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The dynamics of branched polymers in semidilute solutions are thought to depend on
a coupling between polymer chain architecture, intermolecular excluded volume interac-
tions, and long-range hydrodynamic interactions (HI). However, it has been challenging to
quantitatively understand these phenomena due to the influence of intra- and intermolecular
HI and chain-chain interactions for nonlinear polymer topologies in flow. In this work,
we directly observe the relaxation dynamics of comb-shaped polymers in semidilute
solutions of linear polymers using single molecule experiments and molecular simulations.
Experimental results are directly complemented by coarse-grained simulations of comb
polymers in semidilute solutions of linear polymers including long-range HI and excluded
volume interactions. Our results show an unexpected nonmonotonic dependence of comb
polymer relaxation time on branch density that arises due to a subtle yet important interplay
between hydrodynamic shielding and polymer architecture.
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Branched polymers exhibit complex flow behavior due to nonlinear chain architectures [1]. The
dynamics of branched polymers are qualitatively different than linear chains due to the presence of
branch points [2]. In concentrated solutions and melts, linear polymers are known to topologically
entangle and relax stress by reptation, which involves the snakelike motion of chains along the
backbone contour [3]. However, branch points significantly slow down the relaxation of comb-
shaped polymers [4], giving rise to hierarchical relaxation mechanisms that differ from those in
linear polymer melts [5]. Such behavior gives rise to distinct rheological responses such as enhanced
strain hardening together with shear thinning [6,7], unique linear viscoelastic signatures [8,9], and
double stress overshoots in the startup of shear [10,11].

Branched polymer solutions are extensively used in applications such as consumer care prod-
ucts [12,13]. Moreover, nondilute solutions of branched polymers have been used for chemical
sensing [14], optically active materials [15], and in emerging technologies such as three-dimensional
printing [16]. Despite the utility of branched polymers, we lack a complete understanding of their
dynamics in semidilute unentangled solutions, wherein polymer coils interpenetrate but do not topo-
logically entangle [3]. In dilute polymer solutions, bulk properties arise from single isolated chain
behavior, whereas in highly entangled concentrated solutions and melts, hydrodynamic interactions
(HI) are screened and interchain interactions can be described using a mean-field approach [3]. In
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FIG. 1. Single molecule experiments and Brownian dynamics (BD) simulations of comb polymer re-
laxation in semidilute solutions. (a) Schematic of experimental system (top) showing dual-labeled comb
polymers with backbones (Lbb = 17.4 μm) and branches (Lbr = 0.9 μm) and (bottom) molecular model
for BD simulations. (b) Schematic of relaxation experiment. (c) Top: Single molecule snapshots of a comb
polymer with nbr = 5 branches relaxing after flow cessation. The red laser is turned off for t � 4 s to minimize
photobleaching. Bottom: Snapshots from BD simulations showing comb relaxation (nbr = 4, green/red) in a
background of semidilute linear polymers (gray) at equivalent time intervals as the experiment.

semidilute solutions, however, polymer dynamics are particularly challenging to understand due to
the interplay between long-range HI, concentration fluctuations, and excluded volume interactions.
These phenomena are further complicated by nonlinear chain architectures, which motivates the
need to understand the role of branching on polymer dynamics in semidilute solutions.

In recent years, single molecule fluorescence microscopy has been used to directly observe
polymer dynamics at the level of individual chains [17], enabling systematic studies in well-
defined flows [18,19]. Concurrently, Brownian dynamics (BD) simulations have been used to
probe the molecular origins of polymer flow behavior [20–22]. Single molecule experiments and
BD simulations have yielded new insights into the dynamics of architecturally complex polymers
such as combs [23,24], knots [25,26], and rings [27,28], mainly in dilute solutions. These ap-
proaches have also been extended to semidilute solutions, though prior work has focused on linear
polymers [19,29–31].

In this work, we use single molecule fluorescence microscopy and BD simulations to understand
the role of branching on polymer relaxation in semidilute solutions. Here, we directly visualize the
relaxation dynamics of fluorescently labeled DNA comb polymers as a function of branching density
in semidilute solutions of linear chains. Our results show an unexpected nonmonotonic dependence
of comb polymer relaxation time on branch density, which is modeled using BD simulations of
semidilute solutions with and without HI. BD simulations are performed across a wide range of
branch density, branch lengths, and polymer concentrations, providing key insight into the molecular
origins of the unexpected relaxation behavior of comb polymers. Taken together, our results show
that comb polymer relaxation in semidilute solutions is governed by a complex interplay between
long-range HI and polymer architecture.

DNA-based comb polymers were synthesized using a hybrid enzymatic-synthetic approach,
as previously described (Fig. 1) [23,32,33]. Briefly, polymerase chain reaction (PCR) is used to
generate the comb polymer backbones and branches with desired monodisperse lengths in separate
reactions. Backbones (Mbb = 40 kbp) are synthesized with non-natural nucleotides enabling a graft-
onto reaction for side branches via “click” (azide-alkyne) reaction. Branches (Mbr = 2.2 kbp) are
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FIG. 2. Relaxation of comb polymers in semidilute solutions of linear chains. Ensemble-averaged relax-
ation trajectories of comb polymers from experiments (Mbb = 40 kbp, Mbr = 2 kbp) as a function of branch
number nbr compared to their linear analogs (Mbb = 40 kbp).

synthesized by incorporating Cy5 dye (red emission) during PCR, together with a single chemical
group (azide) at one terminus enabling the graft-onto reaction. Following synthesis and purification,
comb polymers are labeled with YOYO-1 dye (green emission), thereby allowing for simultaneous
two-color imaging [23].

Polymer solutions are prepared by adding trace amounts of combs to semidilute unentangled so-
lutions of linear polymers [Fig. 1(a)]. The unlabeled background solution consists of monodisperse
linear DNA (λ-phage DNA, Mbb,λ = 48.5 kbp) at a concentration c = 1 c∗ = 50 ng/μl, where c∗
is the overlap concentration that defines the crossover from the dilute to the semidilute regime [30].
Comb polymers are added at an extremely low concentration corresponding to c ≈ 10−5c∗ relative
to the linear polymer background. The contour lengths of fluorescently labeled comb backbones
and branches are Lbb = 17.4 μm and Lbr = 0.9 μm, respectively, with a persistence length lp =
56 nm [17]. The contour lengths of the labeled comb backbone Lbb and unlabeled linear chains
(L = 16.3 μm, λ-phage DNA) are nearly equivalent [17].

We observed the relaxation of comb polymers following a step strain deformation in ex-
tensional flow [Figs. 1(b) and 1(c)]. During stretching, single comb polymers are trapped
near the stagnation point in planar extensional flow using an automated flow control de-
vice known as the Stokes trap [34–38]. In this way, comb polymers are stretched to high
degrees of extension (≈0.6–0.7Lbb) for a time duration t using strain rates ε̇ above the
coil-stretch transition for large fluid strains ε = ε̇t ≈ 12–15. Prior to flow cessation, the
number of branches on individual comb polymers is directly counted. Using this approach,
we characterized the relaxation of comb polymers (nbr � 1 branches) and linear polymers
(nbr = 0 branches) as a function of branching density (Fig. 2 and Supplemental Material
Fig. S1 [32]). Here, we constructed separate molecular ensembles for different polymer architec-
tures, including molecular ensembles for the cases of nbr = 0, 1, 2, 3 branches, and a combined
molecular ensemble for nbr = 4–8. Ensemble-averaged trajectories from experiments for different
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FIG. 3. Molecular ensembles of comb polymer relaxation as a function of the number of branches nbr from
experiments. (a)–(f) Relaxation dynamics of DNA comb polymers in semidilute 1c* solutions of linear chains
following cessation of extensional flow. Relaxation dynamics are shown by plotting the fractional extension
as a function of time for each branching density (nbr = 0, 1, 2, 3, 4, 5–8). Individual relaxation trajectories are
shown in gray and the ensemble-averaged trajectories are shown in blue.

branching densities are shown in Fig. 2. Each ensemble contains at least 50 molecular trajectories,
as shown in Fig. 3.

Relaxation times are quantified by tracking the polymer backbone stretch x as a function of
time during the relaxation step, where x is the extent of the chain stretch in the flow plane. Here,
we focus on the longest relaxation time corresponding to the linear entropic force regime [39],
where the polymer fractional extension is x/L < 0.3. In dilute and semidilute unentangled solutions,
the relaxation trajectories for linear polymers are well described by a single exponential decay for
x/L < 0.3, such that (x/L)2 = A exp(−t/τ ) + B, where τ is the longest relaxation time and A and
B are fitting constants [30]. Our results show that the relaxation trajectories for comb polymers
in semidilute solutions of linear chains are well described by a single exponential (Supplemental
Material Fig. S2), as shown previously for combs in dilute solution (Supplemental Material Fig.
S3) [23].

The ensemble-averaged relaxation time for linear chains (nbr = 0) is τ = 6.3 ± 0.2 s. The
average relaxation times for comb polymers with low branching density (nbr = 1, 2, 3) were found
to be similar with τ = 5.0 ± 0.3 s. As branch density increases (nbr � 4), comb relaxation time
increases such that τ = 5.9 ± 0.2 s. Error bars are determined as the standard error of the mean from
individual trajectories and represent statistical variations arising from stochastic single molecule
dynamics.

Unexpectedly, our results for comb polymer relaxation (Fig. 2, inset) show that comb polymers
with a small number of branches (nbr = 1, 2, 3) relax faster than linear polymers (nbr = 0) in
semidilute solutions. However, increasing the number of branches on comb polymers (nbr � 4)
slows down the relaxation dynamics. These results are statistically significant such that differences
in the ensemble-averaged relaxation times are larger than the standard error in molecular ensembles
(Fig. 2, inset). This nonmonotonic trend in comb polymer relaxation times as a function of branch
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FIG. 4. Molecular ensembles of comb polymer relaxation as a function of the number of branches nbr

from BD simulations with HI. Relaxation trajectories obtained from simulation for Nbr = 6 for (a) nbr = 0
and (b) nbr = 1. Individual relaxation trajectories are shown in gray and the ensemble-averaged trajectories are
shown in blue.

density is unexpected given that linear polymers relax faster than their comb counterparts in dilute
solutions [23] and melts [7].

To understand the molecular origins of comb relaxation dynamics, we used BD simulations
with HI. Here, polymers are modeled with Nbb = 100 backbone beads and Nbr = 6, 13, or 26
branch beads, connected by Kremer-Grest springs [32,40], and a varying number of branches
nbr = 0, 1, 4, 7 [Fig. 1(a)]. In this model, the Kuhn step size is lK ≈ 1.8σ , where σ is the
bead diameter. Comb backbones and branches in BD simulations have a proportionally smaller
number of Kuhn segments compared to experiments, such that the ratio of backbone to branch
length matches experiment (Mbr/Mbb ≈ Nbr/Nbb). Intrachain and interchain HI is modeled using
an Ewald sum Rotne-Prager-Yamakawa tensor [41,42]. BD simulations of nondilute solutions with
HI are computationally demanding due to the calculation of HI and correlated Brownian noise;
to accelerate the simulations, we use the iterative conformational averaging method [31,43,44],
where the decomposition of the diffusion tensor is avoided by conformationally averaging the
Brownian noise over transient polymer conformations [31,44]. In particular, the Brownian noise
is determined by a conformationally averaged form of the truncated expansion ansatz introduced
by Geyer and Winter [32,45]. Prior work has shown that such coarse-grained models successfully
predict qualitative trends in experiments [27,31,44].

In an identical procedure to experiments, BD simulations are initialized with random polymer
configurations and equilibrated for 10τ . A planar extensional flow is then applied using Kraynik-
Reinelt boundary conditions [46,47] for an accumulated strain ε = 20–25 at a flow strength Wi >

1.5, where Wi = ε̇τ is the dimensionless flow strength known as the Weissenberg number. In this
way, polymers are stretched to a fractional extension x/L > 0.5, followed by abrupt flow cessation
and relaxation of polymers to their equilibrium state (Fig. 4). During the relaxation step, the
backbone end-to-end distance is tracked over time, enabling determination of the longest polymer
relaxation times τ . Simulation ensembles contain 300 molecules, and error bars are determined from
the standard error of four subsamples of the ensemble.

Figure 5(a) shows the longest relaxation times from experiments and BD simulations (Nbr = 6).
Here, relaxation times are nondimensionalized with the longest relaxation time of linear polymers
(τL) to directly compare simulation and experiment. Both experiments and BD simulations with
HI show the overall nonmonotonic dependence of polymer relaxation time on branch density.
Compared to experimental data, BD simulations with Nbr = 6 exhibit a smaller decrease in re-
laxation time between linear chains (nbr = 0) and combs with one branch (nbr = 1); we attribute
this disparity to model coarse graining, because the nonmonotonicity becomes more pronounced
with increasing branch length [Nbr = 6, 13, to 26; Fig. 5(b)]. Overall, BD simulations reveal that
both interpolymer interactions and HI give rise to the nonmonotonic relaxation time. Increas-
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FIG. 5. Comb polymer relaxation time as a function of the number of branches nbr in semidilute solutions
of linear polymers. (a) Normalized average relaxation time (τc/τL) of comb polymers from experiments
(2.2 kbp branches) and simulations (Nbr = 6). Molecular ensembles for comb polymers with nbr � 4 branches
are combined and shown as nbr = 5∗. (b) Effect of branch size; scaled relaxation time for comb polymers
in semidilute solutions from BD simulations with HI for branch sizes Nbr = 6, 13, and 26. (c) Effect of
concentration; scaled relaxation time for comb polymers from BD simulations with HI in ultradilute and
semidilute solutions at 0.1, 1.0c∗. (d) Effect of HI; scaled relaxation time for comb polymers in semidilute
solutions from BD simulations with and without HI for branch size Nbr = 13.

ing concentration from c = 0c∗, 0.1c∗, to 1.0c∗ shows a smooth transition from a monotonic
to nonmonotonic dependence of relaxation times on branching density [Nbr = 13; Fig. 5(c)].
Figure 5(d) directly compares results from BD simulations with and without HI for Nbr = 13 combs,
showing that BD simulations without HI revert to a simple monotonic increase in the relaxation time.

Based on these results, we attribute the unusual relaxation behavior of comb polymers in
semidilute solutions to an interplay between hydrodynamic screening and intermolecular excluded
volume in nondilute polymer solutions. We hypothesize that comb polymer branches may induce a
local dilution in the vicinity of their backbones due to steric interactions with nearby polymer chains
in the background solution. To test this hypothesis, we performed BD simulations with and without
HI for linear (nbr = 0, Nbb = 100) and comb polymers (nbr = 1, Nbr = 6, 13, and 26, Nbb = 100).
We determined the equilibrium intermolecular radial distribution function g(r) for a monomer
located at a branch point for a comb with a single branch (nbr = 1) located in the center of the
comb backbone (Fig. 6) or at different locations along the comb backbone (Fig. 7). For comparison,
we also determined g(r) for a monomer located in the center of a linear polymer backbone. At small
distances r, neighboring polymers are depleted [g(r) < 1] due to steric interactions. Depletion is
more significant for comb polymers, consistent with our hypothesis.

We quantify local dilution by determining a characteristic depletion distance ξ that is a proxy
for the mesh size of a semidilute unentangled polymer solution. The depletion distance ξ is
determined by relating the total number of depleted monomers nD = 4π〈ρ〉 ∫ ∞

0 r2[1 − g(r)]dr to
an equivalent, fully depleted cavity of size ξ , nD = 4π〈ρ〉ξ 3/3, where 〈ρ〉 is the average monomer
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FIG. 6. Intermolecular radial distribution function for monomers at a backbone position xbr = 0.5 for linear
polymers (black) and comb polymers with Nbr = 6 (red), 13 (blue), and 26 (magenta) at 1.0c∗. Results from
simulations with HI (solid lines) and without HI (dashed lines) are shown. Inset: Schematic of correlation
length for combs.

density. Equating the two expressions for nD relates g(r) to ξ . For the data shown in Fig. 6, we
obtain the ratios ξL/ξC,6 = 0.991, ξL/ξC,13 = 0.934, and ξL/ξC,26 = 0.921 for linear (L) to comb (C)
polymers, where subscripts denote Nbr = 6, 13, or 26. Scaling arguments for semidilute solutions
assume that ξ is also a characteristic hydrodynamic screening length, relating polymer concentration
(φ ∝ ξ (1−3ν )/ν) to chain relaxation. Here, the longest polymer relaxation time in semidilute solutions
is given by the scaling relation τ ∝ φ(2−3ν )/(3ν−1), where ν is the solvent quality-dependent Flory
exponent.

These relations can be combined to yield the ratio of comb to linear polymer relaxation times
τC/τL � (ξL/ξC )(2−3ν )/ν . This expression is then used to estimate τC/τL, such that τC,6/τL = 0.991
and τC,13/τL = 0.934 for ν = 1/2 and τC,6/τL = 0.996 and τC,13/τL = 0.973 for ν = 3/5. For
longer branches (Nbr = 26), τC,26/τL = 0.921 for ν = 1/2 and τC,26/τL = 0.971 for ν = 3/5. Over-
all, these results are in reasonable agreement with the τC/τL values for the BD simulation results

FIG. 7. Intermolecular radial distribution functions for a polymer bead at the branch point for a branch
placement at (a) xbr = 0.16, (b) xbr = 0.33, and (c) xbr = 0.5. In all cases, Nbr = 13 and the polymer concen-
tration is 1.0c∗. Results from simulations with HI (solid lines) and without HI (dashed lines) are shown for
both combs with a single branch and linear polymers as a comparison.
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shown in Fig. 5 for nbr = 1, supporting our hypothesis that local dilution expedites the relaxation of
lightly branched comb polymers compared to linear polymers in semidilute solutions.

Together, these results show that comb-shaped polymers in semidilute solutions exhibit a local
dilution effect, such that a small number of branches induces steric repulsion of nearby chains. For
chains with long-range HI, local dilution results in more rapid relaxation. This is the predominant
effect for relatively low branching density, as increasingly more branches contribute less to steric
repulsion and only incur an added frictional drag.

In summary, these results highlight an unexpected trend in the relaxation behavior of comb
polymers in semidilute solutions. Our results show that the dynamic behavior of nonlinear polymer
chains in semidilute solutions is qualitatively different compared to dilute solutions or melts.
In semidilute solutions, a complex interplay between nonlinear polymer architecture, steric in-
teractions, and hydrodynamics results in surprising relaxation behavior that is not captured by
existing theories. From this view, our work motivates the need to develop new descriptions for
branched polymer dynamics, focusing on the role of concentration, molecular weight, and polymer
architecture. Such interactions become increasingly complex as polymer concentration approaches
the critical entanglement concentration [48], where understanding topological constraints in the
presence of hydrodynamics will be critical to advance new theories for polymer solution dynamics.

This work was supported by National Science Foundation, NSF CBET 1254340 for C.M.S., NSF
Grant No. CBET 1803757 for C.E.S., and a DuPont Science and Engineering Fellowship for C.D.Y.
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