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A B S T R A C T

Information about the distribution and characteristics of existing sinkholes is critical for understanding karst
aquifer systems and evaluating sinkhole hazards. LiDAR provides accurate and high-resolution topographic
information and has been used to improve delineation of sinkholes in many karst regions. LiDAR data also reveal
many topographic depressions, however, and identifying sinkholes from these depressions through manual vi-
sual inspection can be slow and laborious. To improve the efficiency of the identification process, we applied six
machine learning methods (logistic regression, naive Bayes, neural network, random forests, RUSBoost, and
support vector machine) to a dataset of morphometric characteristics of LiDAR-derived topographic depressions.
Sinkhole data from Bourbon, Woodford, and Jessamine Counties in the Bluegrass Region of Kentucky were used
to derive the dataset for training and testing the machine learning methods. The dataset consisted of 22,884
records with 10 variables for each record. For each method, a random subset of 80% of the records was used for
training and the remaining 20% was used for testing. The test receiver operating characteristic curves showed
that all six methods were applicable to the dataset, as demonstrated by all area under the curves (AUCs) being
greater than 0.87. Neural network emerged as the method that performed best, with an AUC of 0.95 and a testing
average accuracy of 0.85. To further improve the sinkhole mapping process, we subsequently developed a two-
step process that combined the trained neural network classifier and manual visual inspection and applied the
process to Scott County, also in the Bluegrass region. We were able to locate 97% of the sinkholes in the county
by manually inspecting only 27% of the topographic depressions the neural network classified as having rela-
tively high probabilities of being sinkholes. This study showed that machine learning is a promising method for
improving sinkhole identification efficiency in karst areas in which high-resolution topographic information is
available.

1. Introduction

Approximately 15% of the ice-free land surface globally is underlain
by karst terrain and approximately 20–25% of the global populations
depends largely or entirely on the aquifers associated with this terrain
(Ford and Williams, 2007); many large population centers rely on these
aquifers as their primary water supplies (Chen et al., 2017). Karst
aquifers typically have distinct physiographic features that result from
the dissolution of bedrock (typically carbonate rocks), and as a result,
these aquifers are usually characterized by a network of fractures and
conduits that connect to the surface water through sinkholes, sinking
streams, and springs. Sinkholes are the most well-known features as-
sociated with karst (Schwartz and Zhang, 2003). Sinkholes serve as a

major connection between surface water and groundwater by collecting
rainfall and funneling it internally to the subsurface, often via fast flow.
Sinkholes also cause damage to property and infrastructure in karst
regions throughout the world. In the United States alone, the costs of
sinkhole-related damage is estimated to range from $125 million to
$300 million dollars annually (Kuniansky et al., 2016). Dinger et al.
(2007) estimated that in Kentucky the damage associated with sink-
holes costs approximately $20 million to $24 million dollars per year.
The U.S. Disaster Mitigation Act of 2000 requires states to have a state
mitigation plan approved by the Federal Emergency Management
Agency in order to be eligible for federal hazard mitigation funding.
The mitigation plan must include the identification and assessment of
natural hazards, such as sinkholes. Detailed information on sinkholes is,
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therefore, essential for understanding karst aquifer systems and miti-
gating sinkhole hazard.

In many karst regions, sinkholes appear as depressions on the
Earth’s surface and can be identified with topographic information. In
Kentucky, a sinkhole database (Paylor et al., 2003) derived from
1:24,000 scale topographic maps was used to assess the statewide
sinkhole hazard (Kentucky Emergency Management, 2013). The topo-
graphic maps used to compile the database were low-resolution and
were mostly created prior to the 1970s. As a result, many small or
newly formed sinkholes were not included in the database (Zhu et al.,
2014). LiDAR is a remote-sensing technique that provides high-density
and high-accuracy data for depicting small topographic features,
therefore providing a great opportunity for mapping karst sinkholes in
high resolution and with great detail. Some researchers (Seale et al.,
2008; Alexander et al., 2013) have manually located sinkholes based on
LiDAR-derived digital elevation models (DEMs) or their derivative
maps directly. Others have used a sink-fill method (Jenson and
Domingue, 1988; Planchon and Darboux, 2001; Wang and Liu, 2006) to
automatically extract surface depressions from LiDAR (Zhu et al., 2014;
Wu et al., 2016; Wall et al., 2017). Although the sink-fill method can
locate sinkholes, it also extracts other surface features, such as stream
channels, meander cutoffs, and more commonly man-made structures
(e.g., farm ponds, culverts, swimming pools); therefore, an additional
step is needed to separate sinkholes from these other features. Zhu et al.
(2014) used a manual visual inspection method with auxiliary data
(e.g., satellite images), but this can be slow and laborious for large areas
in which tens of thousands of surface depressions can be revealed from
LiDAR. We decided to apply machine learning methods to tackle this
problem.

Machine learning is a branch of artificial intelligence in which the
goal is to construct computer-based systems that improve automatically
through training experience (Mitchell, 1997). Over the last two dec-
ades, machine learning has advanced dramatically with broad appli-
cations across many scientific fields, including biology, cosmology,
medical science, and social science (Jordan and Mitchell, 2015). Ma-
chine learning has also been applied to sinkhole-related problems. Miao
et al. (2013) trained a random forests model with a high training ac-
curacy of 87.9%, but their model was built on a small dataset of 66
records and was not tested in a different area. Zhu and Pierskalla (2016)
trained a weighted random forests model from 8427 records, but they
found the accuracy decreased considerably when the trained model was
tested in a nearby area. Taheri et al. (2019) applied four machine
learning methods to evaluate sinkhole susceptibility factors using a
small dataset of less than 50 records of existing sinkholes. Identifying
sinkholes from a large number of surface depressions quickly and effi-
ciently, however, remains a challenge.

In this study, we aimed to identify sinkholes by exploring multiple
machine learning methods using a large dataset and developing an ef-
ficient way to apply trained machine learning models.

2. Study area

The study area consists of Bourbon, Woodford, Jessamine, and Scott
Counties in Central Kentucky (Fig. 1). Most of the study area is in the
Inner Bluegrass Region, the second largest karst region in Kentucky
(Currens, 2002). The Inner Bluegrass is mostly underlain by the Middle
Ordovician Lexington Limestone (Cressman and Peterson, 1986), which
is predominantly a limestone unit with interbedded shales that has
developed numerous karst features, such as sinkholes and sinking
streams. The Kentucky River flows along the western boundary of
Woodford County and the southwestern boundary of Jessamine County.
The Kentucky River Palisades and the lower parts of the river’s tribu-
taries inside the two counties are underlain by the Middle Ordovician
High Bridge Group, which is mainly composed of limestone and dolo-
mite and is the oldest stratigraphic unit exposed in Kentucky (Cressman
and Peterson, 1986). Northern Scott County, southeastern Bourbon

County, and southern Jessamine County are in the Eden Shale belt, a
band of round hills and ridges around the Inner Bluegrass (Newell,
1986). These parts of the study area are underlain by the Upper Or-
dovician Garrard Siltstone and Clays Ferry Formations, which are
mostly shale with interbedded siltstone and minor limestone and have
very few karst features developed on them (Cressman and Peterson,
1986).

3. Methods

3.1. Create a sinkhole dataset

Karst sinkholes in Bourbon, Jessamine, and Woodford Counties
were first mapped using the method of Zhu et al. (2014) and the karst
sinkhole data were then used to create a dataset of sinkhole morpho-
metric characteristics for training and testing machine learning
methods. Sinkhole morphometric characteristics have been used to re-
move depressions that are not sinkholes (Filin and Baruch, 2010;
Rahimi and Alexander, 2013; Doctor and Young, 2013; Wu et al., 2016;
Zhu and Pierskalla, 2016). We selected 10 morphometric variables to
describe the three-dimensional characteristics of the topographic de-
pressions. The plan-view of a depression (i.e., a polygon representing
the closed contour of the depression on the surface) was characterized
by three variables: perimeter, area, and compactness. The compactness
(also called circularity), C, measures how closely a shape resembles a
circle. One way to measure the compactness is by Cole (1964)

=C A
Ac (1)

where A is the area of the polygon and Ac is the area of the smallest
circle circumscribing the polygon. Values of compactness range from 0
to 1 and equal 1 when the polygon is a perfect circle. Natural sinkholes
tend to have a circular shape with a high compactness value although
large sinkholes are more likely to have complex shapes.

To capture characteristics of the depressions in the vertical direc-
tion, we calculated statistics of depths in each depression and statistics
of slopes of a 9-m ring (slope ring) surrounding each depression (Fig. 2).
Variables selected for characterizing depths were maximum depth,
mean depth, depth standard deviation, and depth sum. Depth sum
variable is the sum of the depth of every cell within a depression; when
multiplied by the cell size of the elevation raster (1.524 m in this study),
the depth sum variable becomes the depression volume. Variables se-
lected to describe the slope ring were mean slope and slope standard
deviation. To see if there is a relation between depth and the surface
area of a sinkhole, we selected a depth index Di, defined as:

=D D A π/ /i max (2)

where Dmax is the maximum depth and A is the surface area (i.e., the
area of the polygon on the surface). The depth index reflects the slope
by assuming that a sinkhole is an inverted cone (Miao et al., 2013).

3.2. Train and test machine learning models

Training an algorithm to identify sinkholes using a dataset with
known sinkhole/non-sinkhole classification is considered as supervised
learning in machine learning. Supervised learning systems rely on
known responses to learn how to map inputs to predictions. There are
many mapping techniques for supervised learning, including Bayesian
classifiers, decision trees, decision forests, logistic regression, kernel
machines, neural networks, and support vector machines (Hastie et al.,
2011). We selected six methods: logistic regression, naive Bayes, sup-
port vector machine, neural network, RUSBoost, and random forests.
Logistic regression applies the logit function (the logarithm of the odds)
with a linear combination of inputs to estimate the probability of re-
sponse variables (usually binary). Naive Bayes uses the Bayes theorem
to predict the posterior probability of each class while assuming that
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inputs are conditionally independent. A support vector machine (SVM)
makes predictions by seeking a hyperplane that provides the maximum
separating margin for inputs. SVMs rely on different kernel functions to
transform inputs into a separable form. A neural network is a two-stage
model; the key idea is to derive features through a linear combination
of inputs at the first stage and then model the responses using a non-
linear function of these derived features at the second stage (Hastie

et al., 2011). RUSBoost is a decision forest method designed to handle
imbalanced data; it uses RUS (random under-sampling) to achieve a
balance between classes in the sampled data. A common sampling
strategy in RUSBoost is to have the same number of observations from
each class. The random forests method was applied to compare this
study with our previous study (Zhu and Pierskalla, 2016), which also
used the random forests method. Both the random forests and RUSBoost
grow multiple decision trees, but in the random forests the trees are
independent of each other (i.e., bagging) whereas in RUSBoost the later
trees are adaptive to the earlier trees (i.e., boosting). A more detailed
description of these methods can be found in Hastie et al. (2011),
Seiffert et al. (2010), and Breiman (2001).

We used MATLAB (2017) to build machine learning classifiers from
the sinkhole dataset. MATLAB provides built-in functions for many
machine learning methods. For the support vector machine, we used a
quadratic polynomial kernel. For RUSBoost, we grew 1000 trees. For
random forests, we grew 300 trees – the same number of trees used in
Zhu and Pierskalla (2016). For neural network, we used one hidden
layer with 10 nodes and scaled conjugate gradient backpropagation
training function. For logistic regression and naive Bayes, we used the
option requiring no additional parameters besides the dataset. Each
method was trained by using 80% of a randomly selected subset of the
full dataset. The trained machine learning models were then tested
using the remaining 20% of the dataset.

For two-class classification problems, a widely used tool to evaluate
the performance of a machine learning method is a receiver operating
characteristic (ROC) curve (Fawcett, 2006). A ROC curve plots false
positive rate vs. true positive rate under different classification
thresholds. The true positive rate is the proportion of positive cases that
are correctly classified; the false positive rate is the proportion of

Fig. 1. Study area.

Fig. 2. Example of a slope ring surrounding a sinkhole.
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negative cases that are incorrectly classified as positive. As a result, in a
ROC curve, increases in true positive rate are often accompanied by
increases in false positive rate. The performance can be evaluated
through how well a method separates the true positive rate from the
false positive rate; the area under the ROC curve, or AUC, provides a
straightforward measure of this. An AUC of 1 represents a perfect test
and an AUC of 0.5 represents a worthless test. The closer the AUC is to
1, the better the test. A ROC curve with an AUC above 0.9 generally
indicates an excellent classifier.

Although a ROC curve is widely used to measure the performance of
binary classifiers (Fawcett, 2006), it is not sensitive to data imbalance.
To better evaluate the performance of the classifiers to an imbalanced
dataset, such as the sinkhole dataset in this study, we applied precision-
recall (PR) curves. Precision is defined as the number of correct positive
predictions divided by the sum of true positive cases and false positive
cases. The number of false positive predictions depends on the number
of actual positive cases. Precision measures the portion of predicted
positives that are actually correct. Recall, also known as true positive
rate, measures the portion of actual positives that are identified cor-
rectly. Consequently, a PR curve is considered a more appropriate
evaluating measure than a ROC curve for imbalanced datasets (Saito
and Rehmsmeier, 2015). In a PR curve, improving precision typically
reduces recall and vice versa. The area under the PR curve (PR-AUC)
provides a measure of performance. A high PR-AUC value represents
both high recall and high precision, showing that the classifier not only
returns high accuracy in positive predictions but also identifies a high
portion of actual positives.

The ROC and PR curves evaluate the overall performance of the
classifiers. Prediction accuracy of the classifiers was further assessed
using confusion matrices from the testing data. A confusion matrix lists
actual and predicted classifications in a matrix form. From the confu-
sion matrices of the six classifiers, we calculated overall accuracy,
average accuracy, precision, recall, and F-measure. Overall accuracy is
the ratio of the total number of correct predictions to the total number
of records. The overall accuracy is a widely used evaluating metric, but
it can be misleading for very imbalanced data, in which a classification
missing all minority classes can still achieve high overall accuracy. The
average accuracy is the average between true positive rate and true
negative rate, which takes into account class imbalance. The true ne-
gative rate is the ratio of correct negative predictions to total actual
negatives and measures the portion of actual negatives that are iden-
tified correctly. F-measure is the harmonic mean of precision and recall.

3.3. Model application

To investigate how to effectively apply a trained classifier to a new
location, we developed a two-step procedure that combined the best-
performing classifier and visual inspection. We anticipated that a
trained classifier would make some wrong predictions, so the two-step
procedure was aimed to combine human intervention and the machine
learning classifier to improve sinkhole mapping accuracy.

The accuracy assessment metrics described in Section 3.2 used a
confusion matrix calculated from a commonly used classification
threshold of 0.5, meaning that a depression is classified as a sinkhole
when its predicted probability of being a sinkhole above 0.5. A different
threshold can be applied based on the nature of the application. In
sinkhole mapping, the mistake of mapping a non-sinkhole as a sinkhole

is a bigger error than the mistake of missing a sinkhole. So the goal is to
reduce false positives while maintaining a high true positive rate. Re-
ducing the false positive rate often decreases the true positive rate,
however. Thus, the first step of the two-step procedure was to apply a
machine learning classifier to predict probability of depressions being
sinkholes. Then, a probability threshold was selected so that most true
sinkholes were classified into the “sinkhole” category. By doing that,
the sinkhole category inevitably contained some non-sinkholes. We
then used visual inspection to remove non-sinkholes from the sinkhole
category in the second step.

4. Results and discussion

4.1. Sinkhole dataset

Karst sinkholes in Bourbon, Jessamine, and Woodford Counties
were used to create the dataset for training and testing machine
learning methods. Using the method in Zhu et al. (2014), a total of
22,884 depressions were extracted from LiDAR-derived 1.524-m DEMs,
of which 5631 (24.6%) were identified as probable sinkholes. We field-
checked 148 randomly selected probable sinkholes and confirmed that
144 (97.3%) of them were actual sinkholes. A summary of the results
for each county is listed in Table 1 and the locations of field-checked
sinkholes are shown in Fig. 1. For the purposes of training and testing
machine learning methods, the sinkhole classification result was con-
sidered to be a “true” classification. The “true” classification is not
entirely accurate, as demonstrated by the 2.7% of error rate from the
field-checked results.

The 10 morphometric variables were then calculated for all the
22,884 depressions. A response variable with a binary classification
(sinkhole or non-sinkhole) was created using sinkhole mapping result.
The resulting dataset was imbalanced as only 24.6% of the records were
classified as sinkholes. The dataset was skewed toward the non-sinkhole
class.

4.2. Model testing results

The ROC curves (Fig. 3) show that all the methods worked well for
the sinkhole dataset with AUCs ranging from 0.874–0.950. The best
performing methods were neural network (AUC = 0.950), random
forests (AUC = 0.947), and RUSBoost (AUC = 0.942). The PR curves
(Fig. 4) show that neural network (PR-AUC = 0.860) performed the
best among the six methods, followed by random forests (PR-
AUC = 0.851), and support vector machine (PR-AUC = 0.828).
Overall, the ROC curves and PR curves gave similar assessment results
for these methods. Table 2 shows that neural network had the highest
overall accuracy, average accuracy, and F-measure. Random forests and
RUSBoost achieved very close performance to neural network.

4.3. Model application results

The performance evaluation of the six classifiers showed that the
dataset derived using the morphometry of the depressions from the
three counties provides adequate information for machine learning to
separate sinkholes from other depressions. The evaluation also showed
that neural network worked best among the six methods. However,
although the neural network correctly identified 830 sinkholes, it also

Table 1
Summary of sinkhole mapping results in Bourbon, Jessamine, and Woodford Counties.

County Number of depressions processed Number of sinkholes identified Number of field-confirmed sinkholes Number of field-confirmed non-sinkholes

Bourbon 7775 1294 18 1
Jessamine 8134 2257 57 4
Woodford 6975 2075 68 0
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missed 255 actual sinkholes and misclassified 206 non-sinkholes as
sinkholes (Table 3). We needed to find a way to take advantage of the
classifier while minimizing loss in accuracy.

We applied the two-step procedure to Scott County, another county
in the Bluegrass Region (Fig. 1). We retrained a neural network clas-
sifier using all 22,884 records collected from Bourbon, Woodford, and

Jessamine Counties. Using the depression extraction method by Zhu
et al. (2014), we extracted 10,626 topographic depressions from a
LiDAR-derived DEM of Scott County. The same 10 variables describing
morphometric characteristics of these depressions were calculated. The
trained neural network classifier was then applied to predict the
probability of these depressions being sinkholes. Because most of Scott
County has similar geology as the other three counties, we expected
that the ratio of sinkholes to non-sinkholes in the Scott County dataset
would be similar to the ratio in the training data (0.33). Using this ratio
with some added safety margins, we used a probability threshold of 0.1
to separate the depressions into a “sinkhole” group and a “non-sink-
hole” group, so that all records in the sinkhole group had a predicted
sinkhole probability of 0.1 or higher and all records in the non-sinkhole
group had a predicted sinkhole probability below 0.1. The resulting
sinkhole group had 2889 (27%) records and the non-sinkhole group had
7737 (73%) records, a ratio of 0.37.

We then visually inspected the sinkhole group and identified 888 of
them as sinkholes. To see how many sinkholes could be missed by this
two-step procedure, we also visually inspected the non-sinkhole group
and found that 31 of them were sinkholes. This suggested that, with the
assistance of a machine learning classifier, we would be able to identify
97% of sinkholes by inspecting only 27% of the total depressions for
Scott County. The procedure saved more than 70% of the manual labor
in visual inspection with a cost of missing only a small number of
sinkholes.

When inspecting the 31 sinkholes the neural network classifier
predicted with low probability of being sinkholes (< 0.1), we found
their morphometric characteristics were not typical as sinkholes. For
example, some of them had a naturally irregular surficial shape that
was very different from the circular shape of typical sinkholes (Fig. 5a).
Some had been partially modified by human activities, such as road
constructions (Fig. 5b). Some were groups of small sinkholes that were
too small to be classified as sinkholes individually (Fig. 5c). Fig. 5c
shows the limits of the dataset, in which each depression was con-
sidered independently spatially. We have observed that sinkholes tend
to form in clusters along major rivers or joints and lineaments (Zhu
et al., 2014). Visual inspection can naturally take this spatial pattern
into consideration, but extracting variables to reflect that pattern can be
difficult. These cases showed a small number of sinkholes that cannot
be characterized by their morphometric characteristics alone.

4.4. Discussion

In this study, the trained neural network model was applied to an
area that has similar geologic and geographic conditions as the area for
which the training dataset was developed. Development of sinkholes is
influenced by many geologic, topographic, and climatologic factors and
morphometry of sinkholes may not be equivalent from one region to
another (Taylor and Doctor, 2016). To see if the trained neural network
model is applicable to another karst region, we tested the model in
Oldham County, Kentucky where sinkholes have been mapped pre-
viously using LiDAR data (Zhu and Pierskalla, 2016). Oldham County is
approximately 100 km northwest of the study area and is underlain by
limestone and dolomite of Late Ordovician and Silurian age (Newell,
1986). The application of the two-step procedure to Oldham County
showed that a sinkhole probability threshold of 0.1 classified 60% of
depressions as “non-sinkhole”, but the “sinkhole” group missed 14% of
actual sinkholes. When a threshold of 0.025 was used, 43% of the
polygons were classified as “non-sinkhole” whereas the “sinkhole”
group missed only 4% of actual sinkholes. This suggests that the trained
classification model may yield less accurate results when applied to
other karst regions, which is not surprising. To apply the method de-
scribed in this paper to other karst regions, a better way would be to re-
train the machine learning models using data from the same region. On
the other hand, the model trained in this study can still be potentially
useful for another karst region if used as a screening tool to remove

Fig. 3. Receiver operating characteristic curves for the six classifiers.

Fig. 4. Precision recall curves for the six classifiers.

Table 2
Performance metrics of the classifiers for the test data.

Method Recall Precision Overall
accuracy

Average
accuracy

F-measure

Naïve Bayes 0.365 0.690 0.804 0.656 0.478
Logistic regression 0.602 0.743 0.851 0.767 0.665
Support Vector

Machine
0.692 0.834 0.890 0.823 0.756

Random forests 0.756 0.804 0.895 0.848 0.779
RUSBoost 0.780 0.769 0.888 0.852 0.774
Neural network 0.765 0.801 0.899 0.853 0.783

Table 3
Confusion matrix of neural network classifier for testing data.

Predicted non-sinkhole Predicted sinkhole

True non-sinkhole 3286 206
True sinkhole 255 830
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obvious non-sinkholes. In this case, the threshold used for screening
depressions should be tested and adjusted for the region.

A comparison of performance metrics between this study and our
previous study (Zhu and Pierskalla, 2016) showed the random forests
model in this study achieved higher accuracy than our previous random
forests model. The improvement may be attributed to the larger
training dataset used in this study (18,308 records compared to 8427
records used previously). The performance difference may also be at-
tributed to how the two models were tested. In Zhu and Pierskalla
(2016), the trained model was tested in an area adjacent to the area
where the training data were extracted. In this study, the testing data

and training data were from the same area, and separation of the two
subsets was done randomly.

Sinkholes have different sizes and shapes. The 10 morphometric
variables certainly did not capture all the details of the three-dimen-
sional nature of sinkholes. The machine learning models may be im-
proved if additional morphometric variables can be developed and
added to the training data. On the other hand, deep learning can use
images of sinkholes directly as training data and offers an alternate
approach that may further improve classification accuracy and expedite
the sinkhole mapping process.

5. Conclusions

We tested six machine learning methods to locate karst sinkholes
from LiDAR data in the Bluegrass Region of Kentucky. We built a da-
taset of morphometric characteristics of mapped sinkholes in Bourbon,
Jessamine, and Woodford Counties and trained and tested classifiers
using logistic regression, naive Bayes, support vector machine, neural
network, random forests, and RUSBoost. We then used a two-step
procedure that combined the best performing classifier with manual
inspection in Scott County to improve sinkhole mapping efficiency. Our
study concluded:

1. Morphometric characteristics of sinkholes provided sufficient in-
formation for separating most sinkholes from other forms of surface
depressions.

2. Neural network performed the best among the six machine learning
methods in identifying sinkholes from other depressions. Neural
network achieved the highest AUC values from the receiver oper-
ating characteristic curves and the precision-recall curves, and best
values for overall accuracy, average accuracy, and F-measure.

3. The two-step procedure of combining a machine learning classifier
with manual visual inspection improved efficiency while main-
taining accuracy. With the assistance of a neural network classifier,
we located 97% of sinkholes by inspecting only 27% of the topo-
graphic depressions in Scott County.
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