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SUMMARY
Horizontal slowness vector measurements using array techniques have been used to analyse
many Earth phenomena from lower mantle heterogeneity to meteorological event location.
While providing observations essential for studying much of the Earth, slowness vector analysis
is limited by the necessary and subjective visual inspection of observations. Furthermore, it
is challenging to determine the uncertainties caused by limitations of array processing such
as array geometry, local structure, noise and their effect on slowness vector measurements.
To address these issues, we present a method to automatically identify seismic arrivals and
measure their slowness vector properties with uncertainty bounds. We do this by bootstrap
sampling waveforms, therefore also creating random sub arrays, then use linear beamforming
to measure the coherent power at a range of slowness vectors. For each bootstrap sample, we
take the top N peaks from each power distribution as the slowness vectors of possible arrivals.
The slowness vectors of all bootstrap samples are gathered and the clustering algorithm
DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is used to identify
arrivals as clusters of slowness vectors. The mean of slowness vectors in each cluster gives
the slowness vector measurement for that arrival and the distribution of slowness vectors in
each cluster gives the uncertainty estimate. We tuned the parameters of DBSCAN using a data
set of 2489 SKS and SKKS observations at a range of frequency bands from 0.1 to 1 Hz. We
then present examples at higher frequencies (0.5–2.0 Hz) than the tuning data set, identifying
PKP precursors, and lower frequency by identifying multipathing in surface waves (0.04–
0.06 Hz). While we use a linear beamforming process, this method can be implemented with
any beamforming process such as cross correlation beamforming or phase weighted stacking.
This method allows for much larger data sets to be analysed without visual inspection of data.
Phenomena such as multipathing, reflections or scattering can be identified automatically in
body or surface waves and their properties analysed with uncertainties.

Key words: Structure of the Earth; Body waves; Surface waves and free oscillations.

1 INTRODUCTION

Seismic array techniques which measure the full horizontal slow-
ness vector (backazimuth and inclination) of seismic arrivals have
been used to investigate Earth structure for decades. These anal-
yses have been applied to a wide variety of seismic arrivals and
problems such as by using long period surface waves to identify
upper mantle and surface heterogeneity (Ji et al. 2005; Maupin
2011; Xia et al. 2018), short period S waves to analyse lower
mantle structure (Cottaar & Romanowicz 2012; Schumacher &
Thomas 2016; Stockmann et al. 2019; Ward et al. 2020), high-
frequency P waves to study scatterers in the mid and lower mantle

(Niu & Kawakatsu 1997; Thomas et al. 2002; Cao & Romanowicz
2007; Frost et al. 2013; Bentham & Rost 2014; Yang & He 2015;
Ritsema et al. 2020), event detection and spatial location (Chevrot
et al. 2007; Landès et al. 2010; Liu et al. 2016), ambient noise (Behr
et al. 2013; Roux & Ben-Zion 2017), nuclear event detection (Bow-
ers & Selby 2009; Gibbons & Ringdal 2011) and meteorological
event spatial location (Gerstoft et al. 2006, 2008).

Past studies which analysed slowness vector properties using ar-
ray methods (for a review see: Rost & Thomas 2002, 2009) were
limited in terms of number of observations due to the usual require-
ment to visually inspect each observation to determine an arrivals
slowness vector properties or if it is too noisy to use. In addition,
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several studies have discussed the limitations of using beamforming
or f–k methodology to identify phases and estimate their slowness
vector properties (Berteussen 1976; Gibbons et al. 2008; Selby
2011) and methods have been developed to correct slowness vec-
tor measurements for Earth structure when locating events (Bondár
et al. 1999; Koch & Kradolfer 1999; Gibbons et al. 2011; Schweitzer
2001). To clarify what limitations the uncertainty estimate is ac-
counting for, we first discuss the assumptions and limitations of
making one slowness vector measurement.

Each slowness vector in the beamforming grid search assumes
the wave moves over the array with a constant horizontal slowness
and arrives at the stations with a backazimuth equal to that along
the great circle path from the relocated event location (for details
see: Ward et al. 2020). The beamforming process does not account
for limitations in heterogeneous station distribution, which can lead
to heterogeneous sampling of the wavefield, and interference from
noise may contribute to errors in slowness vector measurement.
The waveforms of the arrivals are assumed to be coherent across
over the array. Waveform incoherence of the signal across the ar-
ray may result in deviations from the slowness vector prediction
(Gibbons et al. 2008). Source complexity could lead to unusual
waveforms recorded at the array, but should not affect the slowness
vector measurement as source complexity should introduce con-
sistent waveform complexity across the array. Local structure may
deform the wavefield as it moves across the array such that the arrival
times at the stations will deviate from the prediction (Gibbons et al.
2018). This may lead to slowness vector deviations depending on
geometry of stations distribution and local velocity and topography
structure.

The predicted backazimuth of the arrival is assumed along the
great circle path between the event and the mean station location
assuming a spherical Earth. The predicted horizontal slowness of
the arrival is taken from ray tracing through a 1-D velocity model
in a spherical Earth. Any structures local to the array or deeper with
properties which differ from the 1-D velocity model may result in
deviations from this prediction. It is difficult if not impossible to
separate out these different contributions using just a single array
measurement, let alone determine their relative contributions.

Automating the identification of arrivals and measuring their
slowness vector properties would remove the time consuming and
subjective process of visually inspecting each observation and could
allow for larger data sets to be analysed. Estimating the uncertainty
of these measurements allow for better interpretation of the ob-
servations, and the ability to rigorously accept or reject scientific
hypotheses on Earth structure or its processes.

Previous efforts have been made in automating standard seismic
processing techniques such as shear wave splitting (Teanby et al.
2004) and H − κ stacking (Ogden et al. 2019). Methods also exist
to estimate uncertainties in the beamforming methodology (Lin &
Roecker 1996; Bear & Pavlis 1997; Ritsema et al. 2020) and to
improve the detection of one or multiple arrivals (Gal et al. 2014,
2016; Schmidt 1986). The method we propose differs from these by
automatically identifying the number of arrivals with their slowness
vector properties and uncertainties. To our knowledge, no method
has been proposed that does all of these at once. The method we
present later uses a linear relative beamforming process; however,
this method can be applied with other techniques such as phase
weighted stacking (Schimmel & Paulssen 1997) or cross correlation
beamforming (Ruigrok et al. 2017).

Machine learning methodologies are becoming more prevalent
in the geosciences (for a review see: Bower et al. 2013) and seis-
mology (for a review see: Kong et al. 2019) with methods used to

automate data selection (e.g. Valentine & Woodhouse 2010; Thorne
et al. 2020) and extracting properties from data by mapping seis-
mograms to lower dimensional space using autoencoders (Valentine
& Trampert 2012) or sequence seismograms and identify features
such as the presence of seismic scatterers (Kim et al. 2020). Here we
use an unsupervised learning algorithm as part of our automation
technique.

In the approach we present in this paper, we create subsets of
waveforms using bootstrap sampling (Efron 1992). For each sam-
ple, beamforming (Rost & Thomas 2002) corrected for a curved
wavefront (Ward et al. 2020) is used to search over a range of slow-
ness vectors and recover the slowness vectors of potential seismic
arrivals. The slowness vector measurements of all the individual
bootstrap samples are collected and we use the DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) algorithm
(Ester et al. 1996) to identify clusters of slowness vectors as seis-
mic arrivals. DBSCAN is an unsupervised learning algorithm which
uses the density of points to classify them as part of a cluster or as
noise. For further details, see Section 2.

By bootstrapping the traces, and therefore creating random sub-
sets of the stations in the array, the scatter of the measurements in
each cluster can give an estimate of the combination of some of the
previously mentioned uncertainties. The uncertainty estimate will
account for the following phenomena which cause different subsets
of stations to have different slowness vector measurements:

(i) Signal aberration where the arrival time of the wave at stations
deviates from the prediction due to local array structure.

(ii) Incoherent or coherent noise.
(iii) The horizontal slowness of the wave changing as it moves

over the array, due to the size of the array, or unaccounted for
velocity variations within the array.

(iv) Heterogeneous distribution of the stations causing heteroge-
neous sampling of the wavefield.

(v) Slowness resolution limitations of the array aperture.
(vi) Wavelet shape changing over the array.

All of these can relate to local structure or effects within the
array and the uncertainty estimate describes the combination of
all these effects on the wavefield. If a measured slowness vector
deviates from the 1-D earth model prediction and is not within
the uncertainty estimate, then the cause of this deviation must be
external to the array and local structure. Determining the cause of
these deviations to structures such as a dipping Moho, or deeper
structure requires additional information and might be resolvable
through, for example forward modelling. We do not try to measure
the uncertainties of that aspect, only those listed above.

We tune the parameters of the DBSCAN algorithm on a visually
inspected data set where each observation is labeled as having either
0, 1 or 2 arrivals. More arrivals are possible, but in this data set the
maximum number confidently observed is 2. In this data set, obser-
vations with more than one arrival are hypothesized to be caused
by multipathing, one of many phenomena which can cause multi-
ple arrivals. Multipathing occurs when the wavefront is incident of
a sufficiently large velocity gradient causing different parts of the
wavefield to move at different velocities, diffract and refract. Multi-
pathing results in 2 arrivals arriving at the station at different times
and different slowness vector properties. The predictions made by
the method are compared to the labels given from visual inspection
to find the best parameters for the DBSCAN algorithm. Follow-
ing this, we show the effectiveness of this automated method on
finding the slowness properties of short-period PKP scattering and
long-period surface wave arrivals. Guidance on using the method is
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given in Section 5. We find the parameters work well for our exam-
ple applications with a minor change needed for the surface wave
example. Tuning the algorithm can be done for specific applications.

2 METHOD OVERVIEW

This section outlines the method to automatically measure the slow-
ness vector properties with uncertainty estimates. The process can
be roughly broken down into the following steps with more detail
given below.

(i) Create a number of bootstrap subsamples (1000 here) through
random sampling with replacement of a set of waveforms recorded
at the seismic array in question.

(ii) For each bootstrap sample, use beamforming (Rost & Thomas
2002) correcting for a curved wavefront (Ward et al. 2020) to search
over a grid of slowness vectors and find how the power of coherent
energy varies with backazimuth and horizontal slowness. Therefore,
each bootstrap sample will have its own grid of power values.

(iii) Calculate a noise estimate for the bootstrap sample by shift-
ing each trace in the bootstrap sample with a randomly generated
time. These scrambled traces are then stacked and the power of the
beam is measured. This is repeated 1000 times and the mean power
is taken as the noise estimate.

(iv) Set all power values in the slowness grid below the noise
estimate to zero.

(v) From the resultant power distribution, take up to X peaks (in
this study we take up to three peaks), which describe the slowness
vectors of possible arrivals.

(vi) Gather the locations for these peaks of all the bootstrap
samples.

(vii) Use DBSCAN, a density-based clustering algorithm, to
identify the arrivals and measure their slowness properties with
uncertainties.

2.1 Bootstrapping and peak recovery

One advantage of the bootstrap sampling process is that bootstrap
samples of the stations in the array are used. Beamforming subsets
of the array leads to different peak power in the beams which leads to
variations in the recovered slowness vectors for each arrival. When
all of the slowness vectors are taken into account, using all of the
bootstrap sampled arrays, we obtain uncertainty estimates in the
slowness vector. These uncertainty estimates will include the effect
that array geometry and local structure has on the slowness vector
measurements. For each bootstrap sample, we use a relative beam-
forming method where the traces are aligned on a target slowness
before searching over the slowness vectors. After the beamforming,
we calculate a noise estimate using the traces in the bootstrap sample
with a similar method to Korenaga (2013). The traces are aligned
using the slowness vector with the highest power. Then, they are
randomly shifted in time, stacked and the power of the stack cal-
culated. This is repeated 1000 times and the mean of all power
estimates is used for the noise power estimate. All power values in
the beamforming plot (Fig. 1) below three times this noise estimate
are set to zero. Multiplying the estimate by three was determined
by exploratory analysis and found to give the most satisfactory re-
sult. This can be changed depending on the application. To remove
local power maxima, the power distribution is smoothed using a
2-D Gaussian filter. The 2-D Gaussian is formed by the product of
two 1-D Gaussians. The standard deviation of the 1-D Gaussians is

equal to the grid spacing (0.05 s deg–1), therefore will have a full
width at half maximum of 0.12 s deg–1.

The 2-D Gaussian acts as a point spread function and is con-
volved with the power plot to smooth it and remove local maxima.
After this, the top X peaks are taken from the power distribution.
The peaks are found with a maximum neighbourhood filter which
identifies points with higher power values than those in the sur-
rounding neighbourhood. Fig. 1 shows how the peaks are found for
each bootstrap sample.

2.2 Identifying arrivals with cluster analysis

The peaks recovered for each bootstrap sample are then collected
and the clustering algorithm DBSCAN (Ester et al. 1996) is used
to find clusters. DBSCAN is an unsupervised learning algorithm
which uses the density of points to identify clusters and noise.
The algorithm takes a radius ε and a minimum number of points
(MinPts) to define a minimum density for points to be a cluster.
Here, we define MinPts as a fraction of the number of bootstrap
samples. DBSCAN sorts the data into three categories as visualized
in Fig. 2.

(i) Core point: A point with at least MinPts points within its
neighbourhood (i.e. within radius ε).

(ii) Boundary point: A point within the neighbourhood of a core
point, but without MinPts points in its own neighbourhood.

(iii) Noise: Points that are not within ε of a core point and does
not have MinPts points within its neighbourhood.

The DBSCAN algorithm begins at a random point and measures
its density by the number of points within the radius ε (Fig. 2). If
the density is lower than the threshold defined by ε and MinPts, the
point is classified as noise (yellow points in Fig. 2) and the algo-
rithm moves on to another random point. If the density is higher
than the defined threshold, the point is classified as a core point and
cluster formation begins (red points in Fig. 2). Points within ε of
the core points then have the number of points in their neighbour-
hood measured. Those which do not have MinPts points within their
neighbourhood are boundary points and are still part of the cluster
(blue points in Fig. 2). The points which do have MinPts points
in their neighbourhood are classified as core points and added to
the cluster. The points within ε of these new core points are also
searched and the cluster expands until it finds no new core points
to add to the cluster. Once no new core points can be added, an un-
examined point is chosen at random and the process begins again.
This process continues until all points have been examined. In this
manner, DBSCAN can separate high density clusters from low den-
sity noise. Fig. 3 shows the result of DBSCAN applied to the peaks
recovered after the boostrapping process.

DBSCAN has advantages over other clustering algorithms such
as k-means (MacQueen et al. 1967) for this application such as:

(i) It does not take the number of clusters as input so visual in-
spection before the clustering is not required.

(ii) Not all points need to be part of a cluster allowing for noise.
(iii) If clusters are not well separated or the data is noisy, clusters

of non-hyperspherical shape can still be recovered unlike k-means
(Ertöz et al. 2003; Celebi et al. 2013).

There are also disadvantages to DBSCAN:

(i) If the range and data is not well understood, choosing the
parameters can be challenging.
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Figure 1. Example of recovery of peaks from a bootstrap sample of traces. The left figure shows a record section of data from the 05 April 1999 event recorded
at the Kaapvaal array in Southern Africa (event metadata in the supplementary material). The traces are coloured by the number of times they have been
sampled. The data had the instrument response removed and are filtered between 0.10 and 0.40 Hz before beamforming. The right figure shows the power
distribution at each slowness vector with powers lower than the noise estimate set to zero and the 2-D Gaussian smoothing filter applied. Here each point on
the grid represents a slowness vector described with their x (px) and y (py) components. In this example, two peaks have been recovered.

Core point

Boundary point

Noise

ε

Figure 2. Cartoon illustrating what classifies as a core point, boundary
point or noise. The neighbourhoods of the points are shown as a lighter
colour of the point itself. The minimum number of points needed for a core
point is 4 in this example. The red points all have at least 4 points in their
neighbourhood, so are defined as core points. The blue points are within the
neighbourhood of the core (red) points, but do not have 4 points in their own
neighbourhood and are classified as boundary points. The yellow points are
classified as noise because they are not in the neighbourhood of a core point
and do not have 4 points within their own neighbourhood.

(ii) Clustering data with large variations in density is challenging
because there may be no combination of ε and MinPts which will
find all of the clusters.

(iii) Clusters separated by a distance smaller than ε will be com-
bined into one cluster.

We tested other density-based clustering algorithms such as
HDBSCAN (Campello et al. 2013, 2015) and OPTICS (Ankerst
et al. 1999) but found that both techniques have issues for this

application. HDBSCAN (Hierarchical DBSCAN) searches over a
range of ε values and measures over what length scales a cluster
‘persists’ while containing a minimum number of points to form a
cluster. Using how long each cluster survives and how many points
it contains at each ε, clusters are extracted with the excess of mass
algorithm (EOM, McInnes & Healy 2017). HDBSCAN will pref-
erentially return a large, single cluster because one large cluster
will usually contain more ‘mass’ (for a detailed explanation, see
McInnes & Healy 2017). To avoid one large cluster being returned
when multiple clusters exist, HDBSCAN by default will not return
a single cluster as an output. If this default is kept, instances with
one arrival (cluster) will be misidentified. Changing the default and
allowing HDBSCAN to return one cluster will mean phenomena
causing multiple arrivals (such as multipathing) may not be identi-
fied as EOM will preferentially return a single cluster.

OPTICS (Ordering Points To Identify the Clustering Structure,
Ankerst et al. 1999) is another density-based algorithm which spe-
cializes in identifying clusters of varying density. OPTICS orders
the points to represent the clustering structure. From this, clusters
can be extracted. When using OPTICS, we found the size of the
clusters retrieved was too inconsistent to estimate the uncertainties
of slowness vector properties. Because of these considerations, we
decide to use DBSCAN instead of OPTICS or HDBSCAN.

2.3 Slowness vector uncertainty estimates

We estimate the uncertainty with the standard deviation of back-
azimuths and horizontal slownesses in each cluster and also use
the area of error ellipse of the clusters as a relative measure of
uncertainty of each observation. The error ellipses are found by
calculating the eigenvectors and eigenvalues of the covariance ma-
trix for each cluster. These eignenvectors and eigenvalues give the
directions and magnitudes of the maximum variances in the cluster
which is used to determine the width, length and orientation of the
ellipse. Fig. 4 shows clusters plotted with their error ellipses for 1,
2 and 3 standard deviations. We would like to highlight the impor-
tance of the slowness grid dimensions; if the slowness grid is too
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Figure 3. Cluster retrieval from points recovered through bootstrap sampling the traces (Fig. 1). The left figure shows all the power peaks (blue dots) recovered
using data from the 05 April 1999 event. The right image shows the clusters found by the DBSCAN algorithm (Ester et al. 1996) where MinPts is 0.25 and
ε is 0.2 s deg–1. The red and yellow points are classified as clusters 1 and 2 respectively and the black points are noise. The background power distribution is
the mean of all the power distributions found from bootstrap sampling.

Figure 4. Example of error ellipses for 1,2 and 3 standard deviations. The
data are the same as used in Figs 1 and 3. The background power plot is the
mean of the power plots searching over a range of slowness vectors from
each bootstrap sample.

small, the arrivals may be truncated at the edge leading to a smaller
cluster and underestimate the uncertainty.

3 PARAMETER TUNING

To find the best parameters to use with the DBSCAN algorithm (ε
and MinPts), we compare the number of arrivals predicted by the
algorithm to the number of arrivals identified from visual inspection.
We use the same data set as Ward et al. (2020) which used SKS
and SKKS data recorded at the Kaapvaal array in southern Africa.
Ward et al. (2020) make observations at a range of frequency bands
(Table 1) using the whole Kaapvaal array and several subarrays.The
traces are first aligned on the predicted slowness of SKS or SKKS
depending on the arrival of interest. The beamforming is conducted
in a time window that is 20s before and 40s after the predicted
arrival.

Table 1. The number of labels in each frequency band. Labels indicate the
number of arrivals in that observation and 1–2 could be either 1 or 2. In
total, there are 2628 labels with 2489 used in the tuning.

Frequency (Hz) Number of arrivals

1 2 1–2 0

0.07–0.28 403 18 10 7
0.107–0.40 378 21 20 19
0.137–0.52 326 33 25 54
0.157–0.60 308 28 23 73
0.187–0.72 280 27 27 104
0.207–0.80 253 35 28 122
Total 1948 162 133 379

The data set provides a good test for the algorithm since it has
clear single arrivals, multipathed arrivals (2 arrivals) and observa-
tions that are too noisy to identify any arrivals (0 arrivals). Each
observation is labeled from visual inspection of the distribution
and density of the points collected from all the bootstrap samples
and the mean power distribution of all the bootstrap samples. If
the algorithm predicts a higher number of arrivals than the human
given labels, we assume here the algorithm has identified noise as
arrivals. If the algorithm predicts a lower number of arrivals, the
density threshold is too high for arrivals to be identified. Due to the
subjective nature of the labelling this may not always be the case,
but for the tuning process we assume the human labels are a ground
truth. Observations where it was not clear whether there is one or
two arrivals are labeled as ‘1–2 arrivals’ and excluded from this
tuning process.

We searched over a range of ε and MinPts values and predict
the number of arrivals in each observation. This is compared to
the human labels in Table 1 and an accuracy score is calculated.
The accuracy score is defined as the number of instances where the
method correctly predicts the number of arrivals relative to the total
number of instances ( No. correct predictions

Total instances ). Values of ε range from 0.05
to 1.0 s deg–1 and MinPts is given as a fraction of the bootstrap
samples (1000 here) and varies from 0.05 to 1.0. Fig. 5 shows how
the accuracy varies in the parameter space. The grid search shows
the sensitivity of our method to the DBSCAN parameters chosen.
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Figure 5. Grid search of DBSCAN parameters ε and MinPts (given as a
fraction of bootstrap samples). For each combination, the number of arrivals
in each observation are predicted, compared to the true labels (Table 1) and
the accuracy calculated. The location of the highest accuracy value is plotted
as a red cross where ε = 0.20 s deg–1 and MinPts = 0.25.

With some parameters, the accuracy can exceed 90 per cent while
with others it can be less than 20 per cent. The method performs the
worst with small ε and high MinPts meaning the minimum density
criteria will be very high and very few arrivals will be found.

We test how well the algorithm generalizes using cross validation.
Cross validation involves splitting the data set into N representative
subsets (5 here). One of the subsets is removed and the grid search
is conducted on the remaining N − 1 subsets and the best set of
parameters recorded. The removed subset acts as a validation set.
Then we take these best parameters and make predictions on the
validation set. The accuracy of the predictions for the validation
subset is measured and gives an indication of how well the algorithm
generalizes. The process is repeated by sequentially removing one
subset and tuning the parameters on the remaining N − 1 subsets.
After the cross validation process, there are N estimates indicating
how well the algorithm performs on unseen data. Here we split the
data into five subsets because of the low number of multipathed (2
arrivals) and 0 arrivals samples. Cross validation and measuring the
accuracy gave a mean accuracy of 0.939 with a standard deviation
of 0.0090. In all the cross validation samples, the best parameters
were ε = 0.20 s deg–1 and MinPts = 0.25.

As there are many more instances of observations with one ar-
rival, we also analyse each of the target labels (0,1 or 2 arrivals)
individually using the precision, recall and F1 measures (defined
below). These measures all depend on the number of true positive
(TP), true negative (TN), false positive (FP) and false negative (FN)
instances. These are best understood with an example. If the target
label is ‘2’, true positives are instances where the algorithm correctly
identifies 2 arrivals in an observation. True negatives are instances
correctly identified as not having 2 arrivals (1 or 0 arrivals). False
positives are those incorrectly identified as having 2 arrivals. False
negatives are instances where 2 arrivals have not been identified
when they should have been.

From these measures, the precision is defined by P = TP
TP+FP . This

is essentially the proportion of the target labels which have been
correctly identified. The recall, R = TP

TP+FN , is a measure of how
many of the target labels has been recovered by the algorithm. The
F1 score is the harmonic mean of the precision and recall and can be
described as F1 = 2

1
P + 1

R
. The F1 score is only large if both the recall

and precision are high. We only present the F1 score as it shows
which parameters have both high precision and recall. Fig. 6 shows
how the F1 score varies with different parameter combinations for
each target label.

Figs 5 and 6 show that the method is capable of greater than
90 per cent agreement with the observations of a human. This is
mainly from observations with one clear arrival, which makes up
the majority of the observations. The algorithm also performs well
with more complex observations of multipathing with a F1 score
of over 0.75. This method is quite insensitive to noise as it does
not regularly incorrectly identify noisy observations as shown by a
F1 score of over 0.85 for observations with 0 arrivals. As with the
accuracy, we use cross validation to see how well the parameters
generalize with new data. Table 2 shows the mean F1 scores for the
individual labels. As in Fig. 5, there are DBSCAN parameters which
perform very poorly showing the importance of the parameters used.

The cross validation analysis of all the labels and F1 score on the
individual labels show the parameters ε = 0.20 s deg–1 and MinPts
= 0.25 are consistently found to be the best. Inferring how well the
parameters generalize from this analysis is limited because of the
low number of cross validation samples (5 here). The low sample
number was necessary because of the small number of observations
with 2 and 0 arrivals. Despite this, the mean values obtained for
the accuracy score and F1 scores from the cross validation are very
similar to that obtained by tuning with all the data (Figs 5 and 6).
The standard deviations from the cross validation are low suggesting
similar performance on similar data sets.

Due to the subjective nature of labelling each observation with
the number of arrivals, some difference between the method’s pre-
diction and the human labels is acceptable. To analyse how rea-
sonable the predictions are when the technique disagrees with the
human labels, we create a confusion matrix using the predictions
with parameters of ε = 0.20 s deg–1 and MinPts = 0.25 (Fig. 7). In
the confusion matrix, each row represents a true label (number of
arrivals in this case) and each column the predicted arrivals. The
values at each point in the matrix indicates how many times that
true label is identified as the corresponding predicted labels. For
example, for all instances with the true label of 1 arrival, the confu-
sion matrix will show how many are correctly classified as having
one arrival and how many are incorrectly identified with 0, 2 or
3 arrivals. We normalize the values along each row of the confusion
matrix so for each true label, the columns show the proportion of
the predictions given to that label. For example, for the instances
with a true label of ‘0 arrivals’, 80 per cent of the predictions are
correctly identified as having 0 arrivals, 18 per cent are identified as
having 1 arrival and so on.

The confusion matrix shows that when the method prediction dif-
fers from the human labels, the predictions it makes are not radically
unreasonable. It is worth remembering the labeling process is quite
subjective and just because the algorithm predicts a different num-
ber of arrivals to that labeled by a human, does not mean it is wrong.
It is possible that some of the human labels with two arrivals only
have one arrival or some have three arrivals. Equally, it is possible
some instances labeled with no arrivals do have one arrival but a hu-
man could not confidently identify it above the noise. Fig. 7 shows
the algorithm makes reasonable predictions in the vast majority of
the cases for this data set using the parameters found from the tuning
process and cross validation. Analysis of the uncertainty estimates
show the slowness vector measurements have small variation with
the mean standard deviation for backazimuth measurements of 1.2◦

and horizontal slowness of 0.14 s deg–1. The mean area bounded by
the 95 per cent confidence ellipse is 0.14 s2 deg–2.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/226/3/1847/6278217 by guest on 10 June 2021



Automatic slowness vector measurements 1853

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
 s

co
re

1.0

0.2 0.4 0.6 0.8 1.0
(s/ )

0.2

0.4

0.6

0.8

F1 score - 1 arrival

0.
1

0.
2

0
3

0.
3

0.
4

0.
5

0.6

0.
6

0.7

0.
7

0.8

0.8

0.9
00.8800

Max F1 score of 0.97

0.2 0.4 0.6 0.8 1.0
(s/ )

0.2

0.4

0.6

0.8

F1 score - 0 arrivals

0.1
0.2

0.3

0.
3

0.4

0.
4

0.5
0.
5

0.6

0.6

0.7
0.8

00.66Max F1 score of 0.87
1.0

0.2 0.4 0.6 0.8 1.0
(s/ )

0.2

0.4

0.6

0.8

F1 score - 2 arrivals

0.
1

0.
2

0.
3

0.
4

0.5

0.6

0.7

Max F1 score of 0.78
1.0

M
in

Pt
s

(F
ra

ct
io

n 
of

 B
oo

t.
 S

am
pl

es
)

Figure 6. F1 scores for combinations of DBSCAN parameters ε and MinPts where each plot represents a different target labels of 0 arrivals (left) one arrival
(centre) and two arrivals (right). The location of the highest F1 score is plotted as a red cross, which has parameters of ε = 0.20 s deg–1 and MinPts = 0.25 for
1 and 2 arrivals and ε = 0.25 s deg–1 and MinPts = 0.35.

Table 2. Table of the cross-validation result for each of the labels (0,1 or
2 arrivals) where the F1 score is the measure of success. Note the standard
deviation is an order of magnitude higher for labels 0 and 2, most likely
because of the significantly fewer instances of those labels in the subsets
created during cross-validation.

No. arrivals Mean F1 score
Standard
deviation Best parameters

0 0.86 0.030 ε = 0.35 s deg–1

MinPts = 0.25
1 0.97 0.0063 ε = 0.20 s deg–1

MinPts = 0.25
2 0.78 0.035 ε = 0.20 s deg–1

MinPts = 0.25

0 1 2 3
Pred. Labels (no. arrivals)

0

1

2

3

Tr
ue

 L
ab

el
s 

(n
o.

 a
rr

iv
al

s)

80 18 1.8 0.26

1.3 98 0.84 0.099

0.49 29 66 4.4

0 0 0 0

%
 o

f 
tr

ue
 la

be
l

0

20

40

60

80

Figure 7. Confusion matrix for predictions made with ε = 0.20 s deg–1 and
MinPts = 0.25. Each row represents a true label (number of arrivals) and
each column the predicted arrivals. The values on the diagonal of the matrix
show the percentage of correct predictions for the true label.

Analysis of the confusion matrix in addition to the findings from
the cross validation process shows the parameters ε = 0.20 s deg–1

and MinPts = 0.25 will give reasonable results that will generalize
well. We use this parameters in other applications with a minor
change for applications to surface waves (Section 4).

4 APPL ICAT IONS TO PKP SCATTERING
AND RAYLEIGH WAVE MULTIPATHING

This section provides two example applications of this method to
study Earth structure. First, we show an example identifying a
PKP precursor in the high frequency teleseismic wavefield (0.5–
2 Hz). Coherent precursors are indicative of scattering caused by
small scale structures and our method can constrain uncertainties
on their location. Then, we show an example of low frequency
(0.04–0.06 Hz) Rayleigh wave multipathing. Using our method
to identify Rayleigh wave multipathing, we can interpret possible
causes of multipathing and provide uncertainties for phase veloc-
ity measurements. All measurements of backazimuth and horizon-
tal slowness are shown with one standard deviation describing the
uncertainties.

4.1 PKP precursors

Analysing the slowness vectors of PKP precursors is indicative of
their location and whether they are caused by source or receiver side
structure (Haddon & Cleary 1974). We use PKP data from Thomas
et al. (1999) who observe several scatterers beneath Europe and
Eastern Asia. Of the data used in Thomas et al. (1999), we focus
on a single event occurring on 15 September, 1992 which shows
clear PKP precursors. We only use data recorded at the Gräfenberg
array and not the larger GRSN array to avoid spatial aliasing. In
this example, the PKP precursors appear to be coherent from visual
inspection of the seismograms (Fig. 8. Coherent precursors suggest
they probably originate from localized scatterers such as an Ultra
Low Velocity Zone (ULVZ, Ma & Thomas 2020).

Fig. 8 shows the traces used for this example and the clusters
found by our algorithm. The data have the instrument response
removed and are filtered between 0.5 and 2 Hz before the beam-
forming process. We used a time window of 10 s before the predicted
PKIKP arrival and the same DBSCAN parameters found from the
tuning (ε = 0.20 s deg–1 and MinPts = 0.25). The method identi-
fies a single precursor arriving with a backazimuth of 58.6◦ ± 2.3◦

and a horizontal slowness of 2.93 ± 0.32 s deg–1. This is similar
to the slowness vector properties of the dominant arrival found by
Thomas et al. (1999) arriving 6.5 s before PKIKP with a horizontal
slowness of 2.8 s deg–1 and backazimuth of 53.6◦. Unlike Thomas
et al. (1999), we only identify one precursor rather than three. We
believe this is because our time window encompasses all precursors
meaning if one precursor has a significantly higher amplitude it
may be the only one recovered. Furthermore, visual inspection of
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Figure 8. Example application of the method on PKP precurors. This example uses data from the 15 September 1992 event recorded at the Gräfenberg array
in Germany (GR) filtered between 0.5 and 2.0 Hz. The left subfigure shows the traces used in the example which are aligned on the predicted PKIKP arrival
time and the time window for the analysis shown in red. On the right, the result of the algorithm with parameters of ε = 0.2 s deg–1 and MinPts = 0.25.

waveforms suggests a single dominant precursor (Fig. 8). The range
of possible horizontal slowness of this PKP precursor inferred from
the uncertainty of the measurement (2.93 ± 0.32 s deg–1) at a dis-
tance of approximately 140◦ means this precursor could originate
from either source side or receiver side structure (Haddon & Cleary
1974).

4.2 Rayleigh wave multipathing

The second example shows the identification of multipathed
Rayleigh waves. From this observation, the phase velocities and
backazimuths of the multipathed arrivals can be measured and
analysed with uncertainty bounds. Xia et al. (2018) identify mul-
tipathing in Rayleigh waves in the western US and suggest this
is caused by the transition from continental to coastal to oceanic
structure each with unique velocity profiles. We analyse Rayleigh
waves from an event on 05 January 2013 recorded at the Southern
California Seismic Array (CI) to identify multipathing and hypothe-
size some potential causes. The instrument response is removed and
traces are filtered between 0.04 and 0.06 Hz. The time window used
in the relative beamforming is 200 s before and after the predicted
arrival time assuming a velocity of 3.5 km s–1. In this example, the
points in each cluster are distributed over a different slowness-space
scale that is an order of magnitude lower than in the body wave ex-
amples. The difference is due to the Rayleigh wave velocity and
the change in units. px/py for body waves will vary on the order of
100, whereas for Rayleigh waves px/py vary on the order of 10−1, an
order of magnitude lower. Because of this, the ε parameter is also
lowered by an order of magnitude from 0.20 s deg–1 found from
tuning to 0.02 s km–1.

Fig. 9 shows the result of the clustering method, which identifies
three multipathed arrivals with backazimuths of 319 ± 0.7◦, 344
± 1.3◦ and 299 ± 1.4◦ and velocities of 3.6 ± 0.025, 3.5 ± 0.032
and 3.8 ± 0.093 km s–1, respectively. For each arrival, we mark the
path from the mean station location along the mean backazimuth
(dashed white line in Fig. 9) to determine a possible cause for the
multipathing. Also shown are the paths showing the backazimuth
uncertainty bounds (solid white lines in Fig. 9), which suggest it
is reasonable to hypothesize possible causes of the measurements.

We investigate dispersion in the wave velocities by repeating the
analysis in three frequency bands of 0.035–0.045, 0.045–0.055 and
0.055–0.065 Hz, finding differences in the number of arrivals and
their backazimuths, but no absolute slowness variation between
frequencies (Fig. S1). We argue this is a result of the different scale
lengths of the structures which cause the observed multipathing,
and not because of a property of the material the wave is travelling
through.

The top and middle paths may come from interactions with the
boundary between the continental and coastal regions, which agrees
with the interpretation of Xia et al. (2018). The direction of the
western most arrival suggests it could be caused by interacting with
a coastal–ocean velocity transition or possibly due to more localized
velocity variations. Further modelling is beyond the scope of this
work, but our results demonstrate the potential of the method to
investigate such phenomena in an efficient way.

The phase velocities of the arrivals may be indicative of azimuthal
anisotropy beneath the array. The phase velocities of the central and
eastern most arrival are the same within the uncertainties (3.6 ±
0.025 and 3.5 ± 0.032 km s–1, respectively). The western most ar-
rival moves with a significantly higher phase velocity over the array
(3.8 ± 0.093 km s–1) along a backazimuth of 299◦ ± 1.4◦. While
we do not have enough measurements to fully explore the nature
of this azimuthal anisotropy beneath the array, our observation of
a faster arrival from 299◦ is in line with that found by Alvizuri
& Tanimoto (2011) who report a fast direction of approximately
290◦. Further analysis would be needed to recover the anisotropic
properties, but this example shows how our technique can be used
to identify statistically significant differences in phase velocity
measurements.

5 CODE GUIDEL INES

This section outlines some guidance to use this technique in terms of
parameter selection and computation time. There are many potential
aspects of a study that can influence the method’s effectiveness such
as frequency bands, array size and configuration or local receiver
side structure. The tuning process (Section 3) shows we cover a
range of frequency bands (Table 1) and array sizes (10–50 stations)
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Figure 9. Example application of the method for identifying multipathing in surface waves. The left subfigure shows the ray paths (red lines) from the
05 January, 2013 event (white star) to the Southern California Seismic Array (CI) stations (green triangles). Before the beamforming, the data was filtered
between 0.04 and 0.06 Hz. In this example, three arrivals have been identified by the algorithm (right subfigure). For each arrival, a path is marked from the
mean station location along the mean backazimuth to a point with the same epicentral distance as the event (dashed white lines and circle). The solid white
lines indicate the uncertainty bounds of the backazimuth for the measurement.

and the sub arrays have a wide range of configurations. For applica-
tions analysing body waves in similar frequency bands (0.1–1 Hz)
with a similar array size (10–50), we recommend the parameters
(MinPts = 0.25, ε = 0.2 s deg–1) used here as a starting point and
adjusted if necessary.

The number of peaks above the noise threshold should be equal
to the maximum number of arrivals of interest or expect to be possi-
ble. The noise threshold was determined to be three times the noise
estimate through exploratory analysis and found to give satisfac-
tory results, but this can be changed depending on the application.
DBSCAN parameters ε and MinPts of 0.20 and 0.25 s deg–1, re-
spectively, will work well for identifying single arrivals and is rela-
tively intolerant to noise. If the study is searching for multipathing,
changing MinPts to 0.15 and keeping ε as 0.20 s deg–1 increases
the accuracy of the multipathed arrivals from 66 to 75 per cent but
decreases the accuracy of the noisy arrivals from 80 to 44 per cent.
These alternative parameters would require visual inspection of
those identified as multipathing by the algorithm but would signifi-
cantly reduce the amount of visual inspection as observations with
one arrival need not be visually inspected.

For surface waves, the algorithm also works well after chang-
ing ε to 0.02 s km–1. For applications with significantly different
frequency bands or array size or searching for a very specific phe-
nomenon, the DBSCAN parameters may need to be tuned to op-
timize performance (Section 3). The remaining parameters can be
kept the same. Sensible beamforming practice such as avoiding
spatial aliasing still applies when using this method.

The computationally intensive part of the method is the boot-
strap sampling and the beamforming on each sample, which must
be performed for each observation; the cluster analysis is com-
paratively quick. However, the code is trivially parallelizable over
observations since each is independent of all the others. The
code is written in Python, is easily editable and freely available
(https://github.com/eejwa/Array Seis Circle). The code has been
parallelized so the bootstrap sampling can be spread over several
cores and uses Numba (Lam et al. 2015) to compile the functions
into machine code before execution. Further improvements in effi-
ciency could be made by rewriting the algorithm in more efficient

languages such as Julia, C++ or Fortran, and investigating further
performance improvements possible with the existing code base.
For an example array with 20 stations, a time window of 30 sec-
onds, sampling rate of 0.05 s and searching over a grid of slowness
vector properties with 14 641 vectors (a grid where each axis covers
6 s deg–1 in increments of 0.05 s deg–1), each bootstrap sample takes
approximately 1.6 s to process. This makes tens of observations vi-
able on a handful of cores such as on a desktop machine. Larger
data sets (thousands of observations) can be processed on the order
of hours using hundreds of cores.

6 CONCLUS IONS

Slowness vector measurements have been used to understand a va-
riety of Earth structures and phenomena. They are typically used to
identify wavefield perturbations, scattering and event/noise source
localization. While this analysis is a common tool used by seismol-
ogists, studies are limited because of the necessary and subjective
visual inspection of observations. Interpretation of the measure-
ments is limited by uncertainties such as the contribution of array
geometry, noise and local structure. These may result in different
slowness vector measurements depending on which stations are
used in the analysis.

In this study, we described a method to automate slowness vector
measurement, estimate the uncertainties and identify the number of
possible arrivals. To do this, we bootstrap sample the waveforms
and in each sample use a relative beamforming process to measure
the coherent power and recover slowness vector properties of po-
tential arrivals. These slowness vector properties are collected and
the clustering algorithm DBSCAN is used to identify arrivals. The
mean of the clusters gives the backazimuth and horizontal slowness
and the spread of the cluster gives uncertainty estimates of phenom-
ena which may vary the slowness vector measurement depending
on which subset of stations are used. We use a linear beamforming
approach but other beamforming methods such as phase weighted
stacking (Schimmel & Paulssen 1997) and cross correlation beam-
forming (Ruigrok et al. 2017) can be used.
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We tuned the DBSCAN parameters on a data set with 0, 1 and
2 arrivals and achieved >90 per cent accuracy in recovering these
arrivals. We present examples of analysis of scattered P-wave en-
ergy and Rayleigh wave multipathing. The advantage this method
brings to these applications is the ability to automatically identify
the arrivals and measure the slowness vectors with uncertainty esti-
mates. The difference in spatial scale and wavelengths used in these
examples shows that our approach is applicable to studying Earth
properties at a wide variety of spatial scales. Using this method,
it may be possible to analyse slowness vector properties on larger
data sets with reduced need for subjective visual inspection. In ad-
dition, uncertainties can also be quantified and used alongside the
measurements. This technique makes 1000s of observations feasi-
ble in a matter of hours and allows for global-scale slowness vector
observations to be made.
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Ertöz, L., Steinbach, M. & Kumar, V., 2003. Finding clusters of different
sizes, shapes, and densities in noisy, high dimensional data, inProceedings
of the 2003 SIAM International Conference on Data Mining, pp. 47–58,
SIAM.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al., 1996. A density-based
algorithm for discovering clusters in large spatial databases with noise, in
KDD’96: Proceedings of the Second International Conference on Knowl-
edge Discovery and Data Mining, August 1996, pp. 226–231.

Frost, D.A., Rost, S., Selby, N.D. & Stuart, G.W., 2013. Detection of a tall
ridge at the core–mantle boundary from scattered PKP energy, Geophys.
J. Int., 195(1), 558–574.

Gal, M., Reading, A., Ellingsen, S., Koper, K., Gibbons, S. & Näsholm, S.,
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Figure S1. Three results when using the automated method on
Rayleigh wave data in three different frequency bands do investigate
the effect of dispersion. Data is from the 05 January 2013 event
recorded at the Southern California Seismic Array (CI).
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