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Abstract

Nearly every service on the Internet relies on the Domain Name
System (DNS), which translates a human-readable name to an IP
address before two endpoints can communicate. Today, DNS traffic
is unencrypted, leaving users vulnerable to eavesdropping and tam-
pering. Past work has demonstrated that DNS queries can reveal a
user’s browsing history and even what smart devices they are using
at home. In response to these privacy concerns, two new protocols
have been proposed: DNS-over-HTTPS (DoH) and DNS-over-TLS
(DoT). Instead of sending DNS queries and responses in the clear,
DoH and DoT establish encrypted connections between users and
resolvers. By doing so, these protocols provide privacy and security
guarantees that traditional DNS (Do53) lacks.

In this paper, we measure the effect of Do53, DoT, and DoH on
query response times and page load times from five global vantage
points. We find that although DoH and DoT response times are
generally higher than Do53, both protocols can perform better than
Do53 in terms of page load times. However, as throughput decreases
and substantial packet loss and latency are introduced, web pages
load fastest with Do53. Additionally, web pages successfully load
more often with Do53 and DoT than DoH. Based on these results,
we provide several recommendations to improve DNS performance,
such as opportunistic partial responses and wire format caching.

1 Introduction

The Domain Name System (DNS) underpins nearly all Internet com-
munication; DNS queries map human-readable domain names to
corresponding IP addresses of Internet endpoints. Because nearly
every Internet communication is preceded by a DNS query, and
because some applications may require tens to hundreds of DNS
queries for a single transaction, such as a web browser loading a page,
the performance of DNS is paramount. Many historical DNS design
decisions and implementations (e.g., caching, running DNS over
UDP instead of TCP) have thus focused on minimizing the latency
of each DNS query.

In the past several years, however, DNS privacy has become a sig-
nificant concern and design consideration. Past research has shown
that DNS queries can reveal various aspects of user activity to eaves-
droppers, including the web sites that a user is visiting [43]. As a
result, various efforts have been developed to send DNS queries
over encrypted transport protocols. Two prominent examples are
DNS-over-TLS (DoT) and DNS-over-HTTPS (DoH). In both cases, a
client sends DNS queries to the resolver over an encrypted transport
(TLS), which relies on the Transmission Control Protocol (TCP).
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The use of encrypted transports makes it impossible for passive
eavesdroppers to observe DNS queries on a shared network, such asa
wireless network in a coffee shop. These transports also allow clients
to send encrypted DNS queries to a third-party recursive resolver
(e.g., Google or Cloudflare), preventing a user’s ISP from seeing the
DNS queries of its subscribers. As such, from a privacy perspective,
DoT and DoH are attractive protocols, providing confidentiality
guarantees that DNS previously lacked.

On the other hand, encrypted transports introduce new perfor-
mance costs, including the overhead associated with TCP and TLS
connection establishment, as well as additional application-layer
overhead. The extent of these performance costs is not well under-
stood. An early preliminary study by Mozilla found that queries with
DoH are only marginally slower than conventional DNS over port 53
(Do53) [26]. However, Mozilla only measured query response times,
which does not reflect the holistic end-user experience.

In this paper, we measure how encrypted transports for DNS af-
fect end-user experience in web browsers. We find that DNS queries
are typically slower with encrypted transports. Much to our sur-
prise, however, we discovered that using DoT and DoH can result in
faster page load times compared to using Do53. When exploring the
underlying reasons for this behavior, we discovered that encrypted
transports have previously ignored quirks that significantly affect
application performance. For example, when DNS queries are sent
over a lossy network, DoT and DoH can recover faster than Do53 be-
cause TCP packets can be retransmitted after 2x the round-trip-time
latency to a recursive resolver.

On networks with sub-optimal performance however, these pro-
tocols begin to suffer because of their connection and transport over-
head. The relative costs and benefits of a particular DNS transport
protocol and its implementation for DNS query response times and
web page load times ultimately depend on the underlying network
conditions. This variability suggests that in some cases, clients (i.e.,
operating systems or browsers) might consider using different trans-
port protocols for DNS based on their varying cost, performance,
and privacy trade-offs. Our findings also suggest easy improvements
to stub resolver and browser DNS implementations.

In this paper, we make the following contributions:

e We provide a performance study of Do53, DoT, and DoH from
five global vantage points. We measure query response times
and page load times using popular open recursive resolvers,
as well as resolvers provided by local networks.

o We show that encrypted DNS transports can lead to faster page
load times than unencrypted DNS. We find that DNS query



response times for DoT and DoH are generally slower than
Do53. Surprisingly, on lossy network conditions, page load
times can be faster when using DoT and DoH instead of Do53.
We attribute this behavior to differences in retransmission
times between UDP and TCP.

o We give applicable insights to optimize DNS performance. Dur-
ing our measurements, we observed behavior in DNS im-
plementations that could be capitalized on for performance.
Based on these insights, we propose two optimizations: wire-
format caching and opportunistic partial responses.

2 Background

At a high level, the process for resolving domain names into IP ad-
dresses works in several steps. A client queries a recursive resolver
(“recursor”), for example, “what is the IP address for example.com?”
The client has traditionally been a stub resolver, which is a light-
weight process that manages DNS interactions with the global DNS
infrastructure. If the recursor does not have an answer for the do-
main name cached, it will issue the query on the client’s behalf to
upstream servers in the DNS hierarchy, including the root, TLD, and
ultimately authoritative servers for a given domain. Once the answer
is returned to the recursor, the recursor caches the response and
sends it to the client.

Due to the historical origins of the DNS, there are several privacy
problems that were not originally considered [4]. For example, DNS
queries sent over port 53 (or “Do53”) are typically unencrypted.
This means that any eavesdropper listening to traffic between the
client and a recursor can see what queries the client is making. Such
information can be used to reveal personal information, such as
browsing patterns and client device types, which can then be used to
link user identity with user traffic. While recursors themselves could
also observe every query a client makes, recent protocols have been
introduced to (at least) improve privacy for DNS traffic in transit
between clients and DNS servers.

Hu et al. proposed DNS-over-TLS (or “DoT”) in 2016 to prevent
eavesdroppers from observing DNS traffic between a client and a
recursor [21]. It works largely similar to Do53, but the DNS traffic
is sent over an established TLS connection, which means that it
relies on TCP by default rather than on UDP. Once the connection is
established, all queries are encrypted by the transport sent over port
853. Although DoT is relatively new, it has seen a significant increase
in popularity since its introduction as some operating systems, such
as Android, have started to use DoT opportunistically [23].

In 2018, Hoffman et al. proposed DNS-over-HTTPS to prevent
on-path manipulation of DNS responses [20]. DoH is similar to
DoT, but uses HTTP as the transport protocol instead of TCP. Wire
format DNS queries and responses are sent using HT TP, and client
applications and servers are responsible for translating between
the application-layer messages and traditional DNS infrastructure.
An argument for DoH versus DoT has surrounded anti-censorship
concerns, as DoH uses port 443 compared with port 853. Oppressive
regimes sometimes censor the Internet by dropping DNS traffic, but
DoH requires a malicious network operator to drop all HTTPS traffic
(on port 443) to prevent name resolution.

In this paper, we do not investigate the privacy or anti-censorship
properties offered by each protocol. Rather, we are focus on the effects
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that Do53, DoT, and DoH have on web performance and analyzing
their respective costs and benefits. We believe such measurements
are necessary for users to make informed decisions about protocol
choice for this crucial function of the Internet.

3 Method

In this section, we define our performance metrics, explain how we
measure them, and describe our experiment setup.

3.1 Metrics

To understand how D053, DoT, and DoH affect browser performance,
we measure page load times and DNS query response times. Page
load times are gathered through Mozilla Firefox, and DNS query
response times are gathered using a custom tool.

3.1.1  Page Load Time We use Mozilla Firefox 67.0.1 in headless
mode controlled by Selenium to visit a list of websites and measure
page load times. We record page load times by inspecting HTTP
Archive objects (HARs), which can be collected after a page has
finished loading [41]. In particular, we extract the onLoad timing from
each HAR, which measures the elapsed time between when a page
load began to when the load event was fired. Our measurement suite
is packaged as a Docker image to enable reproducible measurements,
and to clear the browser’s HT TP cache between page loads.

The load event is fired when a web page and all of its resources
have completely loaded. It is specified in the HTML Living Standard
and has been implemented by all major browser vendors [30]. It
has also been used to measure page load times in previous web
performance research [6, 13]. A similar event is DOMContentLoaded,
which is fired when the HTML for a web page has been loaded and
parsed by the browser. However, unlike the load event, it does not
include the time for downloading each object on the page, which
is necessary to understand how DNS protocols affect page load
times [28].

Another metric is above-the-fold time (AFT), which represents the
time it takes to download and render content that is initially viewable
within the browser’s dimensions. The motivation for measuring AFT
is that users may perceive a page load to have finished before all the
objects have been rendered. However, to measure AFT, we would
need to visually record the start time and end time of rendering within
the browser’s dimensions for each page load [39]. Given the large-
scale nature of our measurements, this would be too cumbersome to
measure.

3.1.2  DNS Query Response Time To obtain precise, accurate DNS
query response times, we built a tool with the getdns and libcurl
C libraries to issue D053, DoT, and DoH queries. We measure re-
sponse times for each unique domain in the HARs that we collect.
Importantly, we do not cache DNS responses with our tool.

Getdns is a library that provides a modern API for making Do53
and DoT queries in various programming languages [19]. To simulate
Firefox page loads, we enabled connection reuse for DoT with an idle
timeout of 10 seconds in order to amortize the TCP handshake and
TLS connection setup. Although Firefox does not currently support
DoT within the browser, we believe this is a realistic setting, as it is
the default timeout used by DoT stub resolvers such as Stubby. We
also ensure that all Do53 queries are made over UDP.



Comparing the Effects of DNS, DoT, and DoH on Web Performance

Libcurl is a library that allows developers to use cURL features
in their applications [38]. It supports POST requests over HTTPS,
which can be used to make DoH queries after adding the MIME type
“application/dns-message”. To issue DoH queries, we also enabled
connection reuse, and we sent the queries over HTTP/2, which
is the recommended minimum HTTP version for DoH [20]. We
independently verified that Firefox uses HTTP/2 through a packet
capture with mitmproxy and Wireshark [11, 9]).

Although HARSs also provide DNS query response times, we dis-
covered during the course of our experiments that the timings for
individual components, including DNS query response times, are
inaccurate. For example, we discovered that the first query that a
HAR contains can show DNS timings of 0 ms, even in cases where
it is impossible because we begin every browsing session with an
empty cache. This is the case because, depending on how a website
issues HTTP redirects, the first query in the HAR is not actually the
first query that the browser performed. Instead, the browser might
have performed a variety of other HT TP requests and DNS queries
before, which may still be in-progress or already cached.

Interestingly, this peculiarity not only results in timings of 0 ms,
but other values as well. The browser may issue multiple requests
to the same domain at different times through its thread pool, with
the first one being redirected (thus, itself not being in the HAR, and
the redirection target having a timing of 0 ms), and other requests
made in between resolving the name of the domain for the domain’s
first request. In turn, the subsequent requests can be answered from
the cache that the first request populated. However, the first request
does not appear in the HAR. Depending on when the requests are
made, which depends on factors such as rendering time, the timings
can take any value and shift the timings to the left. This would even
be the case if we would use the maximum of all values, because the
first request that triggers resolving the domain may not be present
in the HAR.

3.2 Experiment Setup

To ensure that our results representative of diverse network con-
figurations, we perform measurements across multiple recursors
and vantage points. In addition to performing measurements from
our instances in their default network conditions, we emulate cel-
lular performance by applying traffic shaping. This also enables us
to understand how Do53, DoH, and DoT perform under poor net-
work conditions, e.g. high latency and packet loss. We describe our
hardware and software configuration, choices of recursors, vantage
points, network conditions, and websites below.

3.2.1 Hardware and Software We deployed Amazon EC2 instances
with the m5. 2x1arge hardware configuration and the Debian Buster
operating system.! Each instance includes 32 GB of RAM, a 3.1
GHz Intel Xeon Platinum Processor (8 vCPU cores), and 10 Gbps of
network bandwidth [1]. The machines are connected over Ethernet,
and they run a measurement suite designed to collect page load times
as well as DNS query response times.? We deploy our Docker image
and DNS tool across all machines. We left all network settings in their
default values for Firefox 67.0.1, except when we enabled DoH by

!We considered using PlanetLab for our measurements, but ultimately decided to use
Amazon EC2 because we felt that we would get better performance guarantees.
2Qur tools are available at https:/github.com/noise-lab/dns-measurement-suite.

setting network. trr.mode = 3. This forces all DNS queries initiated by
Firefox to be sent over DoH [37]. Importantly, Firefox 67.0.1 disables
EDNS Client Subnet by default for their DoH implementation and
enables DNS pre-fetching.

3.22  DNS Recursors and Transport Protocols We measure how the
selection of a recursor and DNS transport affect browser perfor-
mance. As such, we chose three popular public recursors: Google,
Quad9, and Cloudflare. Each resolver offers public name resolution
for Do53, DoT, and DoH. We also use the local recursor provided to
our Amazon EC2 instances at each vantage point. However, these
recursors only supports Do53, and not DoT or DoH. Thus, these
recursors serve as baseline for browser performance over Do53.

Do53 and DoH are natively supported in Firefox, the browser we
use to drive our page load time measurements. However, as of Octo-
ber 2019, DoT must be configured by using a stub resolver on a user’s
machine outside of Firefox. For our page load time measurements,
we use Stubby for DoT resolution, a stub resolver based on the getdns
library [16]. Stubby listens on a loopback address and responds to for
Do53 queries. All DNS queries received by Stubby are then sent out
to a configured recursor over DoT. We modify /etc/resolv.conf on
our measurement systems to point to the loopback address served
by Stubby. This forces all DNS queries initiated by Firefox to be sent
over DoT.

We note that our goal is to perform natural experiments by using
popular recursors that end-users choose. As such, we are not able
to control the caches of the recursors between measurements. To
avoid biasing results due to network quiet and busy times, as well
as the potential effect of a query warming the recursor’s cache for
subsequent queries from the other protocols tested, we randomize
several aspects of the measurement suite. First, for each run through
the list of websites, we shuffle the order of websites prior to browsing.
Next, for each individual website, we randomize the order of DNS
protocol as well as the DNS provider.

3.2.3  Provider Networks Our goal is to understand relationships
between page load times, DNS performance, and network perfor-
mance. DNS performance is greatly affected by a client’s Internet
service provider (ISP), as their network configuration determines the
paths the DNS traffic will use to reach a resolver (should the client
opt to use a resolver that is hosted outside of the ISP network). To
gain a general understanding of how DoH, DoT, and Do53 perform
over different networks, we measure response times and page load
times from five vantage points around the world. We use Amazon
EC2 to launch instances located in Ohio & California (United States
of America), Frankfurt (Germany), Sydney (Australia), and Seoul
(South Korea).

3.24  Emulated Network Conditions We are also interested in web
performance over networks that exhibit packet loss or high latency.
We believe it is important to simulate cellular performance as an
increasing number of users are browsing the web on their phones.
Furthermore, organizations like Cloudflare have released mobile
applications to force the operating system to use encrypted DNS
transports. We perform our measurements using the default network
conditions for our instances and three emulated mobile network
conditions. We dedicate an EC2 instance for each network condition
at all vantage points, for a total of 20 instances.
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To emulated mobile network conditions, we first apply traffic
shaping to emulate 4G mobile network performance. We shape
outgoing traffic with an additional latency of 53.3 ms and jitter set
to 1 ms. We also dropped 0.5% of packets to mimic the loss that
cellular data networks can exhibit. We then shape our uplink rate
to 7.44 Mb/s and our downlink rate to 22.1 Mb/s. These settings are
based on an OpenSignal report of mobile network experience across
providers [15]. Second, we apply traffic shaping to emulate a lossy
4G network. We use the same latency and jitter settings as 4G, but
we increase the loss rate to 1.5% of packets. For the remainder of
the paper, we refer to this network condition as "lossy 4G." Finally,
we apply traffic shaping to emulate 3G network performance by
adding 150 ms or latency and 8 ms of jitter, along with 2.1% packet
loss and uplink and downlink rates of 1 Mb/s each. While users in
well-connected areas are less likely to experience 3G performance,
it remains prevalent globally, particularly in developing regions.

3.2.5 Websites We collect HARs (and resulting DNS queries) for
the top 1,000 websites on the Tranco top-list to understand browser
performance for the average user [24] visiting popular sites. Fur-
thermore, we measure the bottom 1,000 of the top 100,000 websites
(ranked 99,000 to 100,000) to understand browser performance for
websites that are less popular. We chose to measure the tail of the
top 100,000 instead of the tail of the top 1 million because we found
through experimentation that many of the websites in the tail of the
top 1 million were offline at the time of our measurements. Further-
more, there is significant churn in the tail of top 1 million, which
means that we would not be accurately measuring browser perfor-
mance for the tail across the duration of our experiment.

3.3 Limitations

Our research has some limitations that may affect the generalization
of our results. Nonetheless, we argue that our work will further
the research community’s understanding of how DNS affects user
experience, and how various DNS stakeholders can improve it. First,
we perform our measurements exclusively on the Debian operating
system, which means that its networking stack and parameters
for networking algorithms will affect our measurements. However,
networking stacks are often heavily optimized, so we expect our
results to generalize across operating systems. Second, we rely on
Mozilla Firefox to measure page load times, which means that its
DNS-related code will influence our results. Considering that web
browsers are among the most used software today and also highly
optimized for performance, we also expect our results to generalize
across browsers. Finally, we conduct our experiments from Amazon
EC2 instances, which are located in data centers. On one hand, this
means that we are not able to generalize our results across other
networks, e.g. residential ISPs. On the other hand, Amazon EC2
enables us to understand how Do53, DoT, and DoH perform with a
certain network type from five global vantage points.

4 Measurement Results

Our measurements were performed continuously from September
17th, 2019 through October 12th, 2019 using the setup described in
Section 3. We did not introduce delay between each successive page
load or only perform page loads at certain times of the day. In this
section, we describe our measurement results for query response

Austin Hounsel, Kevin Borgolte, Paul Schmitt, Jordan Holland, and Nick Feamster

times and page load times, and analyze the protocols to understand
the performance. These results provide some insight into how a
user’s choice of networks, recursors, and protocols affect browsing
experience. Due to space constraints, we are unable to provide plots
for each of our five vantage points. Instead, we highlight our vantage
points in Frankfurt and Seoul.

From Frankfurt, the average latency to the anycast addresses
for Cloudflare, Quad9, and Google was 1.03ms, 1.42ms, and 1ms,
respectively. From Seoul, the average latency to the anycastaddresses
for Cloudflare, Quad9, and Google was 26.65ms, 1.95ms, and 30.22ms,
respectively. These measurements were obtained by sending ICMP
pings to each recursor after each attempted page load. Unfortunately,
the Amazon EC2 recursors in each vantage point dropped ICMP
pings, so we were unable to to measure the latency from our instances
to the recursors. Nonetheless, given that our measurements were
conducted from Amazon EC2 instances, the average latency to an
Amazon EC2 recursor from each vantage point is likely lower than
Cloudflare, Quad9, and Google.

4.1 DNS Query Response Time

Intuitively, DNS query response time is the most critical metric when
characterizing DNS performance, as web pages typically include
many objects (e.g., images, JavaScript, frames, etc.), which all must
have their underlying server names resolved to IP addresses. Indeed,
previous work has shown that DNS queries can cause performance
bottlenecks on website page loads [42]. Accordingly, we begin our
study with the response times for our network environments.

We note that Mozilla conducted a measurement study of DoH
query response times in 2018 with Firefox Nightly users. In their
measurement study, they found that most queries were 6 ms slower
than Do53 queries, and that DoH actually has faster response times
than Do53 for the slowest queries [26]. However, Mozilla’s experi-
ment was limited to Cloudflare’s DoH recursor, and they report no
data for other recursors, like Quad9 and Google. Furthermore, they
only measure DoH, leaving out DoT entirely.

To fill these gaps and independently validate Mozilla’s results,
we designed our own experiment to measure response times for
Do53, DoT, and DoH across different networks and recursors. For
each HAR file that we collected with our automated browser, we
extracted all unique domain names. We then measure the response
time for each domain name through our own tool, which uses getdns
for Do53 and DoT queries, and libcurl for DoH queries.

Figure 1 shows CDFs for DNS response times from Frankfurt for
the top 1,000 websites and the top 99,000-100,000 websites combined.
As expected, we find that Do53 performs better than DoT and DoH
on for most queries across all recursors. The overhead introduced by
encrypted transports for DoT and DoH generally leads to an increase
in response time. Interestingly, we find that DoH is slightly faster
than Do53 for the slowest queries across all public recursors. For
example, with Cloudflare Do53, the mean response time is ~34ms,
and the standard deviation is ~347ms. However, with Cloudflare
DoH, the mean response time is ~40ms, and the standard deviation
is ~94ms. We posit that this can be attributed to HTTP caching of
the DNS wire-format, which we discuss more in 5.2.

Comparing DoT with DoH, we see differences between providers.
Cloudflare DoT and DoH appear to perform equally for the majority



Comparing the Effects of DNS, DoT, and DoH on Web Performance

of queries, though DoH begins to outperform DoT for queries that
take longer than ~50ms. Google DoT generally outperforms DoH for
queries that take less than ~100ms, above which DoH performs better.
Quad9 shows the largest range in terms of performance, with DoT
queries experiencing long latencies compared to all other recursors
and protocols. Quad9’s DoH recursor tends to perform better in
comparison, but still lags behind their Do53 service.

4.2 PageLoad Time

Based on our results for query response times, we expect page load
times to follow a similar pattern, with Do53 outperforming both DoT
and DoH. Figure 2 shows CDFs for differences in page load times
between each configuration when running our measurements from
Frankfurt. The vertical line on each subplot indicates the median
for the CDF. A median that is less than 0s on the x-axis means that
the configuration (recursor, protocol) specified by the row title is
faster than the configuration specified by the column title (indicated
in blue hues). Correspondingly, a median that is greater than 0s on
the x-axis means that the configuration specified by the row title is
slower than the configuration specified by the column title (indicated
in red hues). Finally, a median that is close to 0s (between -30ms and
30ms) indicates that row configuration and column configuration
perform similarly.

Interestingly, for Cloudflare, each protocol finished within 30ms
of each other for the median page load time. These results stand in
contrast to our expectation that page load times for DoT and DoH
would be slower than Do53 due to additional latency for individual
queries. We posit that Cloudflare Do53, DoT, and DoH perform simi-
larly in page load times because Firefox can resolve multiple names
at once. For Do53 and DoT, Firefox resolves names synchronously
with a thread pool [29]. Queries are sent via the operating system
through through getaddrinfo()) [31]. Furthermore, Firefox’s DoH
implementation is asynchronous, and it uses the browser’s opti-
mized HTTP/2 implementation [33, 34]. This means that DoH may
be able to make up for its larger overhead compared to Do53 and
DoT because page loads won'’t be blocked by synchronous queries if
the thread pool is exhausted.

We find that Cloudflare Do53 and Google Do53 perform faster
than the local Do53 recursor in median page load times. We attribute
this behavior to the caches of Cloudflare and Google more often
containing the domain names we measured than the local recursor.
For example, as a CDN, Cloudflare is able to more quickly respond to
DNS queries for domain names that they host than the other recur-
sors [8]. Cloudflare and Google also offer two of the most popular
DNS services in the world, with 0.74% and 9% of users configur-
ing their Do53 recursors, respectively. This enables Cloudflare and
Google to quickly respond to Do53 queries for a very large set of
websites. On the other hand, the local Do53 recursor was provided
by Amazon for EC2 instances, which may not be used as often to
query the domains of websites.

We also find that Google DoH performs significantly worse than
all other DNS recursors or protocols from Frankfurt. For example,
when using Google DoH instead of Cloudflare DoH-the same website
loads 1.35s slower in the median case. It may be the case that Google
DoH’s caching backend differs from their Do53 and DoT backends,
which leads to longer page load times. We note that as of October

2019, Google was in the process of migrating their DoH deployment
to their production anycast address (8.8.8.8), and to fully support
RFC 8484 [18]. During our experiments, we used the 8.8.8.8 anycast
address and Google’s production URI (https://dns.google/dns-quer
y) to issue DoH queries, as advised in their documentation.

Similarly, Quad9 DoT performs worse in page load times than all
recursors besides Google DoH, and a website loads 121ms faster using
Cloudflare DoT over Quad9 DoT. We offer several possible explana-
tions. For example, Quad9 DoT may not correctly cache responses,
which leads to stacked normal distributions for the connection to
the recursor. This coincides with our data shown by Figure 1b, in
which only ~#20% of Quad9 DoT queries completed in under 100ms.
Another possible explanation is that the recursor is trying to connect
to authoritative nameservers via DoT, which fails and then triggers
aretry via Do53. Initially, when we disclosed our findings to Quad9,
we did not receive an explanation. However, we were later informed
that their DoT implementation was being changed.

4.3 Effect of Network Conditions

We also study how network conditions affect query response times
and page load times for Do53, DoT, and DoH. Our results in Section 4.1
and Section 4.2 are based on measurements conducted from a well-
connected network in Frankfurt. However, cellular network users in
developing regions often access the Internet through networks with
high latency and significant loss. We expect such less-than-ideal
conditions of these networks may significantly affect how Do53,
DoT, and DoH perform.

Cloudflare
Connectivity Status Do53 DoT DoH
Successful 78.70%  78.65%  78.85%
Page-load Timeout 7.48% 7.47% 7.21%
Default DNS Error 9.51% 9.46% 9.90%
Selenium Error 1.69% 1.74% 1.78%
Other Error 2.62% 2.67% 2.27%
Successful 80.02%  79.71%  78.61%
Page-load Timeout 7.86% 7.75% 7.22%
4G network DNS Error 9.02% 9.00% 9.77%
Selenium Error 1.84% 1.67% 1.86%
Other Error 1.26% 1.87% 2.53%
Successful 78.29%  78.13%  76.95%
Page-load Timeout 8.24% 8.16% 8.01%
Lossy 4G network DNS Error 9.95%  9.95% 10.76%
Selenium Error 1.99% 1.96% 2.01%
Other Error 1.54% 1.80% 2.28%
Successful 28.10%  27.87%  20.06%
Page-load Timeout  60.02%  60.31%  41.32%
3G network DNS Error 9.83% 9.76%  37.15%
Selenium Error 1.65% 1.54% 1.07%
Other Error 0.40% 0.51% 0.40%

Table 1: Successful website page-loads and error percentages
for different network conditions when using Cloudflare’s re-
cursor from Frankfurt.
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Figure 1: Query response times for each provider from Frankfurt.
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Figure 2: CDFs for differences in page load times between each configuration from Frankfurt.
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Figure 3: Query response times for Cloudflare across each protocol on three emulated networks

Figure 3a and Figure 3b show CDFs for query response times
with Cloudflare’s recursor on an emulated cellular 4G network and
an emulated lossy cellular 4G network. We focus on Cloudflare’s
recursor because it performs better than Quad9 and Google (Figure 1
and Figure 2). On each emulated cellular network, Do53 outperforms
DoT and DoH in terms of response time. Interestingly, it appears
that DNS timings on a cellular 4G and lossy cellular 4G network are
similar, independent of the additional 1% loss.

Figure 3¢ shows CDFs for response times for 3G network charac-
teristics, which have higher loss, higher latency, and less bandwidth
than 4G networks, and, in turn, we expect it affects DNS performance
dramatically. We find that DoT and DoH response times are substan-
tially longer than Do53 response times. The fastest DoT and DoH
queries take ~450ms and ~600ms, respectively, where as the fastest
Do53 queries take ~150ms. In fact, even the slowest DoH and DoT
queries never close the latency gap to the slowest Do53 queries.

Based on the differences we observed in response times, we ex-
pected page load times on the emulated networks to be better with
Do53 than with DoT or DoH. Figure 4 compares page load times
across all of our networks and protocols for Cloudflare’s recursors.
Interestingly, on the 4G network, the median page load with DoT
performs 11ms faster than Do53, and DoH performs 58ms slower.
On the lossy 4G network, DoT and DoH are faster than Do53. DoT
performs 101ms faster than Do53, and DoH performs 33ms faster.

It may seem counter-intuitive that page loads using DoT and
DoH perform these ways on the 4G and lossy 4G networks due to
substantially longer queries (Figure 3). However, the differences
in how DNS timeouts are handled between TCP and UDP offer a
possible explanation. For example, the default timeout for Do53
queries in Linux is set to 5 seconds by resolvconf [22]. For DoT and
DoH, DNS packets may be retransmitted after 2x the round-trip-
time latency to a recursor because of TCP. If the round-trip time to a
recursor is on the order of hundreds of milliseconds, then DoT and
DoH will more quickly re-transmit dropped packets than Do53.

However, as throughput decreases and loss increases on a 3G
network, DoT and DoH are no longer able to perform as well as Do53
concerning website page loads. We believe this can be attributed
to their higher overhead in bytes sent compared to Do53, which
contributes to link saturation for most websites. DoH also has a

higher overhead than DoT, which leads to significantly slower page
loads (Figure 4d and Figure 4h). Furthermore, not only are more bytes
are sent with DoT and DoH, but high latency and random packet
loss significantly affect TCP performance [25].

Table 1 shows the prevalence and types of errors we encountered
during our page load measurements. Overall, we see that in lossier
conditions, DoH experiences higher failure rates compared with
Do53. For instance, using the 3G settings, Cloudflare Do53 has ~8%
less page load timeouts compared to Cloudflare DoH. We also see that
DNS errors spike for DoH in poor network conditions. Conversely,
DoT tends to maintain higher rates of success compared with DoH.
We note that there is a higher success rate in page loads with the 4G
network condition compared to the default network condition. It is
not clear to us what caused this outcome. We emphasize that our
4G, lossy 4G, and 3G network conditions were emulated; we did not
perform measurements on real mobile networks.

4.4 Trends Across Vantage Points

Due to space constraints, we are unable to fully explore our results
from other vantage points. However, we observed that Cloudflare
DoH and DoT were able to perform comparably to and sometimes
better than Do53 on emulated cellular networks, regardless of the
vantage point that was chosen. In this section, we explore page load
times on emulated network conditions in Seoul.

Figure 5 compared page load times between protocols and network
conditions using Cloudflare’s recursor from Seoul. Cloudflare DoT
and DoH are slower than Do53 in page load times for the default
network condition. DoT performs 1ms slower than Do53 in the
median case, and DoH performs 79ms slower than Do53. On the
4G network, DoT and DoH performs similarly to how they perform
without traffic shaping. DoT performs 1ms slower than Do53 in the
median case, and DoH performs 70ms slower than Do53.

On the lossy 4G network, DoT grows increasingly faster than
Do53, and DoH begins to close the gap. DoT performs 45ms faster
than Do53 in the median case, and DoH performs 12ms slower than
Do53. As previously discussed, we attribute this improved perfor-
mance to TCP re-transmitting packets faster than UDP timeouts.
However, page load times with DoT and DoH are both worse than
Do53 on an emulated 3G network in Seoul. DoT performs 175ms
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Figure 4: Comparison of page load times between protocols and network conditions using Cloudflare’s recursors from Frankfurt

slower than Do53 in the median case, and DoH performs 265ms
slower than Do53. Again, we attribute this behavior to DoT and DoH
queries contributing to link saturation.

As with Frankfurt, we see that in lossier conditions, DoH experi-
ences higher failure rates compared with Do53. 3 On the emulated
3G network, Cloudflare Do53 has ~21% less page load timeouts than
Cloudflare DoH. DoT also continues to maintain higher rates of
success than DoH, with ~21% less page load timeouts. Lastly, DNS
errors for DoH spike on the emulated 3G network, with ~38% of
page loads failing as a result. We attribute these DNS errors to query
timeouts.

The general trend we observe is that page load times with DoT
and DoH can improve compared to Do53 in the face of packet loss
and high latency. However, as network conditions degrade, DoT and
DoH both perform significantly slower than Do53. Furthermore,
page loads with DoH fail much more often than Do53 and DoT on
emulated 3G network conditions. We note that we are not making a
recommendation about which protocol or recursor to use. We also
can not generalize our results to vantage points that we have not
measured. Nonetheless, our results show that your network and
choice of DNS transport matter for web performance.

5 Discussion

Based on our results, we offer several insights to improve Do53,
DoT, and DoH resolution times, which can reduce page load times
and improve user experience. We first propose opportunistic partial
responses, followed by wire-format caching. We then discuss how

3Due to space constraints, we can not include the full failure table for Seoul.

dropping support for EDNS Client-Subnet at public recursors may
improve page load times.

5.1 Opportunistic Partial Responses

We discovered that current DNS clients do not utilize part of the DNS
Internet Standard that could improve client performance and user
experience. Unfortunately, the three public recursors we measured
violate the standard [27] by not supporting queries with more than
one question (QDCOUNT > 1). Cloudflare and Quad9 do not respond,
and Google only responds to the first question.

Without compatible recursors, clients cannot utilize this part of
the standard to send fewer larger queries, and, thus, less bytes due to
reduced overhead. We were unable to discover any reason in RFCs
and on the IETF dnsop and dnsext mailing lists why servers may
misbehave. We speculate that it could be because the DNS Internet
Standard sets the expectation that QDCOUNT is “usually 1” [27].

Naively, it appears that there is no reason to support more than
one question because it would delay the response to a query until all
answers have been received, which may take multiple seconds and,
in turn, severely degrade user experience. Furthermore, it would
effectively eliminate the benefit of out of order responses that single
question queries enable. Out of order responses are currently im-
plemented in Do53 through UDP, in DoT through response reorder-
ing [14], and in DoH through HTTP/2’s stream multiplexing [2].

We believe that opportunistic partial responses could be a solution:
A client indicates that it wants to use partial responses on the first
single question query through a EDNS partial response option, and
the server confirms if it supports it. The client can then send multiple
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Figure 5: Comparison of page load times between protocols and network conditions using Cloudflare’s recursors from Seoul

questions in the same query when with the EDNS partial response
option, and the server can respond with individual or multiple an-
swers in a DNS response as authoritative answers arrive. We are
currently exploring authoring a corresponding Internet-Draft.

5.2 Wire Format Caching

Over the course of measurements, we found that Firefox uses a hard-
coded DNS transaction ID of 0 for its DoH implementation [32],
which we also use in our query measurement tool. We posit that this
could enable DoH recursors to leverage HT TP response caching of
the DNS response’s wire format more aggressively and at the edge.
By fixing a transaction ID at the client, recursors could side-step the
issue of always having to construct a DNS response, instead reading
the wire-format from a local HTTP cache.

The security effect of a fixed transaction ID is limited for DoH
because it relies on TLS, which makes it difficult to inject a spoofed
response that could be used to poison the client’s cache. For DoT,
the same argument can be made and it is similarly amenable to wire
format caching. For Do53, a fixed transaction ID would allow cache
poisoning, and, hence, it is not a viable solution.

Generally, to improve tail response times, we suggest to cache the
DNS response wire format regardless of transaction ID, and to simply
replace the two byte transaction ID before responding (e.g., via XOR),
which also has the benefit of being compatible with DoT clients that
send random transaction IDs. It is important to note that the DNS
TTL values of a response also need to be updated (decremented)
regularly, and this invalidates the HTTP response or wire format

cache, but by decreasing the TTL by more than the required amount,
the wire format cache can be kept valid longer.

5.3 EDNS Client-Subnet

Cloudflare’s recursors result in consistently lower page load times
than any other recursor we measured, including the default Do53
recursor provided by Amazon in Frankfurt (Figure 2, H1 through
J10). We posit that Cloudflare’s caching strategy is a core reason
for their better performance. Specifically, their recursors can cache
responses more easily because they do not support EDNS Client-
Subnet(ECS) [7, 10], which Google generally supports [17].

The purpose of ECS is to forward the client’s address or network
to the authoritative server via the recursor, which allows the author-
itative server to provide a response to the recursor that takes the
client’s address into account, for example to direct it to a server that
is located nearby. By not supporting ECS, Cloudflare’s recursors can
have higher cache hit rates, in particular for a client’s first queries.
Specifically, Cloudflare does not need to limit cached responses to
the client’s IP address or network indicated through ECS in the orig-
inal query, that is, their cache is client agnostic. On the contrary,
the caches for Google and partially Quad9 must be client specific
because of ECS.

Website and CDN operators should therefore consider abandon-
ing DNS-based localization and stop relying on ECS, and instead
adopt anycast. Interestingly, the cost that recursor cache misses incur
because of ECS could actually negate the benefits of directing a user
to alocal server via ECS in a variety of cases, and even directing him
to a single central data center (without anycast) could lead to a better



user experience than ECS. Overall, disabling ECS not only improves
client privacy, but our results show that it may also decrease client page
load times, leading to an immediate improvement in a user’s browsing
experience.

6 Related Work

In this section, we first compare to related work on DNS privacy and
security. We then compare to measurements on how DNS impacts
web performance.

6.1 Encrypted DNS Transports

Zhu et al. [43] introduced DNS over TLS, that is DNS over TLS over
TCP, to provide confidentiality guarantees that DNS lacked. They
measured the performance costs and benefits of sending DNS queries
over a TLS connection, and find that DoT response times are only up
22% slower than Do53. We measure higher DoT response times when
measuring response times naively due to fewer queries being sent
and less connection reuse. Different from Zhu et al., our study focuses
on how different DNS transports affect user experience, through
page load times, and how it differs in the face of different network
conditions.

Bottger et al. measured query response times and page load times
forDo53,DoT, and DoH from a university network [5]. Unfortunately,
their methodology relies on collecting HARs for query response
time measurements. As we discuss in 3.1.2, HARs can contain invalid
response times depending on how re-directs are triggered. This is
also evident from Figure 6 in their paper showing a y-intercept of
approximately 10%, which means that for roughly 10% of websites
the DNS resolution for all included resources can be performed
sequentially in Oms.

In addition to DoT and DoH, other protocols have been proposed
to help ensure privacy and security between a client and a recursor.
DNSCrypt utilizes cryptographic signatures to authenticate a recur-
sor to a client, which prevents DNS responses from being spoofed
or tampered with [12]. DNSCurve utilizes elliptic-curve cryptogra-
phy to provide confidentiality, authenticity, and integrity of DNS
responses [3]. However, for DNSCrypt, DNSCurve, DoT, and DoH,
the recursor remains aware of what names a client queries for, which
has privacy implications as it allows the recursor to learn about the
websites that the client visits and when it visits them. Schmitt et
al. [36] proposed Oblivious DNS, which prevents a recursor from
associating queries to the clients that sent them. This in turn prevents
arecursor from learning the client’s browsing history.

6.2 DNS and Web Performance

Sundaresan et al. [40] measured and identified performance bottle-
necks for web page load time in broadband access networks and
found that page load times are influenced by slow DNS response
times and can be improved by prefetching. An important distinc-
tion is that they define the DNS response time only as the response
time for the first domain, while we consider the set of unique fully
qualified domain names of all resources contained in a page. They
investigate only nine high-profile websites, which stands in contrast
to the 2,000 popular and normal websites that we analyze, and they
estimate page load times through Mirage and validate their findings
through a headless browser Phantom]S, while we utilize Mozilla
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Firefox, which is a full browser. Wang et al. [42] introduced WProf,
which is a profiling system to analyze page load performance. They
identified that DNS queries—in particular uncached, cold queries—
can significantly affect web performance, accounting for up to 13%
of the critical path delay for page load times.

In 2012, Otto et al. [35] found that CDN performance was nega-
tively affected when clients choose recursors that were geographi-
cally separated from CDN caches. They conjectured that this poor
performance was a result of recursors not supporting ECS. Indeed,
ECS was only introduced in January 2011, and it was not standard-
ized until May 2016 [10]. Therefore, clients were likely redirected
to sub-optimal data center based on the recursor’s address or net-
work, instead of the client’s address. Otto et al. proposed namehelp,
a DNS proxy that improves CDN performance for these far away
recursors. It sends DNS queries for CDN-hosted content directly to
authoritative servers, enabling CDNs to use the client’s IP address.
We suspect that with the wide-spread adoption of ECS and anycast
since 2012, CDN performance may not be as negatively affected by
choosing a recursor that is geographically far away from a CDN.

7 Conclusion

In this paper, we investigated DNS timings and page load times using
different DNS transport protocols, recursors, network conditions,
and global vantage points. We find that although DoT and DoH result
in higher response times for individual queries, they can perform
similarly to Do53 in page load times. We also find that DoT and DoH
can outperform Do53 in page load times in emulated cellular network
conditions. However, as network conditions degrade, Do53 signifi-
cantly outperforms DoT and DoH. Web pages also load successfully
more often with Do53 in poor network conditions.

Based on our findings, DNS stakeholders can take several concrete
steps to improve query response times, and in turn page load times.
For example, Firefox currently uses synchronous calls for Do53 and
DoT resolution, and asynchronous calls could benefit performance.
Another opportunity to improve Do53 and DoT response times that
we discovered is wire format caching. Lastly, clients and recursors
could be extended to support multiple questions in a single query
and opportunistic partial responses. This could be accomplished in
a backward compatible way through a new EDNS option.
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