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The hadronic form factors of the energy-momentum tensor (EMT) have attracted considerable interest in
recent literature. This concerns especially the D-term form factor DðtÞ with its appealing interpretation in
terms of internal forces. With their focus on hadron structure, theoretical studies so far have concentrated
mainly on strongly interacting systems with short-range forces. Effects on the EMT due to long-range
forces like the electromagnetic interaction have not yet been studied. Electromagnetic forces play a small
role in the balance of forces inside the proton, but their long-range nature introduces new features which are
not present in systems with short-range forces. We use a simple but consistent classical field theoretical
model of the proton to show how the presence of long-range forces alters some notions taken for granted in
short-range systems. Our results imply that a more careful definition of the D-term is required when long-
range forces are present.

DOI: 10.1103/PhysRevD.102.014047

I. INTRODUCTION

The matrix elements of the EMT, Tμν, [1] can be
explored through studies of generalized parton distribution
functions in hard exclusive reactions [2,3] and contain
information on the basic properties of a particle: mass, spin,
and the equally important but far less known D-term [4].
The information content of EMT form factors is visualized
in terms of EMT densities [5] which allow us to learn about
properties like energy density, angular momentum distri-
bution, or internal forces in hadrons [5–11]. EMT proper-
ties were studied in hadronic models, chiral perturbation
theory, lattice QCD and other strongly interacting systems
[12–53] which had one common feature: these systems
were governed by short-range forces (with the exception of
[29] where QED effects for charged pion EMT form factors
were included). The goal of this work is to investigate the
impact of long-range forces on the EMT properties.
For our study, we employ a classical model of the proton

which is of interest for its own sake. Classical models
of an extended electric charge have a long history dating
back to the works of Abraham and Lorentz [54,55]. It was
recognized by Poincaré that in order to compensate the
electrostatic repulsion one must introduce cohesive forces,
known as Poincaré stresses [56], which were introduced in
an ad hoc manner [54–60]. The model of Białynicki-Birula

[61] used in this work is to the best of our knowledge the
first fully consistent classical model of an extended charged
particle where the Poincaré stresses are generated dynami-
cally in a local, relativistic, classical field theory.
In this model, “dust particles” carry an electric charge e,

and strong charges gS and gV and interact with the electro-
magnetic 4-potential Aμ, and strong scalar and vector fields,
ϕ and Vμ. The attractive (due to ϕ) and repulsive (due to Vμ

and Aμ) forces on the dust particles exactly compensate
each other, such that the dust particles are in stable, static
equilibrium and occupy a finite spherically symmetric
region of radius R. Using nuclear phenomenology to fix
model parameters, the model can describe a particle with
the charge, mass, and size of the proton [61].
This classical system is well-suited for our purposes. It

exhibits strong short-range forces which play an over-
whelmingly important role in the internal structure of the
proton, and at the same time consistently includes the
effects of the long-range electromagnetic field. Two aspects
are of importance for our study, namely (i) an internally
consistent theoretical description of a stable particle, and
(ii) the correct description of the long-range electromag-
netic effects. The model of Ref. [61] satisfies both require-
ments. The classical aspect of the model is not a hindrance.
Rather it is a virtue allowing us to investigate the effects
of long-range forces undistracted by technical difficulties
associated with computations in more realistic strongly
interacting quantum systems.
The outline of this work is as follows: In Sec. II we

briefly introduce the model, and apply it to the description
of EMT densities in Sec. III, showing that the model is con-
sistent and, in the region of r≲ 2 fm, in good agreement
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with results from studies of systems with strong short-range
forces. In Sec. IV we focus on distances beyond r≳ 2 fm
where new features appear which were not encountered
before in systems with short-range forces. In Sec. V we
show that our results regarding the long-distance properties
of the EMT densities are model independent, compute the
form factor DðtÞ, and discuss the implications for exper-
imental measurements and theoretical calculations of the
D-term. The Sec. VI contains the conclusions.

II. THE CLASSICAL MODEL

In this section, we briefly introduce the model of
Ref. [61] which consists of “dust particles” bound in a
spherically symmetric region of radius R by the interplay of
three types of fields: a massive scalar field ϕ, a massive
vector field Vμ and an electromagnetic field described by
the 4-potential Aμ. The particles couple to these fields
respectively through the coupling constants gS, gV , e. The
motion of the particles is described by a scalar phase-space
distribution Γðr⃗; p⃗; tÞ. The system is defined by the
following classical field equations (we use ℏ ¼ c ¼ 1

unless otherwise stated)

½ðm − gSϕÞð∂t þ v⃗ · ∇⃗rÞ þmF⃗ · ∇⃗p�Γðr⃗; p⃗; tÞ ¼ 0; ð1Þ

∂αG
αβ þm2

VV
β ¼ gVj

β; ð2Þ

ð□þm2

SÞϕ ¼ gSρ; ð3Þ

∂αF
αβ ¼ ejβ: ð4Þ

The force F⃗ ¼ f⃗=u0 is expressed in terms of the com-
ponents of the 4-force fα ¼ eFαβuβ þ gVG

αβuβ −

gSð∂α − uαuβ∂βÞϕ with Fαβ ¼ ∂αAβ − ∂βAα and Gαβ ¼
∂αVβ − ∂βVα. The 4-velocity uα is defined by pα ¼ muα ¼
ðEp; p⃗Þ and v⃗ ¼ u⃗=u0 ¼ p⃗=Ep. ∇r and ∇p denote deriv-
atives with respect to positions r⃗ and momenta p⃗ of the
particles. The 4-current jα and scalar density ρ are defined
in terms of the phase-space distribution as

jαðr⃗; tÞ ¼
Z

d3p

Ep

pα
Γðr⃗; p⃗; tÞ; ð5Þ

ρðr⃗; tÞ ¼
Z

d3p

Ep

mΓðr⃗; p⃗; tÞ: ð6Þ

Despite the noncovariant appearance of Eq. (1) the theory
described by Eqs. (1)–(4) is relativistically invariant [61],
and is a generalization of the Vlasov-Maxwell equations
used in plasma physics [62].
The solution of Eqs. (1)–(4) is most conveniently

expressed in the static case, where the particles are at rest
with uα ¼ ð1; 0; 0; 0Þ and described by the phase space

distribution Γðr⃗; p⃗; tÞ ¼ δð3Þðp⃗ÞρðrÞ with r ¼ jr⃗j. In this
frame, the scalar density ρ and zeroth component of jα

coincide, Aα and Vα only have zero components, and
Eqs. (1)–(4) become

ρF⃗≡ −ρ∇⃗ðeA0 − gSϕþ gVV0Þ ¼ 0; ð7Þ

ð−Δþm2
VÞV0 ¼ gVρ; ð8Þ

ð−Δþm2

SÞϕ ¼ gSρ; ð9Þ

−ΔA0 ¼ eρ: ð10Þ

Notice that the condition (7) provides a constraint on the
fields only for r ≤ R where matter is present (i.e., ρ ≠ 0),
and is trivially satisfied in the region r > R with no matter
(where ρ¼0). The density is normalized as

R

d3r ρðrÞ ¼ 1.
In the region r ≤ R the solutions of Eqs. (1)–(4) are given
by [61]

ρðrÞ ¼ fþðrÞ − f−ðrÞ ð11Þ

eA0ðrÞ ¼ e2
�

fþðrÞ
k2þ

−
f−ðrÞ
k2−

�

þ 2EB ð12Þ

gSϕðrÞ ¼ g2S

�

fþðrÞ
k2þ þm2

S

−
f−ðrÞ

k2− þm2

S

�

ð13Þ

gVV0ðrÞ ¼ g2V

�

fþðrÞ
k2þ þm2

V

−
f−ðrÞ

k2− þm2
V

�

: ð14Þ

The functions f�ðrÞ are defined by

f�ðrÞ ¼
d�
4π

sinðk�rÞ
r

; k2� ¼ B�
ffiffiffiffi

D
p

2Q2
; ð15Þ

where B ¼ ðg2S − e2Þm2
V − ðg2V þ e2Þm2

S and D ¼ B2 −

4e2Q2m2

Sm
2
V with Q2 ¼ e2 − g2S þ g2V (notice the misprint

in Eq. (23) of [61] in the definition of k�).
In the region r > R the solutions of Eqs. (1)–(4) are

given by

ρðrÞ ¼ 0; ð16Þ

eA0ðrÞ ¼
e2

4πr
ð17Þ

gSϕðrÞ ¼
bS

4πr
e−mSðr−RÞ ð18Þ

gVV0ðrÞ ¼
bV

4πr
e−mV ðr−RÞ: ð19Þ

Equation (16) means there are no particles outside the
radius R, and Eq. (17) is the Coulomb potential. The six
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parameters bV , bS, dþ, d−, 2EB, R are fixed by requiring the
fields A0ðrÞ, V0ðrÞ, ϕðrÞ to be continuous and differ-
entiable at r ¼ R. The reason why the constant 2EB has
been named in this peculiar way will become clear shortly.
In order to apply the model to the description of the

proton the following parameters were used in Ref. [61]

m ¼ 938 MeV; mS ¼ 550
MeV

ℏc
; mV ¼ 783

MeV

ℏc
;

g2S
ℏc

¼ 91.64;
g2V
ℏc

¼ 136.2; α ¼ e2

4πℏc
¼ 1

137
: ð20Þ

Following [61] we quote the proton mass in units of
MeV, but mS and mV in units of MeV=ðℏcÞ with ℏc ¼
197 MeV fm. (In this way the radial variable r is given in
units of fm, while the EMT densities are given in units
of MeV=fm−3. The indication where ðℏcÞ appears is
convenient for the numerical computation, especially for
the coupling constants. Readers familiar with natural units
may of course continue using ℏc ¼ 1.)
The parameters mS and mV correspond respectively to

σ- and ω-meson masses as used in nuclear matter models.
The coupling constants gS, gV are taken from the model
QHD-I of the mean field theory of nuclear matter [63].
This means that in this model the proton is bound by
nuclear forces [61]. For completeness, we remark that
with these parameters, the requirements of continuity and
differentiability of ϕðrÞ, A0ðrÞ, V0ðrÞ at r ¼ R fix
the constants bV , bs, d�, 2EB, R to have the following
values: bV ¼1354.13MeVfm, bS¼1786.38MeVfm, dþ¼
2.02477=fm2, d−¼−3.93639=fm2, 2EB ¼ −31.42 MeV,
R ¼ 1.05 fm.
The parameter EB ¼ −15.71 MeV is to be confronted

with the value of the bulk binding energy per nucleon
in nuclear matter of −15.75 MeV [63]. Since the
electric charge density is given by eρðrÞ, the electric mean
square radius is given by hr2chi ¼

R

d3rr2ρðrÞ (recall that
R

d3r ρðrÞ ¼ 1). The model yields hr2chi1=2 ¼ 0.714 fm,
which underestimates the experimental value by 20% but
has the right order of magnitude. This model could be
elaborated to give a more realistic description. However,
the modest goal of Ref. [61] was to show that the model of

the proton with the parameters (20) is “not completely out
of touch with reality.” This is sufficient for our purposes.
In Fig. 1 we show the density ρðrÞ, and the potentials

ϕðrÞ, V0ðrÞ, A0ðrÞ as functions of r. The jump in the matter
distribution ρðrÞ shows that the dust particles are inside the
radius R ¼ 1.05 fm and there is no matter outside. The
potentials in Figs. 1(b–d) are scaled with their respective
coupling constants such that they all have the same unit
MeVand can be compared. The scalar potential gSϕðrÞ and
vector potential gVV0ðrÞ are associated with strong forces
and are 2 orders of magnitude larger than the Coulomb
potential eA0ðrÞ. In the inner region, gSϕðrÞ is somewhat
larger than gVV0ðrÞ. At a larger r it is the opposite: both
potentials decay at a rate of ∼ expð−mirÞ=r with mi ¼ mS

and mV respectively, but mS < mV so the more massive
V0ðrÞ has a shorter range compared to ϕðrÞ. The Coulomb
potential eA0ðrÞ is small in the interior region, but becomes
the dominant field in the outer region thanks to its long
range A0ðrÞ ∼ 1=r. These results have already been dis-
cussed in Ref. [61]. In the next section we will discuss how
the different fields contribute to the mass of the proton, and
how the internal forces inside the proton balance each other.

III. THE ENERGY MOMENTUM TENSOR

OF THE CLASSICAL MODEL

The energy momentum tensor in the classical model of
the proton was derived in Ref. [61] and is given by

Tμν ¼ ðm− gSϕÞρuμuν þFμρFρ
ν

þ 1

4
gμνFκρF

κρ þ ∂μϕ∂νϕ− gμν
�

1

2
∂ρϕ∂

ρϕ−
1

2
m2

Sϕ
2

�

þGμρGρ
ν þm2

VV
μVν þ gμν

�

1

4
GκρG

κρ −
1

2
m2

VVρV
ρ

�

:

ð21Þ

This expression needs to be evaluated for the static solution
where uα ¼ ð1; 0; 0; 0Þ, ϕ ¼ ϕðrÞ, Vα ¼ ðV0ðrÞ; 0; 0; 0Þ,
Aα ¼ ðA0ðrÞ; 0; 0; 0Þ. In the following, we discuss the
different components of the EMT, and focus initially on
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FIG. 1. Density of matter ρðrÞ, scalar potential gSϕðrÞ, vector potential gVV0ðrÞ, and Coulomb potential eA0ðrÞ as functions of r. The
density ρðrÞ drops to zero at R ¼ 1.05 fm. The potentials are multiplied by their respective coupling constants such that the results in
panels (b–d) are potential energies given in units of MeV.
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the region r ≤ 2 fm. The long-distance properties of the
EMT at r > 2 fm will be discussed in the next section.

A. Energy density T00(r)

The 00-component of the EMT describes the energy
density. Evaluating the 00-component in Eq. (21) yields

T00ðrÞ ¼ ðm − gSϕÞρþ
1

2
ð∇⃗ϕÞ2 þ 1

2
m2

Sϕ
2 þ 1

2
ð∇⃗V0Þ2

þ 1

2
m2

VV
2

0
þ 1

2
ð∇⃗A0Þ2: ð22Þ

The mass of the solution is defined as M ¼
R

d3rT00ðrÞ.
Integrating the energy density (22) over space, exploring
the normalization

R

d3r ρðrÞ ¼ 1, performing partial inte-
grations and using Eqs. (8)–(10), one obtains [61]

M ¼ m −

Z

d3r gSϕρþ
1

2

Z

d3rð−ϕΔϕþm2

Sϕ
2

− V0ΔV0 þm2
VV

2

0
− A0ΔA0Þ

¼ mþ 1

2

Z

d3rð−gSϕþ gVV0 þ eA0Þρ

¼ mþ EB: ð23Þ

The potentials gSϕðrÞ, gVV0ðrÞ, eA0ðrÞ are positive, see
Fig. 1. The intermediate step in (23) shows that the scalar
field makes a negative contribution to the total energy,
lowers the binding energy, and makes the system more
strongly bound. In contrast to this, gVV0ðrÞ and eA0ðrÞ
enter with positive signs, i.e., make the system less strongly
bound. These observations are not surprising and reflect the
well-known facts that scalar forces are attractive, and vector
forces (for equal sign charges) repulsive. We will come
back to this point below when discussing the stress tensor.

As mentioned in Sec. II, numerically, EB¼−15.71MeV.
This value can be compared to the bulk binding energy per
nucleon in nuclear matter [61]. We remark that alternatively
one could define the parameter m in (20) to be a “bare
nucleon mass” such that mþ EB would be the physical
mass of the free proton. Here we use the original version of
the model as formulated in Ref. [61] and refrain from such a
redefinition of model parameters.
It is instructive to discuss the individual contributions to

the energy density which we define as follows

Tdust
00

ðrÞ ¼ mρðrÞ;

Tscal
00

ðrÞ ¼ 1

2
ð∇⃗ϕÞ2 þ 1

2
m2

sϕ
2 − gSϕρ

Tvect
00

ðrÞ ¼ 1

2
ð∇⃗V0Þ2 þ

1

2
m2

VV
2

0
;

TCoul
00

ðrÞ ¼ 1

2
ð∇⃗A0Þ2; ð24Þ

such that they add up to the total T00ðrÞ in Eq. (22).
Recalling that

R

d3r ρðrÞ ¼ 1, we see that the dust particles
contribute m and by far the most toM. The relatively small
value EB ¼ −15.71 MeV may give the incorrect impres-
sion that the contributions from the fields to M are small.
However, these contributions are given by

Z

d3rTi
00
ðrÞ¼

8

<

:

−180.45MeV for i¼ scalar;

163.79MeV for i¼vector;

0.95MeV for i¼Coulomb:

ð25Þ

Thus, the relatively small value of the binding energy is the
result of large cancellations between different contribu-
tions. Tscal

00
ðrÞ is the only contribution which exhibits a

discontinuity at r ¼ R and is negative in the inner region.
The energy density and its individual contributions are
plotted in Fig. 2(a).
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FIG. 2. (a–c) EMT densities T00ðrÞ, sðrÞ, pðrÞ as functions of r and the respective contributions from the dust particles, scalar, vector
and Coulomb fields. T00ðrÞ has a jump at R ¼ 1.05 fm, while sðrÞ and pðrÞ exhibit kinks but remain continuous. The very small
Coulomb contribution is multiplied by the indicated factors to make it visible on the scales of the plots. (d) Illustration of how the von
Laue condition in Eq. (31) is satisfied, see text.
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B. The T0k components

For the 0k-components of the EMT we obtain T0k ¼ 0

which is not surprising. This is because we deal with a
static solution. Since there is no rotation in the system,
the classical angular momentum Ji ¼

R

d3rϵijkxjT0k of the
system is zero. At this point, we disregard the fact that the
proton has spin 1

2
. In principle, if interested, one could treat

our classical solution as a soliton and use standard
quantization techniques to assign a definite spin [64].

C. The stress tensor Tij

Finally, for the ij-components of the EMTwe obtain the
result

TijðrÞ ¼ eire
j
rðϕ0ðrÞ2 − A0

0
ðrÞ2 − V 0

0
ðrÞ2Þ

þ δij

2

�

ð∇⃗A0Þ2 − 1

2
ð∇⃗ϕÞ2 − 1

2
m2

Sϕ
2

þ 1

2
ð∇⃗V0Þ2 þ

1

2
m2

VV
2

0

�

: ð26Þ

In general, the stress tensor can be expressed in terms of a
traceless part associated with shear forces sðrÞ and a trace
associated with the pressure pðrÞ as follows

Tij ¼
�

eire
j
r −

1

3
δij

�

sðrÞ þ pðrÞδij; ð27Þ

where eir is the unit vector in the radial direction. The model
results for sðrÞ and pðrÞ are given by

sðrÞ ¼ ϕ0ðrÞ2 − V 0
0
ðrÞ2 − A0

0
ðrÞ2; ð28Þ

pðrÞ ¼ 1

6
A0
0
ðrÞ2 − 1

6
ϕ0ðrÞ2 − 1

2
m2

Sϕ
2 þ 1

6
V 0
0
ðrÞ2 þ 1

2
m2

VV
2

0
:

ð29Þ

Due to the EMT conservation, ∂μT
μν ¼ 0, the shear forces

and pressure are not independent of each other but con-
nected by the differential equation [8] (we leave here the
space dimension n ¼ 3 general for later purposes)

n − 1

r
sðrÞ þ n − 1

n
s0ðrÞ þ p0ðrÞ ¼ 0: ð30Þ

Another consequence of the EMT conservation is the von
Laue condition

Z

∞

0

dr r2pðrÞ ¼ 0: ð31Þ

This is a necessary (but not sufficient) condition for
stability, and requires that internal forces inside a system
must exactly balance each other. If the integral in (31) was

positive (negative), then the system would explode
(implode).
Notice that the dust particles do not contribute to the

stress tensor densities sðrÞ and pðrÞ. This is naturally
explained in the hydrodynamic interpretation of the model,
where the dust particles can be viewed as an ideal
pressureless fluid of density ρðrÞ, which flows (without
dissipation) with the 4-velocity uμ [61]. Therefore, the
densities sðrÞ and pðrÞ receive contributions only from the
fields.
The scalar field makes the largest contribution to sðrÞ,

see Fig. 2(b), which is positive. The contributions from
vector and Coulomb fields are both negative. Not surpris-
ingly, the Coulomb field contribution is rather small. The
shear forces behave like sðrÞ ∝ r2 at small r < 0.1 fm, and
exhibit a global maximum at r ¼ 0.711 fm, which is
numerically close (within 0.1%) but not the same value
as the charge radius hr2chi1=2 ¼ 0.714 fm. For a large
nucleus in the liquid drop model, sðrÞ would be a
δ-function centered at the edge of the nucleus (with the
coefficient in front of the δ-function given by the surface
tension) [8]. The result for sðrÞ remotely resembles a
strongly smeared out δ-function. This reflects the fact that
the proton has no sharp edge, and is a much more diffuse
object than a nucleus.
The pressure is positive in the inner region, changes sign

at r ¼ 0.788 fm and is negative thereafter, see Fig. 2(c).
The sign convention is such that pðrÞ > 0 means repulsive
forces are directed toward the outside, while pðrÞ < 0

means attractive forces are directed toward the inside. The
shape of the total pressure distribution is largely due to the
cancellation between the large contributions from scalar
and vector fields. In the inner region, the repulsive vector
forces are stronger than the attractive scalar forces. In the
outer region, it is vice versa since, due to mV > mS, the
range of the vector forces is shorter. Throughout the region
plotted in Fig. 2(c), the Coulomb contribution plays a minor
role (but is not negligible, see below) and contributes to
pðrÞ with the same sign as the vector field.
In order to attest the consistency of our calculation, we

notice that inserting the expressions (28), (29) for sðrÞ and
pðrÞ into Eq. (30) yields 2

3
s0ðrÞþ 2

r
sðrÞþp0ðrÞ¼ e⃗r½ρF⃗�¼0

due to Eq. (7). Also, the von Laue condition (31) holds
which was proven in [61], and is illustrated in Fig. 2(c). If
we define the individual contributions to the pressure as

pscalðrÞ ¼ −
1

6
ϕ0ðrÞ2 − 1

2
m2

SϕðrÞ2;

pvectðrÞ ¼
1

6
V 0
0
ðrÞ2 þ 1

2
m2

VV0ðrÞ2;

pCoulðrÞ ¼
1

6
A0
0
ðrÞ2; ð32Þ

then the contributions from the scalar, vector and Coulomb
field to the von Laue integral in Eq. (31) are
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Z

dr r2piðrÞ ¼

8

<

:

−10.916 MeV for i ¼ scalar;

10.891 MeV for i ¼ vector;

0.025 MeV for i ¼ Coulomb:

ð33Þ

These results mean that with scalar forces alone, the system
would implode, while with vector (or Coulomb) forces
alone it would explode. Clearly, in Eq. (33) the contribution
of the Coulomb force is minuscule compared to that of the
strong forces, but not negligible, for this system would
implode without the Coulomb force.
Some comments regarding the size of the forces are in

order. In our model, the pressure in the center of the proton
is about 20 MeV=fm3. This is about an order of magnitude
less than in the chiral quark soliton model [16]. This result
is expected and plausible for the following reason. The
forces in the model of Ref. [16] are the strong forces acting
between quarks. In contrast to this here, the strong forces
(the massive scalar and vector fields) are modeled using
nuclear physics phenomenology. Such “residual nuclear
forces” are about an order of magnitude weaker than the
strong forces among quarks inside the proton, and this is
what we observe.
To make an intermediate summary, the description of the

EMT in the classical proton model is internally consistent
since the relations (30), (31) hold. The size of the internal
forces is what one would expect from a model with forces
which have the strength of residual nuclear forces. The
results discussed so far reflect the same features as
encountered in other EMT studies in strongly interacting
systems, including the sign patterns for the EMT densities
in Fig. 2.

IV. EMT DENSITIES AND LONG-RANGE FORCES

The particular feature of the model used in this work is
that it explicitly includes long-range (Coulomb) forces.
Before we study this aspect in detail, let us briefly review
several common features observed in prior EMT studies of
strongly interacting systems governed by short-range
forces [8]. For ground state solutions, in systems governed
by strong short-range forces, the following common
features were observed so far:

(i) the shear forces sðrÞ are positive at all r,
(ii) the pressure pðrÞ exhibits one node at r0 with

pðrÞ > 0 for r < r0 and pðrÞ < 0 for r > r0,
(iii) the combination 2

3
sðrÞ þ pðrÞ, which is referred to

as normal force (per unit area), is always positive,
i.e.,

2

3
sðrÞ þ pðrÞ > 0: ð34Þ

Some comments are in order. We are not aware of a
rigorous proof of the property (i), though it is plausible
given the connection of sðrÞ to surface tension and surface

energy, which are positive in stable hydrostatic systems [8].
The positivity of sðrÞwas observed in all studies so far. The
property (ii) arises because pðrÞ must have at least one
node to comply with the von Laue condition (31), and
ground states exhibit a single node. The pattern in Fig. 2(d)
follows from mechanical stability arguments: repulsive
forces are required in the inner region to prevent collapse
and attractive forces in the outer region to bind the system
[8]. For excited states, the pressure can exhibit several
nodes, but the pattern with pðrÞ > 0 in the center and
pðrÞ < 0 at large distances remains [24]. The mechanical

stability criterion (iii) means that the radial forces TijdA
j
r,

where dAj
r ¼ e

j
rr

2dΩ, are directed toward the outside, and
the point where they vanish (if we deal with a finite size
system) marks the “edge” of the system [8,51].
As long as we consider distances r≲ 2 fm, the EMT

densities in the classical proton model exhibit the properties
(i–iii) as observed in prior studies. But the situation changes
when we consider distances r≳ 2 fm.

A. Long-distance behavior of the EMT densities

The dust distribution is confined to the region r < R ¼
1.05 fm and anyway does not contribute to sðrÞ and pðrÞ.
The behavior of the EMT densities at long distances is
therefore determined by the fields. The contributions of the
fields representing the strong forces decay exponentially at
large distances r≳ 2 fm. Despite being very small in the
inner region, the Coulomb contribution becomes compa-
rable to the contributions of the strong fields at r ∼ 2–3 fm.
The Coulomb contribution is the dominating field at long-
distances r≳ 3 fm due to the slow, powerlike 1

r
-decay of

the Coulomb potential. This is illustrated in Fig. 3(a) for the
pressure; the situation is very similar for T00ðrÞ and sðrÞ.
Using the fine-structure constant in (20) we read off from
Eqs. (22), (28), (29) the long-distance behavior of the
densities

T00ðrÞ ¼
1

2

α

4π

ℏc

r4
þ…

sðrÞ ¼ −
α

4π

ℏc

r4
þ…

pðrÞ ¼ 1

6

α

4π

ℏc

r4
þ… ð35Þ

where the dots indicate subleading, exponentially sup-
pressed contributions from the strong interaction fields.
The long-distance behavior (35) of T00ðrÞ does not show

anything unusual: T00ðrÞ > 0 for all 0 ≤ r < ∞ which was
also observed in all prior studies. It is noteworthy that the
1=r4-decay of T00ðrÞ at large r guarantees the convergence
of the total energy M ¼

R

d3rT00ðrÞ. But the mean square
radius of the energy density hr2Ei ¼

R

d3rr2T00ðrÞ=M
diverges and cannot be defined in this model.
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New features emerge for the stress tensor densities sðrÞ
and pðrÞ. From Eq. (35) we see that sðrÞ is negative at large
r. The classical proton model is in agreement with the
property (i) and exhibits a positive sðrÞ, see Fig. 2(b),
throughout the region 0 < r < r0;s. But sðrÞ changes sign
at the point r0;s ¼ 2.144 fm, and remains negative for
r > r0;s. The asymptotic expression for sðrÞ in Eq. (35)
works with an accuracy of 2% or better for distan-
ces r≳ 3.1 fm.
Another new feature is that pðrÞ is positive at large r,

see Eq. (35). Throughout the region 0<r<r0;p, the model
conforms to the property (ii) and pðrÞ exhibits the
characteristic pattern: positive pðrÞ in the inner region, a
single node, and negative pressure in the outer region, see
Figs. 2(c) and 2(d). But then at r0;p ¼ 2.394 fm, the
pressure exhibits an additional (second) change of sign
after which it remains positive. The asymptotic expression
(35) for pðrÞ works with an accuracy of 1% or better
beyond r≳ 3.4 fm. We stress that the classical model
describes a ground state (and, in fact, no excited solutions
exist in this model) [61]. But nevertheless pðrÞ exhibits
two nodes.
Finally, the normal force 2

3
sðrÞ þ pðrÞ is positive for 0 ≤

r < r0;n in agreement with condition (iii), until exhibiting
a node at r0;n ¼ 1.881 fm, after which it is negative,
another new feature. Notice that 2

3
sðrÞ þ pðrÞ ∝ 1

r4
þ � � �,

implying that the mechanical mean square radius hr2mechi ¼
R

d3rr2ð2
3
sðrÞ þ pðrÞÞ=

R

d3rð2
3
sðrÞ þ pðrÞÞ diverges.

The 3 new features consist of (i) a node in sðrÞ, (ii) a
second node in pðrÞ, and (iii) a node in the normal force.
After the appearance of the nodes, the respective densities
exhibit opposite signs as compared to prior studies. It is
worth remarking that in Eq. (35), the asymptotics of T00ðrÞ
and pðrÞ are such that T00ðrÞ − 3pðrÞ ¼ 0, which reflects
the tracelessness of the EMT tensor Tμ

μ ¼ 0 (in classical
electrodynamics). The asymptotic expressions (35) for sðrÞ

and pðrÞ satisfy the differential equation (30) which is
dictated by the conservation of the EMT.
The size of sðrÞ and pðrÞ is very small in the regions

where the new features occur. For instance, the second
node of pðrÞ at r0;p ¼ 2.394 fm is beyond the range of
Figs. 2(c) and 2(d). However, had we tried to show it
there, then the second node would be hardly visible
on the scales of the Figs. 2(c) and 2(d). In order to
visualize the new features, we multiply the respective
densities by r4 such that the Coulomb contributions
proportional to 1=r4 appear as constant lines at large
r, see Figs. 3(b)–3(d). Despite the factor r4 which
enhances the densities at large r, the Coulomb contri-
bution is small even in these plots. In particular, it is so
small in the case of r4pðrÞ that an insert is necessary
(with the scale on the y-axis enlarged by a factor of 10)
to clearly show the second zero of pðrÞ in Fig. 3(c).

B. The divergence of the D-term

The presence of the long-range electromagnetic forces
also affects the D-term, which is an important particle
property and on the same footing as the mass, spin
or electric charge [8]. The D-term has two equivalent
definitions

Ds ¼ −
2ðn − 1Þ
nðnþ 2ÞM

Z

dnr r2sðrÞ; ð36Þ

Dp ¼ M

Z

dnr r2pðrÞ; ð37Þ

in terms of shear force and pressure where n ¼ 3 is the
space dimension, which we leave here general for later
purposes. These expressions are equivalent due to the EMT
conservation, i.e., D ¼ Ds ¼ Dp gives the same result.
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FIG. 3. (a) Contributions to pðrÞ from the fields on a log-scale to visualize the dominance of the Coulomb field at long distances. The
total results for (b) shear forces sðrÞ, (c) pressure pðrÞ, and (d) normal forces 2

3
srðrÞ þ pðrÞ multiplied by r4 such that the Coulomb

contributions ∝1=r4 show as straight lines at long distances.
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This can be proven exploring the differential relation (30),
cf. Ref. [16].
In the classical model of the proton, the D-term is

undefined because the integrals in Eqs. (36), (37) diverge
linearly due to the asymptotic behavior (35) of pðrÞ and
sðrÞ at large distances. Notice that the Figs. 3(b) and 3(c)
basically show the integrands in Eqs. (36), (37). Even
though the Coulomb contribution is very small, it clearly
spoils the convergence of the integrals in Eqs. (36)
and (37).
This is a new feature not encountered in previous studies.

Typically in strongly interacting systems, the EMT den-
sities decay at long distances fast enough such that the
integrals defining the D-term converge. In quantum field
theoretical models of the nucleon, the EMT densities
exhibit an exponential fall-off at large r for finite pion
masses. In the chiral limit, when the Goldstone boson
(pion) becomes strictly massless, sðrÞ and pðrÞ behave like
1=r6 at large r, which is still sufficient to guarantee a finite,
well-defined D-term [16].
In the remainder of this work we will address the

following questions. Does the model constitute a mechan-
ically stable solution? Is it possible to obtain a prediction
for the D-term in this model? And, are our observations
model-dependent or of general character?

C. Mechanical stability in the model

Even though constructed as a consistent classical
mechanical model of the proton [61], we find that the
mechanical stability criterion (34) is not satisfied at large r.
This issue needs to be resolved. Let us stress that positivity
of the normal force (34) is a stability criterion of mechani-
cal continuum systems [65]. Care may be needed when
carrying over such criteria to quantum systems [8]. But here
we deal with a classical continuum system and the criterion
(34) must hold.
In this context, it is interesting to recall how the cri-

terion (34) is used to determine the radius of a neutron
star: density and radial pressure in the neutron star interior
are governed by the Tolman-Oppenheimer-Volkoff equa-
tions which include general relativity effects, and are
connected to each other by an equation of state of nuclear
forces. The equation of state contains information on the
compressibility of nuclear matter. The solution of these
equations yields the normal force (which in neutron star
literature is often referred to as “radial pressure” or simply
“pressure,” not to be confused with the pressure pðrÞ in
this work.) The normal force is positive, but at some
point it turns negative. This point marks the radius of the
neutron star. Could we apply the same procedure to
our case?
The answer is no. In our case, this procedure would mean

to declare the radius r0;n ¼ 1.881 fm where the normal
force exhibits a node to be the “edge” of the system. This
“works” in the following sense. If we multiply (30) by r3,

integrate over a finite integral 0 ≤ r0 ≤ r, and perform
integrations by parts, we obtain [8]

Z

r

0

dr0 r02pðr0Þ ¼ r3

3

�

2

3
sðrÞ þ pðrÞ

�

: ð38Þ

This means that the von Laue condition (31) could also be
satisfied by integrating over a finite interval from zero up to
the node of 2

3
sðrÞ þ pðrÞ at r0;n ¼ 1.881 fm. From a

mechanical stability point of view, we could be happy
about such a solution. From a physical point of view, we are
not. While the effects of the short-range strong fields are
practically negligible beyond r0;n ¼ 1.881 fm one cannot
ignore the effect of the long-range Coulomb field, which
“communicates” the presence of an electric charge. We
recall that the model [61] was designed with the specific
purpose to have a mechanical model of an electric charge—
which inevitably includes a correct description (within
Maxwell’s equations) of its long-range Coulomb potential.
The “truncation” of the system at a finite value of r is
therefore unacceptable (in our case; for the macroscopic
neutron stars it surely works). We must seek a solution
along different paths.
One possible resolution lies in exploring the force

concept in a classical system. Notice that in our system,
the matter (“continuous medium”) is described by the scalar
density ρðrÞ localized within the radius R¼1.05 fm. Thus,
in the volume where the dust particles are present, the
criterion (34) is satisfied. The violation of (34) occurs where
no matter is present. Hence, it does not affect the mechanical
stability of the medium. This argument cannot be applied to
quantum field theoretical systems where the distributions of
“matter” and “field energy” cannot in general be distin-
guished [16]. Only in classical systems, such as our model, is
such a distinction unambiguous.
Thus, a possible resolution of the issue is that no violation

of (34) occurs in our model, because no matter is present at
the point where the normal forces become negative. Hence,
the node in the normal force causes no mechanical insta-
bility, and the classical proton solution is consistent.
Finally, we comment on the mean square radius of

energy density hr2Ei and mechanical mean square radius
hr2mechi. These radii “measure” the extent of the spatial
distributions of energy density and normal forces, which
include the contributions of the fields, and diverge due to
the long-range Coulomb field. In this classical model, the
“proton size” is associated with the localized distribution of
matter. The matter particles carry electric charge, and we
already saw that system has a well-defined finite charge
radius which numerically has the right order of magnitude,
see Sec. II.

D. Regularized result Dreg for the D-term

In this section, we address the question of whether the
model can make a prediction for the D-term. Taken
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literally, the expressions (36) and (37) for the D-term
diverge, but one may try to regularize1 them. In general,
regularization is not unique, and one must define a
“regularization prescription.” Let us stress we are talking
here about the small contributions of the Coulomb potential
in Figs. 3(b) and 3(c), which spoil the convergence of the
integrals.
In our case, one can use the following procedure to

obtain a finite result for the D-term. In order to motivate
this procedure, we notice that in a theory, where (a) the
EMT is conserved and (b) the integrals defining Dp and Ds

in Eqs. (36), (37) exist, one can compute the D-term in
terms of an arbitrary linear combination of Dp and Ds as
follows

DðζÞ ¼ ζDp þ ð1 − ζÞDs: ð39Þ

Notice that under these conditions, the same result,
DðζÞ ¼ D, is obtained for any value ζ which follows
simply from the equivalence of the expressions for Ds

and Dp. In our case, the condition (a) is of course satisfied,
but (b) is not. As a consequence, the expression DðζÞ is
divergent for all ζ except for one value ζ ¼ ζreg, which can
be chosen such that Dreg ¼ DðζregÞ is finite. This value of
ζreg depends on the number of dimensions n ¼ 3 and the
power N ¼ 4 in the long-distance asymptotic sðrÞ ¼ as=r

N

and pðrÞ ¼ ap=r
N , and can be determined as follows.2

The coefficients as and ap are not independent, but related
to each other, as ap=as ¼ −ðn − 1ÞðN − nÞ=ðnNÞ due to
Eq. (30). Thus, in the linear combination, sðrÞ=ap þ
pðrÞ=as, the long-range Coulomb tail cancels out. This
is the only linear combination which can give a convergent
result in Eq. (39). Considering the prefactors in the
definitions (36), (37) of Ds and Dp, the required value
of ζreg is

ζreg ¼
2N

nðnþ 2 − NÞ : ð40Þ

This is ζreg ¼ 8

3
in our case for n ¼ 3 dimensions and

N ¼ 4. The regularized D-term obtained in this way is
finite, negative, expressed in terms of pðrÞ and sðrÞ as
follows, and numerically given by

Dreg ¼ DðζregÞ ¼ M

Z

d3r r2
4

9
½6pðrÞ þ sðrÞ�

¼ −0.317ðℏcÞ2: ð41Þ

Numerically, this is about an order of magnitude smaller
than theD-term in the chiral quark soliton model [16]. This
is understandable considering the D-term encodes infor-
mation on internal forces. In the classical model, we deal
with “residual nuclear forces” which are about an order of
magnitude smaller than the forces among quarks in the
chiral quark soliton model of Ref. [16].
Our regularization method is distinguished because

it removes the divergences from Dp and Ds in an efficient
and “minimalistic” way: the long-range QED contribution
exactly cancels out in the linear combination ½6pðrÞ þ sðrÞ�
in (41) and we introduce no “regulator dependence.” It it
is also a suitable regularization because it preserves the
negative sign of theD-term observed so far in all theoretical
studies.
Another interesting feature of this regularization pre-

scription is that it removes the Coulomb contribution not
only in the outer region r > R, which is required to make
theD-term finite. Interestingly, in the linear combination of
pðrÞ and sðrÞ in the integrand in Eq. (41), the contribution
of electrostatic forces also cancels out exactly in the inner
region r < R. In other words, Dreg receives no contribution
from the electric forces at all. Notice that this concerns only
the Coulomb contribution to Dreg in this particular regu-
larization scheme. The electromagnetic contribution to the
budget of the internal forces is well-illustrated by the von
Laue condition in Eq. (33), where the numerical contribu-
tion of the Coulomb field is small, but indispensable to
prevent the collapse of the proton in the classical model.
However, our result (41) is not unique, because in

principle one could use other methods to regularize the
divergences. It would be interesting to see whether other
suitable regularization methods can be defined, and inves-
tigate the effects of the regularization scheme dependence
on the D-term. This will be left to future studies.

V. MODEL-INDEPENDENT INSIGHTS,

AND THE FORM FACTOR D(t)

In this section, we put our findings in a wider context
and show that the observed long-distance properties of
EMT densities are model independent. We discuss possible

1It is important to stress that in our context the meaning
of “regularization” differs from that in renormalizable quantum
field theories, where regularization makes UV- or IR-divergences
treatable, before the former get absorbed in redefinitions of
renormalized parameters or the latter cancel out when computing
observables, which cannot be done in our classical model. In
our context “regularization” means that we are seeking a
prescription to obtain a finite (and physically meaningful) value
for the D-term. See the discussion in Sec. V.

2Notice that the integrals (36), (37) diverge if N < nþ 2,
which is the case here since N ¼ 4 and n ¼ 3. We left the space
dimension n ¼ 3 general in Eqs. (30), (36), (37) for the pur-
poses of this section. For completeness we remark that N can be
related to n by formulating the Maxwell’s equations for a general
number of dimensions. The “area element” is da⃗ ¼ e⃗rr

n−1dΩn in
n-dimensional space. Then the Gauss law

H

E⃗da⃗ ¼ Q implies for

the electric field of a localized charge distribution jE⃗j ∝ 1=rn−1,
and the Coulomb potential A0ðrÞ ∝ 1=rn−2. The long-distance
behavior of EMT densities is determined by A0

0
ðrÞ2 and given by

1=r2ðn−1Þ. Hence N ¼ 2ðn − 1Þ.
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implications for theoretical and experimental studies of the
EMT form factors, and especially the D-term form factor.

A. EMT densities in QED at long-distances

Our results for EMT densities are certainly model-
dependent in the region up to r≲ 2–3 fm, where strong
forces dominate. The strong forces are modeled in a
specific way in our approach. One could use a different
model for strong forces and would obtain different results
in the region r≲ 2–3 fm. Independently, of the chosen
model, the strong forces are short-ranged and their effects
are faded out in the region r≳ 3 fm. This region is
governed by the long-range electromagnetic force.3

In other words, if one were to solve QCD and QED
exactly, e.g., in a lattice calculation [66–71], one would
recover the same results for the EMT densities at long
distances r ≫ 3 fm. The reason for that is obvious. The 1

r
-

behavior of the classical Coulomb potential is a conse-
quence of the masslessness of the photon in QED. Indeed,
the long-distance part of the EMT densities in QED was
determined from 1-loop calculations in [72] and is given by

T00

QEDðr⃗Þ ¼
αℏc

8πr4
þ…;

T
ij
QEDðr⃗Þ ¼ −

αℏc

4πr4

�

eire
j
r −

1

2
δij

�

þ… ð42Þ

where the parenthesis denotes more strongly suppressed
terms. To this order, the results in Eq. (42) are the same for
spin-0 and spin-1

2
particles (while the components T0k

QEDðr⃗Þ
obviously depend on the spin) [72]. The result (42) can
be traced back to nonanalytic terms in the EMT form
factors at small t which arise from the masslessness of the
photon [72]. The QED long-distance contributions to the
EMT densities (42) coincide exactly with our results (35).
This is not a coincidence, but due to the fact that QED
must reproduce the classical Maxwell theory at long
distances [72].
As we have seen, the long-distance behavior (35), (42)

implies a divergent D-term as well as the divergence of
mean square radii associated with EMT densities. These
divergences are also model-independent results. This can
be seen without involving the notion of EMT densities [72].
For that we have to investigate the EMT form factors.

B. THE D-TERM FORM FACTOR

EMT densities can be computed directly in classical
models but not in quantum field theory4 where all one can
do is to evaluate matrix elements of the EMT operator T̂μν.
The information content of these matrix elements is
described in terms of form factors which are defined in
the case of the nucleon as

hp0; s0jT̂μνjp; si

¼ ūðp0; s0Þ
�

AðtÞP
μPν

M
þ JðtÞ iðP

μσνρ þ PνσμρÞΔρ

2M

þDðtÞΔ
μ
Δ

ν − gμνΔ2

4M

�

uðp; sÞ ð43Þ

where P ¼ 1

2
ðp0 þ pÞ,Δ ¼ p0 − p, t ¼ Δ

2, and the spinors
are normalized as ūðp; sÞuðp; sÞ ¼ 2M. The EMT densities
can be inferred indirectly from the form factors through an
interpretation of the 3-dimensional Fourier transforms of
the form factors. This interpretation is justified if the size of
the particle is much larger than its Compton wavelength
(which is the case for the proton to a good approximation)
and is applicable for r≳ λc where λc ¼ ℏ=ðMcÞ ≈ 0.2 fm
denotes the Compton wavelength of the proton [8].
The interpretation of the form factors in terms of

densities is performed in a frame where t ¼ −Δ⃗
2. If the

form factor DðtÞ is known, one way to determine the stress
tensor densities sðrÞ and pðrÞ is as follows [8]

D̃ðrÞ ¼
Z

d3Δ

ð2πÞ3 e
−iΔ⃗·r⃗Dð−Δ⃗2Þ; ð44Þ

sðrÞ ¼ −
1

4M
r
d

dr

�

1

r

d

dr
D̃ðrÞ

�

; ð45Þ

pðrÞ ¼ 1

6M

1

r2
d

dr

�

r2
d

dr
D̃ðrÞ

�

: ð46Þ

Here we can proceed “backwards” and integrate Eqs. (45),
(46) to obtain D̃ðrÞ. This is most conveniently done by
integrating the expressions (45), (46) twice over the radial
distances from r to infinity, where all densities vanish.
Starting from Eq. (45) or (46) respectively yields the same
result for D̃ðrÞ which serves as a test for the calculation.
With the result for D̃ðrÞ, one can invert the Fourier

3The point where electromagnetic force becomes dominant, in
our work r ≳ 3 fm, is model dependent. In QCD, the long
distance-behavior of nucleon EMT densities is dictated by
spontaneous chiral symmetry breaking and the emergence of
Goldstone bosons, pions in SU(2) flavor case, whose contribu-
tions to sðrÞ and pðrÞ decay like 1

r4
expð−2mπrÞ for pion mass

mπ ≠ 0, and are proportional to 1

r6
in the chiral limit [16,33]. At

large enough distances, the contributions of electromagnetic
forces dominate the EMT densities in any case.

4One exception are quantum field theoretical models based on
the limit of a large number of colors Nc where the nucleon
structure is described in terms of a mean field [73], like in chiral
quark soliton or Skyrme model [16]. In the large-Nc limit, the 3-
dimensional EMT density formalism for baryons is exact [8].
Form factors also have an interpretation in terms of 2-dimen-
sional EMT densities, which is exact for all hadrons and valid for
any Nc [74,75], cf. Ref. [10] specifically for the case of EMT
densities.
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transform (44) to compute DðtÞ. The result is shown
in Fig. 4.
The Fig. 4(a) gives an overview of DðtÞ. In the region

0.1≲ ð−tÞ≲ 0.5 GeV2, we observe a shape typical for
hadronic form factors, which can be approximated by
a quadrupole form DðtÞapprox ≈Dreg=ð1 − t=m2

DÞ3, with
mD ¼ 0.985 GeV. At smaller (−t), the QED long-distance
effects become noticeable. At significantly larger (−t), the
correct description of form factors requires short-distance
properties of QCD which are not present in the model.
As the t ¼ 0 intercept of DðtÞapprox, we have chosen the
regularized value Dreg from Eq. (39), which is indicated in
Fig. 4(a) (one could also choose a slightly different value).
The quadrupole shape of DðtÞapprox is suggested by large-t
QCD counting rules [8] (but one could also choose other
shapes). For t > 0.1 GeV2, the classical model result for
DðtÞ is in good qualitative agreement with more realistic
models [16] but about an order of magnitude smaller which
is expected, cf. discussion below Eq. (41). For ð−tÞ <
0.1 GeV2, the long-distance QED effects start to become
important, and cause the form factor DðtÞ to change sign at
t ¼ −2.8 × 10−4 GeV2. This “transition region” is shown
in Fig. 4(b). In this region, we can start to compare our
results to the predictions for DðtÞ due to the QED leading
nonanalytic terms [72].

C. Comparison to the leading nonanalytic

QED contributions to D(t)

The leading nonanalytic QED terms in the small-t
behavior of EMT form factors were derived in [72]
(where the notation q2 ¼ t, F1ðq2Þ ¼ AðtÞ, F2ðq2Þ ¼
2JðtÞ, F3ðq2Þ ¼ 1

4
DðtÞ was used). The derivation of the

long-distance QED contribution to the stress tensor quoted
earlier in Eq. (42) was part of a calculation of QED one-
loop corrections to the gravitational metric of charged
particles with spin 0 and spin 1

2
[72]. The calculations were

performed using effective field theory techniques. For a
charged spin-1

2
fermion, the small-t behavior of DðtÞ due to

QED-effects is [72]

DðtÞ ¼ α

π

�

−
11

18
þ π2M

4
ffiffiffiffiffi

−t
p þ 2

3
log

ð−tÞ
M2

�

þ…; ð47Þ

where the dots indicate terms which are finite as t → 0.
Notice that DðtÞ is multiplied by ðΔμ

Δ
ν − gμνΔ2Þ in (43).

Therefore, the matrix element hp0; s0jT̂μνjp; si has a well-
defined limit t → 0, but the form factor DðtÞ does not. The
D-term given by D ¼ Dð0Þ ¼ limt→0DðtÞ is divergent.
The result for the EMT densities (42) was obtained from
Eq. (47) by means of a Fourier transform. The EMT deter-
mines the metric through the Einstein equation, and from
the long-distance QED contribution to the EMT densities
(42), it is possible to reproduce the classical nonlinear terms
of the Reissner-Nordström metric for a nonspinning charge
or Kerr-Newman metric for a spinning charge [72].
It is important to stress that the metric in general

relativity is an inherently classical concept. The deeper
reason why it is possible to determine quantum correc-
tions to the metric lies in the massless nature of the
photon, which causes long-distance effects much stronger
than the gravitational effects, provided α ≫ GM2=ðℏcÞ ¼
M2=M2

Planck, where G denotes the gravitational constant
and MPlanck is the Planck mass. Under this condition,
quantum gravity corrections can be neglected, and gravity
can be treated as a classical theory described in terms of a
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FIG. 4. The form factor DðtÞ in the classical model as function of t. (a) Region of 0 ≤ ð−tÞ ≤ 0.7 GeV2, where we find a typical
t-dependence which can be approximated by an analytic quadrupole form DðtÞapprox ≈Dreg=ð1 − t=m2

DÞ3, with mD ¼ 0.985 GeV

for 0.1≲ ð−tÞ≲ 0.5 GeV2. The point marks the regularized value Dreg of the D-term from Eq. (39). (b) Transition region

10−5 ≤ ð−tÞ≲ 10−1 GeV2 where DðtÞ changes sign and starts to approach prediction from “QED leading” nonanalytic terms.
(c) The region 10−8 ≤ ð−tÞ ≤ 10−4 GeV2 of “asymptotically small” t. For ð−tÞ ≤ 10−6 GeV2, the classical model result coincides with
the QED prediction (47) for DðtÞ which diverges like 1=

ffiffiffiffiffi

−t
p

.
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metric (in our case quantum gravity effects can safely be
neglected: the proton mass M is 19 orders of magnitude
smaller than MPlanck ¼ 1.2 × 1019 GeV). Besides the
photon [72], graviton effects can also be studied in this
way [76–79].
The QED result (47) is shown in Fig. 4(b) with the

label “QED leading.” After the sign change, the model
result for DðtÞ starts to slowly approach the QED result
(47). For “asymptotically small” t in the region below
ð−tÞ ≤ 10−6 GeV2, the classical model result for DðtÞ
practically coincides with the QED result (47), see
Fig. 4(c). In particular, the model result for DðtÞ diverges
like 1=

ffiffiffiffiffi

−t
p

for small (−t).
For completeness, we remark that the form factors AðtÞ

and JðtÞmust satisfy the constraints Að0Þ ¼ 1 and Jð0Þ ¼ 1

2

[80–82] and do so of course despite the presence of long-
range QED corrections. In the case of these form factors,
the leading nonanalytic terms are of the type

ffiffiffiffiffi

−t
p

and
ð−tÞ logð−tÞ and well behaving for t → 0. But the deriv-
atives of these form factors with respect to t diverge in the
limit t → 0. For instance, in the case of AðtÞ, this implies
the divergence of the “gravitational mean square radius”
[72] defined as hr2gravi ¼ −6A0ð0Þ. The mean square radius
of the energy density is also related to A0ð0Þ [8] and
divergent due to the long-range QED effects, see above.
In spin-0 case, the EMT form factors are defined

differently, but the leading nonanalytic terms in DðtÞ
are also proportional to 1=

ffiffiffiffiffi

−t
p

and logð−tÞ [72]. Con-
sequently, DðtÞ of charged spin-0 particles also diverges as
t → 0. This was observed in Ref. [29] for charged pions in
next-to-leading order calculations in two-flavor chiral
perturbation theory, where intrinsic electromagnetic cor-
rections were included (in [29] the notationΘ1ðsÞ ¼ −DðtÞ
with t ¼ s was used). Notice that, if QED effects are
neglected, Dð0Þ ¼ −1 holds for all Goldstone bosons of
chiral symmetry breaking. It is a notable exception that the
D-term is fixed by first principles [83–86], see also [4,29].
However, if QED effects are included, thenDðtÞ of charged
pions diverges [29]. For neutral pions, one may in fact
expectDð0Þ ¼ −1 to a good approximation [28,47]. A first
attempt to extract EMT form factors of neutral pions was
reported in Ref. [87].

D. Consequences for calculations and

measurements of D(t)

In theoretical hadron structure studies, electromagnetic
effects can often be neglected to a good approximation. But
in experiments, one certainly cannot neglect the electric
charge of the proton and other electromagnetic effects.
Even though not straightforward [8], the form factor DðtÞ
of the proton can be extracted from analyses of hard
exclusive reactions like deeply virtual Compton scattering
[2,3] using dispersion relation methods [88–91] and first
attempts were reported [92,93]. Can the divergent behavior

of DðtÞ due to QED effects (47) be experimentally
observed?
It is important to stress that the QED contribution toDðtÞ

in Eq. (47) starts to become noticeable in our model only
for ð−tÞ ≪ 0.1 GeV2. In more realistic models, the con-
tribution of strong forces to DðtÞ is an order of magnitude
larger, implying that the transition region where DðtÞ
changes sign, cf. Fig. 4(b), sets in at even lower values
of (−t). In addition, in the case of deeply virtual Compton
scattering, it is necessary to consider higher order QCD
corrections. When extracting information from electro-
magnetic processes, one must also consider QED radiative
corrections, which are generically of the same order of
magnitude as the effect (47), see [29] for a discussion in the
case of charged pions. Thus, from a practical point of view,
one may never be able to reach the region of small enough
(−t), cf. Figs. 4(b) and 4(c), and sufficient precision to
observe QED effects like (47).
But from a theoretical point of view, it is legitimate to ask

how to calculate the D-term in a system with long-range
forces. We do not know a definite answer to this question,
though our work indicates a possible solution, namely to
apply a regularization scheme. At first glance, it may
appear unusual to invoke regularization in classical calcu-
lations. But the deeper reason why the D-term diverges is
rooted in the masslessness of the photon, and hence related
to infrared divergences in QED. The regularization pre-
scription proposed in Sec. IV D is acceptable because: (i) it
gives a finite result, (ii) preserves the negative value of
the D-term in accordance with other theoretical studies,
and (iii) the obtained numerical value (39) is useful to
practically approximate DðtÞ at finite ð−tÞ > 0.1 GeV2,
see Fig. 4(a). Thus, working with a such a regularization
scheme is one practical way out. The regularization method
of Sec. IV D works in our classical calculation. In pertur-
bative QCD and QED calculations of the deeply virtual
Compton scattering process, other “schemes” are invoked,
and in nonperturbative lattice QCD calculations with
included QED effects, one can use yet other regularization
methods [66–68]. More theoretical work is required to
compare results obtained in different schemes. These
aspects go beyond the scope of this work.
Another open question is how to describe the EMT

densities, D-term and internal forces inside the perhaps
most interesting QED state, the photon itself which
acquires an internal structure through QED (and QCD)
effects [94,95]. The massless photon has to be described in
terms of the 2D density formalism [10,74,75].

VI. CONCLUSIONS

Prior EMT studies focused on applications to hadronic
physics, and considered mainly strongly interacting sys-
tems with short-range forces. Long-range forces were not
included. In systems governed by short-range forces, the
D-term was always found to be well-defined, finite and
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negative. In this work, we have presented a study in a
system where in addition to (strong) short-range forces,
(electromagnetic) long-range forces are also present. We
have encountered several interesting features not observed
in prior studies of systems with short-range forces. The
most interesting observation is that, when long-range forces
are included, the D-term is no longer well-defined, and
diverges.
For our study, we employed the classical proton model

of Białynicki-Birula [61] which is of interest for its own
sake. To the best of our knowledge, it is the first fully
consistent classical model of an extended charged particle
where the Poincaré stresses are generated dynamically in a
local, relativistic, classical field theory. The model exhibits
short-range strong forces, which are modeled after nuclear
forces, and the electromagnetic long-range interaction [61].
The two crucial aspects for our study are the consistent
description of a stable particle, and correct description
of the long-range electromagnetic effects. The model of
Ref. [61] satisfies both. The classical aspect of the model is
an advantage in the sense that it allows us to concentrate on
the effects of long-range forces undistracted by technical
difficulties, which are inevitable in studies of more realistic,
strongly interacting quantum systems.
In the region below r≲ 2 fm, the classical proton model

yields results for the energy density T00ðrÞ, shear force
sðrÞ, and pressure pðrÞ in good qualitative agreement
with more realistic models like the chiral quark soliton
or Skyrme model, except that sðrÞ and pðrÞ are about an
order of magnitude smaller. This is of course to be expected
in a model where the internal forces are modelled after the
“residual nuclear forces.” Otherwise, in this r-region, the
classical proton model is in line with results from short-
range systems.
The situation is different for r≳ 2–3 fm, where the strong

forces are faded out, and T00ðrÞ, sðrÞ, pðrÞ exhibit tails
proportional to 1

r4
due to the long-range Coulomb field. This

introduces new features, e.g., sðrÞ and pðrÞ show (addi-
tional) nodes and opposite signs at large-r as compared to
systems with short-range forces. Another consequence is the
divergence of the mean square radius of the energy density
and the mechanical radius. These radii measure the spatial
extensions of the energy density T00ðrÞ and normal force
2

3
sðrÞ þ pðrÞ, which include contributions from fields. Due

to the long-range of the Coulomb field, the size of the
system, as measured by these radii, is consequently infinite.
In contrast, the electric mean square radius is finite (and
numerically of the right size) [61], as it measures the spatial
extension of the electric charge distribution tight to the
localized matter distribution in the model.
The most interesting new feature is that the D-term

of a charged particle is divergent. Technically, this happens
because the D-term is given in terms of integrals over sðrÞ
or pðrÞ which diverge due to the 1

r4
-tails of these densities.

We proposed a regularization scheme which yields a finite,

negative, and numerically reasonable value for a system
with internal interactions of the strength of “residual
nuclear forces.” We computed the form factor DðtÞ which,
for ð−tÞ > 0.1 GeV2, is negative and shows a shape typical
for hadronic form factors. But in the region ð−tÞ ≪
0.1 GeV2, the form factor changes sign, becomes positive
and diverges as t → 0.
The observed long-distance properties of EMT densities

and the related small-t divergence of DðtÞ are model-
indepedent results. Both have been derived in Ref. [72]
from QED diagrams. In a recent study of Q-balls carrying
an electric charge, the same long-range tails were found
as in our work [96]. The deeper reason for the emergence
of these EMT properties can be traced back to the
masslessness of the photon [72], which is reflected in
the classical Maxwell’s equations. Consequently, the EMT
long-distance properties must be correctly reproduced in
every system (classical, quantum mechanical, quantum
field theoretical) where the electromagnetic interaction is
correctly described.
Other EMT form factors are also affected by QED long-

distance effects, but less strongly than DðtÞ for two reasons.
First, the proton EMT form factors AðtÞ and JðtÞ are con-
strained to satisfy Að0Þ ¼ 1 and Jð0Þ ¼ 1

2
[80–82]. QED

long-distance effects must preserve these constraints, though
they can (and do) affect the derivatives of these form factors
(making them infinitely steep at t ¼ 0 which in turn is
connected to the divergence of the related mean square
radii). The value of DðtÞ at t ¼ 0 is in general not con-
strained by any principle, and can therefore show more
variation than other form factors. Second, the D-term is
intrinsically related to the internal forces and the dynamics in
a system. As such, it is the particle property which exhibits
by far the strongest sensitivity to variations in the system. It
is therefore not unexpected that DðtÞ shows the most
pronounced effects when long-range forces are included.
The long-distance QED effects on DðtÞ become notice-

able at such small ð−tÞ ≪ 0.1 GeV2 that it is not clear
whether they are, even in principle, measurable. More
theoretical work is required to clarify this important point.
Our results are very interesting from a theoretical point of
view, and raise the question of how to define the D-term
in a system with long-range forces. Another well-known
long-range force is gravity. It would be very interesting
to perform a fully consistent computation of EMT proper-
ties including general relativity. Solutions of the Einstein
equation for perfect charged fluids exist, see e.g., [97], but
they typically make assumptions about the density or the
equation of state. A consistent treatment of the D-term
requires us to exactly solve the dynamics of all involved
fields, including the gravitational field. As noted in [47],
due to its sensitivity to the details of the involved
interactions, the correct definition of the D-term may
require the consideration of all forces, including QED
and perhaps even gravity.
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