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Abstract— Nowadays, emerging modernized microgrids
(MMGs) have significantly employed the voltage-source inverters
(VSIs). VSIs are enabling technologies to form multi-infeed
ac/dc (MIACDC) power systems integrating a variety of
generation units and different loads into one coherent grid.
In emerging MMGs, the frequency-dependent dynamics of
multiple components affect the PQ-controlled, grid-connected
VSIs (GC-VSIs), particularly when integrated into a weak
network. In order to address this challenging problem, the full
integration of the dynamics of the phase-locked loop (PLL)
into those of GC-VSIs is accomplished in this research via an
innovative modular structure to improve the VSI’s performance.
This action is expected to significantly reduce the effect of the
ac-side dynamics on the control of GC-VSIs. In addition, there
are uncertainties associated with the parameters in the system.
Accordingly, mismatched disturbances and uncertainties (both
matched and mismatched ones) will appear in a nonlinear
dynamic problem, and therefore, from the standpoint of control
theories, mismatched disturbances and uncertainties should
be overcome. Satisfying them is a difficult task in control of
nonlinear systems. Therefore, one of the main contributions of
this work is finding an appropriate mathematical model of GC-
VSIs in the dq-frame for the problem under study. Afterward, in
order to control both active and reactive power independently,
this article presents a novel two-degree-of-freedom (2DoF)
methodology with an enhanced modular design. It combines
the sliding-mode control with a “new sliding manifold” and a
disturbance observer with a “new adaptation rule” taking care of
uncertainties and mismatched disturbances. Those disturbance
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signals may be generated by the PLL dynamics or voltage signals
affecting the GC-VSI’s dynamics. Through providing mathe-
matical analyses (including stability assessments via various
theorems using Lyapunov stability criterion), simulation results,
and experiments, this article demonstrates the effectiveness of
the proposed control methodology. The industrially accepted
GC-VSI equipped with an LCL-filter is used here.

Index Terms— And uncertainties, disturbance observer, emerg-
ing grids, grid-connected voltage-source inverters (GC-VSIs),
Lyapunov stability, mismatched disturbances, multi-infeed ac/dc
(MIACDC) grids, phase-locked loop (PLL), sliding mode control
(SMC).

I. INTRODUCTION

THE energy sector has been significantly progressing
and moving toward simultaneously integrating power

networks and energy storage systems (e.g., battery systems)
embedded in ac/dc grids. They are also called multi-infeed
ac/dc (MIACDC) grids, which are used in both power trans-
mission systems and electric power distribution [e.g., mod-
ernized microgrid (MMG) technology] under the umbrella of
smart grids [1]–[5]. In smart grids, the modernized MIACDC
concept brings many benefits to the operation, control, and
demand supply within commercial power systems. MIACDC-
based configurations will employ a new trend in its power
architecture, suggested as a fully integrated power and energy
system (FIPES) in this work, thanks to the integration of bat-
tery energy storage systems. FIPESs have a similar structure to
what is employed in terrestrial power systems, but they highly
integrate energy storage units—e.g., battery systems. FIPES
needs consideration associated with the control methodologies
of the MIACDC power systems. They employ a lot of voltage-
source-converter-based systems, among which PQ-controlled,
grid-connected voltage-source inverters (GC-VSIs) play a vital
role in power flows and energy exchange in the MIACDC
power structure.
PQ-controlled GC-VSIs exchange power between an ac

grid and a stabilized dc link in FIPESs. From now on,
PQ-controlled GC-VSIs are referred to as “GC-VSIs” herein.
The weakness of the ac grid strongly affects the stabil-
ity and performance of the GC-VSIs because of the grid
impedance and the frequency dynamics, primarily provided
that a dq-frame control method is applied (e.g., see [6] and
references therein). The dynamics mentioned earlier will be
coupled through the phase-locked loop (PLL) dynamics. Those
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dynamics affect the stability and performance of the overall
MIACDC grid accordingly. Therefore, frequency-dependent
detailed dynamics of various components and control aspects
of the GC-VSIs in weak networks are required to be investi-
gated thoroughly. They are mostly created either by the PLL
equipped with various control strategies in weak grids because
of the ac-side grid impedance [6]–[10].
Moreover, the control of GC-VSIs under different grid con-

ditions has been studied and investigated in various research
studies [5], [6], [11]–[24]. According to their research, because
of the highly interconnected structure of FIPESs, there are
a lot of mismatched disturbances and/or uncertainties, which
are affecting the active/reactive power controls of GC-VSIs.
Those disturbances and uncertainties impact the performance
of active/reactive power controls—which finally influence the
FIPES’s power quality. It is especially essential when GC-VSIs
are highly used as an alternative way of MMGs’ integration
into the primary grid soon (see [3] for further information on
this promising approach). To the best of our knowledge, thus
far, there has not been any solid research work on the effects of
mismatched disturbances and/or uncertainties in control of the
nonlinear dynamic system of GC-VSIs from the standpoint of
a two-degree-of-freedom (2DoF) control. Besides, considering
both “matched” and “mismatched” uncertainties of uncertain
GC-VSI’s dynamics for synthesizing a 2DoF modular control
(to regulate both active and reactive power independently) is
a must for fulfilling novel research on the GC-VSI controls.
At the same time—because of benefiting from pulsewidth-
modulation (PWM) schemes [11]—the input signals of the
control system will be saturated, thus dealing with an input
saturation problem in our control design.
While considering and dealing with both matched and

mismatched uncertainties of uncertain 2DoF dynamic system
of GC-VSIs with input saturation, the objective of this research
is to develop a novel nonlinear adaptive modular control
strategy and apply it to GC-VSIs. The intended nonlinear
approach will be based on the sliding mode control (SMC)
methodology because it is one of the most successful robust
control techniques. As shown in [25], an SMC with a distur-
bance observer scheme can be used in overcoming mismatched
disturbances and uncertainties in controlling mechanical sys-
tems. SMCs utilize a prescribed sliding surface and a switching
control rule to persist against system uncertainties and external
disturbances. This research will benefit from a novel SMC—
which is able to handle mismatched uncertain terms although
the original SMCs are not able to overcome system mis-
matched uncertainties [26]–[28]. Fundamentally, in order to
take advantage of such a modular control system, a new sliding
manifold merged with a new disturbance observer is required
to be redesigned for GC-VSIs—which benefit from a modular
structure. Consequently, designing an SMC with a new sliding
manifold—including its rigorous stability—requires separate
research conducted for the GC-VSIs. Furthermore, it is nec-
essary to appropriately model and reformulate the GC-VSI’s
dynamics here.
The structure shown in [25] is regarded as one of the best

candidates for the problem formulation in mechanical systems
proposed there. Inspired by the control structure in [25],

this article needs to introduce a new sliding manifold for
redesigning an appropriate SMC for the electronic power
problem under study. Therefore, it needs to provide proof
of the rigorous stability of the new SMC. Then, a modified
disturbance observer strategy is being used for enhancing the
robustness of the system against matched and mismatched
uncertainties, and a finite-time control technique is applied
as an acceptable control strategy, which has appropriate dis-
turbance rejection properties. At the same time, owing to
the limited operation of the control inputs (equivalent to
considering the saturation of a modulation index in PWM
schemes), the practical implementations of GC-VSIs’ control
systems are faced with some typical input constraints. Studies
in power electronics (see [11], [12], [29], [30]) have shown that
PWM schemes can cause different nonlinearities because of
overmodulation and saturations. This constraint is well known
that saturation is one of the commonly occurred nonlinearities
in control systems. Therefore, the PWM’s modulation indices
can lead to severe control deterioration or even make an
instability state for the system. This observation gets worse
and drastically appears when dealing with weak grids—where
a PLL captures the frequency dynamics [7]. In other words,
neglecting the effects of the PWM’s modulation indices either
can lead to deterioration of the control performance, can
produce some oscillations in the system output with delays,
or even result in a system failure. These possible adverse
impacts are because of not considering the saturation of the
control input in the control design stage as one of the nonlinear
terms and limitations of control input.
Considering the problems detailed earlier, the key contribu-

tions of this article are listed as follows.

1) It proposes a 2DoF control design approach for
GC-VSIs—based on the PQ-controlled GC-VSIs’ need
to control active and reactive power as 2DoF—similar
to what exists in robotic and mechanical systems.

2) It synthesizes a novel “modular” nonlinear SMC strategy
for GC-VSIs, which is able to effectively deal with a
critical control problem associated with both matched
and mismatched model uncertainties and low and fast
external disturbances.

3) It accomplishes a powerful combination of the PLL
dynamics with the GC-VSI control to address the chal-
lenging problem of the integration of GC-VSIs into
weak grids. Then, the proposed modular architecture
significantly reduces the impacts of the ac-side dynamics
on the active/reactive power control of GC-VSIs.

4) It identifies the system uncertainties and external dis-
turbances. Here, it is supposed that the bounds of the
uncertain terms and external disturbance are unknown;
this assumption is rational enough, practically. It addi-
tionally compensates for the effects of the perturbations
via a disturbance observer using a new adaptation rule—
which is proposed in this research. Therefore, the syn-
thesized adaptive observer guarantees robustness against
changes in the disturbances signals and prevents having
restrictions on the disturbances, e.g., type, amplitude,
and so on.
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Fig. 1. (a) Notional structure of an MIACDC power architecture. (b) Block diagram of the proposed control scheme for GC-VSIs.

5) Last but not least, it looks at the nonlinearities made
by the PWM scheme and includes a mechanism to con-
sider them in the control structure through an analytical
approach. In this regard, the input control is assumed to
be disturbed by unknown saturation nonlinearity. Indeed,
this approach also takes into account the nonlinearities
made by the PWM scheme. This way, their influences
are also seen in the control structure, thus improving the
performance mathematically.

The remaining parts of this article are organized as follows.
In Section II, this study formulates an appropriate model for
GC-VSI’s dynamics with both matched and mismatched uncer-
tainties and mismatched disturbances. Section III proposes a
2DoF control for GC-VSIs with an enhanced modular design
combining SMC (with the proposed sliding manifold) and dis-
turbance observer considering the saturation of a modulation
index, along with a control technique based on the “finite-time
stable equilibrium point.” In order to reveal the effectiveness of
the proposed control algorithm, in Sections IV and V, simula-
tions and experiments have been provided. Finally, Section VI
gives the conclusions.

II. MATHEMATICAL MODEL OF GC-VSIs FOR
DESIGNING AN SMC WITH 2DoF

A notional architecture of an MIACDC’s power grid (both
power and communication one) has been shown in Fig. 1(a).
As shown in Fig. 1(a), many power electronic links should
work as GC-VSIs transferring power from dc side to the

ac side, e.g., VSI #1, VSI #2, and VSI #k in Fig. 1(a).
Fig. 1(b) shows the structure of a GC-VSI with an LC L-filter,
which is very industrially accepted [17], [31]. Using Kirch-
hoff’s circuit laws for the average model in Fig. 1(b),
the results in the average dynamics of the system using space-
phasor representation are described by (1) [12], [27]⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�vt − (�vc f + R f (�i1 − �i2)) = L f 1
d�i1
dt

+ R f 1�i1

(�vc f + R f (�i1 − �i2)) − �vPCC = L f 2
d�i2
dt

+ R f 2�i2
�i1 − �i2 = C f

d �vc f

dt

(1)

where �i1 is the space phasor representing the converter-side
currents of i1a , i1b, and i1c, �i2 is the space phasor repre-
senting the ac-grid-side, i.e., the point of common coupling
(PCC), currents of i2a , i2b, and i2c, �vcf is the space phasor
representing the capacitor voltages of vcfa, vcfb, and vcfc,
�vPCC is the space phasor representing the PCC voltages
of vPCCa , vPCCb, and vPCCc, L f 1/R f 1 is the LC L-filter’s
converter-side inductance/resistance, L f 2/R f 2 is LC L-filter’s
ac-grid-side inductance/resistance, and C f is the LC L-
filter’s shunt capacitance—all shown in Fig. 1, where C f ’s
resistance of R f is negligible compared with C f ’s impedance
(i.e., 50× and larger).

After finding �i1 with respect to �i2 from the third part of (1)
and substituting �i1 with that and also after finding �vcf with
respect to �vPCC from the second part of (1) and substituting

Authorized licensed use limited to: Georgia Southern University. Downloaded on July 01,2021 at 21:58:22 UTC from IEEE Xplore.  Restrictions apply. 



2910 IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, VOL. 9, NO. 3, JUNE 2021

�vcf with that, the first part of (1) is obtained as follows:

�vt = (L f 1R f 2C f + L f 2R f 1C f + L f 1R f C f )︸ ︷︷ ︸
�A

d2�i2
dt2

+ (L f 1 + L f 2 + R f 1R f 2C f + R f 1R f C f )︸ ︷︷ ︸
�B

d�i2
dt

+ (R f 1 + R f 2)︸ ︷︷ ︸
��

�i2 + (L f 1C f + R2f C2f )︸ ︷︷ ︸
�E

d2�vPCC
dt2

+ (R f 1C f + R f C f )︸ ︷︷ ︸
�H

d �vPCC
dt

+ �vPCC. (2)

After mathematical manipulations, which, for example, can
be found in [6] and [12], (3) is found by expressing (2) in the
well-known rotating dq-frame⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2i2d

dt2
= 2ω

di2q

dt
+ ω2i2d + dω

dt
i2q − B

A

di2d

dt
+ B

A
ωi2q

−�

A
i2d − E

A

d2vPCCd

dt2
+ E

A
2ω

dvPCCq

dt

+ E

A
ω2vPCCd + E

A

dω

dt
vPCCq − H

A

dvPCCd

dt

+ H

A
ωvPCCq − 1

A
vPCCd + 1

A
vtd ,

d2i2q

dt2
= −2ωdi2d

dt
+ ω2i2q − dω

dt
i2d − B

A

di2q

dt
− B

A
ωi2d

−�

A
i2q − E

A

d2vPCCq

dt2
− E

A
2ω

dvPCCd

dt

+ E

A
ω2vPCCq − E

A

dω

dt
vPCCd − H

A

dvPCCq

dt

− H

A
ωvPCCd − 1

A
vPCCq + 1

A
vtq

(3)

where i2d /i2q is the d-/q- component of �i2, and vPCCd /vPCCq

are d-/q- component of �vPCC, respectively.
For the control design, (3) is able to describe the GC-VSI’s

dynamics. In this regard, in order to include the GC-VSI’s
mismatched uncertainties and external disturbances suited to
the 2DoF control design process, the following state-space
equation is acquired. Equation (4), as shown at the bottom
of the next page, is able to mathematically describe the
aforementioned mismatched uncertainties and external dis-
turbances as required for the control design in this arti-
cle, where x1 defines i2d ; x2 defines i̇2d ; x3 defines i2q ;
x4 defines i̇2q ; ω is the angular frequency provided by
the PLL; Nk(.)—which is the saturation function associated
with the PWM strategy—and the rest of variable have been
defined in (2).
Considering (4), (5) is obtained. It is noteworthy that (5) is

based on the general model required for employing the general
structure in [25]. Equation (5) is able to include the GC-VSI’s
mismatched uncertainties and external disturbances suited to

the 2DoF control design process, which will be discussed more
in Section III-A⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ẋ1 = x2 + � f1(X, t)

ẋ2 = f1(X, t) + � f2(X, t) + d2(t) + N1(u1(t))
ẋ3 = x4 + � f3(X, t)

ẋ4 = f2(X, t) + � f4(X, t) + d4(t) + N2(u2(t))

(5)

where � f1(X, t) is the mismatched uncertainty affecting x1,
� f2(X, t) is the matched uncertainty affecting x2, d2(t) is the
external disturbance impacting on x2’s dynamics, � f3(X, t)
is the mismatched uncertainty affecting x3, � f4(X, t) is the
matched uncertainty affecting x4, and d4(t) is the external
disturbance impacting x4’s dynamics.

III. PROPOSED METHODOLOGY

Based on Section II and the mathematical model provided
by (4) and (5), this article needs to introduce a novel nonlinear
SMC modular strategy merged with a disturbance observer for
GC-VSIs. The proposed approach helps GC-VSIs be able to
deal with both matched and mismatched model uncertainties
and low and fast external disturbances, for resilient operation.
Fig. 2 shows a notional structure of the controller, which is
required in this type of problem formations, based on [25].
However, the sliding manifold should be “re”designed, and a
new adaptation rule is required to reintroduced in this work.
In order to compensate the perturbations’ effects—whose

majorities are PLL dynamics and grid voltage—a disturbance
observer (integrated into the SMC) is employed to recog-
nize the system uncertainties and external disturbances. For
complying with practical scenarios, it is presumed that the
uncertain terms’ bounds and the bound of external disturbance
are unknown beforehand. A twofold sliding manifold with
desired properties—i.e., a quick convergence behavior and no
steady-state error—is then required to be designed for the
GC-VSI accordingly.

A. Mathematical Formulation

Based on our need for designing a 2DoF modular controller
associated with (4) and (5), a generalized dynamic system is
considered as follows:⎧⎪⎨
⎪⎩

ẋ2k−1(t) = x2k(t) + � f2k−1(X, t) + d2k−1(t)
ẋ2k(t) = fk(X, t) + � f2k(X, t) + d2k(t) + (bk(X, t)

+ �bk(X, t))Nk(uk(t))

(6)

where k = 1, 2, X (t) = [x1(t), x2(t), x3(t), x4(t)]T ∈ R
4

is the state vector of the system, � f2k−1(X, t) ∈ R
4×1 ×

R
+ → R and d2k−1(t) ∈ R

+ → R are mismatched uncertain-
ties and external disturbances, respectively, fk(X, t) ∈ R

4×1×
R

+ → R is a continuous function modeling the nonlinear
dynamics of the kth part of the system, � f2k(X, t) ∈ R

4×1 ×
R

+ → R and d2k(t) ∈ R
+ → R are matched uncertainties and

external disturbances, respectively, bk(X, t) ∈ R
4×1 × R

+ →
R is the time-varying gain of the control input (if any),
�bk(X, t) ∈ R

4×1 × R
+ → R denotes the variations of the

control signal (if any), Nk(.) can either be a linear function
or be a nonlinear saturation function, and uk(t) ∈ R is the
control input.
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Fig. 2. Block diagram of the modular control scheme for GC-VSIs in the state-space representation.

It is supposed that a smooth desired state trajectory in
the form of X (t) = [xd1(t), xd2(t), xd3(t), xd4(t)]T exists.
Therefore, by defining the tracking error as E(t) = X (t) −
Xd (t) = −Ex(t), (7) is able to obtain the tracking error
dynamics as described in the following:⎧⎪⎪⎨
⎪⎪⎩

ė2k−1(t) = e2k(t) + xd2k(t) − ẋd2k−1(t) + � f2k−1(X, t)
+ d2k−1(t)

ė2k(t) = fk(X, t) − ẋd2k(t) + � f2k(X, t)
+ d2k(t) + [bk(X, t) + �bk(X, t)]Nk(uk(t))

(7)

where k = 1, 2.

In order to design an adaptive disturbance observer, a new
function is needed to be defined as follows. Regarding
Dk(X, u, t) = � f2k−1(X, t) + d2k−1(t) + � ḟ2k−1(X, t) +
ḋ2k−1(t) + � f2k(X, t) + d2k(t) + �bk(X, t)Nk(uk(t)) as the
lumped perturbation, it is assumed that constants αk, μk ∈ R

+
exists such that

‖Dk(X, u, t)‖ ≤ αk |δk| + μk (8)

where k = 1, 2; � ḟ2k−1(X, t) is defined as
∑4

j=1((∂� f2k−1
(X, t))/∂x j )ẋ j + ((∂� f2k−1(X, t))/∂ t); αk and μk are
unknown values, and δk is a function of state errors (will be
defined in Section III-C).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2 + � f1(X, t),

ẋ2 =
(

ω2 − �

A

)
x1 + −B

A
x2 +

(
B

A
ω + dω

dt

)
x3 + 2ωx4 + � f2(X, t),︸ ︷︷ ︸

� f1(X,t)

+ −E

A

d2vPCCd

dt2
+ 2E

A
ω

dvPCCq

dt
+ E

A
ω2 vPCCd + E

A

dω

dt
vPCCq + −H

A

dvPCCd

dt
+ H

A
ωvPCCq + −1

A
vPCCd︸ ︷︷ ︸

�d2(t)

+ 0.5Vdc

A︸ ︷︷ ︸
�b1

N ( md︸︷︷︸
�u1

),

ẋ3 = x4 + � f3(X, t),

ẋ4 =
(−B

A
ω − dω

dt

)
x1 + (−2ω)x2 +

(
ω2 − �

A

)
x3 + −B

A
x4 + � f4(X, t),︸ ︷︷ ︸

� f2(X,t)

+ −E

A

d2vPCCq

dt2
+ −2E

A
ω

dvPCCd

dt
+ E

A
ω2 vPCCq + −E

A

dω

dt
vPCCd + −H

A

dvPCCq

dt
+ −H

A
ωvPCCd + −1

A
vPCCq︸ ︷︷ ︸

�d4(t)

+ 0.5Vdc

A︸ ︷︷ ︸
�b2

N ( mq︸︷︷︸
�u2

)

(4)
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Remark 1: It is noteworthy that terms associated with both
of the matched and mismatched uncertainties and external
disturbances are always bounded in GC-VSIs. Also, having
a finite magnitude is necessary for the designed control input.
Therefore, it is concluded that the assumption and the condi-
tions mentioned earlier are realistic for this research, thus not
restricting our practical scenarios.

Remark 2: As demonstrated in Fig. 2, this article’s control
goal is to propose and synthesize a “new sliding manifold”
for the selected control structure. It also employed the SMC
combined with a disturbance observer (using an adaptation
rule) for the 2DoF system of GC-VSIs with matched and
mismatched uncertainties [i.e., (4) and (5)], in addition to
saturated control inputs. Besides, for the disturbance observer,
the unknown terms’ bounds have to be determined by a “new
adaption law," which should be proposed. As both of the
manifold and adaptation rules change here, a new proof is
required for the rigorous stability of the closed-loop system,
which is augmented with the disturbance observer described
in the following.

B. SMC With the Proposed Sliding Manifold

A twofold terminal sliding manifold is required to be
“re”synthesized so that the structure can be adopted for the
problem formulation here. As regards this, a first-fold and a
second-fold of the sliding manifold have been proposed as
follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s2k−1(t) = e2k−1(t)

+
∫ t

0
(e2k−1(τ ) + ηksign(e2k−1(τ )))dτ

s2k(t) = ṡ2k−1(t)

+
∫ t

0
(γk-asign(s2k−1(τ ))|s2k−1(τ )|ak-a

+ γk-bsign(ṡ2k−1(τ ))|ṡ2k−1(τ )|ak-b)dτ

(9)

where ηk > 0, γk-a > 0, γk-b > 0, 0 < ak-a < 1, and
0 < ak-b < 1 are constant values, and k = 1, 2.
The condition of s = 0 is met once the system operates

in the sliding mode, which is based on the SMC theory.
Taking into account this property—from (9) as the new sliding
manifold proposed—the following sliding-mode dynamics is
obtained. In Theorem 1, it has been proven that, consider-
ing (9) as the proposed sliding manifold, “zero” is the finite-
time stable equilibrium point of the nonsmooth sliding-mode
dynamics (10)⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

s2k−1 = 0 ⇒ ṡ2k−1 = 0

�⇒ ė2k−1 = −(e2k−1 + ηksign(e2k−1))
s2k = 0 ⇒ ṡ2k = 0

�⇒ s̈2k−1 = −(γk-asign(s2k−1)|s2k−1|ak-a

+ γk-bsign(ṡ2k−1)|ṡ2k−1|ak-b)

(10)

where k = 1, 2.
Theorem 1 (Finite-Time Stable Equilibrium Point of the

Proposed Sliding Mode Dynamics): The stable equilibrium

point of the nonsmooth sliding-mode dynamics (10) is “zero”
(in the finite-time manner).

Proof: For s2k−1 = 0: By defining V a
2k−1(t) = 0.5e22k−1(t)

as a candidate for the Lyapunov function, the following
expression for V̇ a

2k−1(t) is achieved:
V̇ a
2k−1(t) = e2k−1(t)ė2k−1(t). (11)

As a result of inserting ė2k−1(t) from (10) into (11),
V̇ a
2k−1(t) is formulated as

V̇ a
2k−1(t) = −e2k−1(t)(e2k−1 + ηksign(e2k−1))

= −(
e22k−1(t) + ηk |e2k−1|)

) ≤ −ηk |e2k−1|
⇒ V̇ a

2k−1(t) ≤ 0. (12)

Consequently, the earlier shows that the sliding-mode
dynamics are globally asymptotically stable. By taking integral
from (12)—on both sides—from the “reaching time” of t2k−1,r
to the “stopping time” of t2k−1,s , the following expression is
gained [note that V a

2k−1(t2k−1,s) = 0]:
ė2k−1(t2k−1,r )sign(e2k−1(t2k−1,r )) ≤ −ηk

⇒ t2k−1,s ≤ |e2k−1(t2k−1,r )|
ηk

+ t2k−1,r . (13)

As a result of (13), the convergence to zero is absolute and
will occur within a finite time.
For s2k = 0: Here, auxiliary variables of s2k−1 � sa

2k−1 and
ṡ2k−1 � sb

2k−1 are employed to describe the dynamics of s̈2k−1
expressed in (10) as⎧⎪⎨

⎪⎩
ṡa
2k−1 = sb

2k−1,
ṡb
2k−1 = −(

γk-asign
(
sa
2k−1

)∣∣sa
2k−1

∣∣ak-a

+ γk-bsign
(
sb
2k−1

)∣∣sb
2k−1

∣∣ak-b
)
.

(14)

Therefore, according to [32], the point of sa
2k−1 = sb

2k−1 = 0
is the finite-time stable equilibrium point provided that para-
meters of the sliding manifold are selected to satisfy the
following conditions, which are γk-a > 0, γk-b > 0, ak-a =
(ak-b/(2− ak-b)), ak-b ∈ (1 − ε, 1), and ε ∈ (0, 1). Both of
the parts mentioned earlier lead to ending the proof.

C. Disturbance Observer With the Proposed Adaption Rule

In this section, the proposed modular control design com-
bining SMC methodology modulated combined with a distur-
bance observer is introduced. Here, the structure of [25] is
redesigned so that it is applicable to GC-VSIs considering a
new form of (8). In order to originate a disturbance observer—
which is suitable for the nonlinear error system (7)—the
auxiliary variable of δk(t) is considered as expressed in the
following:

δk(t) = e2k−1(t) + ė2k−1(t) − zk(t), for k = 1, 2 (15)

where zk(t) is calculated by the following dynamic equation:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

żk(t) = bk(X, t)Nk(uk(t)) − ψk

ψk = −[(βk + α̂k)δk + μ̂ksign(δk) + fk(X, t) + e2k(t)

+ xd2k(t) − ẋd2k−1(t) − ẍd2k−1(t)]
˙̂αk = hkδ

2
k

(16)
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where βk > 0 and hk > 0 are constant values for the design
process, and α̂k is an adaptive parameter for variable αk .
Besides, μ̂k is updated via the following adaption rule of:

˙̂μk = pk|δk| (17)

in which pk > 0 is a constant gain.
Through expressing D̂k(X, u, t) by D̂k(X, u, t) =

−(e2k(t) + xd2k(t) − ẋd2k−1(t) + fk(X, t) − ẍd2k−1(t) + ψk),
the dynamics of δk is found as follows while assuming that the
time derivatives of Dk(X, u, t) and D̂k(X, u, t) are bounded
without loss of generality:

δ̇k(t) = Dk(X, u, t) − D̂k(X, u, t), for k = 1, 2. (18)

Theorem 2 (Observer Stability): The observer (18) has
the global stable equilibrium point at “Zero”—although
Dk(X, u, t) gets into an unknown bound.

Remark 3: As there are new limit for the disturbance
[i.e., (8)] and adaptation rule of (17), the proof of Theorem 1
in [25] is not valid anymore. Therefore, a new proof is
provided in the following.

Proof: The following function is selected as a candidate
for the Lyapunov function:

V b
k (t) = 0.5δ2k (t) + 0.5

hk
(αk − α̂k)

2 + 0.5

pk
(μk − μ̂k)

2. (19)

Then, the derivative of the V b
k (t) mentioned above, with

respect to time, is taken as described by

V̇ b
k (t) = δ̇k(t)δk(t) −

˙̂αk

hk
(αk − α̂k) −

˙̂μk

pk
(μk − μ̂k). (20)

After mathematical manipulations using ˙̂α in (16), ˙̂μ in (17),
and δ̇(t) in (18) and inserting them into (20), V̇ b

k (t) is
described by

V̇ b
k (t) = δk(t)[e2k(t) + xd2k(t) − ẋd2k−1(t) + fk(X, t)

− ẍd2k−1 + ψk + Dk(x, u, t)] − δ2k (t)(αk −α̂k)

− |δk(t)|(μk − μ̂k). (21)

From (21), it is now clear that

V̇ b
k (t) ≤ δk(t)[e2k(t) + xd2k(t) − ẋd2k−1(t) + fk(X, t)

− ẍd2k−1 + ψk] + |δk(t)|‖Dk(x, u, t)‖
− δ2k (t)(αk − α̂k) − |δk(t)|(μk − μ̂k). (22)

Afterward, using the assumptions made about Dk(x, u, t)
in (8), (22) is expressed and (23) is expressed as

V̇ b
k (t) ≤ δk(t)[e2k(t) + xd2k(t) − ẋd2k−1(t) + fk(X, t)

− ẍd2k−1 + ψk] + δ2k (t)αk + |δk(t)|μk

− δ2k (t)(αk − α̂k) − |δk(t)|(μk − μ̂k). (23)

Next, by substituting ψk from (16) into (23), the
inequality (23) is found as

V̇ b
k (t)

≤ δk(t)[e2k(t) + xd2k(t) − ẋd2k−1(t) + fk(X, t)

− ẍd2k−1 − [(βk + α̂k)δk + μ̂ksign(δk) + fk(X, t)

+ e2k(t) + xd2k(t) − ẋd2k−1(t) − ẍd2k−1(t)]]
+ δ2k (t)α̂k + |δk(t)|μ̂k . (24)

Now, considering this fact that δksign(δk) = |δk|, V̇ b
k (t) is

described by

V̇ b
k (t) ≤ −δk(t)[(βk + α̂k)δk(t) + δ2k (t)α̂k − |δk(t)|μ̂k

+ μ̂k |δk(t)|
⇒ V̇ b

k (t) ≤ −βkδ
2
k (t) ≤ 0. (25)

Equation (25) proves that the origin is an asymptotic equi-
librium point of the system (18), and therefore, it means that
limt→∞ δk(t) = 0.
Finally, based on Barbalat’s lemma (see [33]), the assump-

tions made about the time derivatives of Dk(X, u, t) and
D̂k(X, u, t) (which say that they are bounded without loss of
generality). It is then concluded that limt→∞ δ̇k(t) = 0 ⇒
limt→∞[Dk(X, u, t) − D̂k(X, u, t)] = 0, which ensures that
the observer error [Dk(X, u, t) − D̂k(X, u, t)] asymptotically
gains “zero” and concludes the proof.

D. Control Design Considering Input Saturation

PWM is used in this research, and therefore, it imposes
saturation limit on the control input. As a consequence,
a revised SMC rule is required with the function Nk(.), which
is a general nonlinear saturation function defined through [25],
that is,

Nk(uk(t)) =

⎧⎪⎨
⎪⎩

uU
k , if uk(t) ≥ uu

k

θkuk(t), if ul
k ≤ uk(t) ≤ uu

k

uL
k , if uk(t) ≤ ul

k

(26)

where k = 1, 2, uU
k & uu

k ∈ R
+ and uL

k & ul
k ∈ R

− are
the saturation function’s bounds, and θk ∈ R is the slope of
saturation functions. Since it is supposed that all the saturation
function’s parameters [in (26)] are bounded and unknown in
advance, the saturation function (26) can be rewritten in the
form of (27)

Nk(uk(t)) = uk(t) + �uk(uk(t)) (27)

where k = 1, 2, and �uk(uk(t)) is given by

�uk(uk(t)) =

⎧⎪⎨
⎪⎩

uU
k − uk(t), if uk(t) ≥ uu

k

(θk − 1)uk(t), if ul
k ≤ uk(t) ≤ uu

k

uL
k − uk(t), if uk(t) ≤ ul

k .

(28)

Based on (27), the tracking error dynamics expressed in (7)
can be rewritten as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ė2k−1(t) = e2k(t) + xd2k(t) − ẋd2k−1(t) + � f2k−1(X, t)

+ d2k−1(t)
ė2k(t) = fk(X, t) − ẋd2k(t) + � f2k(X, t) + d2k(t)

+ [bk(X, t) + �bk(X, t)][uk(t) + �uk(uk(t))]
(29)

where k = 1, 2.
Using the assumption that the upper bound of the lumped

perturbation (i.e., αk and μk) is unknown and the boundedness
requirement for the practical control signals, it is concluded
that the uncertain term �uk(uk(t)) should always be bounded.
Consequently, the inequity

‖�bk(X, t)�uk(uk(t))‖ ≤ Mk ≤ ∞ (30)
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Fig. 3. Schematic of the simulated GC-VSI controlled using the proposed control scheme.

TABLE I

PARAMETERS OF FIG. 3 AND THOSE RELATED TO EXPERIMENTAL SETUP

where k = 1, 2, and Mk is an unknown positive constant and
is required to be satisfied.
Considering the input saturation, the lumped perturbation is

accordingly modified as follows:
Dk(X, u, t) = � f2k−1(X, t) + d2k−1(t)

+ � ḟ2k−1(X, t) + ḋ2k−1(t)
+ � f2k(X, t) + d2k(t)

+ �bk(X, t)uk(t) + �bk(X, t)�uk(uk(t)).

(31)

The following assumption is, thus, being made. It is
assumed that the lumped perturbation (31) is bounded by
unknown parameters νk ∈ R

+ and αk ∈ R
+ as

‖Dk(X, u, t)‖ ≤ αk |δk| + μk + ‖bk(X, t)‖‖�uk(uk(t))‖
≤ αk |δk| + μk + Mk

⇒ ‖Dk(X, u, t)‖ ≤ αk |δk | + νk (32)

where it is supposed that bk(X, t) is bounded and
νk = μk + Mk .
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Fig. 4. Test Case I’s outcome: simulation results for SC R = 1 and H = 1—the results without uncertainty (in blue traces), the results with 10% uncertainty
in all system parameters (in dark red traces), and the reference signals applied to the system (in violet traces).

Based on Theorem 3, it is proven that the following SMC
input (33) will reach the designed sliding manifold within a
given finite time. Finally, it has proven the stability of the
closed-loop system using the proposed sliding manifold

uk(t) = −b−1
k ( fk − ẍd2k−1 + e2k + xd2k − ẋd2k−1 + D̂k

+ γk-asign(s2k−1)|s2k−1|ak-a

+ γk-bsign(ṡ2k−1)|ṡ2k−1|ak-b + Kksign(ξk))

(33)

where k = 1, 2, ξk = s2k − δk , Kk is a positive constant,
which is the switching gain, and according to (14), γk-a > 0,
γk-b > 0, ak-a = (ak-b)/(2− ak-b), ak-b ∈ (1 − ε, 1), and
ε ∈ (0, 1).

Theorem 3 (Rigorous Stability of the Disturbance
Observer—With the Designed Adaptation Rule—Merged
With SMC Modular Methodology Using the Proposed Sliding
Manifold): Provided that (7) is controlled by the control
signal (33) with the saturation of Nk(.) and combined with
the observer (18)—as shown in Fig. 2—then the error states

will reach the sliding manifold s2k = 0 during a given finite
time.

Proof: If the auxiliary variable of ξk is defined in (33),
a Lyapunov function candidate can be chosen as V c

k (t) =
0.5ξ2k . Then, the time derivative of V c

k (t) becomes

V̇ c
k (t) = ξk ξ̇k = ξk(ṡ2k − δ̇k). (34)

After a mathematical manipulation, ṡ2k = s̈2k−1 + γk-asign
(s2k−1)|s2k−1|ak-a + γk-bsign(ṡ2k−1)|ṡ2k−1|ak-b ; substituting the
aforementioned formula associated with ṡ2k into (34) above,
(35) is found—considering s̈2k−1 = ë2k−1 + ė2k−1. The last
expression is calculated from the first line of (9) and ë2k−1 +
ė2k−1 = fk +bkuk − ẍd2k−1+e2k +xd2k − ẋd2k−1+ D̂k = s̈2k−1,
where bk has been defined in (4)

V̇ c
k (t) = ξk(ṡ2k − δ̇k)

= ξk( fk + bkuk − ẍd2k−1 + e2k + xd2k

− ẋd2k−1 + D̂k + γk-asign(s2k−1)|s2k−1|ak-a

+ γk-bsign(ṡ2k−1)|ṡ2k−1|ak-b ). (35)
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Fig. 5. Test Case I’s outcome: disturbance signals impacting the simulated GC-VSI in Fig. 4—the results without uncertainty (in blue traces) and the results
with 10% uncertainty in all system parameters (in dark red traces).

Now, when substituting uk in (35) by the first line of (33),
(36) is simply obtained

V̇ c
k (t) = ξk( fk + bk[−b−1

k ( fk − ẍd2k−1 + e2k + xd2k

− ẋd2k−1 + D̂k + γk-asign(s2k−1)|s2k−1|ak-a

+ γk-bsign(ṡ2k−1)|ṡ2k−1|ak-b + Kksign(ξk))]
− ẍd2k−1 + e2k + xd2k − ẋd2k−1
+ γk-asign(s2k−1)|s2k−1|ak-a

+ γk-bsign(ṡ2k−1)|ṡ2k−1|ak-b + D̂k) �⇒
V̇ c

k (t) = −ξk(Kksign(ξk)) = −Kk |ξk | ≤ 0. (36)

Therefore, it is concluded that here ξk = s2k −δ2k = 0 is sat-
isfied for tr

k ≤ (|ξk(0)|/Kk) ⇒ tr
k ≤ ((|s2k(0) − δk(0)|)/Kk).

Furthermore, δk(t) = 0 is guaranteed according to Theorem 2.
Consequently, the condition s2k(t) = 0 is also met and the
error states will again attain the sliding manifold s2k(t) = 0
within the finite time of tr

k .
Remark 4: Provided that the control signal (33) controls

the tracking error’s dynamics of (7) with the saturation
function Nk(.) [given by (26)]—along with the disturbance
observer (18)—then the error states will achieve the sliding

manifold s2k(t) = 0 within a given finite time. Thus,
the proof is fully accomplished considering the input saturation
function Nk(.).

Remark 5: It is noteworthy that, as previously proven
through Theorems 2 and 3, any constants βk > 0, hk > 0,
Kk > 0, ηk > 0, γk-a > 0, γk-b > 0, ak-a = (ak-b/(2 − ak-b)),
ak-b ∈ (1− ε, 1) with ε ∈ (0, 1) satisfy the Lyapunov stability
criteria. The time response of the dynamic system from the
standpoint of the transient performance is able to help the
designer select the most appropriate value for the constants
above. In other words, this work has not focused on choosing
the “optimal” amount of them systematically as it is out of
the scope of this research. This article has also proved that the
global stability of the closed-loop system with the proposed
control is rigorously guaranteed. However, it does not make
any comments on robust performance at all.

IV. SIMULATION RESULTS

This section elaborates on the simulation results. The first
subsection provides the simulations associated with the pro-
posed controller. Sections IV-B and IV-C detail the compar-
ative simulations; the controllers employed in comparisons
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Fig. 6. Test Case II’s outcome: simulation results for SC R = 1 and H = 1—the results without uncertainty (in blue traces), the results with 10% uncertainty
in all system parameters (in dark red traces), and the reference signals applied to the system (in violet traces).

are a robust sliding-mode controller—with a “single-integral”
sliding surface and without adaptive disturbance observer—
and the PI controller, which is an industrially acceptable one,
respectively.

A. Simulation Results of the Proposed Controller

Fig. 3 with the parameters given in Table I has been
simulated using the Simulink in MATLAB as a GC-VSI—
whose frequency-dependent ac grid has been simulated via
the model in [10, Appendix]. The detailed switching model
of the VSC is used in the simulation for better accuracy.
Thus, the control performance of the VSC under typical high-
frequency disturbances of switching-based loads and the low-
frequency ones caused by the PLL and the ac grid’s frequency
dynamics is examined. It is noteworthy that all parameters
have been selected to examine the proposed 2DoF modular
controller as harshly as possible, and they are still close
to the practical cases. As regards this consideration, for the
simulated grid shown in Fig. 3, the lowest possible value of

the equivalent moment of inertia of J (or comparably inertia
constant of H ) and control gains associated with the governors
has been selected to be simulated here. Moreover, the lowest
available short-circuit capacity ratio (SCCR) has been chosen
so that the most potentially practical disturbance dynamics are
made as per studies [6], [7].
Moreover, the parameters of the PLL’s PID controller

employed have also been reported and detailed in Table I.
It is able to produce an almost 90◦ phase margin with the
adequate bandwidth for the PLL dynamics. As the PLL
controller is a simple PID inducing a 90◦ phase margin
with enough bandwidth, a low-inertia grid—whose frequency
significantly fluctuates—impacts the PLL performance.
Consequently, it creates a practically functional disturbance
associated with frequency changes on the closed-loop system
of the GC-VSI. It is able to produce an almost 90◦ phase
margin with adequate bandwidth for the PLL dynamics. As the
PLL controller is a simple PID inducing a 90◦ phase margin
with enough bandwidth, a low-inertia grid—whose frequency
fluctuates significantly—impacts the PLL performance.
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Fig. 7. Test Case II’s outcome: disturbance signals impacting the simulated GC-VSI in Fig. 6—the results without uncertainty (in blue traces) and the results
with 10% uncertainty in all system parameters (in dark red traces).

Consequently, it creates the worst practically functional
disturbance associated with frequency changes on the closed-
loop system of the GC-VSI.
All controllers used in the frequency regulation and the

PLL have the industrially accepted structure and parameters.
Moreover, the system—with and without 10% uncertainty
in all parameters—has been simulated and examined under
various low-inertia and weak grid conditions. Additionally,
various reference signals have been generated—with and with-
out arbitrary shapes—in order to test the effectiveness of
the controller proposed during both transient and steady-state
responses. Figs. 4–7 show the aforementioned simulations
demonstrating i2d in (A), i2q in (A), and active/reactive power
in per unit (pu)—where the results of the system without
uncertainty are shown by traces in blue, and the results of
the system with 10% uncertainty are shown by traces in dark
red, and the applied reference signals are shown by traces in
violet.
In order to adequately assess the effectiveness of the pro-

posed controller, two general test cases have been selected to
be simulated. One examines a significant change in the reactive

Fig. 8. THD of the PCC current associated with Test Case I (in Fig. 4),
which is controlled by the proposed controller.

power, and the other evaluates a high variation in the active
power at the beginning of simulations, as elaborated in the
following.
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Fig. 9. Test Case I’s outcome: Fig. 4’s counterpart simulation results for SC R = 1 and H = 1, using a robust controller without adaptive disturbance
observer.

Fig. 10. Test Case II’s outcome: Fig. 6’s counterpart simulation results for SC R = 1 and H = 1, using a robust controller without adaptive disturbance
observer.

Test Case I: Test Case I deals with high reactive power
variation and low active power variation at the beginning.
Then, in this test case, the power factor (PF) is changed from
0.95 to 1.0 at t = 1.5 s, and the active power is varied from
0.5 pu to 1.00 pu at t = 3.0 s. Fig. 4 demonstrates the results
of Test Case I. The rest of the changes in the references
of i2d and i2q (and their according effects on active/reactive
power) has been shown in Fig. 4 for the worst case of grid
conditions—i.e., SCCR equals to 1 and H = 1 [6]. Fig. 4 and
its various enlarged views associated with different changes
show the proposed 2DoF controller’s capability to stabilize i2d

and i2q , and their performances are very satisfactory. Fig. 5
shows the related disturbance signals (including vPCCd , vPCCq ,
and frequency all in pu) associated with our simulations results
in Fig. 4.

Test Case II: Test Case II deals with high active power
variation and low reactive power variation at the beginning.

Then, in this test case the active power is varied from
1.0 pu to 0.5 pu at t = 1.5 s, and the PF is changed from
1.0 to 0.95 at t = 3.0 s—again for SCCR = 1 and H = 1.
Fig. 6 shows the results of Test Case II. Fig. 6 and its various
enlarged views associated with different changes show the
proposed 2DoF controller’s capability of stabilizing i2d and i2q

very satisfactorily again. Fig. 7 reveals the related disturbance
signals associated with our simulations shown in Fig. 6.
Finally, as the power quality of the current converter

matters—and it will be impacted by both control and switching
strategy—the total harmonic distortion (THD) of the current
waveform has been reported and demonstrated in Fig. 8.
It shows the THD of the PCC current during various
active/reactive power changes associated with Test Case I, for
example. As shown in Fig. 8, it is within the recommended
limits detailed in the IEEE Standard 519, i.e., less than 2.5%,
which is the limit for the VPCC up to 161 kV [34].
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Fig. 11. Test Case I’s outcome: Fig. 4’s counterpart simulation results for SC R = 1 and H = 1, using a PI controller without adaptive disturbance observer.

Fig. 12. Test Case II’s outcome: Fig. 6’s counterpart simulation results for SC R = 1 and H = 1, using a PI controller without adaptive disturbance observer.

B. Simulation Results of the Single-Integral Robust SMC
Without an Adaptive Disturbance Observer
In this section, another robust controller using a single-

integral sliding surface without an adaptive disturbance
observer is proposed for comparison. It has been synthesized
as follows.
A single-fold sliding mode controller, whose surface has

been detailed in the following, is designed as:

s2k(t) = e2k(t) +
∫ t

0
(k1e2k(τ ) + k2e2k−1(τ ))dτ (37)

in which k1 and k2 are constant positive real numbers.
For the case without mismatched uncertainty, the dynamics

of ṡ(t) is found as

ṡ2k(t) = 0 ⇒ ė2k = −(k1e2k(t) + k2e2k−1(t)). (38)

Therefore⎧⎪⎨
⎪⎩

ė2k−1(t) = e2k(t),

ė2k(t) = fk(X, t) − ẋd2k(t) + � f2k(X, t) + d2k(t)

+ [bk(X, t) + �bk(X, t)]Nk(uk(t)).

(39)

Considering (39) and defining the lumped uncertainty of
�L2k(t) as

�L2k(t) � −� f2k(X, t) + d2k(t) + �bk(X, t)Nk(uk(t))

+ bk(X, t)�uk(uk(t)) (40)

results in⎧⎪⎨
⎪⎩

ė2k−1(t) = e2k(t)

ė2k(t) = fk(X, t) − ẋd2k(t) + bk(X, t)Nk(uk(t))

+ �L2k(t).

(41)

Therefore, assuming ‖�L2k(t)‖ ≤ �2k , in which �2k is a
large enough constant number, causes

uk(t) = −b−1
k ( fk(X, t) + ẋ2k(t) − k1e2k(t) − k2e2k−1(t)

−K sign(s2k(t))) (42)

where K > �2k .
It is noteworthy that in deriving (42), it is assumed that

there exists only a single sliding surface and that �2k is a
large enough “constant” number. It means that although a
robust controller is synthesized, first, a single-integral sliding
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surface exists, and second, there is not any adaptive distur-
bance observer in the structure—as shown in Fig. 2. The
aforementioned points are in direct contrast to the proposed
controller.
Now, by inserting (38) into the system dynamics of (7), the

sliding mode dynamics can be found as{
ė2k−1(t) = e2k(t)

ė2k(t) = −k1e2k(t) − k2e2k−1(t).
(43)

It is clear that (43) is stable provided that k1 and k2 are
suitable constant positive real numbers.

Theorem 4 (Finite-Time Stability of the Reaching Phase of
the Robust Single-Integral SMC): The states of the stable
equilibrium point of the system (41) with the controller (42)
will converge o the sliding surface s2k(t) = 0 in a given finite
time—if K > �2k .

Proof: By defining V d
2k(t) = 0.5e22k(t) as a candidate

for the Lyapunov function—required for the combination of
(37) and (39)–(42) —the following expression for V̇ d

2k(t) is
achieved:

V̇ d
2k(t) = s2k(t)ṡ2k(t)

= s2k(t)(ė2k(t) + k1e2k(t) + k2e2k−1(t)). (44)

Using (7) results in

V̇ d
2k(t) = s2k(t)( fk(X, t) − ẋd2k(t) + � f2k(X, t) + d2k(t)

+ [bk(X, t) + �bk(X, t)]Nk(uk(t))
+ k1e2k(t) + k2e2k−1(t)). (45)

Combing (40), (45), and (42), and benefiting from s2k(t)sign
(s2k(t)) = |s2k(t)| and K > �2k , V̇ d

2k(t) is calculated as

V̇ d
2k(t) ≤ (−K + �2k)|s2k(t)| ≤ 0. (46)

Therefore, writing tr
2k ≤ (|s2k(0)|)/(K − �2k), s2k(t) =

0 is guaranteed, which completes and concludes the
proof.
Figs. 9 and 10 show the counterparts of Figs. 4 and 6 while

the robust controller (42) is being used. As demonstrated,
the performance of the proposed controller is much better
than that of the robust controller of (42)—albeit a robust
controller—from the perspective of time response, i.e., settling
time, rise time, time constant, and under/overshoot.

C. Simulation Results of the PI Controller

In this section, the industrially accepted controller has
been employed. The synthesized controller (with kp = 2.2
and ki = 40) makes a 1-ms time constant for the active/and
reactive power controls. This PI controller is very well
known in the literature [12], [35]. It has been shown that PI
controller shows instability for the SCC R = 1 in many studies
(see [6], [7], and references therein). The parameters of the
PLL PID controller employed have been reported and detailed
in Table I. It is able to produce an almost 90◦ phase margin
with adequate bandwidth for the PLL dynamics. As the PLL
controller is a simple PID inducing a 90◦ phase margin
with enough bandwidth, a low-inertia grid—whose frequency

Fig. 13. Photograph of the scaled-down test rig for conducting experiments.

fluctuates significantly—impacts the PLL performance.
Consequently, it creates a practically functional disturbance
associated with frequency changes on the closed-loop system
of the GC-VSI.
Figs. 11 and 12 show the counterparts of Figs. 4 and 6 while

the PI controller elaborated earlier is being used. As shown,
the performance of the proposed controller is much better
than that of the robust single-integral SMC of (42)—and the
PI controller is even unstable in the full power of P = 1
and Q = 0. This instability is widespread in two-level VSIs
controlled by a PI controller, which has been reported in
several research works (see [6], [7], and references therein).
One of the main reasons for this instability is that the nonlinear
dynamics of the PLL are highly coupled in low SCCRs, and
therefore, a simple PI controller cannot remove its impacts.
In the proposed controller, however, the PLL dynamics (as
disturbance signals) are observed and supplied via feedforward
signals shown in Fig. 3.

V. EXPERIMENTAL RESULTS

For further evaluation of the proposed controller, an exper-
imental test rig is employed to examine the performance of
the GC-VSI equipped with an LC-filter in the dc side and
with an LC L-filter on the ac side of the test rig. The experi-
mental system consists of a GC-VSI, operating as an inverter
(i.e., dc to ac power conversion), regularly and frequently
operating in the FIPES’ MIACDC power systems. The VSI is
controlled like what has been done for the simulation results in
Section IV, which yields the operating conditions with respect
to the ac-side dynamics. An intelligent power module from
SEMIKRON—which includes six insulated gate bipolar tran-
sistors (IGBTs) built by three “SKM 50 GB 123 D” modules,
three “SKHI 21A (R)” gate drives, and protection circuits—
is used in order to implement the power electronic converter
needed. The experimental setup’s parameters—which are the
same as the simulated circuit’s parameters—and controller
values have been reported in Table I.

Authorized licensed use limited to: Georgia Southern University. Downloaded on July 01,2021 at 21:58:22 UTC from IEEE Xplore.  Restrictions apply. 



2922 IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, VOL. 9, NO. 3, JUNE 2021

Fig. 14. Test Case I’s outcome: experimental results (associated with simulations in Fig. 4). (a) Whole picture (500 ms/div) and (b)–(e) enlarged view
of different parts (100 ms/div), showing PPCC via Channel 1 (in dark blue) with 10.80 kW/div, QPCC via Channel 2 (in cyan) with 2.16 kvar/div, i2d via
Channel 3 (in dark magenta) with 42.43 A/div, and i2q via Channel 4 (in law green) with 8.49 A/div—V/div of each channel has been shown at the left-bottom
corner for all variables in pu.

The VSI’s inductor currents and voltages are measured
by “IsoBlock I-ST-1c” current sensors and “IsoBlock V-1c”
voltage sensors from “Verivolt,” respectively. The converter
is interfaced with a MicroLabBox (MLBX) from “dSPACE.”
The proposed control algorithm is executed and run by a
dual-core, 2 GHz “NXP (Freescale) QorlQ P5020” real-time
processor. The PWM signals are generated by “Xilinx Kintex-
7 XC7K325T” field-programmable gate arrays (FPGAs) con-
nected to digital inputs/outputs (I/Os). The MLBX interface
board is equipped with eight 14-b, 10-megasample-per-second,
differential analog-to-digital channels to interface the mea-
sured signals to the control system (with the functionality
of free-running mode). The software code is generated by
the real-time-workshop under the MATLAB/Simulink environ-
ment. Fig. 13 shows a snapshot of the test rig used.
In order to be able to compare the simulations with experi-

ments, the same Test Cases I and II elaborated in Section IV-A
have been employed here. Figs. 14 and 15 have shown the
outcomes of the experiments conducted. The same experi-
ments as what has been simulated through Test Cases I and II
(i.e., Figs. 4 and 6, respectively) have been done with the test

rig mentioned earlier. In Figs. 14 and 15, i2d , i2q , P , and
Q (all in pu) have been shown by traces in magenta, green,
blue, and cyan, respectively—whose values associated with the
volts-per-division (V/div) have been noted at the left-bottom
corner of Figs. 14 and 15 as well. Figs. 14 and 15 show that
the control algorithm is implementable and able to effectively
stabilize the active power and reactive power of the GC-VSI
under test.
It is noteworthy that in our experiments, based on the

available resources and devices’ capabilities, there has been a
power plug supplied by the university’s utility grid without any
possibility to model a network with low inertia. In other words,
our grid model is equivalent to a Thevenin’s circuit, whose
inertia is high and thus having an almost fixed frequency.
More importantly, there are always some practical uncertain-
ties (which are common) in any experiments compared to
simulations, especially when dealing with creating weak-grid
conditions. According to the reasoning mentioned earlier, it is
impossible to exactly replicate some test cases gained from
simulation results by means of the available test rig. Having
said that, this section has shown that the proposed control
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Fig. 15. Test Case II’s outcome: experimental results (associated with simulations in Fig. 6). (a) Whole picture (500 ms/div) and (b)–(d) enlarged view
of different parts (100 ms/div)—showing PPCC via Channel 1 (in dark blue) with 10.80 kW/div, QPCC via Channel 2 (in cyan) with 2.16 kvar/div, i2d via
Channel 3 (in dark magenta) with 42.43 A/div, and i2q via Channel 4 (in law green) with 8.49 A/div—V/div of each channel has been shown at the left-bottom
corner for all variables in pu.

scheme is implementable and has shown the effectiveness
of the controller—based on the devices’ capabilities and
resources available to us.

VI. CONCLUSION

This article has proposed a novel 2DoF modular control
approach to better control both active and reactive power
of GC-VSIs to be able to be integrated into the emerging
multiterminal ac/dc grids. This article has proposed a mathe-
matical model and an innovative control methodology based
on the GC-VSI’s dynamics in the dq-frame. The synthesized
controller is able to improve the stability of GC-VSIs for
emerging grid conditions with frequency-dependent dynam-
ics. Those dynamics are tailored to the weak grids, whose
inertia may be small and which impact the PLL’s dynamics.
Also, there are uncertainties associated with the parameters
in the system under study—thus dealing with mismatched
disturbances and uncertainties. From the standpoint of control
theories, overcoming mismatched disturbances and uncertain-
ties is a difficult task in control of nonlinear systems due to the
absence of a direct control signal for the affected states. For
solving this problem, a new enhanced control structure, which
is modular, has been offered. It has employed the well-known
sliding-mode control (with a new sliding manifold) combined

with a disturbance observer (with a new adaptation rule) that
has been introduced. The introduced control guarantees that
the effects of mismatched uncertainties, external disturbances,
and control fluctuations (with completely unknown bounds)
are successfully canceled without any steady-state errors.
Comprehensive mathematical analysis, simulations, and exper-
iments have been provided in order to show the effectiveness
of the recommended methodology.
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