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A B S T R A C T   

Cluster analysis is a valuable tool for understanding spatial and temporal patterns (e.g., spatial zones) of 
groundwater geochemistry. To determine cluster numbers and cluster memberships that are unknown in real- 
world problems, a number of methods have been used to assist cluster analysis, among which graphic ap
proaches are popular and intuitive. This study introduced, for the first time, the t-distributed Stochastic Neighbor 
Embedding (t-SNE) method as a graphic approach to assist cluster analysis for groundwater geochemistry data. 
The hierarchical cluster analysis (HCA) was applied to original groundwater geochemistry data, and t-SNE was 
used to help determine the number of cluster and cluster memberships. Afterward, t-SNE was used to help 
delineate spatial zones of groundwater geochemistry. The t-SNE-based cluster visualization was compared to the 
visualization based on principal component analysis (PCA). By applying HCA, PCA, and t-SNE to three 
geochemical datasets (Oslo transect, Taiyuan karst water, and Jianghan Plain groundwater datasets, which are 
characterized by different number of samples and features collected across different space and time scales), we 
found that t-SNE outperformed PCA to assist HCA as a promising tool for helping determine the number of HCA 
clusters and delineate spatial zones of groundwater geochemistry. It should be noted that t-SNE alone cannot be 
used for cluster analyses, partly because t-SNE visualization depends on a hyperparameter called perplexity that 
is a priori unknown for real-world problems. The perplexity values used in this study were determined empiri
cally, and a small value of 0.1 was used for the Taiyuan karst water dataset with 14 samples. For the other two 
datasets with hundreds of samples, the corresponding perplexity values were 20 and 30, within the range of 5 – 
50 commonly used in t-SNE.   

1. Introduction 

Groundwater resources may be effectively and efficiently protected if 
spatial and temporal patterns of groundwater geochemistry are under
stood, especially in light of variable future conditions that will change 
according to climate, population expansion, and decreasing freshwater 
availability (Cloutier et al., 2008; Fendorf et al., 2010; Gorelick and 
Zheng, 2015; Green et al., 2011; Zhu et al., 2020). Groundwater 
geochemistry is affected by both natural processes and anthropogenic 
activities with broad variability in space and time especially at the 
regional scale (Güler and Thyne, 2004b; Haile and Fryar, 2017; Tóth, 

1999, 2009). Discovering spatio-temporal patterns and further delin
eating spatial zones of groundwater geochemistry is a primary goal of 
hydrogeochemical studies (Güler et al., 2012; Nguyen et al., 2015; Yang 
et al., 2020). This goal is complicated because groundwater geochemical 
datasets are multivariate in nature; one groundwater sample has mul
tiple physical, chemical, and biological features while multiple samples 
are collected at various locations and times. To understand the spatio- 
temporal patterns embedded in a groundwater geochemistry dataset, 
cluster analyses have been used to separate the dataset into a number of 
clusters, each of which has similar groundwater geochemistry that re
flects the controlling processes of groundwater quality (Gan et al., 2018; 
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Güler and Thyne, 2004a,b; Pacheco Castro et al., 2018; Pant et al., 2018; 
Templ et al., 2008). Cluster analysis addresses two fundamental ques
tions: (1) how many clusters are appropriate (i.e., cluster numbers)? and 
(2) how are individual groundwater samples assigned to a cluster (i.e., 
cluster memberships)? Because neither the number of clusters nor 
cluster memberships are known a priori, cluster analyses must be eval
uated. Evaluation can be as simple as mapping the locations of clusters 
or by applying statistical techniques such as principal component 
analysis (PCA). For the convenience of visualizing PCA results in two- 
dimensional graphs, high-dimensional geochemical data are always 
projected onto two principal components (e.g., PC1 vs. PC2 where PC 
standing for principal component). It has been found that PCA plots are 
not always successful at distinguishing clustered data, and overlaps 
between clusters are constantly observed, making clear interpretation 
challenging. In the review article by Templ et al. (2008) wherein cluster 
analysis was applied to regional geochemical data, a question arose: “Is 
there a graphical way to evaluate the stability or validity of clusters?” This 
study was motivated to answer this question. 

This study introduced the t-distributed Stochastic Neighbor Embed
ding (t-SNE) method as a new graphical technique to support cluster 
analysis. The t-SNE method, developed by van der Maaten and Hinton 
(2008), is a state-of-the-art machine learning technique for dimension
ality reduction to visualize high-dimensional data. The method has been 
used in many research fields, such as gene expression (Aizarani et al., 
2019; Dobie et al., 2019; Kobak and Berens, 2019), tumor classification 
(Abdelmoula et al., 2016; Roche et al., 2018), hyperspectral imaging 
analysis (Melit Devassy and George, 2020; Pouyet et al., 2018), and fault 
diagnosis (Zheng et al., 2018; Zheng and Zhao, 2020). Recently, there 
have been several studies using t-SNE for visualization of geochemical 
and hydrological data. Balamurali and Melkumyan (2016) used t-SNE 
for dimension reduction, and found that t-SNE outperformed other 
dimension reduction methods (e.g., PCA, kernel PCA, and locally linear 
embedding) for visualizing patterns of shape/trend embedded in large 
geological assay datasets. Balamurali et al. (2019) further applied 
different clustering algorithms to reduced dimensions produced by t- 
SNE, such as self-organizing map and spanning-tree progression analysis 
of density-normalized events. Leung et al. (2019) conducted a similar 
research to apply the spectral clustering algorithm to t-SNE-reduced 
dimensions, and they further linked clustering results to a consensus 
matrix obtained from multiple t-SNE runs and spectral clustering clas
sifications for detecting outliers in a geochemical dataset. Horrocks et al. 
(2019) used random forest methods to select 11 out of 31 elements for 
separating unaltered and altered host rock specimens, and then used t- 
SNE to validate the selection of the 11 elements. Mazher (2020) applied 
t-SNE to a large dataset generated by a hydrologic model that produces 9 
variables over 273 time steps. The high dimensions of 2,457 = 9 × 273 
was reduced to two dimensions using four methods, i.e., PCA, generative 
topographic mapping, t-SNE, and uniform manifold approximation and 
projection. Mazher (2020) concluded that the latter two methods out
performed the former two methods for visualizing spatial patterns of the 
modeling results. To the best of our knowledge, t-SNE has not been used 
to assist cluster analysis for groundwater geochemistry data. 

This study tackled the following two questions that have not been 
attempted by the groundwater hydrology community:  

(1) Can t-SNE be used as a graphical method to assist cluster analyses 
with respect to determining the number of clusters?  

(2) Can t-SNE be used as a tool to delineate spatial zones of 
groundwater geochemistry based on clustering results? 

In response to the first question, we used t-SNE in conjunction with 
hierarchical cluster analyses (HCA). In HCA, one way to determine the 
number of clusters is to subjectively place the so-called phenon line at a 
linkage distance, which is discussed in Section 2. Adjusting the phenon 
line upward or downward changes the number of clusters. Determining 
the appropriate number of clusters requires additional lines of evidence 

such as geochemical analysis using Piper or Stiff plots (Appelo and 
Postma, 2005; Yang et al., 2020). The appropriate number of clusters 
can also be determined by using various statistical methods, and the 
Elbow method, average Silhouette method, and the Gap statistic method 
(Kassambara, 2017) explored in this study. This study focused on the 
PCA method, which produces two-dimensional visualization of the 
clustered data. PCA visualizations, however, are often not ideal, because 
data of one cluster may significantly overlap data of another cluster. In 
this work, we illustrated that t-SNE outperformed PCA when visualizing 
clustered geochemical data in the two-dimensional t-SNE visualization. 

To answer the second question about delineating spatial zones of 
groundwater geochemistry based on clustering results, the conventional 
approach is to first plot cluster data on a map and then examine the 
resulting spatial distribution of the clusters to determine spatial zones 
while considering the geological, hydrogeological, and geochemical 
information relevant to the site of interest. A drawback of this approach 
is that, when a series of samples are collected over time at a sampling 
location, it is impossible to plot the data series on the map, and one has 
to either incorporate the statistics of the data or discard certain data 
samples. For example, in the study of Yang et al. (2020), because 
groundwater samples collected at one well belonged to different clusters 
in different years, the clusters of the majority samples were used to 
delineate spatial zones. This problem is intrinsically resolved when 
using t-SNE, because it reduces high dimensional data to low dimensions 
and can use all data for delineating spatial zones (without discarding any 
data). An example of doing so was given by Mazher (2020), who used t- 
SNE to visualize a dataset comprising nine variables simulated at 273 
time steps on a two-dimensional plot. More importantly, when t-SNE 
visualizes high-dimensional data on a reduced set of dimensions, pair- 
wise distances and structures in the high-dimensional data space are 
maintained to the extent possible in the low-dimensional t-SNE space. 
Therefore, t-SNE, by default, is suitable for delineating spatial zones of 
groundwater geochemistry, a feature that has not received adequate 
attention. 

To explore the two questions discussed above, t-SNE was applied to 
three geochemical datasets (the Oslo transect, the Taiyuan karst water, 
and the Jianghan Plain groundwater datasets) with different sample 
sizes and dimensions (i.e., the number of geochemical features). The 
Oslo transect dataset included geochemical data of nine plant materials 
(e.g., different species or leaves, wood, bark of birch and spruce) 
collected at 40 sites (Reimann et al., 2007). Because it is theoretically 
known that the dataset can be divided into nine clusters (each for one 
plant material), this dataset was used to benchmark t-SNE’s capability of 
assisting HCA. It should be noted that this dataset is not suitable for 
spatial zone delineation, because the sampling sites were along a tran
sect and the nine samples corresponding to nine plant materials were 
collected from the same sites. The Taiyuan karst water dataset of Ma 
et al. (2011) was used not only to assist HCA but also to evaluate t-SNE’s 
ability to delineate spatial zones of groundwater geochemistry. The 
evaluation was possible because Ma et al. (2011) divided the ground
water system into three sub-systems and further delineated three 
groundwater geochemistry zones (e.g., a recharge and flow-through 
zone, a cold-water discharge zone, and a thermal-water discharge 
zone) for each subsystem. The Jianghan Plain groundwater dataset of 
Yang et al. (2020) was used in the same manner as the Taiyuan karst 
water dataset, except that the former dataset is substantially more 
complicated than the latter dataset in terms of dimensionality and 
spatial and temporal scales over which the data were collected. The 
Jianghan Plain groundwater dataset can better evaluate t-SNE’s capa
bility of both assisting cluster analysis and spatial zone delineation for 
regional aquifers. 

In this study, HCA, PCA, and t-SNE analyses were applied to the three 
geochemical datasets. HCA was used as the basis for the cluster analysis, 
and PCA and t-SNE were used as graphic means of evaluating the HCA- 
determined number of clusters and cluster memberships. For this pur
pose, t-SNE outperformed PCA for all three datasets because t-SNE 
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provides better visualizations of clustered data. We demonstrated that t- 
SNE is an effective and efficient graphical way to assist cluster analysis 
with respect to determining the number of clusters and cluster mem
berships; it is also a promising tool for delineating spatial zones of 
groundwater geochemistry based on clustering results. However, since t- 
SNE was not designed for cluster analysis, we suggest using t-SNE only as 
a graphical way to assist HCA-based cluster analyses. t-SNE visualization 
strongly depends on a hyperparameter called perplexity that is a priori 
unknowable for real-world problems. 

2. Geochemistry data and statistical methodologies 

2.1. Three geochemical datasets 

The Oslo transect dataset includes 360 samples of nine different plant 
materials collected at 40 sites along a 120-km transect crossing Oslo, 
Norway (Templ et al., 2008). The nine plant materials are terrestrial 
moss (MOS), fern (FER), European mountain ash leaves (ROG), birch 
leaves (BIL), bark (BBA) and wood (BWO) and spruce needles (SNE), 
twigs (TWI), and wood (STW). Details of the samples, element concen
trations of the sample, and quality control of the concentrations are 
available, see Reimann et al. (2007). The dataset used in this analysis 
was downloaded from the R package “rrcov” developed by Todorov 
and Filzmoser (2010), available at https://cran.r-project.org/web/ 
packages/rrcov/index.html (accessed 2/20/2021). The dataset in
cludes concentrations of 24 elements (Ag, As, B, Ba, Ca, Cd, Co, Cr, Cu, 
Fe, Hg, K, La, Mg, Mn, Mo, Ni, P, Pb, S, Sb, Sr, Ti, and Zn) and loss on 
ignition for 350 samples (concentrations of ten samples are missing in 
this dataset). The Oslo transect dataset comprises 350 × 25 = 8,750 
measurements. It is known theoretically that these data can be separated 
into nine clusters, one for each plant materials, because different plants 

uptake nutrients in different ways and variously partition those elements 
between wood, leaves, and bark (Templ et al., 2008). This “logical 
result” of nine clusters makes the dataset suitable as a benchmark to 
evaluate the potential of using t-SNE to evaluate cluster analyses. 

The Taiyuan karst water dataset (Ma et al., 2001) consists of 37 
samples of cold (water temperature < 30℃) and thermal karst 
groundwater from Taiyuan City, China, and the locations of the samples 
are shown in Fig. 1. For each sample, a total of 31 geochemical pa
rameters were analyzed, including 3 physiochemistry variables (tem
perature, pH, and EC), nine major elements (CO3

2−, HCO3
−, F−, Cl−, NO3

−, 
SO4

2−, Ca2+, Mg2+, and Na+), 4 minor elements (K+, Fe, Si, and Sr), and 
15 trace elements (As, Ag, Al, B, Ba, Cd, Co, Cu, Hg, Li, Mn, Mo, Ni, Sb, 
and Zn). Therefore, the dataset has a total of 37 × 31 = 1,147 mea
surements. Based on site-specific information related to structural ge
ology, hydrogeology, and hydrogeochemistry, the karst groundwater 
system was divided into three sub-systems as follows: the Dongshan 
Mountain karst groundwater subsystem (DMK), the Beishan Mountain 
karst groundwater subsystem (BMK), and the Xishan Mountain karst 
groundwater subsystem (XMK). Ma et al. (2011) further grouped sam
ples of DMK into three zones (recharge and flow-through zone, cold- 
water discharge zone, and thermal-water discharge zone), samples of 
BMK into three zones (recharge and flow-through zone, cold-water 
discharge zone at the margin of the mountain, and cold-water 
discharge zone in buried karst zone), and samples from XMK into 
three zones (recharge and flow-through zone, cold-water discharge 
zone, and thermal-water discharge zone). Generally speaking, the 
groundwater geochemistry evolved from the recharge and flow-through 
zone toward the cold-water discharge zones and further to the thermal- 
water discharge zones. In Fig. 1, the samples collected from the DMK, 
BMK, and XMK subsystems are denoted by squares, circles, and tri
angles, respectively. Within each subsystem, the samples in the recharge 

Fig. 1. Taiyuan karst water dataset sampling locations. The green dashed segments are the boundaries between the Dongshan Mountain (DMK), Beishan Maintain 
(BMK), and Xishan Maintain (XMK) karst water subsystems. Squares denote samples collected from DMK, circles from BMK, and triangles from XMK. In each 
subsystem, samples from the recharge and flow-through zone, cold-water discharge zone, and thermal-water discharge zone are indicated with black, blue, and red 
labels, respectively. This figure was modified from Ma et al. (2011). (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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and flow-through zone, cold-water discharge zone, and thermal-water 
discharge zone are highlighted in black, blue, and red colors, respec
tively. The dataset and geochemical analysis of Ma et al. (2011) facili
tate an evaluation of the potential for t-SNE to assist cluster analysis for 
hundreds of groundwater geochemical data and to delineate ground
water geochemical zones at the scale of tens of kilometers. 

The Jianghan Plain groundwater dataset, used in our previous study 
of Yang et al. (2020), includes 1,184 groundwater samples collected 
over 23 years (1992–2014) from 29 monitoring wells drilled into the 
middle-confined aquifer of Jianghan Plain, China (Fig. 2). Each sample 
has 11 geochemical parameters (pH, Ca2+, Mg2+, K+, Na+, Cl−, SO4

2−, 
HCO3

−, NH4
+, F−, and Fe), and the dataset has a total of 1,184 × 11 =

13,024 measurements. Yang et al. (2020) conducted cluster and 
hydrogeochemical analyses for this large dataset, and delineated seven 
clusters and four groundwater geochemical zones of the regional 
aquifer, i.e., recharge (Zone I), transition (Zone II), flow-through (Zone 
III), and discharge-mixing zones (Zone IV) (Fig. 2). This large dataset 
and the four delineated zones enable us to evaluate the effectives of t- 
SNE in assisting cluster analysis for tens of thousands of groundwater 
geochemical data and in delineating groundwater geochemical zones at 
the scale of hundreds of kilometers. 

2.2. Data preprocessing 

Preprocessing geochemical data before conducting cluster analysis is 
always necessary (Templ et al., 2008; Ellefsen et al., 2014). The three 
datasets were pre-processed by: (1) geochemical feature selection, (2) 
substitution of censored data, (3) screening missing values, (4) data 
transformation, and (5) standardization. The first step defines appro
priate parameters for cluster analysis. A geochemical parameter may be 
excluded if one or more of the following conditions is met: (1) the 
parameter is not continuously measured over time, i.e., the parameter 
values are not reported for many sampling campaigns, resulting in a 
large number of missing values, (2) the parameter is closely related to 
other parameters (e.g., alkalinity can be computed by using pH and 
HCO3

− according to Appelo and Postma (2005)), and (3) >40% of 

measurements are censored data that are either “less than” or “greater 
than” a detection limit (Sanford et al., 1993). If censored data exist for a 
selected geochemical parameter, further data preprocessing is required. 
This study used a simple approach to replace the censored values with 3/ 
4 of the detection limit for less-than conditions and 4/3 of the upper 
limit for greater-than conditions (Sanford et al., 1993). For the issue of 
missing values, samples that contain missing values are removed. Af
terward, the natural-log transformation was applied to the datasets, and 
the z-score standardization (subtracting the data mean and dividing the 
residuals by data standard deviation) was applied to the transformed 
data to remove the impacts of data units and scales (Reimann and 
Filzmoser, 2000; Templ et al., 2008). It however should be noted that 
the use of substitution method and log transformation is simple but may 
not be ideal, as they may skew the distribution of the data and hamper 
the statistical analysis (Reimann and Filzmoser, 2000; Sanford et al., 
1993). 

2.3. HCA and PCA statistical analyses 

The HCA and PCA statistical methods are described briefly here, and 
a more thorough description is available in statistical books (e.g., Ren
cher, 2003). HCA with the Ward method (Ward, 1963), as an agglom
erative approach, starts by treating each sample as its own cluster, and 
merges the clusters stepwise to generate larger clusters, ending with one 
cluster containing all samples. At each successive step, clusters are 
merged according to the Ward criterion with the smallest increase of 
Sum of Squared Errors (SSE). For cluster Al with nl observations: 

SSEAl =
∑nl

i=1

⃦
⃦
⃦Oi − O

⃦
⃦
⃦

2
,

where Oi (i = 1, 2 …, nl) is the ith observation in the cluster, O is the mean 
of all observations in the cluster, and ||Oi −O||

2 is the squared Euclidean 
distance between Oi and O. At the beginning of HCA, there are n clusters 
for n samples, and SSE of each cluster is zero. In the next step, all possible 
cluster combinations are considered, and SSE is calculated for each 

Fig. 2. Locations of 29 monitoring wells and 
four geochemical zones in the regional 
aquifer of the Jianghan Plain. The black 
dashed segments are the approximate 
boundaries of the Zones I – IV: the recharge, 
transition, flow-through, and discharge- 
mixing zones, respectively. The background 
shows the spatial distribution of outcrops of 
Holocene, Late Pleistocene, Middle Pleisto
cene, Early Pleistocene, and Pre-Quaternary 
sediments at the land surface. This figure 
was modified from Yang et al. (2020).   
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combination. For the case that clusters A and B are merged into cluster 
C, the SSE changes to: 

ΔSSE = SSEC − SSEA − SSEB.

In the Ward method, the two clusters that yield the smallest ΔSSE are 
merged. The merging continues until only one cluster remains, when the 
variance of clusters is minimized in such a way. The merging history is 
recorded in a dendrogram, whose horizontal axis is for all the samples 
and the vertical axis shows the linkage distances, defined as 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2ΔSSE

√
, 

between the merged clusters. The number of clusters is determined by 
placing the phenon line at a linkage distance, and one needs to carefully 
evaluate whether the number of clusters is appropriate by using various 
approaches, among which PCA is a popular one. 

PCA is a dimension-reduction technique that performs a linear 
mapping of high-dimensional space to a lower-dimensional space, with 
the variance of the low-dimensional data maximized. PCA reduces data 
dimensionality, and allows focusing on a few new combinatorial com
ponents that describe a large portion of the variance in the data 
(Ouyang, 2005). In PCA, the covariance matrix of the high-dimensional 
variables is evaluated, and then the eigenvectors of the covariance 
matrix corresponding to the largest eigenvalues (the principal compo
nents) are used to reconstruct a significant fraction of the variance of the 
high-dimensional data. In the context of using PCA to assist cluster 
analysis, the first two principal components (or any two selected prin
cipal components) can be used to generate a two-dimensional graph to 
visualize the high-dimensional data and to examine whether the 
assigned cluster number is reasonable. Generally speaking, data in one 
cluster should be close to one another, but are maximally separated from 
data in any other clusters on the two-dimensional plot. 

2.4. SNE and t-SNE methods 

The t-SNE algorithm is an improved variation of stochastic neighbor 
embedding (SNE) developed by Hinton and Roweis (2002). The first task 
of SNE is to convert the distance between two points in a high- 
dimensional space to a conditional probability that represents the sim
ilarity of the two points in the high-dimensional space, and then to 
match the conditional probability between two points (data points) in 
the high-dimensional space to the conditional probability between two 
points (map points) in a low-dimensional space. The conditional prob
ability, pj|i, between data points, xi and xj, is the probability that xi would 
pick xj as its neighbor, and pi|i = 0 by definition. The conditional 
probability is defined using a Gaussian kernel: 

pj|i =

exp

(

−
‖xi−xj‖

2

2σ2
i

)

∑
k∕=iexp

(

−
‖xi−xk‖2

2σ2
i

),

where 
⃦
⃦xi − xj

⃦
⃦ is the Euclidean distance between data points xi and xj. 

The variance, σ2
i , of the Gaussian kernel is calculated using a binary 

search such that the entropy, H(Pi) = −
∑

jpj|ilog2pj|i, of the probability 
distribution over all the data points is equal to log2(Perp), where Perp is 
the user-specified perplexity. 

In the low-dimensional space, SNE computes a similar conditional 
probability for map points yi and yj (corresponding to the two data 
points, xi and xj) using another Gaussian kernel with variance equaling 
1/2: 

qj|i =
exp

(
−

⃦
⃦yi − yj

⃦
⃦2

)

∑
i∕=kexp

(
− ‖yi − yk‖

2 ),

and qi|i = 0 by definition. The conditional probabilities, pj|i and qj|i, 
should be equal, if the map points, yi and yj, exactly represent the sim
ilarity between the high-dimensional data points, xi and xj. SNE thus 

arranges map points in the low-dimensional space to minimize the 
discrepancy between pj|i and qj|i measured by the Kullback-Leibler 
divergence considering all data points. The cost function to be mini
mized is: 

C =
∑

i
KL(Pi‖Qi ) =

∑

i

∑

j
pj|ilog

pj|i

qj|i
,

where Pi is the conditional probability distribution of data point xi over 
all other data points, and Qi is the conditional probability distribution of 
map point yi over all other map points. The cost function is minimized 
through various optimization methods such as gradient descent. 

SNE was further developed into t-SNE by van der Maaten and Hinton 
(2008) with two major improvements. One was to use a symmetric 
version of SNE to estimate pairwise similarities in the both high- and 
low-dimensional spaces. For data points xi and xj, t-SNE introduces: 

pij =
pj|i + pi|j

2n
,

as the probability that xi would pick xj as its neighbor such that pij =

pji (the symmetric property), where n is the number of data points. The 
other improvement was to use a Student’s t-distribution rather than a 
Gaussian kernel to compute the similarity between map points, so that 
the map points are more scattered in low-dimensional space. Strictly 
speaking, for map points yi and yj in low-dimensional space, t-SNE uses a 
heavy tailed t-distribution with one degree of freedom to compute: 

qij =

(
1 +

⃦
⃦yi − yj

⃦
⃦2

)−1

∑
k∕=l

(
1 + ‖yk − yl‖

2 )−1,

which is the probability that yi would pick yj as its neighbor. Again, 
qij = qji as a symmetric property. Correspondingly, the cost function 
becomes: 

C = KL(P‖Q ) =
∑

i

∑

j
pijlog

pij

qij
,

where P and Q are the joint probability distributions in high- and low- 
dimensional spaces, respectively. 

Perplexity is the most important hyperparameter in the t-SNE 
method (there are other important hyperparameters such as learning 
rate and number of iterations used in gradient descent optimization). A 
small perplexity corresponds to a small σ2

i used in Eq. (3), which results 
in selecting a data pair, xi and xj, with small distance. A large perplexity 
corresponds to a large σ2

i , which can pair data at large distances. In the 
extreme case of Perp = +∞, xi would pick any point as its neighbor with 
the equal possibility of 1/(n − 1), with n being the number of data 
points. A commonly used perplexity is 30, and a typical range is 5–50. 
van der Maaten and Hinton (2008) argued that “performance of SNE is 
fairly robust to changes in the perplexity.” This study explored the effects of 
perplexity on t-SNE performance for the three geochemical datasets, and 
found that a smaller perplexity should be used for small sample sizes. 

With unknown perplexity values, t-SNE was used in this study as a 
visualization tool to assist HCA, and this is empirically described below: 

Step 1: Conduct HCA to determine the number of clusters and cluster 
memberships based on the best understanding of the problem of 
interest and/or appropriate statistical methods. 
Step 2: Assign different colors to different clusters (e.g., red for 
cluster 1 and blue for cluster 2); the colors will be used in Step 4 
below. 
Step 3: Conduct t-SNE with different perplexity values. The t-SNE 
runs are independent of the HCA in Step 1. 
Step 4: For each perplexity value, plot the samples in a two- 
dimensional t-SNE space with samples highlighted in the colors 
determined in Step 1. For example, if a sample belongs to cluster 1, it 
will be plotted in red. 
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Step 5: Examine the spatial patterns of the colored samples in the t- 
SNE plots to determine which perplexity value yields the best results 
according to the following two criteria: (a) whether samples of the 
same cluster are close to each other, and (b) whether the samples of 
different clusters are maximally separated. 
Step 6: If the visual examination in Step 5 yields satisfactory results 
for one perplexity value (likely for multiple perplexity values), it 
confirms that the cluster number and membership determined in 
Step 1 are reasonable. Otherwise, it is necessary to adjust the cluster 
number and memberships in Step 1 and to repeat Steps 2, 4, and 5. 
There is no need to repeat the t-SNE runs in Step 3. 

This procedure indicates that t-SNE is not use as a stand-alone al
gorithm for cluster analysis but as a visualization tool to assist cluster 
analysis for determining the number of clusters and cluster 
memberships. 

All the statistical analyses were performed using Python 3.7, and 
HCA, PCA, and t-SNE were implemented using the Python libraries 
Scikit-Learn (Pedregosa et al., 2011, https://scikit-learn.org/stable/i 
ndex.html) and SciPy (Jones et al., 2001, https://www.scipy.org/). 
The codes and the datasets used in this study are available at https://gith 
ub.com/jyangfsu/geochemical-t-SNE. 

3. Results and discussion 

3.1. Cluster analysis for Oslo transect dataset 

Because it is known theoretically that the Oslo transect dataset 
should be separated into nine clusters (one for each plant material), this 
information was used to evaluate the potential of using t-SNE to assist 
cluster analysis. Delineation of spatial zones of geochemistry was not 

attempted for this dataset, because the sampling sites were along a 
transect and the nine samples corresponding to nine plant materials 
were collected from the same sites. Given that data preprocessing was 
completed by Reimann et al. (2007) and Todorov and Filzmoser (2010), 
the dataset used by Todorov and Filzmoser (2010) was used directly in 
this study. 

Fig. 3(a) illustrates the two-dimensional t-SNE visualization of the 
Oslo transect dataset with Perp = 20, which yields the best visualization. 
The t-SNE plot shows that the nine plant material clusters are distinct 
and without overlap. This separation is consistent with the HCA results. 
Fig. 3(c) plots the dendrogram of the HCA using the Ward method with 
Euclidian distance. Placing the phenon line at a linkage distance of 18 
results in nine clusters corresponding almost completely to the nine 
plant materials, indicating that t-SNE provides a graphic way to evaluate 
validity of clusters. PCA does not yield such a consistent graphic vali
dation as shown in Fig. 3(b), which is the two-dimensional PCA visu
alization using the same color scheme of Fig. 3(a). Fig. 3(b) shows 
substantial overlaps between the clusters, indicating that PCA is not as 
adept as t-SNE for graphically validating the nine HCA-based clusters. 

It is noted that, while HCA misclassified one sample (with an index of 
X.ID = 134 in the Oslo transect dataset) of ROG into the FER cluster 
(Fig. 3(c)), this did not occur to t-SNE. Because discrepancy between t- 
SNE and HCA results is not uncommon, it is worth analyzing the reasons. 
Fig. 4(a) plots the HCA dendrogram for clusters ROG (C5) and FER (C6). 
Cluster ROG is further separated into two clusters, B1 and B2, and FER 
into four clusters B3 – B6. The misclassified sample (X.ID = 134) of ROG 
is denoted as cluster A. In HCA, cluster A was merged with cluster B4, not 
with B1 or B2. As explained in Section 2.3, HCA initially treats each 
sample as an individual cluster, and proceeds to merge the two closest 
clusters until only a single cluster remains. If cluster A is merged with 
cluster B1 or B2, the increase in SSE is 7.17 or 6.06, larger than the 

Fig. 3. Two-dimensional (a) t-SNE and (b) PCA visualizations of the Oslo transect dataset and (c) the HCA dendrogram using the Ward method with Euclidian 
distance. Each dot in the PCA and t-SNE visualizations represents one sample. Dot colors correspond to those used for the HCA clusters. 
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increase of 5.35 upon merging clusters A and B4. As a result, the sample 
(X.ID = 134) of ROG was assigned to cluster FER because of the smaller 
increase in SSE. This is consistent with HCA theory because SSE does not 
consider distances between samples, instead SSE considers distances 
between the sample and centers of other clusters. This differs from t- 
SNE, which is based on distance between paired data points or map 
points. Fig. 4(b) shows the probability of sample X.ID = 134 picking 
another sample in clusters B1 – B6 as its neighbor according to Eq. (6). 
The probability is substantially higher for samples in cluster B2 of ROG, 
which explains why sample X.ID = 134 was assigned to ROG by t-SNE 
(Fig. 3a). Because t-SNE and HCA are based on different theories, it is not 
surprising that the two methods yield different results for certain sam
ples. Although the nine groups of samples shown in the t-SNE visuali
zation fully agree with the theoretically known number of sample 
groups and group memberships, it should be noted that t-SNE alone 
cannot be used for cluster analysis, because the visualizations strongly 
depend on perplexity (see Section 4). Because both perplexity and the 
number of clusters are unknown in practice (the Oslo transect dataset is 
a special case with known number of clusters), we only recommend 
using t-SNE in conjunction with HCA. 

Because the theoretical number of clusters is known for the Oslo 
transect dataset, it is an opportunity to evaluate the effects of alternative 
transformations. We applied the Box-Cox transformation as an alterna
tive to the log transformation to the 24 elements and the loss on ignition 
of the Oslo transect dataset. The histograms of the log-transformed data 
are plotted in Fig. S1, and the histograms of the Box-Cox-transformed 
data are plotted in Fig. S2 in the supplementary information file. The 
Box-Cox transformation was conducted by using the box-cox function of 
SciPy, and the resulted λ values are shown in Fig. S2. The Lilliefors test 
was used to examine normality of the transformed data (Lilliefors, 
1967), and the p values are shown in Figs. S1 and S2. The results of the 
Lilliefors test show that neither of the two transformations yield data 
following normal distributions, although the results of the Box-Cox 
transformation are slightly closer to the normal distribution than the 
results of the log transformation. PCA analysis was applied to the log- 

transformed and Box-Cox-transformed data, and the results are plotted 
in Fig. S3. The similar visualization patterns in this figure indicate that 
the two transformations have negligible effects on the PCA results. The 
HCA and t-SNE were also applied to the Box-Cox-transformed data, and 
the results are plotted in Fig. S4. The figure shows that the performance 
of the Box-Cox transformation is worse than that of the log trans
formation, in that there are more samples misclassified as shown in 
Fig. S4(a) for the Box-Cox-transformed data. 

We also evaluated other statistical methods that have been used to 
assist cluster analysis for determining the appropriate number of clus
ters. They are the Elbow, Silhouette, and Gap statistic methods, and a 
description of the methods is given in Text S1 of the supplementary 
information file. The results of the three methods are shown in Fig. 5. 
While the Elbow and Silhouette methods indicated that optimal cluster 
number was 2, the Gap statistic values monotonically increased and the 
optimal number of clusters was 16 by using the rule of one-standard- 
error. It was surprising that all three methods failed to yield the cor
rect number of clusters. This is also the case for the Taiyuan Karst water 
dataset and the Jianghan Plain groundwater dataset. The results for 
these two datasets are shown in Figs. S5 and S6. Exploring the reasons is 
beyond the scope of this study, but it is warranted in future studies. 

3.2. Cluster analysis and spatial zone delineation for Taiyuan karst water 
dataset 

The Taiyuan karst water dataset was subject to a t-SNE analysis to 
support HCA clustering results and to delineate spatial zones of 
groundwater geochemistry. The results of Ma et al. (2011) were used a 
reference for the evaluation. By following the preprocessing procedure 
described in Section 2.2, parameter CO3

2− was excluded from the dataset, 
because all its measurements were less than the detection limit. In 
addition, ten samples were removed because of missing measurements. 
Ultimately, fourteen samples in XMK, seven in BMK, and six in DMK 
were used in this study. Due to the small sample size for the BMK and 
DMK subsystems, only the results of XMK are presented and discussed 

Fig. 4. (a) HCA dendrogram of Clusters C5 (ROG) and C6 (FER), which is part of the dendrogram of Fig. 3(c), and (b) joint probability that the sample (X.ID = 134) 
would pick another sample as its neighbor according to Equation (6). The x-axis of (b) is the index of the samples of Clusters C5 and C6. 

H. Liu et al.                                                                                                                                                                                                                                      



Journal of Hydrology 597 (2021) 126146

8

below. The results of HCA, PCA, and t-SNE for BMK and DMK data are 
shown in Fig. S7 of the supplementary information file. 

Fig. 6(a) is the two-dimensional t-SNE visualization (using Perp =

0.1) of the 14 geochemical samples collected from the XMK sub-system. 
The three clusters shown in Fig. 6(a) correspond exactly to the three 
clusters shown in Fig. 6(c) by placing the phenon line at a linkage dis
tance of 11. Comparing the t-SNE visualization to the PCA visualization 
shown in Fig. 6(b) revealed that t-SNE outperformed PCA when graph
ically validating the clustering results. For the samples collected from 
the XML sub-system (denoted by triangles in Fig. 1), the three clusters 
shown in Fig. 6(a) for t-SNE visualization agreed with the three 
groundwater geochemistry zones identified by Ma et al. (2011) and 
shown in Fig. 1. To facilitate a visual comparison, the three clusters and 
the three spatial zones were distinguished using the same color scheme, 
i.e., black for the recharge and flow-through zone, blue for the cold- 
water discharge zone, and red for the thermal-water discharge zone. 
The only disagreement between the clusters and the spatial zones was 
for sample RN32. Because the sample’s temperature was 30◦C, it should 
have belonged to the thermal-water discharge zone (Fig. 1). However, 
both HCA and t-SNE misclassified the sample into the cold-water 
discharge zone, because the sample’s SO4

2− concentration is 172 mg/L, 
about one order of magnitude less than the concentrations of other 
samples in the thermal-water discharge zone but about the same order of 
magnitude as the concentrations of the samples in the cold-water 
discharge zone. 

3.3. Cluster analysis and spatial zone delineation for Jianghan Plain 
groundwater dataset 

The Jianghan Plain groundwater dataset has 1,184 samples collected 
over 23 years (1992–2014) from 29 monitoring wells distributed 
throughout a regional aquifer at the scale of hundreds of kilometers. The 
13,024 geochemical measurements pre-processed by Yang et al. (2020) 
were used in this study. Fig. 7(a) shows that, by drawing the phenon line 
at a linkage distance of 25, the 1,184 samples were grouped into seven 
clusters, denoted as C1–C7. Fig. 7(b) is the two-dimensional PCA visu
alization of the seven clusters. While the seven clusters were generally 
separated, there were substantial overlaps, especially for C5–C7. The 
overlaps were substantially decreased in the two-dimensional t-SNE 
visualization shown in Fig. 7(c). For example, the dots of C5–C7 were 
mostly separated, demonstrating that t-SNE outperformed PCA. 

Fig. 7(c) shows that t-SNE divided C4 and C7 each into two sub- 
clusters. The same results were obtained by moving the phenon line 
down from the linkage distance of 24 (Fig. 7(a)) to that of 22 (Fig. 7(d)). 
The two sub-clusters of C4 were denoted as C4S1 and C4S2 and the two 
sub-cluster of C7 as C7S1 and C7S2. Fig. 7(e) and 7(f) are the corre
sponding PCA and t-SNE visualizations, respectively, for the nine clus
ters. The overlap shown in Fig. 7(b) is also observed in Fig. 7(e). 
Comparing the PCA-based visualization and the t-SNE-based visualiza
tion indicates that t-SNE was a better visualization tool for the reduced 
dimensions. 

The investigation on whether it is reasonable to have seven or nine 
clusters started with C7S1 and C7S2. Of the 50 samples comprising 

Fig. 5. Results of the Elbow method, Silhouette coefficient analysis, and Gap statistic method for determining the optimal number of clusters for the Oslo transect 
dataset. The vertical dashed line denotes the nine plant materials of Templ et al. (2008). 

Fig. 6. (a) Two-dimensional t-SNE visualization of the geochemical data of the XMK sub-system of the Taiyuan karst water dataset, (b) two-dimensional PCA 
visualization of the geochemical data, and (c) HCA dendrogram using the Ward method with Euclidian distance. Each triangle in the PCA and t-SNE visualizations 
represents one sample. The colors correspond to those used in Fig. 1, i.e., black for the recharge and flow-through zones, blue for the cold-water discharge zone, and 
red for the thermal-water discharge zone identified by Ma et al. (2011). (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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C7S1, 39 were from well J1 (Fig. S8(a)); of the 33 samples in C7S2, 31 
were from well J8 (Fig. S8(b)). As shown in Fig. 2, well J1 was located in 
the recharge zone (Zone I) with limited water–rock interaction, while 
well J8 was located in the transition zone (Zone II). It appears reason
able to separate the data from the two wells into two clusters based on 
their locations. This was also supported by examining the groundwater 
geochemistry of the two clusters. The box plots of 11 groundwater 
geochemical parameters in Fig. 8(a) indicate that the concentrations of 
K+, NH4

+, and Fe were substantially lower in C7S1 than in C7S2, and that 
the concentrations of Mg2+, Na+, Cl−, and HCO3

− were substantially 
higher in C7S1 than in C7S2. The differences between the two clusters 
may justify separation of C7 into C7S1 and C7S2. Part of the difference 
may be explained by the impacts of the Yangtz River on the groundwater 
samples in C7S2 wherein 31 out of 33 samples were from well J8, which 
was only 200 m from the river. Yang et al. (2020) found that river water 
recharged groundwater in the area where well J8 was located, and Li 
et al. (2014) reported that the mean concentrations of Ca2+, Mg2+, and 
HCO3

− of the river water were 37.16, 6.77, and 126.89 mg/L, respec
tively, which were lower than the groundwater concentrations. 
Groundwater geochemistry of well J8 reflected the mixing of river water 
and groundwater, and this may explain why the concentrations of Ca2+, 
Mg2+, and HCO3

− were substantially lower in C7S2 than in C7S1. Sep
aration of C7 into C7S1 and C7S2 inspired by the t-SNE visualization 
helped better understand groundwater geochemistry subject to 
groundwater and surface water interactions. 

The geochemical reasons that C4 was separated into C4S1 and C4S2 
were not fully understood. Yang et al. (2020) found that C4 had high 
SO4

2− concentrations caused by anthropogenic activities, and this was 
true for both C4S1 and C4S2, as shown in Fig. 8(b). However, the 62 
samples of C4S1 were from 16 wells (Fig. S8(c)), while the 57 samples of 
C4S2 were from only nine wells with 40 out of the 57 samples from well 

J9 (Fig. S8(d)). As a result, the concentration ranges of the geochemical 
parameters (except pH, NH4

+, and Fe) were larger in C4S1 than in C4S2, 
as shown in Fig. 8(b). This finding however was not useful for better 
understanding groundwater geochemistry in the Jianghan Plain aquifer. 

t-SNE visualization is a promising tool for delineating spatial zones of 
groundwater geochemistry at the regional scale. The two-dimensional t- 
SNE visualization of Fig. 7(f) shows three zones, denoted as A, B, and C, 
that correspond to Zones I – IV delineated by Yang et al. (2020) and 
shown in Fig. 2. Zone A of cluster C7S2 corresponds to Zone I, the 
recharge zone. Zone B of clusters C5, C6, and C7S1 corresponds to Zone 
II, the transition zone. Zone C of clusters C1 and C2 corresponds to Zones 
III and IV, the flow-through zone and discharge-mixing zone, respec
tively. Zones III and IV were separated by Yang et al. (2020) to reflect the 
impacts of the Three Gorges Dam on the groundwater geochemistry 
observed at well J21. This separation was supported by the t-SNE 
visualization because clusters C1 and C2 were broadly separated. 
Although Yang et al. (2020) delineated the four zones of groundwater 
geochemistry without using t-SNE visualization, the delineation would 
have been more obvious if t-SNE visualization had been used. For 
example, Yang et al. (2020) first determined the clusters that the ma
jority of the samples belonged to, and then mapped the locations of the 
wells and their corresponding clusters, based on which zone delineation 
was made. The two steps could be simplified into a single step by 
examining the zone patterns revealed by the t-SNE visualization. 

In Fig. 7(f), the samples from C3, C4S1, and C4S2 were not used for 
zone delineation because they were impacted by anthropogenic actives. 
For example, the samples in C3 were from well J10 located at one of the 
largest pesticide factories in China, and the samples were characterized 
by extremely high concentrations of Na+ and Cl− due to wastewater 
infiltration from the factory to the aquifer. Of the 62 samples in C4S1, 15 
were from well J25 located in a water-supply plant while 10 samples 

Fig. 7. (a) HCA dendrogram using the Ward method with Euclidian distance with a phenon line location at a linkage distance of 25, which yielded seven clusters, (b) 
two-dimensional PCA visualization of the seven clusters, and (c) two-dimensional t-SNE visualization of the seven clusters. (d)−(f) are equivalent to (a)−(c), 
respectively, except that there were nine clusters with the phenon line at 22. Each point in the PCA and t-SNE visualizations represents one sample. 
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were from well J8 about 300 m away from a cotton mill (Fig. S2(c)). Of 
the 57 samples in C4S2, 40 were from well J9 located near another 
cotton mill (Fig. S2(d)). It is interesting that the impacts of anthropo
genic activities on groundwater quality are unambiguously revealed on 
the t-SNE visualization. 

4. Discussion 

4.1. Running t-SNE with different perplexity values 

Using different perplexity values can substantially change the t-SNE 
visualization patterns (Wattenberget al., 2016). In the original t-SNE 
paper, van der Maaten and Hinton (2008) used five datasets to compare 
the performance of t-SNE, and the size of the datasets ranged from 400 to 
10,000. They stated that “the performance of SNE is fairly robust to changes 
in the perplexity, and typical values are between 5 and 50”. Our literature 
review indicates that 30 and 50 are two commonly used perplexity 
values for datasets with hundreds to thousands of samples (Table 1). To 
explore the impacts of perplexity on clustering analyses of groundwater 
geochemistry, t-SNE was conducted with different perplexity values for 
all three datasets. Fig. 9 illustrates results from the Jianghan Plain 
groundwater dataset while the results from the Oslo transect and 
Taiyuan karst water datasets are shown in Figs. S9 and S10, respectively, 
in the supplementary information file. 

van der Maaten and Hinton (2008) reported stable t-SNE results for 5 
< Perp < 50. This was true for the Oslo transect dataset with 350 samples 
as well as for the Jianghan Plain groundwater data with 1,184 samples. 
Fig. 9 shows that with the perplexity values in the range from 20 to 50, 
similar patterns were observed in the t-SNE visualizations. For Perp <
10, local variations within each cluster dominated, and too many clus
ters were returned. For Perp > 300, the samples could not be separated 
into distinct clusters. Because perplexity is a priori unknown for most 
real-world problems, it must be determined in conjunction with HCA. A 
small perplexity value should be assigned when sample size is small. For 
the 14 samples of XMK in the Taiyuan karst water dataset, as shown in 
Fig. S4, Perp < 1 yielded three groups; for Perp > 1, the three groups 
started mixing into one. Based on our experience of applying t-SNE to 

Fig. 8. Box plots for the concentrations of the 11 parameters of the two sub-Clusters (a) C7S1 and C7S2 and (b) C4S1 and C4S2. The units of all geochemical 
parameters (except pH) are mg/L. 

Table 1 
Sample size and perplexity values used in the literature.   

Sample size Perplexity 

Balamurali and Melkumyan (2016) 239 and 14,906 30 
Aizarani et al. (2019) 10,372 Not mentioned 
Roche et al. (2018) 2,016 Not mentioned 
Pouyet et al. (2018) Not mentioned 50 
Balamurali et al. (2019) 66,344 30 
Horrocks et al. (2019) 16,165 30 
Mazher (2020) 5,688 Not mentioned  
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Fig. 9. t-SNE visualization of the Jianghan Plain groundwater dataset with various perplexities. Dot colors correspond to those used for the nine HCA clusters shown 
in Fig. 5(d). 

Fig. 10. (a) Three-dimensional t-SNE visualization of the Oslo transect dataset and (b) convergence of the Kullback-Leibler divergence for the two-dimensional (2D) 
mapping and three-dimensional (3D) mapping. The convergence line of the 2D mapping was extended for a visual comparison with the converge of the 3D mapping. 
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the three datasets, rather than using the range of 5 < Perp < 50, the 
range should be n/200 < Perp < n/10, where n is number of samples. 

4.2. Three-dimensional t-SNE visualization 

t-SNE can map high dimensional data to any number (e.g., two or 
three) of lower dimensions, and a three-dimensional t-SNE visualization 
may be more useful than a two-dimensional t-SNE visualization for 
visually determining the number of clusters and cluster memberships. 
We explored this for the Oslo transect dataset, for which the theoretical 
number of clusters and cluster memberships are known. Fig. 10(a) shows 
the three-dimensional t-SNE visualization based on a perplexity value of 
20 that was used to generate the two-dimensional t-SNE visualization 
shown in Fig. 3(a). Although cluster overlaps are observed in Fig. 10(a), 
these were simply caused by plotting the three-dimensional figure on a 
two-dimensional paper. Rotating the three-dimensional figure shows 
that the nine clusters for the nine plant materials were well separated in 
the three-dimensional t-SNE visualization. 

In comparison with the two-dimensional visualization shown in 
Fig. 3(a), the three-dimensional visualization in Fig. 10(a) does not add 
value to cluster analysis, because the nine clusters were equally well 
separated in the two figures (after rotating the three-dimensional 
figure). This can be explained by examining the Kullback-Leibler 
divergence, the cost function (Eq. 8) minimized during a t-SNE run. 
The Kullback-Leibler divergence measures discrepancy between the 
joint probability distributions P and Q in high- and low-dimensional 
spaces, respectively. A smaller value of the Kullback-Leibler diver
gence indicates that P and Q are closer to each other. Fig. 10(b) shows 
convergence of the Kullback-Leibler divergence for generating the two- 
and three-dimensional t-SNE visualizations of the Oslo transect dataset. 
The figure shows that the Kullback-Leibler divergence converged to a 
similar value, but the two-dimensional t-SNE run converged substan
tially faster than the three-dimensional t-SNE run. This case study for the 
Oslo transect dataset suggested that it was unnecessary to generate the 
three-dimensional t-SNE visualization. It was also the case for the other 
two datasets considered in this study, because their corresponding two- 
dimensional t-SNE visualizations sufficiently separated the HCA clus
ters. Three-dimensional (or higher) t-SNE visualizations may be useful 
when two-dimensional t-SNE visualizations cannot separate HCA clus
ters, and the Kullback-Leibler divergence may be an indicator for when 
three-dimensional t-SNE visualizations are needed. 

5. Conclusions 

This study for the first time applied t-SNE as a graphic approach to 
assist HCA cluster analysis and delineation of spatial zones of ground
water geochemistry based on clustering results. The application of HCA, 
PCA, and t-SNE to the three geochemical datasets leads to the following 
major conclusions:  

(1) In comparison with PCA, t-SNE was a better graphical way to 
assist HCA cluster analysis with respect to determining the 
number of clusters and cluster memberships. The t-SNE visuali
zation outperformed the PCA visualization to separate the clus
ters determined by HCA.  

(2) In comparison with the conventional way of delineating spatial 
zones based on clustering results, t-SNE is a promising tool for 
effectively and efficiently delineating spatial zones of ground
water geochemistry, because t-SNE maintains pair-wise distances 
and structures in the high-dimensional data space to the extent 
possible in the low-dimensional t-SNE space.  

(3) HCA clustering results may differ from t-SNE grouping results, 
because the two methods are based on different theories. It is 
recommended to use t-SNE as a graphic way to support HCA 
cluster analysis, not to use t-SNE alone for cluster analysis, 

because t-SNE visualization depends substantially on perplexity 
that is unknown for real-world problems. 

(4) Although t-SNE developers recommended constraining perplex
ity to within 5 – 50, a substantially smaller perplexity (i.e., <1) 
was appropriate for this small geochemical dataset with only tens 
of samples. Based on our experience, we suggest setting per
plexity within the range of n/200 – n/10, where n is number of 
samples. 

t-SNE cannot be used as a standalone algorithm for cluster analysis, 
and can only be used as a graphic approach to assist clustering methods 
such as HCA and k-means. There remains room to improve t-SNE for 
general applications. For example, measures other than Euclidian dis
tance or kernels other than Gaussian could be used to estimate simi
larities between geochemical samples. These are warranted in a future 
study. 
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