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ABSTRACT

Cluster analysis is a valuable tool for understanding spatial and temporal patterns (e.g., spatial zones) of
groundwater geochemistry. To determine cluster numbers and cluster memberships that are unknown in real-
world problems, a number of methods have been used to assist cluster analysis, among which graphic ap-
proaches are popular and intuitive. This study introduced, for the first time, the t-distributed Stochastic Neighbor
Embedding (t-SNE) method as a graphic approach to assist cluster analysis for groundwater geochemistry data.
The hierarchical cluster analysis (HCA) was applied to original groundwater geochemistry data, and t-SNE was
used to help determine the number of cluster and cluster memberships. Afterward, t-SNE was used to help
delineate spatial zones of groundwater geochemistry. The t-SNE-based cluster visualization was compared to the
visualization based on principal component analysis (PCA). By applying HCA, PCA, and t-SNE to three
geochemical datasets (Oslo transect, Taiyuan karst water, and Jianghan Plain groundwater datasets, which are
characterized by different number of samples and features collected across different space and time scales), we
found that t-SNE outperformed PCA to assist HCA as a promising tool for helping determine the number of HCA
clusters and delineate spatial zones of groundwater geochemistry. It should be noted that t-SNE alone cannot be
used for cluster analyses, partly because t-SNE visualization depends on a hyperparameter called perplexity that
is a priori unknown for real-world problems. The perplexity values used in this study were determined empiri-
cally, and a small value of 0.1 was used for the Taiyuan karst water dataset with 14 samples. For the other two
datasets with hundreds of samples, the corresponding perplexity values were 20 and 30, within the range of 5 —
50 commonly used in t-SNE.

1. Introduction

1999, 2009). Discovering spatio-temporal patterns and further delin-
eating spatial zones of groundwater geochemistry is a primary goal of

Groundwater resources may be effectively and efficiently protected if
spatial and temporal patterns of groundwater geochemistry are under-
stood, especially in light of variable future conditions that will change
according to climate, population expansion, and decreasing freshwater
availability (Cloutier et al., 2008; Fendorf et al., 2010; Gorelick and
Zheng, 2015; Green et al., 2011; Zhu et al., 2020). Groundwater
geochemistry is affected by both natural processes and anthropogenic
activities with broad variability in space and time especially at the
regional scale (Giiler and Thyne, 2004b; Haile and Fryar, 2017; Toth,
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hydrogeochemical studies (Giiler et al., 2012; Nguyen et al., 2015; Yang
etal., 2020). This goal is complicated because groundwater geochemical
datasets are multivariate in nature; one groundwater sample has mul-
tiple physical, chemical, and biological features while multiple samples
are collected at various locations and times. To understand the spatio-
temporal patterns embedded in a groundwater geochemistry dataset,
cluster analyses have been used to separate the dataset into a number of
clusters, each of which has similar groundwater geochemistry that re-
flects the controlling processes of groundwater quality (Gan et al., 2018;
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Giiler and Thyne, 2004a,b; Pacheco Castro et al., 2018; Pant et al., 2018;
Templ et al., 2008). Cluster analysis addresses two fundamental ques-
tions: (1) how many clusters are appropriate (i.e., cluster numbers)? and
(2) how are individual groundwater samples assigned to a cluster (i.e.,
cluster memberships)? Because neither the number of clusters nor
cluster memberships are known a priori, cluster analyses must be eval-
uated. Evaluation can be as simple as mapping the locations of clusters
or by applying statistical techniques such as principal component
analysis (PCA). For the convenience of visualizing PCA results in two-
dimensional graphs, high-dimensional geochemical data are always
projected onto two principal components (e.g., PC1 vs. PC2 where PC
standing for principal component). It has been found that PCA plots are
not always successful at distinguishing clustered data, and overlaps
between clusters are constantly observed, making clear interpretation
challenging. In the review article by Templ et al. (2008) wherein cluster
analysis was applied to regional geochemical data, a question arose: “Is
there a graphical way to evaluate the stability or validity of clusters?” This
study was motivated to answer this question.

This study introduced the t-distributed Stochastic Neighbor Embed-
ding (t-SNE) method as a new graphical technique to support cluster
analysis. The t-SNE method, developed by van der Maaten and Hinton
(2008), is a state-of-the-art machine learning technique for dimension-
ality reduction to visualize high-dimensional data. The method has been
used in many research fields, such as gene expression (Aizarani et al.,
2019; Dobie et al., 2019; Kobak and Berens, 2019), tumor classification
(Abdelmoula et al., 2016; Roche et al., 2018), hyperspectral imaging
analysis (Melit Devassy and George, 2020; Pouyet et al., 2018), and fault
diagnosis (Zheng et al., 2018; Zheng and Zhao, 2020). Recently, there
have been several studies using t-SNE for visualization of geochemical
and hydrological data. Balamurali and Melkumyan (2016) used t-SNE
for dimension reduction, and found that t-SNE outperformed other
dimension reduction methods (e.g., PCA, kernel PCA, and locally linear
embedding) for visualizing patterns of shape/trend embedded in large
geological assay datasets. Balamurali et al. (2019) further applied
different clustering algorithms to reduced dimensions produced by t-
SNE, such as self-organizing map and spanning-tree progression analysis
of density-normalized events. Leung et al. (2019) conducted a similar
research to apply the spectral clustering algorithm to t-SNE-reduced
dimensions, and they further linked clustering results to a consensus
matrix obtained from multiple t-SNE runs and spectral clustering clas-
sifications for detecting outliers in a geochemical dataset. Horrocks et al.
(2019) used random forest methods to select 11 out of 31 elements for
separating unaltered and altered host rock specimens, and then used t-
SNE to validate the selection of the 11 elements. Mazher (2020) applied
t-SNE to a large dataset generated by a hydrologic model that produces 9
variables over 273 time steps. The high dimensions of 2,457 = 9 x 273
was reduced to two dimensions using four methodes, i.e., PCA, generative
topographic mapping, t-SNE, and uniform manifold approximation and
projection. Mazher (2020) concluded that the latter two methods out-
performed the former two methods for visualizing spatial patterns of the
modeling results. To the best of our knowledge, t-SNE has not been used
to assist cluster analysis for groundwater geochemistry data.

This study tackled the following two questions that have not been
attempted by the groundwater hydrology community:

(1) Can t-SNE be used as a graphical method to assist cluster analyses
with respect to determining the number of clusters?

(2) Can t-SNE be used as a tool to delineate spatial zones of
groundwater geochemistry based on clustering results?

In response to the first question, we used ¢-SNE in conjunction with
hierarchical cluster analyses (HCA). In HCA, one way to determine the
number of clusters is to subjectively place the so-called phenon line at a
linkage distance, which is discussed in Section 2. Adjusting the phenon
line upward or downward changes the number of clusters. Determining
the appropriate number of clusters requires additional lines of evidence
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such as geochemical analysis using Piper or Stiff plots (Appelo and
Postma, 2005; Yang et al., 2020). The appropriate number of clusters
can also be determined by using various statistical methods, and the
Elbow method, average Silhouette method, and the Gap statistic method
(Kassambara, 2017) explored in this study. This study focused on the
PCA method, which produces two-dimensional visualization of the
clustered data. PCA visualizations, however, are often not ideal, because
data of one cluster may significantly overlap data of another cluster. In
this work, we illustrated that t-SNE outperformed PCA when visualizing
clustered geochemical data in the two-dimensional t-SNE visualization.

To answer the second question about delineating spatial zones of
groundwater geochemistry based on clustering results, the conventional
approach is to first plot cluster data on a map and then examine the
resulting spatial distribution of the clusters to determine spatial zones
while considering the geological, hydrogeological, and geochemical
information relevant to the site of interest. A drawback of this approach
is that, when a series of samples are collected over time at a sampling
location, it is impossible to plot the data series on the map, and one has
to either incorporate the statistics of the data or discard certain data
samples. For example, in the study of Yang et al. (2020), because
groundwater samples collected at one well belonged to different clusters
in different years, the clusters of the majority samples were used to
delineate spatial zones. This problem is intrinsically resolved when
using t-SNE, because it reduces high dimensional data to low dimensions
and can use all data for delineating spatial zones (without discarding any
data). An example of doing so was given by Mazher (2020), who used t-
SNE to visualize a dataset comprising nine variables simulated at 273
time steps on a two-dimensional plot. More importantly, when ¢t-SNE
visualizes high-dimensional data on a reduced set of dimensions, pair-
wise distances and structures in the high-dimensional data space are
maintained to the extent possible in the low-dimensional t-SNE space.
Therefore, t-SNE, by default, is suitable for delineating spatial zones of
groundwater geochemistry, a feature that has not received adequate
attention.

To explore the two questions discussed above, t-SNE was applied to
three geochemical datasets (the Oslo transect, the Taiyuan karst water,
and the Jianghan Plain groundwater datasets) with different sample
sizes and dimensions (i.e., the number of geochemical features). The
Oslo transect dataset included geochemical data of nine plant materials
(e.g., different species or leaves, wood, bark of birch and spruce)
collected at 40 sites (Reimann et al., 2007). Because it is theoretically
known that the dataset can be divided into nine clusters (each for one
plant material), this dataset was used to benchmark t-SNE’s capability of
assisting HCA. It should be noted that this dataset is not suitable for
spatial zone delineation, because the sampling sites were along a tran-
sect and the nine samples corresponding to nine plant materials were
collected from the same sites. The Taiyuan karst water dataset of Ma
etal. (2011) was used not only to assist HCA but also to evaluate t-SNE’s
ability to delineate spatial zones of groundwater geochemistry. The
evaluation was possible because Ma et al. (2011) divided the ground-
water system into three sub-systems and further delineated three
groundwater geochemistry zones (e.g., a recharge and flow-through
zone, a cold-water discharge zone, and a thermal-water discharge
zone) for each subsystem. The Jianghan Plain groundwater dataset of
Yang et al. (2020) was used in the same manner as the Taiyuan karst
water dataset, except that the former dataset is substantially more
complicated than the latter dataset in terms of dimensionality and
spatial and temporal scales over which the data were collected. The
Jianghan Plain groundwater dataset can better evaluate t-SNE’s capa-
bility of both assisting cluster analysis and spatial zone delineation for
regional aquifers.

In this study, HCA, PCA, and t-SNE analyses were applied to the three
geochemical datasets. HCA was used as the basis for the cluster analysis,
and PCA and t-SNE were used as graphic means of evaluating the HCA-
determined number of clusters and cluster memberships. For this pur-
pose, t-SNE outperformed PCA for all three datasets because t-SNE
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provides better visualizations of clustered data. We demonstrated that t-
SNE is an effective and efficient graphical way to assist cluster analysis
with respect to determining the number of clusters and cluster mem-
berships; it is also a promising tool for delineating spatial zones of
groundwater geochemistry based on clustering results. However, since t-
SNE was not designed for cluster analysis, we suggest using t-SNE only as
a graphical way to assist HCA-based cluster analyses. t-SNE visualization
strongly depends on a hyperparameter called perplexity that is a priori
unknowable for real-world problems.

2. Geochemistry data and statistical methodologies
2.1. Three geochemical datasets

The Oslo transect dataset includes 360 samples of nine different plant
materials collected at 40 sites along a 120-km transect crossing Oslo,
Norway (Templ et al., 2008). The nine plant materials are terrestrial
moss (MOS), fern (FER), European mountain ash leaves (ROG), birch
leaves (BIL), bark (BBA) and wood (BWO) and spruce needles (SNE),
twigs (TWI), and wood (STW). Details of the samples, element concen-
trations of the sample, and quality control of the concentrations are
available, see Reimann et al. (2007). The dataset used in this analysis
was downloaded from the R package “rrcov” developed by Todorov
and Filzmoser (2010), available at https://cran.r-project.org/web/
packages/rrcov/index.html (accessed 2/20/2021). The dataset in-
cludes concentrations of 24 elements (Ag, As, B, Ba, Ca, Cd, Co, Cr, Cu,
Fe, Hg, K, La, Mg, Mn, Mo, Ni, P, Pb, S, Sb, Sr, Ti, and Zn) and loss on
ignition for 350 samples (concentrations of ten samples are missing in
this dataset). The Oslo transect dataset comprises 350 x 25 = 8,750
measurements. It is known theoretically that these data can be separated
into nine clusters, one for each plant materials, because different plants
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uptake nutrients in different ways and variously partition those elements
between wood, leaves, and bark (Templ et al., 2008). This “logical
result” of nine clusters makes the dataset suitable as a benchmark to
evaluate the potential of using t-SNE to evaluate cluster analyses.

The Taiyuan karst water dataset (Ma et al., 2001) consists of 37
samples of cold (water temperature < 30°C) and thermal Kkarst
groundwater from Taiyuan City, China, and the locations of the samples
are shown in Fig. 1. For each sample, a total of 31 geochemical pa-
rameters were analyzed, including 3 physiochemistry variables (tem-
perature, pH, and EC), nine major elements (CO%’, HCO3,F,Cl, NO3,
S0%~, Ca?t, Mg?*, and Na'), 4 minor elements (K*, Fe, Si, and Sr), and
15 trace elements (As, Ag, Al, B, Ba, Cd, Co, Cu, Hg, Li, Mn, Mo, Ni, Sb,
and Zn). Therefore, the dataset has a total of 37 x 31 = 1,147 mea-
surements. Based on site-specific information related to structural ge-
ology, hydrogeology, and hydrogeochemistry, the karst groundwater
system was divided into three sub-systems as follows: the Dongshan
Mountain karst groundwater subsystem (DMK), the Beishan Mountain
karst groundwater subsystem (BMK), and the Xishan Mountain karst
groundwater subsystem (XMK). Ma et al. (2011) further grouped sam-
ples of DMK into three zones (recharge and flow-through zone, cold-
water discharge zone, and thermal-water discharge zone), samples of
BMK into three zones (recharge and flow-through zone, cold-water
discharge zone at the margin of the mountain, and cold-water
discharge zone in buried karst zone), and samples from XMK into
three zones (recharge and flow-through zone, cold-water discharge
zone, and thermal-water discharge zone). Generally speaking, the
groundwater geochemistry evolved from the recharge and flow-through
zone toward the cold-water discharge zones and further to the thermal-
water discharge zones. In Fig. 1, the samples collected from the DMK,
BMK, and XMK subsystems are denoted by squares, circles, and tri-
angles, respectively. Within each subsystem, the samples in the recharge
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and flow-through zone, cold-water discharge zone, and thermal-water
discharge zone are highlighted in black, blue, and red colors, respec-
tively. The dataset and geochemical analysis of Ma et al. (2011) facili-
tate an evaluation of the potential for t-SNE to assist cluster analysis for
hundreds of groundwater geochemical data and to delineate ground-
water geochemical zones at the scale of tens of kilometers.

The Jianghan Plain groundwater dataset, used in our previous study
of Yang et al. (2020), includes 1,184 groundwater samples collected
over 23 years (1992-2014) from 29 monitoring wells drilled into the
middle-confined aquifer of Jianghan Plain, China (Fig. 2). Each sample
has 11 geochemical parameters (pH, Ca%", Mg?", K*, Na*, CI~, SO%",
HCO3, NHj, F~, and Fe), and the dataset has a total of 1,184 x 11 =
13,024 measurements. Yang et al. (2020) conducted cluster and
hydrogeochemical analyses for this large dataset, and delineated seven
clusters and four groundwater geochemical zones of the regional
aquifer, i.e., recharge (Zone I), transition (Zone II), flow-through (Zone
I1I), and discharge-mixing zones (Zone IV) (Fig. 2). This large dataset
and the four delineated zones enable us to evaluate the effectives of t-
SNE in assisting cluster analysis for tens of thousands of groundwater
geochemical data and in delineating groundwater geochemical zones at
the scale of hundreds of kilometers.

2.2. Data preprocessing

Preprocessing geochemical data before conducting cluster analysis is
always necessary (Templ et al., 2008; Ellefsen et al., 2014). The three
datasets were pre-processed by: (1) geochemical feature selection, (2)
substitution of censored data, (3) screening missing values, (4) data
transformation, and (5) standardization. The first step defines appro-
priate parameters for cluster analysis. A geochemical parameter may be
excluded if one or more of the following conditions is met: (1) the
parameter is not continuously measured over time, i.e., the parameter
values are not reported for many sampling campaigns, resulting in a
large number of missing values, (2) the parameter is closely related to
other parameters (e.g., alkalinity can be computed by using pH and
HCO3 according to Appelo and Postma (2005)), and (3) >40% of
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measurements are censored data that are either “less than” or “greater
than” a detection limit (Sanford et al., 1993). If censored data exist for a
selected geochemical parameter, further data preprocessing is required.
This study used a simple approach to replace the censored values with 3/
4 of the detection limit for less-than conditions and 4/3 of the upper
limit for greater-than conditions (Sanford et al., 1993). For the issue of
missing values, samples that contain missing values are removed. Af-
terward, the natural-log transformation was applied to the datasets, and
the z-score standardization (subtracting the data mean and dividing the
residuals by data standard deviation) was applied to the transformed
data to remove the impacts of data units and scales (Reimann and
Filzmoser, 2000; Templ et al., 2008). It however should be noted that
the use of substitution method and log transformation is simple but may
not be ideal, as they may skew the distribution of the data and hamper
the statistical analysis (Reimann and Filzmoser, 2000; Sanford et al.,
1993).

2.3. HCA and PCA statistical analyses

The HCA and PCA statistical methods are described briefly here, and
a more thorough description is available in statistical books (e.g., Ren-
cher, 2003). HCA with the Ward method (Ward, 1963), as an agglom-
erative approach, starts by treating each sample as its own cluster, and
merges the clusters stepwise to generate larger clusters, ending with one
cluster containing all samples. At each successive step, clusters are
merged according to the Ward criterion with the smallest increase of
Sum of Squared Errors (SSE). For cluster A; with n; observations:

n 2
SSEy = > HO" - OH ,
i=1

where O;(i=1,2...,m) is the i observation in the cluster, O is the mean
of all observations in the cluster, and ||0; —O||? is the squared Euclidean
distance between O; and O. At the beginning of HCA, there are n clusters
for n samples, and SSE of each cluster is zero. In the next step, all possible
cluster combinations are considered, and SSE is calculated for each
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combination. For the case that clusters A and B are merged into cluster
C, the SSE changes to:

ASSE = SSE¢c — SSE, — SSEj.

In the Ward method, the two clusters that yield the smallest ASSE are
merged. The merging continues until only one cluster remains, when the
variance of clusters is minimized in such a way. The merging history is
recorded in a dendrogram, whose horizontal axis is for all the samples
and the vertical axis shows the linkage distances, defined as v/2ASSE,
between the merged clusters. The number of clusters is determined by
placing the phenon line at a linkage distance, and one needs to carefully
evaluate whether the number of clusters is appropriate by using various
approaches, among which PCA is a popular one.

PCA is a dimension-reduction technique that performs a linear
mapping of high-dimensional space to a lower-dimensional space, with
the variance of the low-dimensional data maximized. PCA reduces data
dimensionality, and allows focusing on a few new combinatorial com-
ponents that describe a large portion of the variance in the data
(Ouyang, 2005). In PCA, the covariance matrix of the high-dimensional
variables is evaluated, and then the eigenvectors of the covariance
matrix corresponding to the largest eigenvalues (the principal compo-
nents) are used to reconstruct a significant fraction of the variance of the
high-dimensional data. In the context of using PCA to assist cluster
analysis, the first two principal components (or any two selected prin-
cipal components) can be used to generate a two-dimensional graph to
visualize the high-dimensional data and to examine whether the
assigned cluster number is reasonable. Generally speaking, data in one
cluster should be close to one another, but are maximally separated from
data in any other clusters on the two-dimensional plot.

2.4. SNE and t-SNE methods

The t-SNE algorithm is an improved variation of stochastic neighbor
embedding (SNE) developed by Hinton and Roweis (2002). The first task
of SNE is to convert the distance between two points in a high-
dimensional space to a conditional probability that represents the sim-
ilarity of the two points in the high-dimensional space, and then to
match the conditional probability between two points (data points) in
the high-dimensional space to the conditional probability between two
points (map points) in a low-dimensional space. The conditional prob-
ability, p;;;, between data points, x; and x;, is the probability that x; would
pick x; as its neighbor, and p;; = 0 by definition. The conditional
probability is defined using a Gaussian kernel:

I
exp 207
pji=———F——
o2
Zk#iexp< - HX,za),;kH )

where ||x; — x;|| is the Euclidean distance between data points x; and x;.
The variance, 62, of the Gaussian kernel is calculated using a binary
search such that the entropy, H(P;) = —>_pjlogzpj;i, of the probability
distribution over all the data points is equal to loga(Perp), where Perp is
the user-specified perplexity.

In the low-dimensional space, SNE computes a similar conditional
probability for map points y; and y; (corresponding to the two data
points, x; and x;j) using another Gaussian kernel with variance equaling
1/2:

exp( [y~ ")

Saexp( = i = wll)

qjli =

and q;|; = 0 by definition. The conditional probabilities, pj; and gj|;,
should be equal, if the map points, y; and y;, exactly represent the sim-
ilarity between the high-dimensional data points, x; and x;. SNE thus
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arranges map points in the low-dimensional space to minimize the
discrepancy between pj; and qj; measured by the Kullback-Leibler
divergence considering all data points. The cost function to be mini-
mized is:

c=S KLP|Q) = Zzpf“'log%’
- i o

where P; is the conditional probability distribution of data point x; over
all other data points, and Q; is the conditional probability distribution of
map point y; over all other map points. The cost function is minimized
through various optimization methods such as gradient descent.

SNE was further developed into t-SNE by van der Maaten and Hinton
(2008) with two major improvements. One was to use a symmetric
version of SNE to estimate pairwise similarities in the both high- and
low-dimensional spaces. For data points x; and x;, t-SNE introduces:

Dpji + iy
Pij - Tv
as the probability that x; would pick x; as its neighbor such that p; =
pji (the symmetric property), where n is the number of data points. The
other improvement was to use a Student’s t-distribution rather than a
Gaussian kernel to compute the similarity between map points, so that
the map points are more scattered in low-dimensional space. Strictly
speaking, for map points y; and y; in low-dimensional space, t-SNE uses a
heavy tailed t-distribution with one degree of freedom to compute:

—1
(1 + H)’i —)’/”2)

qij = T

L =)

which is the probability that y; would pick y; as its neighbor. Again,
gij = gj; as a symmetric property. Correspondingly, the cost function
becomes:

Pij
C = KL(PIQ) = S pytos
7 ij

i

where P and Q are the joint probability distributions in high- and low-
dimensional spaces, respectively.

Perplexity is the most important hyperparameter in the t-SNE
method (there are other important hyperparameters such as learning
rate and number of iterations used in gradient descent optimization). A
small perplexity corresponds to a small 67 used in Eq. (3), which results
in selecting a data pair, x; and x;, with small distance. A large perplexity
corresponds to a large 62, which can pair data at large distances. In the
extreme case of Perp = 40, x; would pick any point as its neighbor with
the equal possibility of 1/(n — 1), with n being the number of data
points. A commonly used perplexity is 30, and a typical range is 5-50.
van der Maaten and Hinton (2008) argued that “performance of SNE is
fairly robust to changes in the perplexity.” This study explored the effects of
perplexity on t-SNE performance for the three geochemical datasets, and
found that a smaller perplexity should be used for small sample sizes.

With unknown perplexity values, t-SNE was used in this study as a
visualization tool to assist HCA, and this is empirically described below:

Step 1: Conduct HCA to determine the number of clusters and cluster
memberships based on the best understanding of the problem of
interest and/or appropriate statistical methods.

Step 2: Assign different colors to different clusters (e.g., red for
cluster 1 and blue for cluster 2); the colors will be used in Step 4
below.

Step 3: Conduct t-SNE with different perplexity values. The t-SNE
runs are independent of the HCA in Step 1.

Step 4: For each perplexity value, plot the samples in a two-
dimensional t-SNE space with samples highlighted in the colors
determined in Step 1. For example, if a sample belongs to cluster 1, it
will be plotted in red.
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Step 5: Examine the spatial patterns of the colored samples in the t-
SNE plots to determine which perplexity value yields the best results
according to the following two criteria: (a) whether samples of the
same cluster are close to each other, and (b) whether the samples of
different clusters are maximally separated.

Step 6: If the visual examination in Step 5 yields satisfactory results
for one perplexity value (likely for multiple perplexity values), it
confirms that the cluster number and membership determined in
Step 1 are reasonable. Otherwise, it is necessary to adjust the cluster
number and memberships in Step 1 and to repeat Steps 2, 4, and 5.
There is no need to repeat the t-SNE runs in Step 3.

This procedure indicates that t-SNE is not use as a stand-alone al-
gorithm for cluster analysis but as a visualization tool to assist cluster
analysis for determining the number of clusters and cluster
memberships.

All the statistical analyses were performed using Python 3.7, and
HCA, PCA, and t-SNE were implemented using the Python libraries
Scikit-Learn (Pedregosa et al., 2011, https://scikit-learn.org/stable/i
ndex.html) and SciPy (Jones et al., 2001, https://www.scipy.org/).
The codes and the datasets used in this study are available at https://gith
ub.com/jyangfsu/geochemical-t-SNE.

3. Results and discussion
3.1. Cluster analysis for Oslo transect dataset

Because it is known theoretically that the Oslo transect dataset
should be separated into nine clusters (one for each plant material), this

information was used to evaluate the potential of using t-SNE to assist
cluster analysis. Delineation of spatial zones of geochemistry was not
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attempted for this dataset, because the sampling sites were along a
transect and the nine samples corresponding to nine plant materials
were collected from the same sites. Given that data preprocessing was
completed by Reimann et al. (2007) and Todorov and Filzmoser (2010),
the dataset used by Todorov and Filzmoser (2010) was used directly in
this study.

Fig. 3(a) illustrates the two-dimensional t-SNE visualization of the
Oslo transect dataset with Perp = 20, which yields the best visualization.
The t-SNE plot shows that the nine plant material clusters are distinct
and without overlap. This separation is consistent with the HCA results.
Fig. 3(c) plots the dendrogram of the HCA using the Ward method with
Euclidian distance. Placing the phenon line at a linkage distance of 18
results in nine clusters corresponding almost completely to the nine
plant materials, indicating that t-SNE provides a graphic way to evaluate
validity of clusters. PCA does not yield such a consistent graphic vali-
dation as shown in Fig. 3(b), which is the two-dimensional PCA visu-
alization using the same color scheme of Fig. 3(a). Fig. 3(b) shows
substantial overlaps between the clusters, indicating that PCA is not as
adept as t-SNE for graphically validating the nine HCA-based clusters.

It is noted that, while HCA misclassified one sample (with an index of
X.ID = 134 in the Oslo transect dataset) of ROG into the FER cluster
(Fig. 3(c)), this did not occur to t-SNE. Because discrepancy between t-
SNE and HCA results is not uncommon, it is worth analyzing the reasons.
Fig. 4(a) plots the HCA dendrogram for clusters ROG (C5) and FER (C6).
Cluster ROG is further separated into two clusters, B; and Bo, and FER
into four clusters B3 — Bg. The misclassified sample (X.ID = 134) of ROG
is denoted as cluster A. In HCA, cluster A was merged with cluster B4, not
with B; or Ba. As explained in Section 2.3, HCA initially treats each
sample as an individual cluster, and proceeds to merge the two closest
clusters until only a single cluster remains. If cluster A is merged with
cluster B; or By, the increase in SSE is 7.17 or 6.06, larger than the
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increase of 5.35 upon merging clusters A and By4. As a result, the sample
(X.ID = 134) of ROG was assigned to cluster FER because of the smaller
increase in SSE. This is consistent with HCA theory because SSE does not
consider distances between samples, instead SSE considers distances
between the sample and centers of other clusters. This differs from t-
SNE, which is based on distance between paired data points or map
points. Fig. 4(b) shows the probability of sample X.ID = 134 picking
another sample in clusters B; — Bg as its neighbor according to Eq. (6).
The probability is substantially higher for samples in cluster B; of ROG,
which explains why sample X.ID = 134 was assigned to ROG by t-SNE
(Fig. 3a). Because t-SNE and HCA are based on different theories, it is not
surprising that the two methods yield different results for certain sam-
ples. Although the nine groups of samples shown in the t-SNE visuali-
zation fully agree with the theoretically known number of sample
groups and group memberships, it should be noted that t-SNE alone
cannot be used for cluster analysis, because the visualizations strongly
depend on perplexity (see Section 4). Because both perplexity and the
number of clusters are unknown in practice (the Oslo transect dataset is
a special case with known number of clusters), we only recommend
using t-SNE in conjunction with HCA.

Because the theoretical number of clusters is known for the Oslo
transect dataset, it is an opportunity to evaluate the effects of alternative
transformations. We applied the Box-Cox transformation as an alterna-
tive to the log transformation to the 24 elements and the loss on ignition
of the Oslo transect dataset. The histograms of the log-transformed data
are plotted in Fig. S1, and the histograms of the Box-Cox-transformed
data are plotted in Fig. S2 in the supplementary information file. The
Box-Cox transformation was conducted by using the box-cox function of
SciPy, and the resulted ) values are shown in Fig. S2. The Lilliefors test
was used to examine normality of the transformed data (Lilliefors,
1967), and the p values are shown in Figs. S1 and S2. The results of the
Lilliefors test show that neither of the two transformations yield data
following normal distributions, although the results of the Box-Cox
transformation are slightly closer to the normal distribution than the
results of the log transformation. PCA analysis was applied to the log-

transformed and Box-Cox-transformed data, and the results are plotted
in Fig. S3. The similar visualization patterns in this figure indicate that
the two transformations have negligible effects on the PCA results. The
HCA and t-SNE were also applied to the Box-Cox-transformed data, and
the results are plotted in Fig. S4. The figure shows that the performance
of the Box-Cox transformation is worse than that of the log trans-
formation, in that there are more samples misclassified as shown in
Fig. S4(a) for the Box-Cox-transformed data.

We also evaluated other statistical methods that have been used to
assist cluster analysis for determining the appropriate number of clus-
ters. They are the Elbow, Silhouette, and Gap statistic methods, and a
description of the methods is given in Text S1 of the supplementary
information file. The results of the three methods are shown in Fig. 5.
While the Elbow and Silhouette methods indicated that optimal cluster
number was 2, the Gap statistic values monotonically increased and the
optimal number of clusters was 16 by using the rule of one-standard-
error. It was surprising that all three methods failed to yield the cor-
rect number of clusters. This is also the case for the Taiyuan Karst water
dataset and the Jianghan Plain groundwater dataset. The results for
these two datasets are shown in Figs. S5 and S6. Exploring the reasons is
beyond the scope of this study, but it is warranted in future studies.

3.2. Cluster analysis and spatial zone delineation for Taiyuan karst water
dataset

The Taiyuan karst water dataset was subject to a t-SNE analysis to
support HCA clustering results and to delineate spatial zones of
groundwater geochemistry. The results of Ma et al. (2011) were used a
reference for the evaluation. By following the preprocessing procedure
described in Section 2.2, parameter CO%’ was excluded from the dataset,
because all its measurements were less than the detection limit. In
addition, ten samples were removed because of missing measurements.
Ultimately, fourteen samples in XMK, seven in BMK, and six in DMK
were used in this study. Due to the small sample size for the BMK and
DMK subsystems, only the results of XMK are presented and discussed
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below. The results of HCA, PCA, and t-SNE for BMK and DMK data are
shown in Fig. S7 of the supplementary information file.

Fig. 6(a) is the two-dimensional t-SNE visualization (using Perp =
0.1) of the 14 geochemical samples collected from the XMK sub-system.
The three clusters shown in Fig. 6(a) correspond exactly to the three
clusters shown in Fig. 6(c) by placing the phenon line at a linkage dis-
tance of 11. Comparing the t-SNE visualization to the PCA visualization
shown in Fig. 6(b) revealed that t-SNE outperformed PCA when graph-
ically validating the clustering results. For the samples collected from
the XML sub-system (denoted by triangles in Fig. 1), the three clusters
shown in Fig. 6(a) for t-SNE visualization agreed with the three
groundwater geochemistry zones identified by Ma et al. (2011) and
shown in Fig. 1. To facilitate a visual comparison, the three clusters and
the three spatial zones were distinguished using the same color scheme,
i.e., black for the recharge and flow-through zone, blue for the cold-
water discharge zone, and red for the thermal-water discharge zone.
The only disagreement between the clusters and the spatial zones was
for sample RN32. Because the sample’s temperature was 30°C, it should
have belonged to the thermal-water discharge zone (Fig. 1). However,
both HCA and t-SNE misclassified the sample into the cold-water
discharge zone, because the sample’s SOZ~ concentration is 172 mg/L,
about one order of magnitude less than the concentrations of other
samples in the thermal-water discharge zone but about the same order of
magnitude as the concentrations of the samples in the cold-water
discharge zone.

3.3. Cluster analysis and spatial zone delineation for Jianghan Plain
groundwater dataset

The Jianghan Plain groundwater dataset has 1,184 samples collected
over 23 years (1992-2014) from 29 monitoring wells distributed
throughout a regional aquifer at the scale of hundreds of kilometers. The
13,024 geochemical measurements pre-processed by Yang et al. (2020)
were used in this study. Fig. 7(a) shows that, by drawing the phenon line
at a linkage distance of 25, the 1,184 samples were grouped into seven
clusters, denoted as C1-C7. Fig. 7(b) is the two-dimensional PCA visu-
alization of the seven clusters. While the seven clusters were generally
separated, there were substantial overlaps, especially for C5-C7. The
overlaps were substantially decreased in the two-dimensional t-SNE
visualization shown in Fig. 7(c). For example, the dots of C5-C7 were
mostly separated, demonstrating that t-SNE outperformed PCA.

Fig. 7(c) shows that t-SNE divided C4 and C7 each into two sub-
clusters. The same results were obtained by moving the phenon line
down from the linkage distance of 24 (Fig. 7(a)) to that of 22 (Fig. 7(d)).
The two sub-clusters of C4 were denoted as C4S1 and C4S2 and the two
sub-cluster of C7 as C7S1 and C7S2. Fig. 7(e) and 7(f) are the corre-
sponding PCA and t-SNE visualizations, respectively, for the nine clus-
ters. The overlap shown in Fig. 7(b) is also observed in Fig. 7(e).
Comparing the PCA-based visualization and the t-SNE-based visualiza-
tion indicates that t-SNE was a better visualization tool for the reduced
dimensions.

The investigation on whether it is reasonable to have seven or nine
clusters started with C7S1 and C7S2. Of the 50 samples comprising
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C7S1, 39 were from well J1 (Fig. S8(a)); of the 33 samples in C7S2, 31
were from well J8 (Fig. S8(b)). As shown in Fig. 2, well J1 was located in
the recharge zone (Zone I) with limited water-rock interaction, while
well J8 was located in the transition zone (Zone II). It appears reason-
able to separate the data from the two wells into two clusters based on
their locations. This was also supported by examining the groundwater
geochemistry of the two clusters. The box plots of 11 groundwater
geochemical parameters in Fig. 8(a) indicate that the concentrations of
K, NH{, and Fe were substantially lower in C7S1 than in C7S2, and that
the concentrations of Mg2+, Na™, Cl~, and HCO3 were substantially
higher in C7S1 than in C7S2. The differences between the two clusters
may justify separation of C7 into C7S1 and C7S2. Part of the difference
may be explained by the impacts of the Yangtz River on the groundwater
samples in C7S2 wherein 31 out of 33 samples were from well J8, which
was only 200 m from the river. Yang et al. (2020) found that river water
recharged groundwater in the area where well J8 was located, and Li
et al. (2014) reported that the mean concentrations of Ca2+, Mg2+, and
HCO3 of the river water were 37.16, 6.77, and 126.89 mg/L, respec-
tively, which were lower than the groundwater concentrations.
Groundwater geochemistry of well J8 reflected the mixing of river water
and groundwater, and this may explain why the concentrations of Ca®",
Mg?", and HCO3 were substantially lower in C7S2 than in C7S1. Sep-
aration of C7 into C7S1 and C7S2 inspired by the t-SNE visualization
helped better understand groundwater geochemistry subject to
groundwater and surface water interactions.

The geochemical reasons that C4 was separated into C4S1 and C4S2
were not fully understood. Yang et al. (2020) found that C4 had high
SOZ~ concentrations caused by anthropogenic activities, and this was
true for both C4S1 and C4S2, as shown in Fig. 8(b). However, the 62
samples of C4S1 were from 16 wells (Fig. S8(c)), while the 57 samples of
C4S2 were from only nine wells with 40 out of the 57 samples from well

J9 (Fig. S8(d)). As a result, the concentration ranges of the geochemical
parameters (except pH, NHZ, and Fe) were larger in C4S1 than in C4S2,
as shown in Fig. 8(b). This finding however was not useful for better
understanding groundwater geochemistry in the Jianghan Plain aquifer.
t-SNE visualization is a promising tool for delineating spatial zones of
groundwater geochemistry at the regional scale. The two-dimensional t-
SNE visualization of Fig. 7(f) shows three zones, denoted as A, B, and C,
that correspond to Zones I — IV delineated by Yang et al. (2020) and
shown in Fig. 2. Zone A of cluster C7S2 corresponds to Zone I, the
recharge zone. Zone B of clusters C5, C6, and C7S1 corresponds to Zone
11, the transition zone. Zone C of clusters C1 and C2 corresponds to Zones
III and IV, the flow-through zone and discharge-mixing zone, respec-
tively. Zones IIl and IV were separated by Yang et al. (2020) to reflect the
impacts of the Three Gorges Dam on the groundwater geochemistry
observed at well J21. This separation was supported by the t-SNE
visualization because clusters C1 and C2 were broadly separated.
Although Yang et al. (2020) delineated the four zones of groundwater
geochemistry without using t-SNE visualization, the delineation would
have been more obvious if t-SNE visualization had been used. For
example, Yang et al. (2020) first determined the clusters that the ma-
jority of the samples belonged to, and then mapped the locations of the
wells and their corresponding clusters, based on which zone delineation
was made. The two steps could be simplified into a single step by
examining the zone patterns revealed by the t-SNE visualization.

In Fig. 7(f), the samples from C3, C4S1, and C4S2 were not used for
zone delineation because they were impacted by anthropogenic actives.
For example, the samples in C3 were from well J10 located at one of the
largest pesticide factories in China, and the samples were characterized
by extremely high concentrations of Nat and ClI~ due to wastewater
infiltration from the factory to the aquifer. Of the 62 samples in C4S1, 15
were from well J25 located in a water-supply plant while 10 samples
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were from well J8 about 300 m away from a cotton mill (Fig. S2(c)). Of
the 57 samples in C4S2, 40 were from well J9 located near another
cotton mill (Fig. S2(d)). It is interesting that the impacts of anthropo-
genic activities on groundwater quality are unambiguously revealed on
the t-SNE visualization.

4. Discussion
4.1. Running t-SNE with different perplexity values

Using different perplexity values can substantially change the t-SNE
visualization patterns (Wattenberget al., 2016). In the original t-SNE
paper, van der Maaten and Hinton (2008) used five datasets to compare
the performance of t-SNE, and the size of the datasets ranged from 400 to
10,000. They stated that “the performance of SNE is fairly robust to changes
in the perplexity, and typical values are between 5 and 50”. Our literature
review indicates that 30 and 50 are two commonly used perplexity
values for datasets with hundreds to thousands of samples (Table 1). To
explore the impacts of perplexity on clustering analyses of groundwater
geochemistry, t-SNE was conducted with different perplexity values for
all three datasets. Fig. 9 illustrates results from the Jianghan Plain
groundwater dataset while the results from the Oslo transect and
Taiyuan karst water datasets are shown in Figs. S9 and S10, respectively,
in the supplementary information file.

Table 1
Sample size and perplexity values used in the literature.
Sample size Perplexity
Balamurali and Melkumyan (2016) 239 and 14,906 30

10

Aizarani et al. (2019) 10,372 Not mentioned
Roche et al. (2018) 2,016 Not mentioned
Pouyet et al. (2018) Not mentioned 50
Balamurali et al. (2019) 66,344 30
Horrocks et al. (2019) 16,165 30

Mazher (2020) 5,688 Not mentioned

van der Maaten and Hinton (2008) reported stable t-SNE results for 5
< Perp < 50. This was true for the Oslo transect dataset with 350 samples
as well as for the Jianghan Plain groundwater data with 1,184 samples.
Fig. 9 shows that with the perplexity values in the range from 20 to 50,
similar patterns were observed in the t-SNE visualizations. For Perp <
10, local variations within each cluster dominated, and too many clus-
ters were returned. For Perp > 300, the samples could not be separated
into distinct clusters. Because perplexity is a priori unknown for most
real-world problems, it must be determined in conjunction with HCA. A
small perplexity value should be assigned when sample size is small. For
the 14 samples of XMK in the Taiyuan karst water dataset, as shown in
Fig. S4, Perp < 1 yielded three groups; for Perp > 1, the three groups
started mixing into one. Based on our experience of applying t-SNE to
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the three datasets, rather than using the range of 5 < Perp < 50, the
range should be n/200 < Perp < n/10, where n is number of samples.

4.2. Three-dimensional t-SNE visualization

t-SNE can map high dimensional data to any number (e.g., two or
three) of lower dimensions, and a three-dimensional t-SNE visualization
may be more useful than a two-dimensional t-SNE visualization for
visually determining the number of clusters and cluster memberships.
We explored this for the Oslo transect dataset, for which the theoretical
number of clusters and cluster memberships are known. Fig. 10(a) shows
the three-dimensional t-SNE visualization based on a perplexity value of
20 that was used to generate the two-dimensional t-SNE visualization
shown in Fig. 3(a). Although cluster overlaps are observed in Fig. 10(a),
these were simply caused by plotting the three-dimensional figure on a
two-dimensional paper. Rotating the three-dimensional figure shows
that the nine clusters for the nine plant materials were well separated in
the three-dimensional t-SNE visualization.

In comparison with the two-dimensional visualization shown in
Fig. 3(a), the three-dimensional visualization in Fig. 10(a) does not add
value to cluster analysis, because the nine clusters were equally well
separated in the two figures (after rotating the three-dimensional
figure). This can be explained by examining the Kullback-Leibler
divergence, the cost function (Eq. 8) minimized during a t-SNE run.
The Kullback-Leibler divergence measures discrepancy between the
joint probability distributions P and Q in high- and low-dimensional
spaces, respectively. A smaller value of the Kullback-Leibler diver-
gence indicates that P and Q are closer to each other. Fig. 10(b) shows
convergence of the Kullback-Leibler divergence for generating the two-
and three-dimensional t-SNE visualizations of the Oslo transect dataset.
The figure shows that the Kullback-Leibler divergence converged to a
similar value, but the two-dimensional t-SNE run converged substan-
tially faster than the three-dimensional t-SNE run. This case study for the
Oslo transect dataset suggested that it was unnecessary to generate the
three-dimensional t-SNE visualization. It was also the case for the other
two datasets considered in this study, because their corresponding two-
dimensional t-SNE visualizations sufficiently separated the HCA clus-
ters. Three-dimensional (or higher) t-SNE visualizations may be useful
when two-dimensional t-SNE visualizations cannot separate HCA clus-
ters, and the Kullback-Leibler divergence may be an indicator for when
three-dimensional t-SNE visualizations are needed.

5. Conclusions

This study for the first time applied ¢-SNE as a graphic approach to
assist HCA cluster analysis and delineation of spatial zones of ground-
water geochemistry based on clustering results. The application of HCA,
PCA, and t-SNE to the three geochemical datasets leads to the following
major conclusions:

(1) In comparison with PCA, t-SNE was a better graphical way to
assist HCA cluster analysis with respect to determining the
number of clusters and cluster memberships. The t-SNE visuali-
zation outperformed the PCA visualization to separate the clus-
ters determined by HCA.

In comparison with the conventional way of delineating spatial
zones based on clustering results, t-SNE is a promising tool for
effectively and efficiently delineating spatial zones of ground-
water geochemistry, because t-SNE maintains pair-wise distances
and structures in the high-dimensional data space to the extent
possible in the low-dimensional t-SNE space.

HCA clustering results may differ from t-SNE grouping results,
because the two methods are based on different theories. It is
recommended to use t-SNE as a graphic way to support HCA
cluster analysis, not to use t-SNE alone for cluster analysis,

(2

(3)
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because t-SNE visualization depends substantially on perplexity
that is unknown for real-world problems.

Although t-SNE developers recommended constraining perplex-
ity to within 5 — 50, a substantially smaller perplexity (i.e., <1)
was appropriate for this small geochemical dataset with only tens
of samples. Based on our experience, we suggest setting per-
plexity within the range of n/200 — n/10, where n is number of
samples.

(4

—

t-SNE cannot be used as a standalone algorithm for cluster analysis,
and can only be used as a graphic approach to assist clustering methods
such as HCA and k-means. There remains room to improve t-SNE for
general applications. For example, measures other than Euclidian dis-
tance or kernels other than Gaussian could be used to estimate simi-
larities between geochemical samples. These are warranted in a future
study.
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