer154

climates. Improvements in modeling the e↵ects of dynamic topography and glacial isostatic155

adjustment are continually reducing uncertainties associated with estimates of past global sea156

level (29,30), providing more accurate benchmarks for model simulations (31).157

Paleoclimates also provide critical insights into processes that drive destabilization of ice158

sheets. Of particular relevance for future projections is assessing the likelihood of marine ice-159

cli↵ instability (MICI), a rapid collapse of coastal ice cli↵s following the disintegration of an160

ice shelf, which has the potential to contribute to substantial sea level rise by the end of the161

21st century (32, 33). The record of sea level change from past warm climates o↵ers a way to162

test this hypothesis. Recent work has focused on the Pliocene, given that CO2 concentrations163

during this time were similar to current anthropogenic levels (Fig. 1). A new reconstruction of164

global mean sea-level during the mid-Pliocene warm period indicates a rise of ⇠ 17 m, implying165

near-to-complete loss of Greenland and the West Antarctic Ice Sheet with some additional166

contribution from East Antarctica (34). While this represents an outstanding loss of ice, MICI167

is not necessarily needed to explain it (33,34). However, simulated changes in sea level are highly168

dependent on each model’s treatment of ice sheet stability (35), and paleoclimate investigations169

of warmer climates, such as the early Pliocene and the Miocene, indicate larger magnitudes of170

ice loss, thermal expansion, and consequent sea level rise (34,36). Moving forward, refining our171

understanding of threshold behavior in ice sheets, and thus improving projections of future sea172

level rise, will require a synergistic approach that leverages paleoclimate estimates from multiple173

warm climates alongside solid Earth, ice sheet, and climate modeling (31).174

5



5 Regional and seasonal information from past climates175

Future warming will shift regional and seasonal patterns of rainfall and temperature, with dra-176

matic consequences for human society (37, 38). Regional changes in the land surface (reduced177

snow cover, melting permafrost, greening, desertification) can further trigger biogeochemical178

feedbacks that could dampen or amplify initial radiative forcing, with implications for climate179

sensitivity (39). Unfortunately, climate models disagree about the direction and magnitude of180

future regional rainfall change (40). Improving future predictions of regional climate requires181

separating internal variability in the climate system (i.e., interannual–centennial oscillations)182

from externally-forced changes (i.e., from greenhouse gases or aerosols). Regional and seasonal183

paleoclimate data are critical in this respect, as they provide long, continuous estimates of the184

natural range of variation, augmenting the relatively short observational record (41,42).185

Subannually-resolved paleobiological and sedimentary archives, made more accessible by186

recent advances in geochemical techniques, allow for the study of seasonal-scale variations in187

both temperature and hydroclimate. For example, �18O measurements of fossil bivalves can188

be used to gain insights into the drivers of seasonal variability during the Eocene greenhouse189

climate (43,44) (Fig. 3a). Since individual planktic foraminifera live for about a month, analyses190

of single shells yields subannual sea-surface temperature (SST) data from ancient climates (45).191

This can be leveraged to reveal past changes in key seasonal phenomena such as the El Niño–192

Southern Oscillation (ENSO) (46) (Fig. 3). Proxy data can even provide records of changes in193

the frequency or intensity of extreme events like hurricanes (47).194

Reconstructions of hydroclimate are considerably more challenging than temperature, as195

proxy signals tend to be more complex; however, even basic directional information (wetter vs.196

drier) can be used to test spatial patterns in models (e.g., (48)). Past warm climates allow us to197

test the extent to which the thermodynamic “wet-gets-wetter, dry-gets-drier” response broadly198

holds with warming (49) or if dynamical changes, such as shifts in the Hadley or Walker cells,199

play more of a key role in the regional water cycle response to changes in surface temperature200

gradients (48,50).201

Comparisons of proxies and models can also be used to identify the processes that are critical202

for accurate simulation of regional shifts in the water cycle, where local moisture and energy203

budgets exert an important control (51). The processes that drive these budgets – i.e., land204

surface properties and clouds – must be parameterized in global climate models and are often205

poorly understood, yet have huge consequences for predicted patterns in humidity and rainfall206

(52–55). Past changes in Earth’s boundary conditions o↵er a much broader set of scenarios207

where observations can be used to evaluate the performance of parameterization schemes. In208

particular, paleoclimates spanning the last glacial cycle have helped us better understand the role209

of land-atmosphere feedbacks in determining hydroclimatic response. Analyses of LGM proxies210

for SST and water balance in Southeast Asia suggest a direct relationship between convective211

parameterization and model skill at capturing regional hydroclimate (48, 56). Studies of the212

mid-Holocene ‘Green Sahara’ highlight the importance of vegetation and dust feedbacks in213

accurately simulating the response of the west African monsoon to radiative forcing (57, 58).214

These examples demonstrate the value of hydroclimate proxy-model comparison even if the past215

climate state is not a direct analogue for future warming.216

Studies of past warm climates have the potential to provide even more insights into the217
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behavior of regional climate in a warming world. Future model projections broadly simulate a218

pattern of subtropical drying, while the deep tropics and high latitudes get wetter (40). Recently,219

however, researchers have argued that subtropical drying is transient and might not persist in220

equilibrium with higher radiative forcing (59,60). Indeed, several paleoclimatic intervals (61,62)221

suggest that a warmer world could feature a di↵erent pattern, with wetter conditions in both the222

subtropics and high latitudes (50). This pattern is especially evident in western North America,223

where widespread Pliocene lake deposits suggest much wetter conditions (63). This evidence224

stands in stark contrast to future projections for this region, which overwhelmingly predict drier225

conditions and more intense droughts (64), and suggests that paleoclimates can provide vital226

constraints on the response of arid lands to higher CO2 concentrations.227

6 Climatic aberrations228

Among the most important discoveries in paleoclimatology is the occurrence of climatic “aber-229

rations” – extraordinary transient departures from a background climate state. Such events are230

distinguished by radical changes in temperature, precipitation patterns, and ocean circulation231

that often leave distinctive marks in the geological record, like the pervasive black shales of232

the mid-Cretaceous Ocean Anoxic Events (65). An aberration typically occurs in response to233

a short-lived perturbation to the climate system, such as a sudden release of greenhouse gases234

(e.g., from volcanoes, methane clathrates, or terrestrial organic deposits). Aberrations need not235

be “abrupt” in the sense that the rate of climate change must exceed the rate of forcing, and236

they can potentially last for a long time (for example, the Sturtian Snowball Earth lasted 55237

million years (66)). They are instructive because they provide information on extreme climate238

states, and the ability of the Earth system to recover from such states.239

One of the most striking aberrations in the paleoclimate record, the Paleocene-Eocene Ther-240

mal Maximum (PETM), may foreshadow future changes that Earth will experience due to241

anthropogenic emissions. The PETM, which occurred 56 million years ago, was triggered by242

rapid emission of greenhouse gases; proxy and model estimates suggest that CO2 doubled or243

even tripled from a background state of ⇠900 ppm (67–69) in less than 5,000 years (70,71). In244

response, global temperatures spiked by 4–6�C (72). The surface ocean rapidly acidified (68,73),245

and seafloor carbonates dissolved (74), resulting in dramatic biogeographic range shifts in plank-246

ton and the largest extinction in deep-sea calcifying benthic foraminifera ever observed (75). Pre-247

cipitation patterns changed dramatically, with much more rain falling at the high latitudes (76).248

It took the Earth ⇠ 100,000 years to recover from this perturbation (68,77).249

Although the PETM stands out starkly in the geologic record, the rate of CO2 release was still250

4–10 times slower than current anthropogenic emissions (71, 78). Indeed, the geological record251

leaves no doubt that our current rate of global warming, driven by anomalous (anthropogenic)252

forcing, is an exceptional aberration – the rate and magnitude of change far exceeds the typical253

multi-thousand year variability that preceded it (Fig. 4). In the last 100 million years, CO2254

has ranged from maximum values in the mid-Cretaceous to minimum levels at the Last Glacial255

Maximum (Fig. 1). Going forward, we are on pace to experience an equivalent magnitude256

of change in atmospheric CO2 concentrations, in reverse, over a period of time that is over257

10,000 times shorter (Fig. 4). In just over 150 years, we have already raised CO2 concentrations258

(currently at 410 ppm) to Pliocene levels (Fig. 4). Under a middle-of-the-road emissions scenario259
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such as SSP2-4.5 (or the CMIP5 equivalent, RCP4.5), CO2 will approach 600 ppm by Year 2100,260

and if we follow the high-emissions SSP5-8.5 (or RCP8.5), CO2 will rise beyond mid-Cretaceous261

concentrations (ca. 1000 ppm) by Year 2100 (Fig. 4). In comparison, over the past 800,000262

years of geologic history CO2 only varied between 180 and 280 ppm (9) (see also Fig. 4).263

How long will it take for the Earth to neutralize anthropogenic CO2 and return to pre-264

industrial levels? The Earth has the ability to recover from a rapid increase in atmospheric CO2265

concentration – the PETM is a textbook example of this process. In fact, in every case of past266

CO2 perturbations, the Earth system has compensated in order to avoid a runaway greenhouse267

or a permanent icehouse. Yet the natural recovery from aberrations takes place on geological, not268

anthropogenic, timescales (Fig. 4). Some of the processes that remove CO2 from the atmosphere269

occur on relatively short (100–1000 yr) timescales (e.g. ocean uptake), but others take tens to270

hundreds of thousands of years (e.g. weathering of silicate rocks) (79). Using the intermediate271

complexity Earth system model cGENIE, we can estimate how long the recovery process takes272

under di↵erent future forcing scenarios. Under an aggressive mitigation scenario (RCP 2.6), CO2273

concentrations remain at Pliocene-like concentrations (>350 ppm) through Year 2350, but it still274

takes hundreds of thousands of years for concentrations to return to preindustrial levels (Fig. 4).275

Under a middle-of-the-road scenario (RCP 4.5), CO2 peaks around 550 ppm and remains above276

Pliocene levels for 30,000 years. Under a worst-case scenario (RCP 8.5) atmospheric CO2 will277

remain at mid-Cretaceous (>1000 ppm) concentrations for 5,000 years, at Eocene concentrations278

(⇠850 ppm) for 10,000 years, and at Pliocene concentrations (>350 ppm) for 300,000 years (Fig.279

4). It will be at least 500,000 years, a duration equivalent to 20,000 human generations, before280

atmospheric CO2 fully returns to preindustrial levels. Our planet will recover, but for humans,281

and the organisms with which we share this planet, the changes in climate will appear to be a282

permanent state shift.283

7 Bridging the gap between paleoclimate data and models284

Climate models provide direct estimates of quantities like temperatures, wind speed, and precip-285

itation. In contrast, paleoclimate information is indirect, filtered through a proxy – a physical,286

chemical, and/or biological entity that responds to climate – such as foraminifera, algae, or287

the chemical composition of sediments. Proxies are imperfect recorders of climate; they have288

inherent uncertainties associated with, for example, biological processes and preservation. Thus,289

while proxy data can be transformed into climate variables for direct comparison with models290

using regression, transfer functions, and assumptions, if these structural uncertainties are not291

accounted for they can lead to unclear or erroneous interpretations. This creates a “language292

barrier” between model output and proxy data that has limited the use of paleoclimate infor-293

mation to infer past climate states and evaluate climate models. Three key innovations are294

now breaking down this barrier, allowing paleoclimate information to directly constrain model295

performance: 1) the inclusion of chemical tracers relevant to proxies directly in Earth system296

models; 2) the creation of robust proxy system models that explicitly encode processes, uncer-297

tainties, and multivariate sensitivities; and 3) the development of statistical methods to formally298

combine proxy and model data.299

As far as chemical tracers are concerned, the single most important advance has been the300

increasingly routine incorporation of water isotopes in model simulations. The stable isotopes301

8



of water – �18O and �D – and their incorporation into natural archives are the foundation of302

modern paleoclimatology (80). A large number of paleoclimate proxies record water isotopes,303

including foraminifera, stalagmites, leaf waxes, soil carbonates, and ice cores. Water isotope304

composition, however, reflects multiple processes including changes in temperature, moisture305

source, evaporation, precipitation, and convection. Including water isotopes in models gener-306

ates simulated isotope fields that are consistent with the model’s treatment of these processes,307

eliminating the need to independently conjecture how these various factors may have influenced308

the proxy data. This creates an “apples to apples” comparison between proxy information and309

model output that can be used to evaluate model performance and diagnose climatic processes310

(e.g. (81). For example, using the water-isotope-enabled CESM1.2 (iCESM) (82), it is possi-311

ble to directly compare carbonate �18O data from Eocene fossil bivalves to model-simulated312

�18O (43, 44, 83) (Fig. 3a). The model predicts a roughly 3h annual range in carbonate �18O,313

in good agreement with observed proxy data (Fig. 3a). The match with the �18O data builds314

confidence that the model can correctly simulate climatology in this location, and allows us to315

deconvolve the contribution of SST and �18O of seawater. The site-specific seasonality in SST is316

8–10�C, while �18O-seawater has a seasonal range of 0.6–0.8h. This indicates that temperature317

is primarily responsible for the large seasonal range in carbonate �18O during this greenhouse318

climate state.319

One aspect of paleoclimate information that has traditionally limited its use in model eval-320

uation is an inability to precisely quantify uncertainties surrounding the proxies. However, in321

the last decade, increasingly detailed proxy system models (84) have been developed to address322

this issue (e.g.,) (85–87). Many of these use Bayesian inference to quantify uncertainties in the323

sensitivity of proxies to environmental parameters, which can then be used for probabilistic as-324

sessments of past climate states, model-proxy agreement, and model evaluation (88). These have325

helped to transform proxy-model comparisons from qualitative statements (“they look similar”)326

to quantitative statements (“there is a 90% probability that the data and the model agree”).327

A final component of the “language barrier” is the fact that proxy data are sparse in both328

space and time, because they are fundamentally dependent on the presence and preservation329

of their archives. Yet proxy data are real-world estimates of the “true” climate state. In330

contrast, climate model information is spatially and temporally continuous and physically self-331

consistent – but is only a best “guess” at what did or what will happen. One solution to332

bridge these fundamentally di↵erent pieces of information is to formally combine them in a333

statistical framework and thus leverage their respective strengths. Reduced space methods –334

commonly used to produce historical reconstructions of climate – can be used to infill missing335

data and produce maps of paleoclimate states (88,89). Recently, weather-based data assimilation336

techniques have been adapted for paleoclimate applications (90). The resulting products are337

spatially-complete reconstructions of multiple climate variables that represent a balance between338

the proxy information and the physics and covariance structure of the climate model. This allows339

local paleoclimate proxy information to be used to infer global metrics of climate – such as global340

mean air temperature (91). It also allows for the recovery of climatic variables that are consistent341

with the proxy information but for which we have no direct proxies, such as cloud cover, wind342

patterns, or precipitation (Fig. 5).343

In sum, the disintegration of the model-proxy language barrier has narrowed uncertainties344

in proxy interpretation. Recent studies have been able to use proxy data to infer key cli-345
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matic processes and evaluate models across multiple time periods, including the LGM (91), the346

Pliocene (88), and the Eocene (19,22). This opens the door for explicit use of paleoclimates to347

assess and improve model physics.348

8 Moving Forward349

Past climates will continue to provide insights into the range, rate, and dynamics of climate350

change. Over the last decade, we have witnessed breakthroughs in proxy development and351

refinement as well as the generation of many new high-resolution marine and terrestrial pale-352

oclimate records. In addition to continued advances, the collection of additional temperature353

and CO2 proxy records at higher resolution will be paramount for developing better estimates354

of climate sensitivity. Future proxy collection e↵orts should also focus on hydroclimate proxies,355

given the large spread in model projections (40). These reconstructions will help us refine our356

understanding of the response of atmospheric circulation and rainfall to climate change.357

On the modeling side, the inclusion of chemical tracers, such as water and carbon isotopes,358

within many of the newly developed CMIP6 (92) models o↵ers more robust means of data-model359

comparison. With these new model tools, we anticipate the rapid development and improvement360

of data-model synthesis products (90, 91) and more focused proxy collection e↵orts to help361

reduce model uncertainties. In addition, evaluating CMIP6 models using both the historical and362

paleoclimate record will result in a more comprehensive and robust approach to understanding363

the climate system (93). We recommend widespread adoption of this practice, so that model364

ECS and other emergent properties are constrained by paleoclimate data as well as observations.365

We suggest that weighting or ranking models that perform well over multiple past climate states366

is a crucial way to constrain the response of the model to changing background conditions and367

the validity of simulated climate changes under various emissions scenarios. In general, climate368

models should be able to accurately simulate multiple extreme paleoclimate states – warm and369

cold – before being trusted for future climate projection.370

Despite promising CMIP6 model advances, maintaining a variety of models with di↵erent371

levels of complexity is important. Not all climate questions require high levels of model com-372

plexity, and sometimes complexity is so great that interpretation becomes limited (94). In373

paleoclimatology, complexity can also lead to prohibitive computational expense. Maintained374

support for lower resolution and variable resolution configurations is vital for better interpreting375

model results and performing long, transient simulations that can address fundamental questions376

in paleoclimatology such as glacial cycles and carbon cycle changes.377

Looking ahead, there are many outstanding process-based uncertainties associated with fu-378

ture climate change that paleoclimatology can help constrain. For example, paleobotanical379

records can inform plant physiological responses to changes in CO2 (95), which remain highly380

uncertain (96) but important for quantifying evapotranspirative and surface runo↵ fluxes. Sim-381

ilarly, past vegetation reconstructions can assess dynamic vegetation models and simulated382

changes in the hydrologic cycle through time (97). Moreover, additional quantitative reconstruc-383

tions of hydroclimate, in combination with better constraints on plant physiological functioning384

in the past, will help refine our understanding of the regional water cycle and its dependence on385

local energy fluxes and large-scale circulation.386

New geochemical techniques will also refine our understanding of the Earth system. Devel-387
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opment of radiation (98), biogenic aerosol (99), and dust (100) records have the potential to388

help constrain past aerosol and cloud radiative e↵ects, which are arguably the most uncertain389

component of Earth system models (101). In addition, new geochemical tracers for methane390

cycling (102) and upwelling, which is important for N2O production (103), will provide unique391

insights into trace greenhouse gases during past climate states. The combination of these new392

techniques will allow the paleoclimate community to better quantify biogeochemical feedbacks393

and climate sensitivity to greenhouse gas forcings across a range of climate states, and ultimately394

improve climate forecasts for the coming decades to millennia.395

In summary, the paleoclimate record is the basis for how we understand the potential range396

and rate of climate change. Past climates represent the only target for climate model predic-397

tions at CO2 concentrations outside of the narrow historical range and, for this reason, are vital398

tools for evaluating the newest generation of Earth system models. The study of past climates399

continues to reveal key insights to the Earth’s response to elevated concentrations of greenhouse400

gases. Innovations in Earth system models, geochemical techniques, and statistical methods401

further allow for a more direct connection from the past to the future – worlds for which the402

preindustrial and industrial climate states provide limited guidance. The future of paleoclima-403

tology is to incorporate past climate information formally in model evaluation, so that we can404

better predict and plan for the impacts of anthropogenic climate change.405
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Figure 1: Paleoclimate context for future climate scenarios. Global mean surface tem-
perature for the past 100 million years is estimated from benthic �18O (2,106) using the method
of (104). CO2 is estimated from the multi-proxy data set compiled by (105) with additional
phytane data from (107) and boron data from (108) and (11). Data with unrealistic values
(<150 ppm) are excluded. The CO2 error envelopes represent 1� uncertainties. Note logarith-
mic scale for CO2. Gaussian smoothing was applied to both the temperature and CO2 curves
in order to emphasize long-term trends. Temperature colors are scaled relative to preindustrial
conditions. The maps show simplified representations of surface temperature. Projected CO2

concentrations are from the extended SSP scenarios (109). Blue bars indicate when there are
well-developed ice sheets (solid lines) and intermittent ice sheets (dashed lines), according to
previous syntheses (2).
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Figure 2: Constraining equilibrium climate sensitivity (ECS) through simulation of
the early Eocene. a. ECS in CMIP5 and CMIP6 models (grey bars; (15)) compared to ECS
in the CESM1.2 preindustrial (PI, orange bar) and Eocene simulations with 1X, 3X and 6X
preindustrial CO2 levels (red bars). b. CO2 concentrations (times preindustrial level) vs. global
mean temperature according to early Eocene proxies (yellow patch) compared to the results
from the CESM1.2 Eocene simulations. Proxy CO2 estimates are a 2� range derived from the
collection plotted in Figure 1. Readers are referred to (19) for details of the Eocene climate
simulations and proxy global mean temperature estimation.
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Figure 3: Examples of seasonal and interannual paleoclimate data and comparison to
models. (a) Seasonally-resolved �18O carbonate from the shells of a fossil bivalve, Venericar-
dia hatcheplata, from the early Eocene Hatchetigbee Formation (orange star in inset) (43, 44).
Monthly averaged data (orange, with 1� uncertainty bounds) are compared with predicted
�18O-carbonate seasonality at the same grid-point from an isotope-enabled Eocene model simu-
lation (19) (red) (using modeled �18O of seawater and SST, and the calibration of ref. (110)). (b)
Mg/Ca measurements of individual planktic foraminifera Trilobatus sacculifer from an eastern
equatorial site (blue star in inset) provide proxy evidence of a reduction in ENSO variability dur-
ing the Last Glacial Maximum (LGM) relative to pre-industrial conditions (46) (lighter blue).
The magnitude of reduction agrees with simulations using CESM1.2 (darker blue) (111).
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Figure 4: The anthropogenic climate aberration. Black line shows CO2 measured in ice
cores for the past 350,000 years (9). Solid colored lines show future CO2 concentrations for
the IPCC AR5 Representative Concentration Pathways, run out to 350,000 years in the future
with the cGENIE model. Dotted lines indicate average CO2 for key time periods in the geologic
past. Bars at right indicate CO2 concentrations under which there are well-developed ice sheets
(solid areas) and intermittent ice sheets (hatched areas), based on geologic evidence and ice
sheet modeling (112).
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Figure 5: An example of paleoclimate data assimilation. Marine sea-surface temperature
(SST) proxy data from the Last Glacial Maximum (LGM) and the Late Holocene (a) are com-
bined with an ensemble of model simulations (b) which contain multiple climatic variables. The
results (c-e; LGM - Late Holocene di↵erences for sea-surface temperature (�SST), surface air
temperature (�SAT), and mean annual precipitation (�Precip)) include all the variables in the
model prior, which are influenced by the assimilated SST proxy data. Proxy data, model fields,
and assimilated results are from ref. (91).
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