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Decisions made by mammals and birds are often temporally extended. They require planning and sampling of decision-relevant
information. Our understanding of such decision-making remains in its infancy compared with simpler, forced-choice para-
digms. However, recent advances in algorithms supporting planning and information search provide a lens through which we
can explain neural and behavioral data in these tasks. We review these advances to obtain a clearer understanding for why
planning and curiosity originated in certain species but not others; how activity in the medial temporal lobe, prefrontal and cin-
gulate cortices may support these behaviors; and how planning and information search may complement each other as means

to improve future action selection.

and sequential. In many species, they involve planning,

information search and choice between many alternatives.
They may require action selection to unfold over long timescales.
They can be characterized by periods of deliberation and informa-
tion sampling, whereby the agent simulates the future consequences
of its actions before committing to a final choice.

This contrasts with much decision-making research in neurosci-
ence to date. Many decision-making paradigms focus on repeated
choices between a limited number of options that are simultane-
ously presented to the agent. Adopting this reductive viewpoint has
been highly fruitful, as it has meant that formal algorithms bor-
rowed from other fields can be applied when interpreting behav-
ioral and neural data. For example, algorithms borrowed from
signal-detection theory are applied to interpret sensory-detection
tasks, such as two-alternative forced-choice paradigms'. Algorithms
from model-free reinforcement learning (RL)* or economics’ are
applied to interpret reward-guided decision tasks. Algorithms from
foraging theory’ are used to interpret decisions about whether to
stay or depart from a currently favored patch location.

In this Review, we argue that the recent development of novel
algorithms and frameworks for planning allows us to move beyond
reductive paradigms and progress toward studying decision-making
in naturalistic, temporally extended environments. This progress
creates challenges for the field. Which model organisms can be used
to study naturalistic choices and how might their cognitive abili-
ties be compared to humans? How do we design paradigms that are
more naturalistic but remain experimentally tractable? What is the
behavioral and neurophysiological evidence that animals are plan-
ning or making use of sampled information?

We seek to emphasize an important relationship between plan-
ning and information search during naturalistic decision-making.
Both are about not pursuing immediate reward but instead

D ecisions in natural environments are temporally extended

improving the selection of future actions. While physically searching
or sampling information is an overt action, planning relies on men-
tal simulation and is typically covert. Planning is therefore a form of
internal information search over past experiences. Cognitive pro-
cesses leading to overt actions are easier to experimentally measure.
We argue that by understanding the neural basis of tasks requiring
overt information search, we may gain insight into neural mecha-
nisms supporting covert planning.

Why do (certain) animals plan?

We first need to ask: why plan at all? Current understanding of
plan-based control regards such action choices as depending on
the explicit consideration of possible prospective future courses of
actions and consequent outcomes. Conversely, there is no explicit
consideration of action outcome under habit-based control*~.
Planning, therefore, can create new information because it is com-
positional. It concatenates bits of knowledge about the short-term
consequences of actions to work out their long-term values. By con-
trast, habit-based action choices are sculpted by prior experience
alone without such inference. Whereas habit-based action selection
is automatic, fast and inflexible, plan-based action selection requires
deliberation, which allows actions to adapt to changing environ-
mental contingencies.

Evolutionary conditions selecting for planning. Habit-based
action selection appears to be universal among vertebrates, both
terrestrial and aquatic. In contrast, behavioral and neural evidence
for plan-based action selection seems to only exist for mammals
and birds*"’, and although they have cognitive maps, planning in
amphibians and nonavian sauropsids'"'? and fish'* appears less elab-
orated if present at all.

Recent computational work suggests that the increase in visual
range' and environmental complexity’® that accompanied the shift
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Fig. 1| Aquatic versus aerial visual scenes and how the corresponding habitats affect the utility of habit- and plan-based action selection during
dynamic visually guided behavior. a, Example of an aquatic visual scene™'. In such situations, typical of aquatic environments, visual range is limited

and so predator-prey interactions occur at close quarters, thereby requiring rapid and simple responses facilitated by a habit-based system, as shown in
cartoon form below the image. b, Example of a terrestrial visual scene. Shown below in cartoon form. Computational work™ suggests that these scenarios
confer a selective benefit (not present in aquatic habitats) to planning long action sequences by imagining multiple possible futures (solid and dashed
black arrows) and selecting the option with higher expected return (solid black arrow). ¢, The computational work idealized predator-prey interactions
as occurring within a ‘grid world’ environment (column on right; prey, blue; predator, yellow) where the density of occlusions was varied. Prey had to use
either habit- or plan-based action selection to get to the safety (red square) while being pursued by the predator. The plot shows survival rate versus
clutter density across random predator locations, under plan-based (blue solid line) and habit-based action selection (red dashed line). Line indicates
the mean +s.e.m. across randomly generated environments. NS, not significant; P> 0.05, ***P < 0.001. d, To relate clutter densities in the artificial worlds
to those found in the real world, Mugan and Maclver'® used lacunarity, a measure commonly used by ecologists to quantify spatial heterogeneity of

gaps that arise from (for example) spatially discontinuous biogenic structure. The line plot shows the mean natural log of average lacunarity and the
interquartile range of environments with a predetermined clutter level. Coastal, terrestrial and structured aquatic environments can be partitioned based
on previously published lacunarity values (for a full range of lacunarities across different environments, see ref. °). The green circle highlights a zone of
lacunarity where planning outstrips habit (based on ¢). The inset shows an example image from the Okavango Delta in Botswana (~800 mx 800 m, from
Google Earth), considered a modern analog of the habitats that early hominins lived within after branching from chimpanzees?. Its average lacunarity
(In(A,,)) is 0.72. Photograph in a reproduced with permission from ref. ™|, Elsevier; photograph in b from Cathy T (https://www.flickr.com/photos/
misschatter/14615739848/) under CC BY 2 license; cartoons in a and b, and plots in ¢ and d, adapted from ref. '® under CC BY 4.0 license.

from life in water to life on land may have been a critical step in
the evolution of planning'® (Fig. 1). In particular, plan-based action
selection may be advantaged in complex dynamic tasks when the
animal has enough time and sufficiently precise updates—such
as through long-range vision—to forward simulate. Therefore,
long-range imaging systems (that is, terrestrial vision, but also mam-
malian echolocation) may be crucial in advantaging plan-based
control in complex environments due to their ability to detect the
structure of a complex, cluttered environment with high temporal

and spatial resolution. In such cases, the simultaneous apprehen-
sion of distal landmark information and other dynamic agents, be
they prey or predator, allows planning to take place over the chang-
ing sensorium. When visual range is reduced, such as in nocturnal
vision, plan-based control may only exist for stable environments
over a previously established cognitive map. Thus, near-field detec-
tion of landmarks may be used to calibrate an allocentric map and
planning is used only initially to devise new paths through this sta-
ble environment.
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The scenarios of short- and long-range dynamic environments
shown in Fig. 1a,b drive the following hypothesis: plan-based action
selection is evolutionarily selected for when the number of action
selection possibilities with differing outcome values is so large,
dynamic and uncertain that habit-based action selection fails to
be adaptive (Fig. 1c). Evolutionarily, this scenario greeted the first
vertebrates to live on land over 300 million years ago. The increase
in both visual range'* and environmental complexity’® due to the
change in viewing medium and habitat facilitated the observance
of the large variety of uncertain action-outcome values over an
extended period of time in predator-prey encounters, thus advan-
taging planning.

Variation in planning across terrestrial species. Within terrestrial
species, there is also marked variation in planning complexity. Many
mammalian species learn the latent structure of their environment
and deploy this flexibly to select new behaviors. Original support
for the idea that rodents learn a cognitive map of their environment
came from studies by Tolman'’, in which rats immediately deployed
the previously learnt structure of the environment to travel to
reward-baited locations. Modern-day tests of similar behaviors
show that such cognitive maps underlie hippocampal-dependent
single-trial learning of new associations'®. There is also evidence for
planning in certain birds, exemplified by food caching behaviors in
scrub-jays'’ and tool use in New Caledonian crows®.

However, these tests of planning remain simplified compared
to the flexible higher-order sequential planned behaviors observ-
able in humans and other primates’'. Between-species variation
in primate brain size may partly be explained by the complexity
of foraging environments over which different behaviors must be
planned’®*. It remains unclear whether there are good analogs even
in nonhuman primates of the hierarchically organized plan-based
action selection® that underlies much of human behavior. Work on
the type of habitats that maximize the advantage of planning shows
that a patchy mix of open grassland and closed forested zones con-
fers the greatest advantage'® (Fig. 1d). This appears to be the type of
habitat that hominins invaded after splitting from forest-dwelling
chimpanzees™ and could, in combination with long-range vision,
be a contributing factor to hominid exceptionalism in planning'®.
In addition, the development of large social groups in primates
(particularly hominins) demand sophisticated planning of mul-
tiagent interactions™; that is, social interactions not only require
updating the likely behavior of other agents but also demand
iterative inferences®. The near quadrupling in brain volume of
early hominins compared to chimpanzees may relate to the high
computational burden of planning due to both their foraging and
social environment.

Parallels between planning and information search. Intriguingly,
between-species variation in planning sophistication can be
related to between-species variation in curiosity. Curiosity can be
defined as the natural intrinsic motivation and tendency to pro-
actively explore the environment and gather information about
its structure”. Primates in particular, and carnivores in general,
have a biased tendency toward curiosity and exploration com-
pared to other species like reptiles, which might be unmoved by
new objects or neophobic*. Humans and nonhuman primates
have an extended juvenile period, and playful curiosity dur-
ing this period gives rise to increased brain growth and behav-
ioral flexibility”. Curiosity-driven information search can also
take advantage of existing cognitive capabilities. New Caledonian
crows, for example, use tools when exploring novel objects, which
suggests that they can generalize tool use from food retrieval to
non-foraging activities™.

This parallel between planning and curiosity reinforces the view-
point that the primary goal of information sampling is to build up
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knowledge of the structure of the environment. Structural knowl-
edge acquired during information sampling can then be flexibly
deployed when planning actions online in new environments or
when reward locations or motivations change. Recent studies in
humans have made this link explicit, using information sampling
behavior to arbitrate between which planning strategies participants
are using in a multistep decision task’.

Plan-based action selection and curiosity may have given rise
to evolutionary advantages. To study the algorithmic implementa-
tion of these behaviors, however, it becomes necessary to develop a
formal framework against which they can be quantified and their
neural representations measured.

Formalizing planning

Formally, value-based planning (for example, a tree search by a
chess computer to find the best move) corresponds to comput-
ing the long-run utility of different candidate courses of action in
expectation over the possible resulting series of future situations
and moves. In RL algorithms, this type of evaluation is known as
model-based planning.

Model-based planning relies on an ‘internal model’ or repre-
sentation of the task contingencies to forecast utility. Such a model
can be used, in effect, to perform mental simulation to forecast
the states and values likely to follow candidate action trajecto-
ries. This is contrasted with ‘model-free’ trial and error, which is
used to describe habit-based action selection®. This formalism has
provided a foundation for reasoning about planning in psychol-
ogy and neuroscience’; that is, inspiring new tasks and predicting
whether and when organisms are planning in classical tasks'’*?,
and grounding the search for neural mechanisms that implement
specific forms of planning®. It has also offered a formal perspec-
tive on how the brain decides when to plan, versus acting without
further deliberation, by defining under what circumstances addi-
tional planning is likely to be particularly effective in improving
one’s choices™.

Mental simulation in the hippocampal formation. There are
many different variants of model-based planning, which share the
central feature of using a cognitive map of the environment to simu-
late future trajectories but differ in the pattern by which this occurs.
Perhaps the most straightforward case searches through possible
future paths from the current situation, using these sweeps to evalu-
ate different courses of action. Neurophysiologically, the hippo-
campal formation is a likely candidate for the encoding of such a
cognitive map™, and this has guided the search for neural correlates
of ‘trajectory sweeping’ during planning.

In spatial navigation in rodents, for example, place-cell activity
recorded during active exploration of the environment reflects the
current location of the animal. However, it also transiently repre-
sents other locations distal from the animal, including—sugges-
tively—sequentially traversing paths in front of the animal. These
nonlocal ‘sweeps’ have been hypothesized to reflect episodes of
explicit mental simulation through potential trajectories™***".
Notably, these events represent individual paths rather than a wave-
front of future locations in parallel. Furthermore, consideration of
each path takes time and often occurs when the locomotion of the
animal is stopped. Thus, deliberation, much like information search
in the physical world, has an opportunity cost.

Two distinct types of nonlocal sweeps have captured attention:
one involving isolated trajectories linked to a high-frequency event
in the local field potential known as a sharp-wave ripple’*, and the
other linked to theta oscillations involving repeated cycles of for-
ward excursions that sometimes alternate between multiple poten-
tial paths* (Figs. 2 and 3). Both types of event have been argued
to be candidates for model-based evaluation by mental simulation,
although these hypotheses are not mutually exclusive.
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Fig. 2 | As rats approach a choice point, a theta-locked hippocampal representation sweeps ahead of the rat toward potential goals. a, A rat approaches
a T-choice point. Each oval indicates the place field of a place cell in the CAT of the hippocampus. b, Place cells fire at specific phases of the hippocampal
theta rhythm, which allows different spatial locations to be decoded from neural activity (colored circles) leading to a sweep forward ahead of the rat.

The descending phase of the oscillation is dominated by cells with place fields centered at the current location of the rat, whereas the ascending phase is
dominated by cells with place fields ahead of the rat, sweeping toward different potential goals on individual theta cycles***’. ¢, Bayesian decoding applied
separately to the descending and ascending phases of the theta cycle finds more decoding of the current location during the descending phase, but more
decoding of locations ahead of the rat during the ascending phase. d, For a task in which the goal is delayed in time, the duration of the descending phase
of the theta cycle is unchanged by the distance to the goal, but the ascending phase increases proportionally. Data for € and d are from ref. °.

Theta cycling and mental simulation. Beyond the fact that nonlo-
cal sweeps traverse relevant candidate paths, a number of additional
observations surrounding theta cycling suggest their involvement
in planning. First, these sequences serially sweep to the goals ahead
of the animal during the ascending phase of the theta cycle'**’ and
coincide with prefrontal representations of goals*' (Fig. 2). Second,
journeys on which these nonlocal representations sweep forward
to goals often include an overt external behavior, known as vicari-
ous trial and error (VTE), which is also suggestive of deliberation’.
During VTE, rats and mice pause at a choice point and orient back
and forth along potential paths”"’. Advances in experimental task
design have helped isolate these behaviors linked to planning and
capture the degree to which subjects use plan-based versus habitual
controllers when selecting between courses of action.

Taking VTE to indicate planning processes, VIE occurs when
animals know the structure of the world (have a cognitive map), but
do not know what to do on that map. VTE disappears as animals
automate behaviors within a stable world*>* and reappears when
reward contingencies change"*. For tasks in which animals show
phases of decision strategies, VTE occurs when agents need to use
flexible decision strategies and disappears as behavior automates
(see ref.” for a review). This indicates that the presence or absence of
VTE matches the conditions that normatively favor model-based or
model-free RL, respectively®. During VTE, neural signals consistent
with evaluation are found in the nucleus accumbens core*.

Interestingly, disruption of the hippocampus or the medial
temporal lobe can (in certain circumstances) increase rather than
decrease VTE behavior”~*’, which suggests that VTE may be ini-
tiated elsewhere. One candidate is the prelimbic cortex, where
temporary inactivation diminishes VTE in rats and impairs

hippocampal theta sequences'. This finding provides an intrigu-
ing link to studies of the role of the dorsal anterior cingulate cortex
(dACC) in information sampling in monkeys. Neural activity in the
dACC shifts between exploration and choice repetition occurring
ahead of reward delivery, which is triggered after the accumulation
of sufficient information to predict and plan the correct future solu-
tion to a problem™. This region also contains neural ensembles that
are engaged whenever the animal explicitly decides to check on the
current likelihood of receiving a large bonus reward™ (see below).

Sharp-wave ripples and mental simulation. Nonlocal trajectory
events during high frequency sharp-wave ripples (Fig. 3a) also have
a number of characteristics consistent with planning. These events
also occur when animals pause during ongoing task behavior (par-
ticularly at reward sites’>’) and they can produce novel paths™.
Moreover, they tend to originate at the current location of the ani-
mal and predict its future path®, their characteristics change with
time in a fashion consistent with changing need for model-based
evaluation, and disrupting them causally affects trial-and-error task
acquisition™. Interestingly, disrupting sharp waves increases VTE,
which suggests that sharp-wave-based and theta-based planning
processes may be counterbalanced.

A key additional feature of these events is that the most obvi-
ously planning-relevant events—paths in front of the animal during
task behavior—are only one special case of a broader set of nonlo-
cal trajectories. These occur in different circumstances and include
paths that rewind behind the animal often following reward*”** and
wholly nonlocal events during quiet rest or sleep>>**.

Recent computational modeling work™ (Fig. 3) has aimed to
explain these observations in terms of a normative analysis of
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model-based planning that considers not just when it is advanta-
geous to plan but also which trajectory is most useful to consider
next. Formally, this means prioritizing locations that will cause a
substantial change in the future behavior of the agent (how much the
agent stands to gain from performing the simulation). One should
also prioritize locations that the animal is particularly likely to visit
in the future (how much need there is to perform such a simulation).
The expected value of a particular trajectory is then calculated as the
product of these two terms (for example, Fig. 3b-d,f,h). Importantly,
while this analysis captures the characteristics of forward sweeps
during task behavior (Fig. 3f-i), it also explains backward replay
behind the animal when a reward is received (Fig. 3b—e), and trajec-
tories that tend to occur during sleep (Fig. 3k), as a form of offline
‘pre-planning’ for when these situations are next encountered®’.
Human neuroimaging experiments also suggest that puta-
tive behavioral signatures of model-based planning are associated
with forward or backward neural reinstatement at various time
points”**-**. Human replay appears to occur in the sequence to be
used in future behavior rather than the experienced sequence®, and
is particularly pronounced for experiences that will be of greater
future benefit® as predicted by the prioritization framework™.

Efficiently representing large state spaces. No matter how sim-
ulation is implemented, model-based planning suffers from a
potentially exponential growth in computational time as planning
becomes deeper, except in small-scale toy problems with a limited
range of possible future outcomes or state space®. This is because of
how the decision tree branches. If, for example, at every planning
step there are two new possibilities, the total number of possible
paths to consider grows at 2". We therefore need formalisms that
account for tractable planning at scale.

Representation learning is a framework for improving the scal-
ability of RL. Essentially, representation learning involves learn-
ing to represent your current state so as to reduce the burden on
the downstream RL algorithm, usually by representing its position
relative to the task structure®’". By making state representations
more efficient, model-free agents become more sensitive to task
structure and therefore more flexible to changes in reward contin-
gencies. Alternatively, the learned representation may feed into a
model-based planner, in which case the representation implicitly
organizes the search or planning occurring over it

Recent human cognitive science studies have shown that humans
can exploit environmental structure to learn efficient representa-
tions in multi-armed bandit tasks’>”* and guide exploration in large
decision spaces™. This structure typically depends on learning
that certain options are correlated with one another. For example,
if many options are presented, but options that are close in space
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tend to be similar to one another, then humans exploit this spatial
relationship in their choices and searches™. More broadly, structure
learning links to the older idea of a ‘learning set, in which experi-
ence on a task allows faster learning of new problems on the same
task®”®. In machine learning, a similar phenomenon has been
termed meta-learning’.

The neural basis of structure learning remains relatively under-
explored. Disconnection lesions between the frontal and temporal
cortex impair the use of a learning set, which demonstrates the
importance of interactions between these brain regions”, as also
shown by transection of the fornix (a white matter structure linking
the hippocampus and the frontal cortex)’. More recently, human
imaging studies have used representational similarity analysis
between different RL states to identify the entorhinal cortex’ and
the orbitofrontal cortex’”* as key nodes for learning task structures.

Compressing information about future state occupancy. Neural
representations of the current state of the animal must not only be
rich enough to support sophisticated planning behaviors but also
to render planning computationally tractable. One solution is to
learn a ‘predictive representation” of states expected to occur over
multiple steps into the future, which means that states that predict
similar futures are constrained to have similar representations®*'.
If two states lead to similar outcomes, it is safe to assume that any-
thing learnt about one state (such as its value) should also apply
to the other. This can simplify planning since predictive represen-
tations incorporate statistics about multiple steps of future events
directly into the current representation. This allows anticipation
of future states without the need to iteratively construct them via
mental simulation.

One example is the successor representation®>*’. The successor
representation of one’s current state is a vector encoding the expected
number of visits to each possible future (or successor) state (Fig. 4a).
In addition to simplifying planning, this accelerates value learning
following changes (Fig. 4b). In neuroscience, the idea of predictive
representation has been applied to explain some features of hip-
pocampal place fields®, such as asymmetric growth in fields with
traversals®, although it does not explain the sweeps and sequences
discussed earlier. It can also account for human and animal revalua-
tion behavior®* and properties of dopaminergic learning signals®.
We also suggest that it might be worth asking whether other neural
systems, such as the striatum (which develops representations with
experience®®) or the prefrontal cortex (which shows hierarchical
abstraction’®”") show these successor representation properties.

A related idea is that the state-transition map of a task can be rep-
resented in a compressed form by summing periodic components
of different frequencies, in particular low-spatial and low-temporal

80,82

>
>

Fig. 3 | A normative model-based planning account of replay events observed in hippocampal place cells and in simulations of spatial navigation
tasks. a, Spike trains of rat hippocampal place cells before, during and after running down a linear track to obtain a reward. Forward and reverse replay
are observed before and after the lap, respectively, during sharp-wave ripple (SWR) events®®. b-k, Simulations of spatial navigation tasks, in which the

agent evaluates memories of locations, called ‘backups’, preferentially by considering ‘'need’ (how soon the location is likely to be encountered again) and
‘gain’ (how much behavior can be improved from propagating new information to preceding locations). Simulated replay produces extended trajectories

in forward and reverse directions®. b-d, Gain term (b), need term (c) and resulting trajectory (d) for reverse replay on a linear track. There is a separate
gain term (b) for each action in a state (small triangles). If a state-action pair leads to an unexpectedly valuable next state, performing a backup of this
state-action pair has high gain as it will change the behavior of the animal in that state. Once this backup is performed, the preceding action (highlighted
triangle) will now have high gain and is likely to be backed up next. Multiple iterations of this process can lead to reverse replay. e, Reverse replay can also
be simulated in more naturalistic two-dimensional (2D) open fields, tracking all the way from the goal to the starting location. f-h, Gain term (f), need
term (g) and resulting trajectory (h) for forward replay on a linear track. The need term (g), derived from the successor representation of the agent (Fig. 4),
reflects locations likely to be visited in the future. If need term differences are larger than gain term differences, this term dominates in driving the replayed
trajectory. Here, this tends to lead to forward replay. i, Simulated forward replay events also arise in 2D open fields, sometimes exploring novel paths
toward a goal. j, The model predicts the balance between forward/reverse replay events observed before/after running down a linear track®*>. k, When

an agent is simulated in an offline setting after exploring a T-maze and observing that rewards have been placed in the right arm, more backups of actions
leading to the right arm are performed™. The same has been observed in rodent recordings during sleep®. Data for a and j are from ref. *® and data for k
are from ref. °°; data for all other panels are from ref. .
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frequency ones that coarsely predict state occupancy far into the
future. These components can be constructed by taking principal
components of the transition matrix* or, equivalently, the successor
representation matrix*. The lower frequency components produce
compressed representations that can support faster learning®* and
improved exploration”. By capturing smoothed, coarse-grained
trends of how states predict each other, they pull out key struc-
tural elements such as clusters, bottlenecks and decision points
(Fig. 4d-g). These periodic functions share some features of grid
cells* (Fig. 4c), thereby falling into a family of models that suggest

that the entorhinal cortex provides a mechanism for incorporat-
ing the spatiotemporal statistics of task structure into hippocampal
learning and planning®-*>. Recent work has explored the use of this
type of representation to permit efficient linear approximations to
full model-based planning™.

Taken together, prediction and compression constitute two key
learning principles. Prediction motivates encoding relevant infor-
mation about the structure of the environment and compression
causes this information to be compactly represented to make learn-
ing about reward more efficient.
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Fig. 4 | The successor representation allows for rapid revaluation and
extraction of components that identify key features of state space
structure. a, Successor representation (SR) at state s for a policy that
moves an agent toward the reward box (from ref. ). The SR encodes
the (discounted) expected future visits to all states. b, Comparison of
model-free (MF) learning and Rescorla Wagner (RW) SR-based learning
of a value function under changing reward locations (given a random

walk policy). Following a change in the reward location, SR learning is

only temporarily set back while the agent learns the new reward location,
whereas MF learning must resume from scratch. The error is reported as
the summed absolute difference between estimated and ground truth value
at each state divided by the maximum ground truth value to normalize®.

¢, The first 16 eigenvectors for a rectangular graph consisting of 1,600
nodes randomly placed in a rectangle, with edges weighted according

to the diffusion distance between states®, are reminiscent of grid fields
recorded in the entorhinal cortex. d-g, Examples of how topological
features of an environment are exposed by SR eigenvectors. In d-f, each
state is colored such that the first three eigenvectors set the RGB (see
color cube). This shows how states are differentiated by the first few
eigenvectors and how they expose bottlenecks and decision points.

In g, the first eigenvector is shown, revealing clusters in the graph structure.
Images in a-c adapted with permission from ref. &, Springer Nature.
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Obstacles and potential solutions for measuring neural sub-
strates of planning. The same reasons that make understanding
planning so interesting also make it difficult to study. By definition,
planning is internally generated and often covert. Place-cell activ-
ity recorded during navigation allows decoding of planning events
in spatial tasks (for example, Figs. 2 and 3), but it is less clear how
to generalize this approach to nonspatial tasks or to processes that
occur over longer temporal scales.

Instead of anchoring the investigation to overt behavioral mark-
ers, a possible solution is to use unsupervised data mining to identify
neural events of interest directly from spike train data. Techniques
like cell assembly detection’” and state space model estimation™
uncover structures directly from spike train statistics without the
need for any behavioral parametrization. Cell assembly detection
is based on the assumption that assemblies relevant for a cognitive
function generate recurring, albeit potentially noisy, stereotypical
activity patterns. State space model estimation instead aims to cap-
ture the dynamics governing neural processes by fitting a set of dif-
ferential equations on the experimental data.

Owing to the combinatorial explosion of potential patterns
to test, many existing cell assembly detection methods restrict
their search to stereotypical activity profiles characterized by a
specific lag configuration (synchronous™'® or sequential®’ unit
activations) or temporal scale (single spike®'** or firing rate'*>'*
coordination; see Fig. 5a for an example). Such approaches have

NATURE NEUROSCIENCE | www.nature.com/natureneuroscience

REVIEW ARTICLE

identified reactivation of cell assemblies during sleep, thereby
supporting the consolidation of learning novel spatial arenas'**'*®
(Fig. 5b). Assembly-specific optogenetic silencing of these reactiva-
tion events impairs performance in approaching goal locations in a
spatial navigation task'®, which is consistent with the role outlined
above for replay during sleep as a substrate for planning future
actions (Fig. 3k).

More recent techniques are now expanding the search to a wider
set of testable pattern configurations’'°"'** and timescales”, treated
as parameters to be inferred from the data (Fig. 5¢). This approach
has, for example, recently isolated the formation of inter-regional
cell assemblies between the dopaminergic midbrain and the ven-
tral striatum during value-based associative learning'® (Fig. 5d). In
naturalistic planning tasks, a similar approach might identify events
linking dopaminergic activity to hippocampal cell assembly activ-
ity subserving planning'®, although this remains to be tested. It is
also possible to identify how the timescale of cell assemblies changes
during goal-directed behavior. For example, hippocampus and
anterior cingulate cortex assembly temporal properties differ dur-
ing passive exploration versus a delayed alternation task’ (Fig. 5e).

Cognitive models of planning. So far, we have focused on differ-
ent formal models of planning through well-defined state spaces
or navigation through known structures such as physical mazes.
However, human participants can also incorporate knowledge
about their own future behavioral tendencies into their planning.
There is evidence to indicate that humans might approximate the
effects of increasing horizons'”” and use pre-emptive strategies to
take into account their own future behavioral tendencies'”.

Neurally, such considerations appear to involve an inter-
play between different dorsomedial and lateral prefrontal brain
regions'”, which are regions uniquely specialized in primates.
Human neuropsychology has established a fundamental role for the
dorsolateral prefrontal cortex (DLPFC) in laboratory-based plan-
ning tests'” and in real-life strategic planning''’. A neural basis for
these functions is well established in monkey neurophysiological
responses in the DLPFC*, whereas monitoring of constituent ele-
ments within extended sequential behaviors appears to depend on
the dACC and pre-supplementary motor area regions''.

Such responses contribute to a view of the frontal lobes as a
rostro-caudal hierarchy, with more abstracted planning and con-
trol functions found more rostrally within this hierarchy”. The
structures of representations that contribute to the elaboration of
complex sequential plans can be seen to evolve as the task or envi-
ronment is learnt''?. While the dACC and its interactions with the
DLPFC appear particularly relevant for initial plan formation and
prospective value generation, the nearby area 8m/9 considers how
the initial plan will be prospectively adjusted following changes
in the environment'®® (Fig. 6a,b). One approach to formalize this
process is to derive RL algorithms that learn mixtures of new plans
across time and appropriately decide whether a previously learnt
plan should be reused or a new one deployed'". Such models reveal
functional dissociations when applied to functional MRI (fMRI)
data during strategy learning** (Fig. 6c).

However, even in more sophisticated cognitive behaviors, much
of planning still boils down to sampling internal representations or
simulating specific sequences of actions, outcomes and environ-
mental dynamics. A major challenge, as in studies of navigation,
remains knowing what the underlying representations or states
are—over which actions are selected, outcomes are associated and
environmental dynamics are predicted.

In behavioral tasks that involve mental simulation over mul-
tiple steps, several possible heuristics have been proposed for how
humans might efficiently search through the large resulting state
space. Each has had some supporting evidence. One option would
be to only plan to a certain depth of a decision tree. In humans


http://www.nature.com/natureneuroscience

REVIEW ARTICLE NATURE NEUROSCIENCE

a Unsupervised cell assembly detection via b ICA-derived assemblies reveal consolidation
ICA of novel environments during sleep
Weight Reinstatement (re-exposure minus exposure)
0 04

Reactivation (after minus before)

14
g Sleep box Sleep box
£ 201 [ | [
5 Novel
Q
£ I b 1 | )
.S— Rest before  Exposure Rest after ~ Re-exposure
S 401 25 min 25 min 1 hour 25 min
o
Assembly o 04 T
60- activation 2z -|-
rate (in Hz) &5
,5.0 -t i4.o —_T 6 0 1.0 ‘3 0 Peak 5% o2 1
[oR=]
8 —_
L) ' t U ; l L io £¢
o 0 L 1
Familiar Novel
c Unsupervised cell assembly detection with d Time lags reveal direction of information flow e Temporal scale of CA1/ACC

arbitrary time lags and temporal scales

0.01 0.1 1 10
Temporal scale — bin width (s)

Time (s)

in newly formed assemblies during value learning

Relative time (s)

assemblies depends
on current goals

| 20 . X .
— 15 2 VS before VTA-VS assemblies Open field Delayed alternation
| 5 |8 VTA . Nose ge ||
20 - £ /™ poke
- 210 - I Lever 1
2 s Wz N Lever 2
. . B < L evel
2 | 10 3 s =7
=1 — ; S T
5 = g
0
2 1 05 0 05 1 O e
10 L 5 E Assembly lag (s) =
- F % 0.02
5 | Early learning—> Late learning  Early learning—> Late learning °
| cs. K
| = £ 0
R g °°[ cat
" g
- =)
| 1} m v v @ 041
Assembly no.
0 0.01 0.1 1

Relative time (s)

Temporal scale — bin width (s)

Fig. 5 | Unsupervised cell assembly detection to identify neural substrates of cognitive tasks. a, One approach to cell assembly detection identifies

coincidently active populations of cells via independent component analysis (ICA) of firing rates in 25-ms bins'®. Here, 7 cell assemblies are derived from
60 hippocampal CAT1 principal neurons during the exploration of an arena. The derived cell assemblies show spatial tuning (bottom row). b, After exposure
to a novel environment, greater ‘reactivation’ of the cell assemblies derived in a during sleep is correlated with greater ‘reinstatement’ of the same cell
assembly pattern during subsequent re-exposure to the environment. ¢, Another approach to cell assembly detection allows for the detection of assemblies
at arbitrary temporal scales (bin width of spike count used) and arbitrary time lag in activation between different neurons®. Here, five cell assemblies
embedded in a single dataset (left) are detected together with their specific temporal precision (gray scale) and activity pattern (color scale) (right). d, Top:
distribution of time lags of detected cell assemblies between simultaneously recorded spiny projection neurons in the ventral striatum (VS) and dopamine
neurons in ventral tegmental area (VTA) during associative learning of value with a conditioned stimulus (CS+). VS neurons lead VTA neurons in recovered
cell assemblies. Bottom: assemblies emerge with learning for the rewarded (CS+) but not unrewarded (CS-) stimulus. e, Cell assemblies in rat CA1 and
anterior cingulate cortex (ACC) during open-field exploration versus delayed alternation. In the ACC, significantly more assembly unit-pairs were found in
the delayed alternation task across all temporal scales. In the CA1, significantly more long-timescale cell assemblies were found during delayed alternation
than during open-field exploration (note that the task differed slightly for the CA1, requiring navigation through a figure-eight maze). Data for a and b are

from ref. 1. Images in ¢ and e were adapted from ref. ° and the image in d was adapted from ref. '®, both under CC-BY 4.0 license.

there is evidence for this'": people do not plan maximally deep,

even when doing so would lead to greater reward. A related strategy
is to stop sampling a specific branch if it appears to not be valu-
able (Fig. 6d). People indeed stop planning along branches that go
through large losses, even when they are overall the best''*. When
this ‘pruning’ behavior occurs, then subgenual cingulate activity
no longer reflects the difficulty of the decision, which is defined
in terms of the number of steps planned'” (Fig. 6e). An alterna-
tive strategy is to use ‘hierarchical fragmentation™'*: first plan a few
steps and from the best possible state there, plan further. Finally,
mixtures of explicit tree search and model-free systems are also
possible'””. While the exact strategy used may be task-dependent,

it is possible that newly developed methods for decoding sequences
of representations in human magnetoencephalography and fMRI
data®® could arbitrate between these heuristic planning strategies
in multistep cognitive tasks.

Information sampling as planning via exploration

Parallels between planning and information sampling. There are
deep and as yet still relatively unexamined parallels between infor-
mation creation, as in planning, and gathering new information,
as in exploration. More particularly, they are parallel at the level
of control with respect to the decision about what (or whether) to
explore and what (or whether) to plan.
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In the RL framework, formal theories of optimal directed explo-
ration'?”'*! and deliberation®>** share essentially the same math-
ematical core. Whether accomplished ‘externally’ through seeking
new information in the world or ‘internally’ through model-based
simulation, exploration is valuable to the extent that it changes
your future behavior. Indeed, the expected value of exploration
can in principle be quantified as the increase in earnings expected
to result from making better choices. This means, for instance,
that both planning and exploration eventually have diminishing
returns, after which they are unlikely to produce new actionable
information (at which point one should act habitually or exploit,
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respectively). Also, even while they can both produce value, they
must both be weighed against their opportunity cost, since plan-
ning comes at the expense of acting and exploring comes at the
expense of both exploiting and energy'*>'*. This ties them to yet a
third closely related area of theory, optimal foraging’; that is, opti-
mizing search and foraging when the organism can only do one
thing at a time. In such decisions, a choice is rarely a single motor
impulse but instead a series of extended interactions with a particu-
lar goal in mind. Information sampling may not only benefit the
initial choice, but also the planning of the series of future actions
taken after a choice has been made.
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So far, we have presented planning as a process of sampling and
simulating the future. However, if knowledge about the world is
wrong or incomplete for an agent, sampling the actual world, rather
than a simulated one from memory, is essential. Importantly, an
agent can direct their exploration toward parts of the environment
that are known unknowns, either because they have an explicit
model of the uncertainty of their estimates'” or because they know
how the environment will change over time'*. This can be used
to quantify the value of reducing uncertainty for different states®
and to quantify the gain of information against the energetic cost of
gaining that information'**'*.

Value of information as narrowing planning and improving
predictions. While existing models do not predict information
sampling and planning in a unified manner, empirical observa-
tions suggest that information sampling can be highly strategic.

For example, humans explore more when the information is more
valuable because it can be used in the future. Such exploration is
not random but directed toward options with more uncertainty'*.
Early fMRI studies of exploratory behavior identified a network
of regions, including the dACC (Fig. 6¢), the frontopolar cortex
and the intraparietal sulcus, that governed switches away from
a currently favored option toward exploring an alternative'?*'¥".
Subsequent studies have to some extent dissociated these regions
into those that reflect a simple decision to sample information that
activates the dACC'** (Fig. 7a) versus the frontopolar cortex that
tracks estimates of option uncertainty across time'”. Disrupting
the frontopolar cortex using transcranial magnetic stimulation
selectively affects directed but not undirected exploration'. The
converse is true of pharmacological interventions targeting the
noradrenergic system'”', whose inputs to the dACC have been
shown to modulate switching into exploratory behavior'*.

NATURE NEUROSCIENCE | www.nature.com/natureneuroscience


http://www.nature.com/natureneuroscience

NATURE NEUROSCIENCE

Interestingly, animals also value information when it is of no
apparent reward value. Several species have been shown to gamble
energy of movement proportionate to the expected information
gain'”. Given the advancement of planning, sampling and simula-
tion models, it should be possible to predict what kind of informa-
tion an agent would be willing to pay for (‘simulation pruning’) even
if it does not directly link to reward, as it might nevertheless sub-
stantially benefit planning. For example, macaques will pay a cost
to resolve uncertainty about a future outcome earlier'*. This makes
sense if the brain continuously predicts potential future outcomes
through simulation and sampling but tries to avoid unnecessarily
anticipating potential outcomes that could be ruled out.

A recent study showed that neurons in several interconnected
subregions of the dACC and the basal ganglia in primates are
active around eye-gaze movements that resolve uncertainty, with
the dACC being first to predict saccades that resolve uncertainty'**
(Fig. 7b). In a task where multiple saccades must be made to sam-
ple information about two choice options, activity in the dACC
reports whether newly revealed evidence confirms or disconfirms
a prior belief about which option should be chosen'*. Activity in
this dACC ‘belief confirmation subspace’ ramps immediately before
commitment to a final decision (Fig. 7c), which suggests that there
is a role for the dACC in transforming newly sampled information
into future choice behavior.

While the exploration—exploitation dilemma is often considered
in terms of improving estimates of a static value function, another
strong motivation for exploration in real-world behavior is to sam-
ple when the world has changed. Indeed, macaques can adapt their
search behavior to specific features of environments'**. Importantly,
animals can even monitor internal representations of unobservable
dynamic changes in the environment to optimize their checking
behaviors and update those representations. Activity in the dACC
ramps across time before these checking behaviors, which means
that checks can be decoded on preceding trials® (Fig. 7d).

Linking successor representations to information sampling in
foraging problems. Ethological observations have shown that
the exploratory patterns in many species follow statistical rules
known as Lévy walks, with travel paths that follow scale-free power
laws**'*". In conditions where prey are sparse, such patterns are
more efficient than pure random movements to capture these prey.
It is argued that this advantage will have acted as a selection pressure
on adaptations that would give rise to Lévy flight foraging'*.
Above, we highlighted the eigendecomposition of the succes-
sor representation as a model for grid-cell activity in the entorhinal
cortex during navigation and planning®; intriguingly, this may also
provide a basis for generating Lévy walks. Different eigenvectors
of this representation will occur at different spatial scales, which
means that they may be suitable for planning over different hori-
zons. Indeed, recent evidence from a navigational-planning task
using human fMRI data revealed a posterior-to-anterior spatial gra-
dient in both the hippocampus and the prefrontal cortex reflecting
a pattern similarity to successor states of increasing spatial scales’'.
When generating future actions, upweighting eigenvectors
that represent low-frequency spatial information naturally leads
the agent to adopt Lévy-like exploration of the environment. This
exploration proves to be more efficient than random exploration
when searching over environments with hierarchical structure, such
as connected rooms'”. By contrast, the sequences of samples gener-
ated by random exploration will better capture the true structure
of the environment. This may explain why offline replay events in
the hippocampus appear to follow a random diffusive pattern, even
following behavioral exploration that has a Lévy-like superdiffusive
structure'®, at least in the absence of goals that shape replay events
toward locations useful for planning®. One potential issue here is
that Lévy-like exploration is only predictive in information-scarce
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and low-resource density contexts*!. In information-rich con-
texts in which search proceeds in range of sensory organs,
energy-constrained proportional betting on the expected infor-
mation distribution is showing promise for predicting trajectories

123

across multiple species'>.

Linking theta oscillations to external sampling. It is also clear
that some of the neural implementations of online planning dis-
cussed earlier are also relevant for information sampling behaviors.
Exploration signals have been shown to exist in conditions of high
uncertainty in the form of nonlocal representation of space along
each theta cycle at high-cost decision points (VTE)**'**. The very
same theta cycles are also seen during internally generated subsec-
ond patterns that govern sensory perception'* and sensorimotor
actions'*’. Thus, these patterns, currently thought to reflect adap-
tive mechanisms for sampling information from the external world,
may be coordinated with the subsecond patterns of generative activ-
ity described here, which can in turn can be likened to sampling
from internal representations.

In biological agents as in artificial ones, a major purpose of exter-
nal information sampling is to improve ones confidence in pursu-
ing the most valuable course of action. Converging evidence from
information-sampling studies in humans'*'" and nonhuman pri-
mates'” indicates a bias toward sampling evidence from a goal that
is currently most favored rather than the option that will maximally
reduce uncertainty. This fits well with foraging models of choice,
which argue that even simple binary decisions may be made as a
sequence of accept-reject decisions rather than as a direct compari-
son between two alternatives'**. Once animals commit to accepting an
option, they pursue this goal even when it becomes costly to do so'*;
that is, sampling information may benefit planning of future actions
needed to pursue their goal. Formalizing this account of choice may
require us to reformulate the RL problem as being one of minimizing
distance to goals rather than maximizing discounted future reward'*.

Summary

In this Review, we described some formal approaches, ideas and
theories that have begun to breach the territory of internal plan-
ning and information sampling in complex environments. Some
of these have previously often been thought of as being too dif-
ficult, idiosyncratic or unstructured to be directly investigated.
A couple of concepts have crystalized as being essential for this
advance. First, we conceive of planning as problem of internal
sampling of a simulated environment while trying to optimize
such sampling toward the most valuable and most likely aspects
of the future. Second, this progress is paired with a need to under-
stand how states and knowledge are efficiently and conceptually
organized to allow for planning in the first place. Knowing how
to plan by sampling, and what to plan over, allows the assessment
of the evolutionary and individual benefits of planning as well as
predictions of specific behavior and neural mechanisms linked
to overall planning and memory retrieval, consolidation and
decision-making specifically.
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