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Decisions in natural environments are temporally extended 
and sequential. In many species, they involve planning, 
information search and choice between many alternatives. 

They may require action selection to unfold over long timescales. 
They can be characterized by periods of deliberation and informa-
tion sampling, whereby the agent simulates the future consequences 
of its actions before committing to a final choice.

This contrasts with much decision-making research in neurosci-
ence to date. Many decision-making paradigms focus on repeated 
choices between a limited number of options that are simultane-
ously presented to the agent. Adopting this reductive viewpoint has 
been highly fruitful, as it has meant that formal algorithms bor-
rowed from other fields can be applied when interpreting behav-
ioral and neural data. For example, algorithms borrowed from 
signal-detection theory are applied to interpret sensory-detection 
tasks, such as two-alternative forced-choice paradigms1. Algorithms 
from model-free reinforcement learning (RL)2 or economics3 are 
applied to interpret reward-guided decision tasks. Algorithms from 
foraging theory4 are used to interpret decisions about whether to 
stay or depart from a currently favored patch location.

In this Review, we argue that the recent development of novel 
algorithms and frameworks for planning allows us to move beyond 
reductive paradigms and progress toward studying decision-making 
in naturalistic, temporally extended environments. This progress 
creates challenges for the field. Which model organisms can be used 
to study naturalistic choices and how might their cognitive abili-
ties be compared to humans? How do we design paradigms that are 
more naturalistic but remain experimentally tractable? What is the 
behavioral and neurophysiological evidence that animals are plan-
ning or making use of sampled information?

We seek to emphasize an important relationship between plan-
ning and information search during naturalistic decision-making. 
Both are about not pursuing immediate reward but instead  

improving the selection of future actions. While physically searching 
or sampling information is an overt action, planning relies on men-
tal simulation and is typically covert. Planning is therefore a form of 
internal information search over past experiences. Cognitive pro-
cesses leading to overt actions are easier to experimentally measure. 
We argue that by understanding the neural basis of tasks requiring 
overt information search, we may gain insight into neural mecha-
nisms supporting covert planning.

Why do (certain) animals plan?
We first need to ask: why plan at all? Current understanding of 
plan-based control regards such action choices as depending on 
the explicit consideration of possible prospective future courses of 
actions and consequent outcomes. Conversely, there is no explicit 
consideration of action outcome under habit-based control5–7. 
Planning, therefore, can create new information because it is com-
positional. It concatenates bits of knowledge about the short-term 
consequences of actions to work out their long-term values. By con-
trast, habit-based action choices are sculpted by prior experience 
alone without such inference. Whereas habit-based action selection 
is automatic, fast and inflexible, plan-based action selection requires 
deliberation, which allows actions to adapt to changing environ-
mental contingencies.

Evolutionary conditions selecting for planning. Habit-based 
action selection appears to be universal among vertebrates, both 
terrestrial and aquatic. In contrast, behavioral and neural evidence 
for plan-based action selection seems to only exist for mammals 
and birds8–10, and although they have cognitive maps, planning in 
amphibians and nonavian sauropsids11,12 and fish13 appears less elab-
orated if present at all.

Recent computational work suggests that the increase in visual 
range14 and environmental complexity15 that accompanied the shift 
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from life in water to life on land may have been a critical step in 
the evolution of planning16 (Fig. 1). In particular, plan-based action 
selection may be advantaged in complex dynamic tasks when the 
animal has enough time and sufficiently precise updates—such 
as through long-range vision—to forward simulate. Therefore, 
long-range imaging systems (that is, terrestrial vision, but also mam-
malian echolocation) may be crucial in advantaging plan-based 
control in complex environments due to their ability to detect the 
structure of a complex, cluttered environment with high temporal 

and spatial resolution. In such cases, the simultaneous apprehen-
sion of distal landmark information and other dynamic agents, be 
they prey or predator, allows planning to take place over the chang-
ing sensorium. When visual range is reduced, such as in nocturnal 
vision, plan-based control may only exist for stable environments 
over a previously established cognitive map. Thus, near-field detec-
tion of landmarks may be used to calibrate an allocentric map and 
planning is used only initially to devise new paths through this sta-
ble environment.
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Fig. 1 | Aquatic versus aerial visual scenes and how the corresponding habitats affect the utility of habit- and plan-based action selection during 
dynamic visually guided behavior. a, Example of an aquatic visual scene151. In such situations, typical of aquatic environments, visual range is limited 
and so predator–prey interactions occur at close quarters, thereby requiring rapid and simple responses facilitated by a habit-based system, as shown in 
cartoon form below the image. b, Example of a terrestrial visual scene. Shown below in cartoon form. Computational work16 suggests that these scenarios 
confer a selective benefit (not present in aquatic habitats) to planning long action sequences by imagining multiple possible futures (solid and dashed 
black arrows) and selecting the option with higher expected return (solid black arrow). c, The computational work idealized predator–prey interactions 
as occurring within a ‘grid world’ environment (column on right; prey, blue; predator, yellow) where the density of occlusions was varied. Prey had to use 
either habit- or plan-based action selection to get to the safety (red square) while being pursued by the predator. The plot shows survival rate versus 
clutter density across random predator locations, under plan-based (blue solid line) and habit-based action selection (red dashed line). Line indicates 
the mean ± s.e.m. across randomly generated environments. NS, not significant; P > 0.05, ***P < 0.001. d, To relate clutter densities in the artificial worlds 
to those found in the real world, Mugan and MacIver16 used lacunarity, a measure commonly used by ecologists to quantify spatial heterogeneity of 
gaps that arise from (for example) spatially discontinuous biogenic structure. The line plot shows the mean natural log of average lacunarity and the 
interquartile range of environments with a predetermined clutter level. Coastal, terrestrial and structured aquatic environments can be partitioned based 
on previously published lacunarity values (for a full range of lacunarities across different environments, see ref. 16). The green circle highlights a zone of 
lacunarity where planning outstrips habit (based on c). The inset shows an example image from the Okavango Delta in Botswana (~800 m × 800 m, from 
Google Earth), considered a modern analog of the habitats that early hominins lived within after branching from chimpanzees24. Its average lacunarity 
(ln(Λavg)) is 0.72. Photograph in a reproduced with permission from ref. 151, Elsevier; photograph in b from Cathy T (https://www.flickr.com/photos/
misschatter/14615739848/) under CC BY 2 license; cartoons in a and b, and plots in c and d, adapted from ref. 16 under CC BY 4.0 license.
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The scenarios of short- and long-range dynamic environments 
shown in Fig. 1a,b drive the following hypothesis: plan-based action 
selection is evolutionarily selected for when the number of action 
selection possibilities with differing outcome values is so large, 
dynamic and uncertain that habit-based action selection fails to 
be adaptive (Fig. 1c). Evolutionarily, this scenario greeted the first 
vertebrates to live on land over 300 million years ago. The increase 
in both visual range14 and environmental complexity15 due to the 
change in viewing medium and habitat facilitated the observance 
of the large variety of uncertain action–outcome values over an 
extended period of time in predator–prey encounters, thus advan-
taging planning.

Variation in planning across terrestrial species. Within terrestrial 
species, there is also marked variation in planning complexity. Many 
mammalian species learn the latent structure of their environment 
and deploy this flexibly to select new behaviors. Original support 
for the idea that rodents learn a cognitive map of their environment 
came from studies by Tolman17, in which rats immediately deployed 
the previously learnt structure of the environment to travel to 
reward-baited locations. Modern-day tests of similar behaviors 
show that such cognitive maps underlie hippocampal-dependent 
single-trial learning of new associations18. There is also evidence for 
planning in certain birds, exemplified by food caching behaviors in 
scrub-jays19 and tool use in New Caledonian crows20.

However, these tests of planning remain simplified compared 
to the flexible higher-order sequential planned behaviors observ-
able in humans and other primates21. Between-species variation 
in primate brain size may partly be explained by the complexity 
of foraging environments over which different behaviors must be 
planned16,22. It remains unclear whether there are good analogs even 
in nonhuman primates of the hierarchically organized plan-based 
action selection23 that underlies much of human behavior. Work on 
the type of habitats that maximize the advantage of planning shows 
that a patchy mix of open grassland and closed forested zones con-
fers the greatest advantage16 (Fig. 1d). This appears to be the type of 
habitat that hominins invaded after splitting from forest-dwelling 
chimpanzees24 and could, in combination with long-range vision, 
be a contributing factor to hominid exceptionalism in planning16. 
In addition, the development of large social groups in primates 
(particularly hominins) demand sophisticated planning of mul-
tiagent interactions25; that is, social interactions not only require 
updating the likely behavior of other agents but also demand 
iterative inferences26. The near quadrupling in brain volume of 
early hominins compared to chimpanzees may relate to the high 
computational burden of planning due to both their foraging and  
social environment.

Parallels between planning and information search. Intriguingly, 
between-species variation in planning sophistication can be 
related to between-species variation in curiosity. Curiosity can be 
defined as the natural intrinsic motivation and tendency to pro-
actively explore the environment and gather information about 
its structure27. Primates in particular, and carnivores in general, 
have a biased tendency toward curiosity and exploration com-
pared to other species like reptiles, which might be unmoved by 
new objects or neophobic28. Humans and nonhuman primates 
have an extended juvenile period, and playful curiosity dur-
ing this period gives rise to increased brain growth and behav-
ioral flexibility29. Curiosity-driven information search can also 
take advantage of existing cognitive capabilities. New Caledonian 
crows, for example, use tools when exploring novel objects, which 
suggests that they can generalize tool use from food retrieval to  
non-foraging activities30.

This parallel between planning and curiosity reinforces the view-
point that the primary goal of information sampling is to build up 

knowledge of the structure of the environment. Structural knowl-
edge acquired during information sampling can then be flexibly 
deployed when planning actions online in new environments or 
when reward locations or motivations change. Recent studies in 
humans have made this link explicit, using information sampling 
behavior to arbitrate between which planning strategies participants 
are using in a multistep decision task31.

Plan-based action selection and curiosity may have given rise 
to evolutionary advantages. To study the algorithmic implementa-
tion of these behaviors, however, it becomes necessary to develop a 
formal framework against which they can be quantified and their 
neural representations measured.

Formalizing planning
Formally, value-based planning (for example, a tree search by a 
chess computer to find the best move) corresponds to comput-
ing the long-run utility of different candidate courses of action in 
expectation over the possible resulting series of future situations 
and moves. In RL algorithms, this type of evaluation is known as 
model-based planning.

Model-based planning relies on an ‘internal model’ or repre-
sentation of the task contingencies to forecast utility. Such a model 
can be used, in effect, to perform mental simulation to forecast 
the states and values likely to follow candidate action trajecto-
ries. This is contrasted with ‘model-free’ trial and error, which is 
used to describe habit-based action selection6. This formalism has 
provided a foundation for reasoning about planning in psychol-
ogy and neuroscience5; that is, inspiring new tasks and predicting 
whether and when organisms are planning in classical tasks17,32, 
and grounding the search for neural mechanisms that implement 
specific forms of planning33. It has also offered a formal perspec-
tive on how the brain decides when to plan, versus acting without 
further deliberation, by defining under what circumstances addi-
tional planning is likely to be particularly effective in improving 
one’s choices5,34.

Mental simulation in the hippocampal formation. There are 
many different variants of model-based planning, which share the 
central feature of using a cognitive map of the environment to simu-
late future trajectories but differ in the pattern by which this occurs. 
Perhaps the most straightforward case searches through possible 
future paths from the current situation, using these sweeps to evalu-
ate different courses of action. Neurophysiologically, the hippo-
campal formation is a likely candidate for the encoding of such a 
cognitive map35, and this has guided the search for neural correlates 
of ‘trajectory sweeping’ during planning.

In spatial navigation in rodents, for example, place-cell activity 
recorded during active exploration of the environment reflects the 
current location of the animal. However, it also transiently repre-
sents other locations distal from the animal, including—sugges-
tively—sequentially traversing paths in front of the animal. These 
nonlocal ‘sweeps’ have been hypothesized to reflect episodes of 
explicit mental simulation through potential trajectories7,33,36,37. 
Notably, these events represent individual paths rather than a wave-
front of future locations in parallel. Furthermore, consideration of 
each path takes time and often occurs when the locomotion of the 
animal is stopped. Thus, deliberation, much like information search 
in the physical world, has an opportunity cost.

Two distinct types of nonlocal sweeps have captured attention: 
one involving isolated trajectories linked to a high-frequency event 
in the local field potential known as a sharp-wave ripple38,39, and the 
other linked to theta oscillations involving repeated cycles of for-
ward excursions that sometimes alternate between multiple poten-
tial paths36,37 (Figs. 2 and 3). Both types of event have been argued 
to be candidates for model-based evaluation by mental simulation, 
although these hypotheses are not mutually exclusive.
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Theta cycling and mental simulation. Beyond the fact that nonlo-
cal sweeps traverse relevant candidate paths, a number of additional 
observations surrounding theta cycling suggest their involvement 
in planning. First, these sequences serially sweep to the goals ahead 
of the animal during the ascending phase of the theta cycle10,40 and 
coincide with prefrontal representations of goals41 (Fig. 2). Second, 
journeys on which these nonlocal representations sweep forward 
to goals often include an overt external behavior, known as vicari-
ous trial and error (VTE), which is also suggestive of deliberation7. 
During VTE, rats and mice pause at a choice point and orient back 
and forth along potential paths7,17. Advances in experimental task 
design have helped isolate these behaviors linked to planning and 
capture the degree to which subjects use plan-based versus habitual 
controllers when selecting between courses of action.

Taking VTE to indicate planning processes, VTE occurs when 
animals know the structure of the world (have a cognitive map), but 
do not know what to do on that map. VTE disappears as animals 
automate behaviors within a stable world42,43 and reappears when 
reward contingencies change44,45. For tasks in which animals show 
phases of decision strategies, VTE occurs when agents need to use 
flexible decision strategies and disappears as behavior automates 
(see ref. 7 for a review). This indicates that the presence or absence of 
VTE matches the conditions that normatively favor model-based or 
model-free RL, respectively5. During VTE, neural signals consistent 
with evaluation are found in the nucleus accumbens core46.

Interestingly, disruption of the hippocampus or the medial 
temporal lobe can (in certain circumstances) increase rather than 
decrease VTE behavior47–49, which suggests that VTE may be ini-
tiated elsewhere. One candidate is the prelimbic cortex, where 
temporary inactivation diminishes VTE in rats and impairs  

hippocampal theta sequences10. This finding provides an intrigu-
ing link to studies of the role of the dorsal anterior cingulate cortex 
(dACC) in information sampling in monkeys. Neural activity in the 
dACC shifts between exploration and choice repetition occurring 
ahead of reward delivery, which is triggered after the accumulation 
of sufficient information to predict and plan the correct future solu-
tion to a problem50. This region also contains neural ensembles that 
are engaged whenever the animal explicitly decides to check on the 
current likelihood of receiving a large bonus reward51 (see below).

Sharp-wave ripples and mental simulation. Nonlocal trajectory 
events during high frequency sharp-wave ripples (Fig. 3a) also have 
a number of characteristics consistent with planning. These events 
also occur when animals pause during ongoing task behavior (par-
ticularly at reward sites52,53) and they can produce novel paths54. 
Moreover, they tend to originate at the current location of the ani-
mal and predict its future path55, their characteristics change with 
time in a fashion consistent with changing need for model-based 
evaluation, and disrupting them causally affects trial-and-error task 
acquisition56. Interestingly, disrupting sharp waves increases VTE, 
which suggests that sharp-wave-based and theta-based planning 
processes may be counterbalanced53.

A key additional feature of these events is that the most obvi-
ously planning-relevant events—paths in front of the animal during 
task behavior—are only one special case of a broader set of nonlo-
cal trajectories. These occur in different circumstances and include 
paths that rewind behind the animal often following reward57,58 and 
wholly nonlocal events during quiet rest or sleep54,59,60.

Recent computational modeling work33 (Fig. 3) has aimed to 
explain these observations in terms of a normative analysis of 
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model-based planning that considers not just when it is advanta-
geous to plan but also which trajectory is most useful to consider 
next. Formally, this means prioritizing locations that will cause a 
substantial change in the future behavior of the agent (how much the 
agent stands to gain from performing the simulation). One should 
also prioritize locations that the animal is particularly likely to visit 
in the future (how much need there is to perform such a simulation). 
The expected value of a particular trajectory is then calculated as the 
product of these two terms (for example, Fig. 3b–d,f,h). Importantly, 
while this analysis captures the characteristics of forward sweeps 
during task behavior (Fig. 3f–i), it also explains backward replay 
behind the animal when a reward is received (Fig. 3b–e), and trajec-
tories that tend to occur during sleep (Fig. 3k), as a form of offline 
‘pre-planning’ for when these situations are next encountered61.

Human neuroimaging experiments also suggest that puta-
tive behavioral signatures of model-based planning are associated 
with forward or backward neural reinstatement at various time 
points9,62–64. Human replay appears to occur in the sequence to be 
used in future behavior rather than the experienced sequence65, and 
is particularly pronounced for experiences that will be of greater 
future benefit66 as predicted by the prioritization framework33.

Efficiently representing large state spaces. No matter how sim-
ulation is implemented, model-based planning suffers from a 
potentially exponential growth in computational time as planning 
becomes deeper, except in small-scale toy problems with a limited 
range of possible future outcomes or state space67. This is because of 
how the decision tree branches. If, for example, at every planning 
step there are two new possibilities, the total number of possible 
paths to consider grows at 2n. We therefore need formalisms that 
account for tractable planning at scale.

Representation learning is a framework for improving the scal-
ability of RL. Essentially, representation learning involves learn-
ing to represent your current state so as to reduce the burden on 
the downstream RL algorithm, usually by representing its position 
relative to the task structure68–70. By making state representations 
more efficient, model-free agents become more sensitive to task 
structure and therefore more flexible to changes in reward contin-
gencies. Alternatively, the learned representation may feed into a 
model-based planner, in which case the representation implicitly 
organizes the search or planning occurring over it71.

Recent human cognitive science studies have shown that humans 
can exploit environmental structure to learn efficient representa-
tions in multi-armed bandit tasks72,73 and guide exploration in large 
decision spaces74. This structure typically depends on learning 
that certain options are correlated with one another. For example, 
if many options are presented, but options that are close in space 

tend to be similar to one another, then humans exploit this spatial 
relationship in their choices and searches74. More broadly, structure 
learning links to the older idea of a ‘learning set’, in which experi-
ence on a task allows faster learning of new problems on the same 
task35,75. In machine learning, a similar phenomenon has been 
termed meta-learning76.

The neural basis of structure learning remains relatively under-
explored. Disconnection lesions between the frontal and temporal 
cortex impair the use of a learning set, which demonstrates the 
importance of interactions between these brain regions77, as also 
shown by transection of the fornix (a white matter structure linking 
the hippocampus and the frontal cortex)78. More recently, human 
imaging studies have used representational similarity analysis 
between different RL states to identify the entorhinal cortex72 and 
the orbitofrontal cortex72,79 as key nodes for learning task structures.

Compressing information about future state occupancy. Neural 
representations of the current state of the animal must not only be 
rich enough to support sophisticated planning behaviors but also 
to render planning computationally tractable. One solution is to 
learn a ‘predictive representation’ of states expected to occur over 
multiple steps into the future, which means that states that predict 
similar futures are constrained to have similar representations80,81. 
If two states lead to similar outcomes, it is safe to assume that any-
thing learnt about one state (such as its value) should also apply 
to the other. This can simplify planning since predictive represen-
tations incorporate statistics about multiple steps of future events 
directly into the current representation. This allows anticipation 
of future states without the need to iteratively construct them via 
mental simulation.

One example is the successor representation80,82. The successor 
representation of one’s current state is a vector encoding the expected 
number of visits to each possible future (or successor) state (Fig. 4a). 
In addition to simplifying planning, this accelerates value learning 
following changes (Fig. 4b). In neuroscience, the idea of predictive 
representation has been applied to explain some features of hip-
pocampal place fields83, such as asymmetric growth in fields with 
traversals84, although it does not explain the sweeps and sequences 
discussed earlier. It can also account for human and animal revalua-
tion behavior85,86 and properties of dopaminergic learning signals87. 
We also suggest that it might be worth asking whether other neural 
systems, such as the striatum (which develops representations with 
experience88,89) or the prefrontal cortex (which shows hierarchical 
abstraction90,91) show these successor representation properties.

A related idea is that the state-transition map of a task can be rep-
resented in a compressed form by summing periodic components 
of different frequencies, in particular low-spatial and low-temporal 

Fig. 3 | A normative model-based planning account of replay events observed in hippocampal place cells and in simulations of spatial navigation 
tasks. a, Spike trains of rat hippocampal place cells before, during and after running down a linear track to obtain a reward. Forward and reverse replay 
are observed before and after the lap, respectively, during sharp-wave ripple (SWR) events38. b–k, Simulations of spatial navigation tasks, in which the 
agent evaluates memories of locations, called ‘backups’, preferentially by considering ‘need’ (how soon the location is likely to be encountered again) and 
‘gain’ (how much behavior can be improved from propagating new information to preceding locations). Simulated replay produces extended trajectories 
in forward and reverse directions33. b–d, Gain term (b), need term (c) and resulting trajectory (d) for reverse replay on a linear track. There is a separate 
gain term (b) for each action in a state (small triangles). If a state–action pair leads to an unexpectedly valuable next state, performing a backup of this 
state–action pair has high gain as it will change the behavior of the animal in that state. Once this backup is performed, the preceding action (highlighted 
triangle) will now have high gain and is likely to be backed up next. Multiple iterations of this process can lead to reverse replay. e, Reverse replay can also 
be simulated in more naturalistic two-dimensional (2D) open fields, tracking all the way from the goal to the starting location. f–h, Gain term (f), need 
term (g) and resulting trajectory (h) for forward replay on a linear track. The need term (g), derived from the successor representation of the agent (Fig. 4),  
reflects locations likely to be visited in the future. If need term differences are larger than gain term differences, this term dominates in driving the replayed 
trajectory. Here, this tends to lead to forward replay. i, Simulated forward replay events also arise in 2D open fields, sometimes exploring novel paths 
toward a goal. j, The model predicts the balance between forward/reverse replay events observed before/after running down a linear track33,38. k, When 
an agent is simulated in an offline setting after exploring a T-maze and observing that rewards have been placed in the right arm, more backups of actions 
leading to the right arm are performed33. The same has been observed in rodent recordings during sleep60. Data for a and j are from ref. 38 and data for k 
are from ref. 60; data for all other panels are from ref. 33.
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frequency ones that coarsely predict state occupancy far into the 
future. These components can be constructed by taking principal 
components of the transition matrix92 or, equivalently, the successor 
representation matrix83. The lower frequency components produce 
compressed representations that can support faster learning92 and 
improved exploration93. By capturing smoothed, coarse-grained 
trends of how states predict each other, they pull out key struc-
tural elements such as clusters, bottlenecks and decision points  
(Fig. 4d–g). These periodic functions share some features of grid 
cells83 (Fig. 4c), thereby falling into a family of models that suggest 

that the entorhinal cortex provides a mechanism for incorporat-
ing the spatiotemporal statistics of task structure into hippocampal 
learning and planning94,95. Recent work has explored the use of this 
type of representation to permit efficient linear approximations to 
full model-based planning96.

Taken together, prediction and compression constitute two key 
learning principles. Prediction motivates encoding relevant infor-
mation about the structure of the environment and compression 
causes this information to be compactly represented to make learn-
ing about reward more efficient.
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Obstacles and potential solutions for measuring neural sub-
strates of planning. The same reasons that make understanding 
planning so interesting also make it difficult to study. By definition, 
planning is internally generated and often covert. Place-cell activ-
ity recorded during navigation allows decoding of planning events 
in spatial tasks (for example, Figs. 2 and 3), but it is less clear how 
to generalize this approach to nonspatial tasks or to processes that 
occur over longer temporal scales.

Instead of anchoring the investigation to overt behavioral mark-
ers, a possible solution is to use unsupervised data mining to identify 
neural events of interest directly from spike train data. Techniques 
like cell assembly detection97 and state space model estimation98 
uncover structures directly from spike train statistics without the 
need for any behavioral parametrization. Cell assembly detection 
is based on the assumption that assemblies relevant for a cognitive 
function generate recurring, albeit potentially noisy, stereotypical 
activity patterns. State space model estimation instead aims to cap-
ture the dynamics governing neural processes by fitting a set of dif-
ferential equations on the experimental data.

Owing to the combinatorial explosion of potential patterns 
to test, many existing cell assembly detection methods restrict 
their search to stereotypical activity profiles characterized by a 
specific lag configuration (synchronous99,100 or sequential101 unit 
activations) or temporal scale (single spike99,101 or firing rate100,102 
coordination; see Fig. 5a for an example). Such approaches have 

identified reactivation of cell assemblies during sleep, thereby 
supporting the consolidation of learning novel spatial arenas100,103  
(Fig. 5b). Assembly-specific optogenetic silencing of these reactiva-
tion events impairs performance in approaching goal locations in a 
spatial navigation task104, which is consistent with the role outlined 
above for replay during sleep as a substrate for planning future 
actions (Fig. 3k).

More recent techniques are now expanding the search to a wider 
set of testable pattern configurations97,101,102 and timescales97, treated 
as parameters to be inferred from the data (Fig. 5c). This approach 
has, for example, recently isolated the formation of inter-regional 
cell assemblies between the dopaminergic midbrain and the ven-
tral striatum during value-based associative learning105 (Fig. 5d). In 
naturalistic planning tasks, a similar approach might identify events 
linking dopaminergic activity to hippocampal cell assembly activ-
ity subserving planning106, although this remains to be tested. It is 
also possible to identify how the timescale of cell assemblies changes 
during goal-directed behavior. For example, hippocampus and 
anterior cingulate cortex assembly temporal properties differ dur-
ing passive exploration versus a delayed alternation task97 (Fig. 5e).

Cognitive models of planning. So far, we have focused on differ-
ent formal models of planning through well-defined state spaces 
or navigation through known structures such as physical mazes. 
However, human participants can also incorporate knowledge 
about their own future behavioral tendencies into their planning. 
There is evidence to indicate that humans might approximate the 
effects of increasing horizons107 and use pre-emptive strategies to 
take into account their own future behavioral tendencies108.

Neurally, such considerations appear to involve an inter-
play between different dorsomedial and lateral prefrontal brain 
regions108, which are regions uniquely specialized in primates. 
Human neuropsychology has established a fundamental role for the 
dorsolateral prefrontal cortex (DLPFC) in laboratory-based plan-
ning tests109 and in real-life strategic planning110. A neural basis for 
these functions is well established in monkey neurophysiological 
responses in the DLPFC21, whereas monitoring of constituent ele-
ments within extended sequential behaviors appears to depend on 
the dACC and pre-supplementary motor area regions111.

Such responses contribute to a view of the frontal lobes as a 
rostro-caudal hierarchy, with more abstracted planning and con-
trol functions found more rostrally within this hierarchy90. The 
structures of representations that contribute to the elaboration of 
complex sequential plans can be seen to evolve as the task or envi-
ronment is learnt112. While the dACC and its interactions with the 
DLPFC appear particularly relevant for initial plan formation and 
prospective value generation, the nearby area 8m/9 considers how 
the initial plan will be prospectively adjusted following changes 
in the environment108 (Fig. 6a,b). One approach to formalize this 
process is to derive RL algorithms that learn mixtures of new plans 
across time and appropriately decide whether a previously learnt 
plan should be reused or a new one deployed113. Such models reveal 
functional dissociations when applied to functional MRI (fMRI) 
data during strategy learning114 (Fig. 6c).

However, even in more sophisticated cognitive behaviors, much 
of planning still boils down to sampling internal representations or 
simulating specific sequences of actions, outcomes and environ-
mental dynamics. A major challenge, as in studies of navigation, 
remains knowing what the underlying representations or states 
are—over which actions are selected, outcomes are associated and 
environmental dynamics are predicted.

In behavioral tasks that involve mental simulation over mul-
tiple steps, several possible heuristics have been proposed for how 
humans might efficiently search through the large resulting state 
space. Each has had some supporting evidence. One option would 
be to only plan to a certain depth of a decision tree. In humans 
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there is evidence for this115: people do not plan maximally deep, 
even when doing so would lead to greater reward. A related strategy 
is to stop sampling a specific branch if it appears to not be valu-
able (Fig. 6d). People indeed stop planning along branches that go 
through large losses, even when they are overall the best116. When 
this ‘pruning’ behavior occurs, then subgenual cingulate activity 
no longer reflects the difficulty of the decision, which is defined 
in terms of the number of steps planned117 (Fig. 6e). An alterna-
tive strategy is to use ‘hierarchical fragmentation’118: first plan a few 
steps and from the best possible state there, plan further. Finally, 
mixtures of explicit tree search and model-free systems are also 
possible119. While the exact strategy used may be task-dependent, 

it is possible that newly developed methods for decoding sequences 
of representations in human magnetoencephalography and fMRI 
data64,65 could arbitrate between these heuristic planning strategies 
in multistep cognitive tasks.

Information sampling as planning via exploration
Parallels between planning and information sampling. There are 
deep and as yet still relatively unexamined parallels between infor-
mation creation, as in planning, and gathering new information, 
as in exploration. More particularly, they are parallel at the level 
of control with respect to the decision about what (or whether) to 
explore and what (or whether) to plan.
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In the RL framework, formal theories of optimal directed explo-
ration120,121 and deliberation33,34 share essentially the same math-
ematical core. Whether accomplished ‘externally’ through seeking 
new information in the world or ‘internally’ through model-based 
simulation, exploration is valuable to the extent that it changes 
your future behavior. Indeed, the expected value of exploration 
can in principle be quantified as the increase in earnings expected 
to result from making better choices. This means, for instance, 
that both planning and exploration eventually have diminishing 
returns, after which they are unlikely to produce new actionable 
information (at which point one should act habitually or exploit, 

respectively). Also, even while they can both produce value, they 
must both be weighed against their opportunity cost, since plan-
ning comes at the expense of acting and exploring comes at the 
expense of both exploiting and energy122,123. This ties them to yet a 
third closely related area of theory, optimal foraging4; that is, opti-
mizing search and foraging when the organism can only do one 
thing at a time. In such decisions, a choice is rarely a single motor 
impulse but instead a series of extended interactions with a particu-
lar goal in mind. Information sampling may not only benefit the 
initial choice, but also the planning of the series of future actions 
taken after a choice has been made.
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So far, we have presented planning as a process of sampling and 
simulating the future. However, if knowledge about the world is 
wrong or incomplete for an agent, sampling the actual world, rather 
than a simulated one from memory, is essential. Importantly, an 
agent can direct their exploration toward parts of the environment 
that are known unknowns, either because they have an explicit 
model of the uncertainty of their estimates123 or because they know 
how the environment will change over time124. This can be used 
to quantify the value of reducing uncertainty for different states34 
and to quantify the gain of information against the energetic cost of 
gaining that information122,123.

Value of information as narrowing planning and improving 
predictions. While existing models do not predict information 
sampling and planning in a unified manner, empirical observa-
tions suggest that information sampling can be highly strategic. 

For example, humans explore more when the information is more 
valuable because it can be used in the future. Such exploration is 
not random but directed toward options with more uncertainty125. 
Early fMRI studies of exploratory behavior identified a network 
of regions, including the dACC (Fig. 6c), the frontopolar cortex 
and the intraparietal sulcus, that governed switches away from 
a currently favored option toward exploring an alternative126,127. 
Subsequent studies have to some extent dissociated these regions 
into those that reflect a simple decision to sample information that 
activates the dACC128 (Fig. 7a) versus the frontopolar cortex that 
tracks estimates of option uncertainty across time129. Disrupting 
the frontopolar cortex using transcranial magnetic stimulation 
selectively affects directed but not undirected exploration130. The 
converse is true of pharmacological interventions targeting the  
noradrenergic system131, whose inputs to the dACC have been 
shown to modulate switching into exploratory behavior132.
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Interestingly, animals also value information when it is of no 
apparent reward value. Several species have been shown to gamble 
energy of movement proportionate to the expected information 
gain123. Given the advancement of planning, sampling and simula-
tion models, it should be possible to predict what kind of informa-
tion an agent would be willing to pay for (‘simulation pruning’) even 
if it does not directly link to reward, as it might nevertheless sub-
stantially benefit planning. For example, macaques will pay a cost 
to resolve uncertainty about a future outcome earlier133. This makes 
sense if the brain continuously predicts potential future outcomes 
through simulation and sampling but tries to avoid unnecessarily 
anticipating potential outcomes that could be ruled out.

A recent study showed that neurons in several interconnected 
subregions of the dACC and the basal ganglia in primates are 
active around eye-gaze movements that resolve uncertainty, with 
the dACC being first to predict saccades that resolve uncertainty134 
(Fig. 7b). In a task where multiple saccades must be made to sam-
ple information about two choice options, activity in the dACC 
reports whether newly revealed evidence confirms or disconfirms 
a prior belief about which option should be chosen135. Activity in 
this dACC ‘belief confirmation subspace’ ramps immediately before 
commitment to a final decision (Fig. 7c), which suggests that there 
is a role for the dACC in transforming newly sampled information 
into future choice behavior.

While the exploration–exploitation dilemma is often considered 
in terms of improving estimates of a static value function, another 
strong motivation for exploration in real-world behavior is to sam-
ple when the world has changed. Indeed, macaques can adapt their 
search behavior to specific features of environments124. Importantly, 
animals can even monitor internal representations of unobservable 
dynamic changes in the environment to optimize their checking 
behaviors and update those representations. Activity in the dACC 
ramps across time before these checking behaviors, which means 
that checks can be decoded on preceding trials51 (Fig. 7d).

Linking successor representations to information sampling in 
foraging problems. Ethological observations have shown that 
the exploratory patterns in many species follow statistical rules 
known as Lévy walks, with travel paths that follow scale-free power 
laws136,137. In conditions where prey are sparse, such patterns are 
more efficient than pure random movements to capture these prey. 
It is argued that this advantage will have acted as a selection pressure 
on adaptations that would give rise to Lévy flight foraging138.

Above, we highlighted the eigendecomposition of the succes-
sor representation as a model for grid-cell activity in the entorhinal 
cortex during navigation and planning83; intriguingly, this may also 
provide a basis for generating Lévy walks. Different eigenvectors 
of this representation will occur at different spatial scales, which 
means that they may be suitable for planning over different hori-
zons. Indeed, recent evidence from a navigational-planning task 
using human fMRI data revealed a posterior-to-anterior spatial gra-
dient in both the hippocampus and the prefrontal cortex reflecting 
a pattern similarity to successor states of increasing spatial scales91.

When generating future actions, upweighting eigenvectors 
that represent low-frequency spatial information naturally leads 
the agent to adopt Lévy-like exploration of the environment. This 
exploration proves to be more efficient than random exploration 
when searching over environments with hierarchical structure, such 
as connected rooms139. By contrast, the sequences of samples gener-
ated by random exploration will better capture the true structure 
of the environment. This may explain why offline replay events in 
the hippocampus appear to follow a random diffusive pattern, even 
following behavioral exploration that has a Lévy-like superdiffusive 
structure140, at least in the absence of goals that shape replay events 
toward locations useful for planning33. One potential issue here is 
that Lévy-like exploration is only predictive in information-scarce 

and low-resource density contexts141. In information-rich con-
texts in which search proceeds in range of sensory organs, 
energy-constrained proportional betting on the expected infor-
mation distribution is showing promise for predicting trajectories 
across multiple species123.

Linking theta oscillations to external sampling. It is also clear 
that some of the neural implementations of online planning dis-
cussed earlier are also relevant for information sampling behaviors. 
Exploration signals have been shown to exist in conditions of high 
uncertainty in the form of nonlocal representation of space along 
each theta cycle at high-cost decision points (VTE)36,142. The very 
same theta cycles are also seen during internally generated subsec-
ond patterns that govern sensory perception143 and sensorimotor 
actions144. Thus, these patterns, currently thought to reflect adap-
tive mechanisms for sampling information from the external world, 
may be coordinated with the subsecond patterns of generative activ-
ity described here, which can in turn can be likened to sampling 
from internal representations.

In biological agents as in artificial ones, a major purpose of exter-
nal information sampling is to improve one’s confidence in pursu-
ing the most valuable course of action. Converging evidence from 
information-sampling studies in humans145–147 and nonhuman pri-
mates135 indicates a bias toward sampling evidence from a goal that 
is currently most favored rather than the option that will maximally 
reduce uncertainty. This fits well with foraging models of choice, 
which argue that even simple binary decisions may be made as a 
sequence of accept–reject decisions rather than as a direct compari-
son between two alternatives148. Once animals commit to accepting an 
option, they pursue this goal even when it becomes costly to do so149; 
that is, sampling information may benefit planning of future actions 
needed to pursue their goal. Formalizing this account of choice may 
require us to reformulate the RL problem as being one of minimizing 
distance to goals rather than maximizing discounted future reward150.

Summary
In this Review, we described some formal approaches, ideas and 
theories that have begun to breach the territory of internal plan-
ning and information sampling in complex environments. Some 
of these have previously often been thought of as being too dif-
ficult, idiosyncratic or unstructured to be directly investigated. 
A couple of concepts have crystalized as being essential for this 
advance. First, we conceive of planning as problem of internal 
sampling of a simulated environment while trying to optimize 
such sampling toward the most valuable and most likely aspects 
of the future. Second, this progress is paired with a need to under-
stand how states and knowledge are efficiently and conceptually 
organized to allow for planning in the first place. Knowing how 
to plan by sampling, and what to plan over, allows the assessment 
of the evolutionary and individual benefits of planning as well as 
predictions of specific behavior and neural mechanisms linked 
to overall planning and memory retrieval, consolidation and 
decision-making specifically.
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