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The covariant parton model is generalized to describe quark correlators in a systematic way. Previous

results are reproduced for the T-even leading-twist transverse momentum dependent parton distribution

functions (TMDs), and for the first time all T-even twist-3 TMDs are evaluated in this model. We apply the

approach to evaluate the fully unintegrated quark correlator which allows us to understand the model-

specific relations between different TMDs. We verify the consistency of the approach, present numerical

results and compare to available TMD parametrizations.
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I. INTRODUCTION

Transverse momentum dependent parton distribution

functions (TMDs) allow one to explore the transverse

structure of the nucleon in deeply inelastic scattering

processes and are among the motivations for the planning

of the Electron-Ion Collider [1]. They enter the description

of processes like semi-inclusive deep-inelastic scattering

(SIDIS) [2–4] (in conjunction with fragmentation functions

[5]) or Drell-Yan [6,7] on the basis of TMD factorization

theorems [8–22]. There has been an impressive progress in

higher order QCD calculations [23–32] and phenomeno-

logical studies [33–46]. Aspects of TMD physics were

reviewed in Refs. [47–52]. An important complement of

the theoretical and phenomenological studies is provided

by studies in models.

Models seek to explain the physics underlying phenom-

enological observations in simple terms by focusing on

certain concepts. While often oversimplifying the complex-

ities of hadronic physics, models are nevertheless insight-

ful, guide our intuition, and deepen the understanding of

nucleon structure. One value of the models is that they

allow us to quantify how much of an observed phenomenon

can be attributed to a specific model concept. Another

important value is that models provide predictions for yet

unknown nucleon properties which we can test in

experiment.

This work deals with the study of TMDs in the covariant
parton model (CPM) [53–65] originally developed as a
model for the description of the hadronic tensor in DIS [53–
55]. It is a parton model in the sense that the partons are free
and noninteracting. In the Feynman parton model this is the

case in the infinite momentum frame [66]. In this sense the
CPM goes one step further, and assumes the partons to be
free in any frame. As free particles the partons are
consequently on shell. At the heart of the CPM are two
types of covariant functions, GqðPpÞ and HqðPpÞ, which
describe the distributions of the momenta of, respectively,

unpolarized and polarized partons inside the nucleon. The
covariant distributions are functions of the scalar Pp where
P is the nucleon and p parton momentum.

The original formulation [53–55] allows one to evaluate

the parton distribution functions (PDFs) fa1ðxÞ, ga1ðxÞ, gaTðxÞ
accessible through DIS structure functions (throughout this

work we do not indicate the scale dependence explicitly).

By an auxiliary polarized process due to the interference of

vector and scalar currents, the approach was extended to the

description of a hypothetical chiral-odd structure function

and the transversity PDF ha1ðxÞ [56]. The model was further

generalized by introducing the concept of “unintegrated

structure functions,” to describe twist-2 T-even TMDs

fa1ðx; pTÞ, ga1ðx; pTÞ, ha1ðx; pTÞ, g⊥a
1T ðx; pTÞ, h⊥a

1L ðx; pTÞ,
h⊥a
1T ðx; pTÞ in [58]. Despite these generalizations, the

limitation is that many TMDs especially at twist-3 level

cannot be studied in this way because no (real or auxiliary)

process is known how to compute them in a parton model

framework like the CMP.

The purpose of this work (after a brief review of quark

correlators and TMDs in Sec. II) is to generalize the

formulation of the CPM to the description of quark

correlators (in Sec. III), which will put us in the position
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to evaluate systematically all T-even TMDs. We will

reproduce earlier model results for twist-2 TMDs, and

derive new results for twist-3 TMDs (in Sec. IV). In order

to test the internal theoretical consistency of the model we

will investigate the various emerging relations among

TMDs, some of which can be traced back to QCD

equation-of-motion relations or the so-called Lorentz-

invariance relations which must be valid in all quark

models which respect Lorentz symmetry (in Sec. V).

The relations among TMDs constitute one of the most

interesting predictions of the CPM which can be tested

quantitatively. We will make predictions for all T-even

unpolarized and polarized twist-2 and twist-3 TMDs (in

Sec. VI) and draw conclusions (in Sec. VII). Technical

details are presented in the Appendix.

TMDs have been studied in bag [67–72], quark-diquark

[73–81], chiral quark soliton [82–94], light-front constitu-

ent quark [95–102], Nambu–Jona-Lasinio [103], Valon

[104], holographic [105,106], and quark-target [107–

111] models, and in some cases model independently in

lattice QCD computations [112–119]. A parton model for

PDFs that is similar to our study was discussed in

Ref. [120]. We will compare to the results from other

models.

In view of the variety of the approaches, it is interesting

that some nonperturbative properties of TMDs are sup-

ported across a broad class of different models [121,122].

The results presented in this work contribute to a picture of

TMDs emerging from models, and help to solidify the

understanding of TMDs.

II. QUARK CORRELATOR AND TMDS

The quark correlation function is defined as

Φ
q
ijðp;P; SÞ ¼

Z

d4z

ð2πÞ4 e
ipzhNðP; SÞjψ̄q

j ð0Þ

×Wð0; z; pathÞψq
i ðzÞjNðP; SÞi; ð1Þ

wherep is the quarkmomentum.P and S denote the nucleon

momentum and polarization with P2 ¼ M2, S2 ¼ −1,

P · S ¼ 0. The correlator depends furthermore on a lightlike

four vector often denoted by nμ, which describes the light

cone direction. The Wilson line Wð0; z; pathÞ, which is

symbolically indicated in (1), depends on nμ and the

considered process. Depending on the chosen path the

correlator may be relevant for DIS, Drell-Yan, or another

process [123–127]. Strictly speaking we should denote the

correlator as Φ
q
ijðp; P; S; nÞ, but for brevity we do not

indicate the nμ dependence (which is absent in the applica-

tions to quark models we have in mind).

Using light cone coordinates, p� ¼ 1
ffiffi

2
p ðp0 � p1Þ, one

introduces the integrated correlator

ϕ
q
ijðx;pT ;SÞ ¼

ZZ

dp−dpþ
Φ

q
ijðp;P;SÞδðpþ− xPþÞ: ð2Þ

If we define ϕq½Γ� ¼ 1
2
Tr½ϕqðx; pT ; SÞΓ� then the leading

twist quark TMDs are projected out from (2) as follows

ϕq½γþ� ¼ f
q
1 −

εjkp
j
TS

k
T

M
f
⊥q
1T ; ð3aÞ

ϕq½γþγ5� ¼ SLg
q
1 þ

p⃗T S⃗T

M
g
⊥q
1T ; ð3bÞ

ϕq½iσjþγ5� ¼ S
j
Th

q
1 þ SL

p
j
T

M
h
⊥q
1L þ κjkSkT

M2
h
⊥q
1T þ εjkpk

T

M
h
⊥q
1 ; ð3cÞ

and the twist-3 quark TMDs are given by

ϕq½1� ¼ M

Pþ

�

eq −
εjkp

j
TS

k
T

M
e
⊥q
T

�

; ð3dÞ

ϕq½iγ5� ¼ M

Pþ

�

SLe
q
L þ p⃗T · S⃗T

M
e
q
T

�

; ð3eÞ

ϕa½γj� ¼ M

Pþ

�

p
j
T

M
f⊥q þ εjkSkTf

q
T þ SL

εjkpk
T

M
f
⊥q
L −

κjkεklSlT
M2

f
⊥q
T

�

; ð3fÞ

ϕq½γjγ5� ¼ M

Pþ

�

S
j
Tg

q
T þ SL

p
j
T

M
g
⊥q
L þ κjkSkT

M2
g
⊥q
T þ εjkpk

T

M
g⊥q

�

; ð3gÞ
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ϕq½iσjkγ5� ¼ M

Pþ

�

S
j
Tp

k
T − SkTp

j
T

M
h
⊥q
T − εjkhq

�

; ð3hÞ

ϕq½iσþ−γ5� ¼ M

Pþ

�

SLh
q
L þ p⃗T · S⃗T

M
h
q
T

�

: ð3iÞ

The indices j, k denote spatial directions transverse to the light cone, κjk ¼ ðpj
Tp

k
T −

1
2
δjkp2

TÞ where p2
T ¼ jp⃗T j2, and

ε23 ¼ −ε32 ¼ 1 and zero else. In (3) it is understood that f
q
1 ¼ f

q
1ðx; pTÞ, etc. The T-even TMDs f

q
1 , g

q
1 , g

⊥q
1T , h

q
1 , h

⊥q
1L , h

⊥q
1T ,

eq, f⊥q, g
q
T , g

⊥q
L , g

⊥q
T , h

q
L, h

⊥q
T , h

q
T can be computed in models based on quark degrees of freedom only. The other TMDs are

T-odd, require explicit gauge field degrees of freedom, and cannot be modeled in the approach used in this work.

The fully unintegrated quark correlator (1) has the following expansion in terms of Lorentz-invariant amplitudes [128]

Φ
qðP; p; SÞ ¼ MA

q
1 þ =PA

q
2 þ =pA

q
3 þ

{

2M
½=P; =p�Aq

4 þ iðp · SÞγ5Aq
5
þM=Sγ5A

q
6

þ p · S

M
=Pγ5A

q
7 þ

p · S

M
=pγ5A

q
8 þ

½=P; =S�
2

γ5A
q
9 þ

½=p; =S�
2

γ5A
q
10

þ p · S

2M2
½=P; =p�γ5Aq

11 þ
1

M
εμνρσγμPνpρSσA

q
12 þOðBiÞ ð4Þ

where ε0123 ¼ 1. The amplitudes A
q
4 , A

q
5
, A

q
12 are T-odd.OðBiÞ indicates symbolically the B

q
1;…; B

q
20 amplitudes associated

with the lightlike vector nμ inherent in theWilson line. In models without gauge field degrees of freedom T-odd Ai and all Bi

amplitudes are absent, and T-even TMDs are expressed in terms of the T-even A
q
i as

f
q
1ðx; pTÞ ¼ 2Pþ

Z

dp−ðAq
2 þ xA

q
3Þ; ð5aÞ

g
q
1ðx; pTÞ ¼ 2Pþ

Z

dp−

�

−A
q
6 −

P · p −M2x

M2
ðAq

7 þ xA
q
8Þ
�

þOðBiÞ; ð5bÞ

g
⊥q
1T ðx; pTÞ ¼ 2Pþ

Z

dp−ðA7 þ xA8Þ; ð5cÞ

h
q
1ðx; pTÞ ¼ 2Pþ

Z

dp−

�

−A
q
9 − xA

q
10 þ

p⃗2
T

2M2
A
q
11

�

; ð5dÞ

h
⊥q
1L ðx; pTÞ ¼ 2Pþ

Z

dp−

�

A
q
10 −

P · p −M2x

M2
A
q
11

�

þOðBiÞ; ð5eÞ

h
⊥q
1T ðx; pTÞ ¼ 2Pþ

Z

dp−A
q
11; ð5fÞ

eqðx; pTÞ ¼ 2Pþ
Z

dp−A
q
1; ð5gÞ

f⊥qðx; pTÞ ¼ 2Pþ
Z

dp−A
q
3; ð5hÞ

g
q
Tðx; pTÞ ¼ 2Pþ

Z

dp−

�

−A
q
6 þ

p⃗2
T

2M2
A
q
8

�

; ð5iÞ

g
⊥q
L ðx; pTÞ ¼ 2Pþ

Z

dp−

�

−
P · p −M2x

M2
A
q
8

�

þOðBiÞ; ð5jÞ
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g
⊥q
T ðx; pTÞ ¼ 2Pþ

Z

dp−A
q
8; ð5kÞ

h
⊥q
T ðx; pTÞ ¼ 2Pþ

Z

dp−ð−Aq
10Þ; ð5lÞ

h
q
Lðx; pTÞ ¼ 2Pþ

Z

dp−

�

−A
q
9 −

P · p

M2
A
q
10 þ

�

P · p −M2x

M2

�

2

A
q
11

�

þOðBiÞ; ð5mÞ

h
q
Tðx; pTÞ ¼ 2Pþ

Z

dp−

�

−
P · p −M2x

M2
A
q
11

�

þOðBiÞ: ð5nÞ

We only symbolically indicate the B
q
i amplitudes as they

are absent in quark models, cf. Ref. [129] for the full

expressions. We also do not show the expressions for T-odd

TMDs as they vanish in quark models with no explicit

gluon degrees of freedom [130].

III. FORMULATION OF THE COVARIANT

PARTON MODEL

We define the quark correlator in the CPM as follows

Φ
qðp; P; SÞij ¼ 2P0

Θðp0Þδðp2 −m2ÞūjðpÞuiðpÞ

×

�

GqðpPÞ unpolarized partons;

HqðpPÞ polarized partons:
ð6Þ

The prefactor 2P0 is due to the covariant normalization

hNðP0; SÞjNðP; SÞi ¼ 2P0ð2πÞ3δð3ÞðP⃗0
− P⃗Þ of the nucleon

states in Eq. (1). The onshell condition of the quarks in the

CPM is implemented in terms of the Lorentz-invariant

function Θðp0Þδðp2 −m2Þ. GqðpPÞ describes the covariant
momentum distribution of unpolarized quarks of flavor q ¼
u; d;… inside the nucleon, while HqðpPÞ describes the

covariant distribution of polarized quarks.

In the CPM the quarks are on shell, which allows us to

evaluate the bispinor expressions as

ūðpÞΓuðpÞ ¼ Tr

�

1

2
ð=pþmÞð1þ γ5=ωÞΓ

�

: ð7Þ

xHere ωμ is the quark polarization vector which satisfies

ω2 ¼ −1 and p · ω ¼ 0 and can be expressed in the CPM in

terms of pμ, Pμ, Sμ as follows [54]

ωμ ¼ −
M

m

p · S

p · PþmM
pμ −

p · S

p · PþmM
Pμ þ Sμ: ð8Þ

A more general expression for ωμ was given in [62] which

coincides with (8) for massless quarks. In this work we will

use Eq. (8) for ωμ and explore the more general repre-

sentation for ω from [62] elsewhere.

By exploring Eq. (7) we obtain the following compact

expression

Tr½Φqðp;P;SÞΓ�¼P0
Θðp0Þδðp2−m2ÞTr½ðpþmÞðGqðpPÞ

þHqðpPÞγ5=ωÞΓ�: ð9Þ

We recall that the covariant function GqðpPÞ is positive and
has a partonic interpretation within the CPM: when inter-

preted in the nucleon rest frame it describes the momentum

distribution of unpolarized quarks in the nucleon. Similarly

HqðpPÞ describes the momentum distribution of polarized

q in a nucleon polarized in its rest frame along Sμ ¼ ð0; S⃗Þ
[53–55]. The unpolarized covariant function satisfies

GqðPpÞ ≥ 0, and the polarized one jHqðPpÞj ≤ GqðPpÞ
which reflects the partonic interpretation.

Equations (6)–(9) can be viewed as a definition of the

CPM and describe how to evaluate in the model quark

correlation functions. In the remainder of this work, we will

compute all twist-2 and twist-3 T-even TMDs of quarks on

the basis of Eqs. (6)–(9). Hereby we will reproduce results

known from previous works, derive many new results

(especially for twist-3 TMDs), and demonstrate the internal

theoretical consistency of the approach.

IV. QUARK TMDs IN THE COVARIANT

PARTON MODEL

This section is devoted to quark TMDs. In the twist-2

case we will rederive results obtained in Ref. [58] in

different ways. In the twist-3 case we will (with one

exception) present new predictions.

A. The unpolarized leading twist TMD f
q
1ðx;pTÞ

In order to derive the expression for the TMD f
q
1ðx; pTÞ

we evaluate the correlator
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ϕq½γþ�ðx; p⃗T ; SÞ ¼
Z

dp−dpþP0GqðpPÞΘðp0Þδðp2 −m2Þδðpþ − xPþÞūðpÞγþuðpÞ;

¼
Z

dp−dpþ P0GqðpPÞ
Pþ Θðp0Þδðp2 −m2Þδ

�

x −
pþ

Pþ

�

ūðpÞγþuðpÞ: ð10Þ

We choose to work in the nucleon rest frame where pP ¼ p0M. In the following we will denote the covariant

function GqðpPÞ in the nucleon rest frame for simplicity by Gqðp0Þ. In the nucleon rest frame pþ=Pþ ¼ ðp0 þ p1Þ=M.

To arrive at the formulation of the CPM from prior works we change the integration variables dp−dpþ
→ dp0dp1

such that

ZZ

dp−dpþ
Θðp0Þδðp2 −m2Þ… ¼

ZZ

dp0dp1
Θðp0Þδððp0Þ2 − p⃗2 −m2Þ… ¼

Z

dp1

2p0
…

�

�

�

�

p0¼
ffiffiffiffiffiffiffiffiffiffiffi

p⃗2þm2
p : ð11Þ

Evaluating the bispinor expression ūðpÞγμuðpÞ ¼ 2pμ we obtain

ϕq½γþ�ðx; p⃗T ; SÞ ¼ f
q
1ðx; pTÞ ¼

Z

dp1

p0
Gqðp0Þδ

�

x −
p0 þ p1

M

�

ðp0 þ p1Þ: ð12Þ

This coincides with the result for f
q
1ðx; pTÞ from Eq. (25) in [58] (after the substitution p1

→ ð−p1Þ). In [58] this result was
obtained by introducing and modeling a “pT-unintegrated” hadronic tensor. Here we derive the same result systematically

from the model expression of the quark correlator (9). We also see that in the model ϕq½γþ�ðx; p⃗T ; SÞ has no term proportional

to p⃗T S⃗T and hence the Sivers function is zero as expected in models with no gluons [130].

B. The chiral-even polarized leading twist TMDs g
q
1ðx;pTÞ and g

⊥q
1T ðx;pTÞ

These TMDs require polarization. We use the expression (8) for the quark polarization vector ωμ in nucleon rest frame

where
1
Sμ ¼ ð0; SL; S⃗TÞ in usual four-vector notation. We explore (11) and ūðpÞγμγ5uðpÞ ¼ 2ωμ, and obtain

ϕq½γþγ5�ðx; p⃗T ; SÞ ¼ SL

Z

dp1

p0
Hqðp0Þδ

�

x −
p0 þ p1

M

��

p1ðp0 þ p1Þ
p0 þm

þ p1m

p0 þm
þm

�

þ p⃗T S⃗T

Z

dp1

p0
Hqðp0Þδ

�

x −
p0 þ p1

M

��

p0 þ p1

p0 þm
þ m

p0 þm

�

; ð13Þ

where we grouped terms proportional to longitudinal and transverse polarization. Comparing to the coefficients in Eq. (3b)

we read off the model results for g
q
1ðx; pTÞ and g

⊥q
1T ðx; pTÞ which, after some algebra, can be written as

g
q
1ðx; pTÞ ¼

Z

dp1

p0
Hqðp0Þδ

�

x −
p0 þ p1

M

��

p0 þ p1 −
p2
T

p0 þm

�

; ð14aÞ

g
⊥q
1T ðx; pTÞ ¼

Z

dp1

p0
Hqðp0Þδ

�

x −
p0 þ p1

M

��

M
p0 þ p1 þm

p0 þm

�

; ð14bÞ

and coincide with the expressions in Eqs. (16), (17) of Ref. [58]. It is important to stress that these results were obtained

from the antisymmetric part of the “pT-unintegrated” hadronic tensor, which was constructed and modeled in [58], while

here they follow straightforwardly from the model expression of the quark correlator (9).

C. The chiral-odd polarized leading twist TMDs h
q
1ðx; pTÞ, h

⊥q
1L ðx; pTÞ, h

⊥q
1T ðx; pTÞ

In order to evaluate the correlator ϕ½iσþj� we proceed as in (11), explore ūðpÞiσμνuðpÞ ¼ 2ðωμpν − ωνpμÞ, and insert the
expression (8) for ωμ with Sμ ¼ ð0; SL; S⃗TÞ. This yields

1
In Ref. [58] the light cone spatial direction was chosen opposite to our work; i.e., the signs of the first components of all

vectors are reversed: for instance ðp0 − p1ÞjRef: ½58� corresponds to ðp0 þ p1Þjhere. Consequently the conventions are such that
SLjhere ¼ −SLjRef: ½58�.

STRUCTURE OF THE NUCLEON AT LEADING AND … PHYS. REV. D 103, 014024 (2021)

014024-5



ϕq½iσþj�ðx; p⃗T ; SÞ ¼
Z

dp1

p0
Hqðp0Þδ

�

x −
p0 þ p1

M

��

ðω0 þ ω1Þpj − ωiðp0 þ p1Þ
�

;

¼
Z

dp1

p0
Hqðp0Þδ

�

x −
p0 þ p1

M

��

S
j
Tðp0 þ p1Þ − ðp0 þ p1 þmÞ

ðp0 þmÞ SLp
j
T −

p⃗T S⃗T

ðp0 þmÞp
j
T

�

: ð15Þ

Notice that ðp⃗T · S⃗TÞpj
T ¼ 1

2
p⃗2
TS

j
T þ ðpj

Tp
k
T −

1
2
δjkp⃗2

TÞSkT where the first term (monopole in p⃗T) contributes to transversity

while the second term (quadrupole structure) gives rise to pretzelosity. Comparing to the correlator (3c), we read off the

results

h
q
1ðx; pTÞ ¼

Z

dp1

p0
Hqðp0Þδ

�

x −
p0 þ p1

M

��

p0 þ p1 −
p2
T

2ðp0 þmÞ

�

; ð16aÞ

h
⊥q
1L ðx; pTÞ ¼

Z

dp1

p0
Hqðp0Þδ

�

x −
p0 þ p1

M

��

−M
p0 þ p1 þm

p0 þm

�

; ð16bÞ

h
⊥q
1T ðx; pTÞ ¼

Z

dp1

p0
Hqðp0Þδ

�

x −
p0 þ p1

M

��

−
M2

p0 þm

�

: ð16cÞ

As the model generates no unpolarized structure in the correlator (3c), the T-odd Boer-Mulders function

h
⊥q
1 ðx; pTÞ vanishes as expected in quark models [130]. The results (16) agree with those obtained previously by

generalizing the auxiliary polarized process due to interference of vector and scalar currents to the “pT-unintegrated”

situation [58]. Notice that the results can be simplified using, e.g., p0 þ p1 ¼ xM under the integrals in (16).

D. Twist-3 TMDs

In the twist-3 correlators (3d)–(3g) we encounter two new Dirac structures, ūðpÞ1uðpÞ ¼ 2m related to eqðx; pTÞ and
ūðpÞiγ5uðpÞ ¼ 0 for an on shell particle. Proceeding analog to Secs. IVA–IV C yields the following results

f⊥qðx; pTÞ ¼
Z

dp1

p0
Hqðp0Þδ

�

x −
p0 þ p1

M

�

Mðp0 þmÞ
p0 þm

; ð17aÞ

eqðx; pTÞ ¼
Z

dp1

p0
Hqðp0Þδ

�

x −
p0 þ p1

M

�

mðp0 þmÞ
p0 þm

; ð17bÞ

g
q
Tðx; pTÞ ¼

Z

dp1

p0
Hqðp0Þδ

�

x −
p0 þ p1

M

�

mðp0 þmÞ þ 1
2
p⃗2
T

p0 þm
; ð17cÞ

g
⊥q
T ðx; pTÞ ¼

Z

dp1

p0
Hqðp0Þδ

�

x −
p0 þ p1

M

�

M2

p0 þm
; ð17dÞ

g
⊥q
L ðx; pTÞ ¼

Z

dp1

p0
Hqðp0Þδ

�

x −
p0 þ p1

M

�

MðMx − p0Þ
p0 þm

; ð17eÞ

h
⊥q
T ðx; pTÞ ¼

Z

dp1

p0
Hqðp0Þδ

�

x −
p0 þ p1

M

�

Mðp0 þmÞ
p0 þm

; ð17fÞ

h
q
Lðx; pTÞ ¼

Z

dp1

p0
Hqðp0Þδ

�

x −
p0 þ p1

M

�

mðp0 þmÞ þ p⃗2
T

p0 þm
; ð17gÞ

h
q
Tðx; pTÞ ¼

Z

dp1

p0
Hqðp0Þδ

�

x −
p0 þ p1

M

�

Mðp0 −MxÞ
p0 þm

: ð17hÞ
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Only the model expression for the twist-3 TMD g
q
Tðx; pTÞ

was computed before in the CPM, as it is related to the

(“unintegrated” generalization of the) hadronic tensor in

polarized DIS, and our result (17c) agrees with the

expression from [58]. The results for the other twist-3

TMDs are new. Notice that also in twist-3 case T-odd

TMDs vanish in the CPM as it must be for a model with no

explicit gauge field degrees of freedom [130].

V. RELATIONS AMONG TMDS

In QCD the different TMDs are all independent of each

other, and describe different aspects of the nucleon struc-

ture. Due to the simpler dynamics or additional symmetries,

different TMDs can be related to each other in quark

models. The goal of this section is to discuss the relations

among TMDs in the CPM.

A. Equation-of-motion relations

An important consistency test of the model results is

provided by the following relations which can be derived

by making use of the QCD equations of motion (EOM) and

are given by

xeqðx; pTÞ ¼ xẽqðx; pTÞ þ
m

M
f
q
1ðx; pTÞ; ð18aÞ

xf⊥qðx; pTÞ ¼ xf̃⊥qðx; pTÞ þ f
q
1ðx; pTÞ; ð18bÞ

xg
⊥q
L ðx; pTÞ ¼ xg̃

⊥q
L ðx; pTÞ þ g

q
1ðx; pTÞ þ

m

M
h
⊥q
1L ðx; pTÞ;

ð18cÞ

xg
q
Tðx; pTÞ ¼ g̃

q
Tðx; pTÞ þ g

⊥ð1Þq
1T ðx; pTÞ þ

m

M
h
q
1ðx; pTÞ;

ð18dÞ

xg
⊥q
T ðx; pTÞ ¼ xg̃

⊥q
T ðx; pTÞ þ g

⊥q
1T ðx; pTÞ þ

m

M
h
⊥q
1T ðx; pTÞ;

ð18eÞ

xh
q
Lðx;pTÞ ¼ xh̃

q
Lðx;pTÞ− 2h

⊥ð1Þq
1L ðx;pTÞ þ

m

M
g
q
1ðx;pTÞ;

ð18fÞ

xh
q
Tðx; pTÞ ¼ xh̃

q
Tðx; pTÞ − h

q
1ðx; pTÞ − h

⊥ð1Þ
1T ðx; pTÞ

þ m

M
g⊥1Tðx; pTÞ; ð18gÞ

xh
⊥q
T ðx; pTÞ ¼ xh̃

⊥q
T ðx; pTÞ þ h

q
1ðx; pTÞ − h

⊥ð1Þ
1T ðx; pTÞ;

ð18hÞ

where the transverse moment n of a generic TMD fqðx; pTÞ
is defined as follows

fðnÞqðx; pTÞ ¼
�

p2
T

2M2

�

n

fqðx; pTÞ: ð19Þ

The EOMs (18) arise because the quark correlators defining

twist-3 TMDs, Eqs. (3d)–(3g), can be decomposed into

contributions from quark-gluon correlators, twist-2 corre-

lators, and terms proportional to current quark masses by

exploring QCD equations of motion [4]. The quark-gluon

correlators give rise to “genuine twist-3” contributions or

“interaction dependent terms” which are denoted by tilde-

functions in (18). In general the EOMs do not imply

relations among TMDs, but define the respective genuine

twist-3 tilde contributions.

In quark models in general the tilde terms are nonzero

and arise from the model interactions due to the pertinent

model equations of motion. The EOM of the CPM is the

free Dirac equation, which implies the absence of tilde

terms. Our results for twist-2 and twist-3 TMDs, Eqs. (12),

(14), (16), (17), satisfy the EOM relations (18) with the

tilde terms set to zero. This is an important consistency test

for our new results for all twist-3 TMDs.

B. Lorentz invariance relations

In models with no gluonic degrees of freedom, such as

the CPM, T-odd TMDs are absent [130] and the quark

correlator can be decomposed in terms of nine T-even Ai

amplitudes while it gives rise to 14 T-even TMDs, see

Sec. II. As there are 14 TMDs and 9 linearly independent

amplitudes, this implies five relations among T-even

TMDs. These relations are referred to as Lorentz-invariance

relations (LIRs) and are not valid in QCD [131] but must

hold in all models that preserve Lorentz symmetry and

exhibit no gauge degrees of freedom. The LIRs are given by

[3]

g
q
TðxÞ¼

LIR
g
q
1ðxÞ þ

d

dx
g
⊥ð1Þq
1T ðxÞ; ð20aÞ

h
q
LðxÞ¼

LIR
h
q
1ðxÞ −

d

dx
h
⊥ð1Þq
1L ðxÞ; ð20bÞ

h
q
TðxÞ¼

LIR
−

d

dx
h
⊥ð1Þq
1T ðxÞ; ð20cÞ

g
⊥q
L ðxÞ þ d

dx
g
⊥ð1Þq
T ðxÞ¼LIR0; ð20dÞ

h
q
Tðx; pTÞ − h

⊥q
T ðx; pTÞ¼

LIR
h
⊥q
1L ðx; pTÞ; ð20eÞ

and connect twist-3 TMDs (on left-hand sides of the above

equations) with twist-2 TMDs (if any, on right-hand sides).

The CPM satisfies all LIRs. This is an important consis-

tency test for the model. Equations (20a)–(20d) can be

proven using the methods developed in Appendix C of
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Ref. [58], while (20e) corresponds to the quark model

relation (21f) that is discussed below.

C. Quark model relations

Our results for the twist-2 and twist-3 TMDs satisfy also

the following relations [72]

g
⊥q
1T ðx; pTÞ ¼ −h

⊥q
1L ðx; pTÞ; ð21aÞ

g
⊥q
T ðx; pTÞ ¼ −h

⊥q
1T ðx; pTÞ; ð21bÞ

g
⊥q
L ðx; pTÞ ¼ −h

q
Tðx; pTÞ; ð21cÞ

g
q
1ðx; pTÞ − h

q
1ðx; pTÞ ¼ h

⊥ð1Þq
1T ðx; pTÞ; ð21dÞ

g
q
Tðx; pTÞ − h

q
Lðx; pTÞ ¼ h

⊥ð1Þq
1T ðx; pTÞ; ð21eÞ

h
q
Tðx; pTÞ − h

⊥q
T ðx; pTÞ ¼ h

⊥q
1L ðx; pTÞ: ð21fÞ

These relations are valid in a large class of quark models,

including spectator models, bag model, light-front con-

stituent quark model [60,72,73,95,121]. The CPM also

supports the following nonlinear quark model relations

h
q
1ðx; pTÞh⊥q

1T ðx; pTÞ ¼ −
1

2
½h⊥q

1L ðx; pTÞ�2; ð21gÞ

g
q
Tðx; pTÞg⊥q

T ðx; pTÞ ¼ þ 1

2
½g⊥q

1T ðx; pTÞ�2

− g
⊥q
1T ðx; pTÞg⊥q

L ðx; pTÞ: ð21hÞ

In [58] it was shown that the CPM complies with the

relations (21a), (21d), (21g) featuring only twist-2 TMDs.

Here we see that the model supports the full set of linear

and nonlinear quark model relations (21).

One can impose the additional assumption of the SU(4)

spin-flavor symmetry in the CPM by assuming GqðpPÞ ¼
NqF ðpPÞ and GqðpPÞ ¼ PqF ðpPÞ. For proton the SU(4)

spin flavor factors are given by [132]

Nu ¼
Nc þ 1

2
; Nd ¼

Nc − 1

2
; ð22aÞ

Pu ¼
Nc þ 5

6
; Pd ¼

−Nc þ 1

6
; ð22bÞ

and those for neutron follow from interchanging u↔ d.
Under the assumption of SU(4) spin-flavor symmetry and

introducing the definition Dq ¼ Pq=Nq also the following

SU(4) quark model relations equations hold in the CPM

Dqf
q
1ðx; pTÞ þ g

q
1ðx; pTÞ ¼ 2h

q
1ðx; pTÞ; ð23aÞ

Dqeqðx; pTÞ þ h
q
Lðx; pTÞ ¼ 2g

q
Tðx; pTÞ; ð23bÞ

Dqf⊥qðx; pTÞ ¼ h
⊥q
T ðx; pTÞ: ð23cÞ

It is important to stress that relations connecting unpolar-

ized and polarized TMDs such as (23) require the stronger

additional assumption of SU(4) spin-flavor symmetry.

The deeper reason for the appearance of the quark model

relations including twist-2 TMDs, (21a), (21d), (21d) [and

(23a) under the additional assumption of SU(4) spin-flavor

symmetry], can be traced back to the symmetries of the

light cone wave functions in a large class of independent-

particle models where the quarks do not interact with each

other but are bound by a mean field [121]. Not all models

support these relations. A counterexample are quark-target

models [108] where the relations (21), (23) are not valid.

D. Wandzura-Wilczek relations

In the CPM we can derive the following WW relations

(the abbreviation WW is explained below)

g
q
TðxÞ ¼

WW

Z

1

x

dy

y
g
q
1ðyÞ þ

m

M

�

−
h
q
1ðxÞ
x

þ
Z

1

x

dy

y2
h
q
1ðyÞ

�

;

ð24aÞ

h
q
LðxÞ ¼

WW
2x

Z

1

x

dy

y2
h
q
1ðyÞ þ

m

M

�

g
q
1ðxÞ
x

− 2x

Z

1

x

dy

y3
g
q
1ðyÞ

�

:

ð24bÞ

Equation (24a) is obtained by integrating (18d) over pT

with g̃
q
TðxÞ ¼ 0, solving for g

⊥ð1Þq
1T ðxÞ and inserting the

result into (20a) and finally integrating d
dx
g
q
TðxÞ. Similarly

Eq. (24b) is derived from the EOM relation (18f) and the

LIR (20b). As they follow from EOM relations and LIRs,

the WW relations (24) contain no new information.

From the point of view of QCD the relations (24) are of

interest, as they constitute the so-called Wandzura-Wilczek

(WW) approximation in QCD based on the neglect of tilde

terms (and in practice also mass terms) [67,133]. This

approximation is supported by instantonvacuum calculations

[134,135] where the tilde terms g̃
q
TðxÞ and h̃

q
LðxÞ are small

compared to the twist-2 terms in (24), see alsoRef. [136]. The

smallness of g̃
q
TðxÞ is supported by lattice QCD studies

[137,138], and experiment [139–141] which indicate that

g̃
q
TðxÞ and h̃

q
LðxÞ are small compared to the twist-2 terms in

(24). In the CPM the tilde terms are exactly zero, and the

relations (24) hold exactly. Further discussions of WW

relations in various contexts can be found in Refs. [142–150].

For completeness we remark that the assumption that

tilde terms (and mass terms) are small and numerically

negligible has been also applied to TMDs [129,151–157].

In this case one speaks of Wandzura-Wilczek-type approx-

imations. Neglecting current quark mass effects, two

examples of such relations are [154]

g
⊥ð1Þq
1T ðxÞ ¼WW−type

x

Z

1

x

dy

y
g
q
1ðyÞ; ð25aÞ
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h
⊥ð1Þq
1L ðxÞ ¼WW−type

− 2x2
Z

1

x

dy

y2
h
q
1ðyÞ: ð25bÞ

Such approximations can be tested in SIDIS and Drell-Yan

experiments [156–158]. In the CPM the relations (25)

are exact.

E. Independent amplitudes in the

covariant parton model

The previous sections have shown that the CPM supports

many relations. It is an interesting question how many

independent TMDs exist in this model. For that we evaluate

the amplitudes of the unintegrated correlator (4). As

expected, the T-odd A
q
4 , A

q
5
, A

q
12 are zero. For the T-even

amplitudes we obtain

A
q
1 ¼ P0

Θðp0Þδðp2 −m2ÞGqðpPÞm
M

; ð26aÞ

A
q
2 ¼ 0; ð26bÞ

A
q
3 ¼ P0

Θðp0Þδðp2 −m2ÞGqðpPÞ; ð26cÞ

A
q
6 ¼ P0

Θðp0Þδðp2 −m2ÞHqðpPÞ
�

−
m

M

�

; ð26dÞ

A
q
7 ¼ P0

Θðp0Þδðp2 −m2ÞHqðpPÞ mM

p · PþmM
; ð26eÞ

A
q
8 ¼ P0

Θðp0Þδðp2 −m2ÞHqðpPÞ M2

p · PþmM
; ð26fÞ

A
q
9 ¼ 0; ð26gÞ

A
q
10 ¼ P0

Θðp0Þδðp2 −m2ÞHqðpPÞð−1Þ; ð26hÞ

A
q
11 ¼ P0

Θðp0Þδðp2 −m2ÞHqðpPÞ
�

−
M2

p · PþmM

�

:

ð26iÞ

Interestingly the T-even amplitudes A
q
2 , A

q
9 also vanish,

because our model does not generate these Lorentz

structures. The remaining seven nonzero T-even amplitudes

are related to each other by five relations. In the unpolarized

case we have two nonzero amplitudes related by 1 relation,

A
q
1 ¼

m

M
A
q
3: ð27Þ

In the polarized case we have five nonzero amplitudes

related by four relations,

A
q
6
¼ −

m

M
A
q
10;

A
q
7 ¼ þm

M
A
q
8;

A
q
8 ¼ −A

q
11;

A
q
10 ¼ −

pPþmM

M2
A
q
8: ð28Þ

Notice that for an on shell particle the relation P · p ¼
p⃗2
Tþm2

2x
þ 1

2
xM2 holds. Thus in the model (but not in general)

the product P · p does not depend on p− and can be pulled

out of the integrals over p− in (5). Inserting the results (26)

for the amplitudes into the expressions (5), we recover the

results obtained in Eqs. (12), (14), (16), (17), which provide

an independent test of the model.

F. Independent TMDs in the model

The previous section has shown that there are two

independent amplitudes: one unpolarized and one polarized.

Consequently, all unpolarized TMDs are related to each

other, and all polarized TMDs are related to each other. Thus

it is possible to choose one unpolarized and one polarized

TMD, and express all other TMDs in terms of them.

In the unpolarized case we have three T-even TMDs

f
q
1ðx; pTÞ, eqðx; pTÞ, f⊥qðx; pTÞ. We can choose the well-

known unpolarized twist-2 TMDs as basis function. The

other unpolarized T-even TMDs are then given by

xeqðx; pTÞ ¼
CPM m

M
f
q
1ðx; pTÞ; ð29aÞ

xf⊥qðx; pTÞ ¼
CPM

f
q
1ðx; pTÞ: ð29bÞ

Notice that eqðx; pTÞ vanishes if we one neglects current

quark mass effects.

In the polarized T-even sector we have 11 TMDs. At

first glance it would seem natural to express all polarized

TMDs in terms of the relatively well-known helicity dis-

tribution g
q
1ðx; pTÞ. This is possible, but not ideal for the

following reason. In the CPM, g
q
1ðx; pTÞ exhibits a node at

pT ¼ xM (neglecting current quark masses) [61]. Conse-

quently TMDs without nodes would be expressed in terms

g
q
1ðx; pTÞ divided by a prefactor which is singular at pT ¼
xM in order to remove the node present in g

q
1ðx; pTÞ. This is

impractical for phenomenological applications.

It is clearly an advantage to choose a TMD without a

node to express the other TMDs. A convenient choice for a

basis function for polarized TMDs is transversity h
q
1ðx; pTÞ

which exhibits no node in the model and is, after g
q
1ðx; pTÞ,

the currently best known T-even TMD. It is convenient to

neglect current quark mass effects, which make the explicit

expressions quite bulky and can be safely expected to be

small in phenomenological applications.
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It is convenient to quote the results in three groups in

which the polarized TMDs have structurally similar expres-

sions. We can express g
q
1ðx; pTÞ, g⊥q

L ðx; pTÞ, h⊥q
T ðx; pTÞ

(which exhibit nodes) and h
⊥q
T ðx; pTÞ in terms of trans-

versity as

g
q
1ðx; pTÞ ¼

CPM

�

1 −
p2
T

x2M2

�

h
q
1ðx; pTÞ; ð30aÞ

g
⊥q
L ðx; pTÞ ¼

CPM 1

x

�

1 −
p2
T

x2M2

�

h
q
1ðx; pTÞ; ð30bÞ

h
q
Tðx; pTÞ ¼

CPM
−
1

x

�

1 −
p2
T

x2M2

�

h
q
1ðx; pTÞ; ð30cÞ

h
⊥q
T ðx; pTÞ ¼

CPM 1

x

�

1þ p2
T

x2M2

�

h
q
1ðx; pTÞ: ð30dÞ

The TMDs g
q
Tðx; pTÞ and h

q
Lðx; pTÞ are expressed in terms

of transversity (for m ¼ 0) as follows

g
q
Tðx; pTÞ ¼

CPM

�

p2
T

x2M2

�

h
q
1ðx; pTÞ; ð30eÞ

h
q
Lðx; pTÞ ¼

CPM

�

2p2
T

x2M2

�

h
q
1ðx; pTÞ: ð30fÞ

Notice the relation h
q
Lðx; pTÞ ¼

CPM
2g

q
Tðx; pTÞ, which

holds for m ¼ 0. Finally, the Mulders-Kotzinian TMDs

g
⊥q
1T ðx; pTÞ and h

⊥q
1L ðx; pTÞ, pretzelosity h

⊥q
1T ðx; pTÞ, and

twist-3 TMD g
⊥q
T ðx; pTÞ are expressed in terms of trans-

versity as

g
⊥q
1T ðx; pTÞ ¼

CPM 2

x
h
q
1ðx; pTÞ; ð30gÞ

h
⊥q
1L ðx; pTÞ ¼

CPM
−
2

x
h
q
1ðx; pTÞ; ð30hÞ

h
⊥q
1T ðx; pTÞ ¼

CPM
−

2

x2
h
q
1ðx; pTÞ; ð30iÞ

g
⊥q
T ðx; pTÞ ¼

CPM 2

x2
h
q
1ðx; pTÞ: ð30jÞ

It will be interesting to test these CPM predictions in future,

when more about TMDs will be known. These relations can

also be investigated in other models. It would be interesting

to assess in this way whether the relations (29)–(30) are

supported by other quark models and, if so, within which

accuracy.

VI. NUMERICAL RESULTS

In this section we show the numerical results. After a

brief review how the covariant functions GaðpPÞ and

HaðpPÞ are obtained from the input PDFs fa1ðxÞ and

ga1ðxÞ, we present predictions for unpolarized and polarized
PDFs or transverse moments of TMDs, and compare to

parametrizations where available.

A. Covariant functions and input PDFs

The covariant functions GaðpPÞ for a ¼ u; d; ū; d̄;… are

uniquely determined from, respectively, fa1ðxÞ and ga1ðxÞ.
With the notation Gqðp0Þ and Hqðp0Þ in the nucleon rest

frame, the relations are given by [57,61] (see also [120])

Gqðp0Þjp0¼1
2
xM ¼ −

1

πM3

d

dx

�

f
q
1ðxÞ
x

�

;

Hqðp0Þjp0¼1
2
xM ¼ 1

πM3x2

�

2

Z

1

x

dy

y
g
q
1ðyÞ þ 3g

q
1ðxÞ

− x
d

dx

�

g
q
1ðxÞ
x

��

: ð31Þ

Several comments are in order. First, the model relates

different TMDs obeying different evolution equations to

the same covariant functions. Therefore, a scale must be

chosen at which the covariant functions in (31) are

determined. The choice of this scale is part of the modeling.

The renormalization scale, which is not indicated in (31) for

brevity, must be chosen large enough for the partonic

picture to be justified, but is otherwise not fixed. In this

work we choose μ2 ¼ 2.5 GeV2 which is a convenient

scale because many extractions of TMDs from SIDIS data

have been performed at comparable scales. Second, in the

case of TMDs we strictly speaking deal with a double-scale

problem, and the choice of both scales is part of the model.

The second scale ζ, associated with the removal of rapidity

divergences, can be also chosen to be ζ ¼ 2.5 GeV2. The

dependence on this second scale is governed by the CSS

evolution equations. Third, an important feature of the

parton model is the partonic interpretation. In QCD the

partonic interpretation is strictly speaking only justified at

leading-order (LO) (and for PDFs of the nucleon but, e.g.,

not for nuclei [159]). For our calculations we therefore

choose LO parametrizations. In order to investigate the

dependence on the chosen input parametrization, we use

several parametrizations for respectively fa1ðxÞ and ga1ðxÞ.
The parametrizations used in this work are shown in

Fig. 1: GRV’98 [160], MRST’98 [161], MSTW’09 [162]

for f
q
1ðxÞ, and standard and valence scenarios of GRSV’00

[163], LSS’05 [164] for g
q
1ðxÞ. More recent parametriza-

tions are available, e.g., [165–169] for unpolarized PDFs,

or [170–174] for helicity PDFs, see Ref. [175] for a review.

The reason why for our purposes the earlier parametriza-

tions [160–164] are preferable is because all more recent
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helicity PDF parametrizations were performed at next-to-

leading order, and [163,164] are among the last LO helicity

parametrizations (recall that the use of LO parametrization

is preferable in our partonic approach). The GRSV’00

[163] parametrizations of g
q
1ðxÞ were obtained using

GRV’98 [160] for f
q
1ðxÞ, while LSS’05 parametrizations

of g
q
1ðxÞ were obtained using f

q
1ðxÞ from MRST’98 [161].

In addition, we use also the more recent MSTW’09 [162]

parametrizations for f
q
1ðxÞ.

Over the last two decades the parametrizations of quark

PDFs f
q
1ðxÞ and g

q
1ðxÞ for q ¼ u, d have changed moder-

ately, unlike especially antiquark helicity parametrizations

which changed significantly due to recent data and may

change further due to future Drell-Yan data from

Brookhaven National Lab or the Electron-Ion

Collider [176].

B. The pT dependence of TMDs

The pT dependence of twist-2 TMDs was discussed in

[61].
2
The new results for twist-3 TMDs derived here have

very similar pT dependencies, and we can refrain from

discussing them in this work. Instead, we will content

ourselves with briefly reviewing the main features of the pT

dependencies of TMDs in this section.

It is remarkable that the pT dependencies of f
q
1ðx; pTÞ

and other unpolarized T-even TMDs are uniquely predicted

from the input PDF f
q
1ðxÞ. Similarly, the pT dependencies

of g
q
1ðx; pTÞ and other polarized T-even TMDs are uniquely

predicted from the input PDF g
q
1ðxÞ. This is possible due to

the strong model assumption of on shell quarks which leads

to the 3D rotational symmetry in nucleon rest frame

encoded in the covariant functions Gqðp0Þ, Hqðp0Þ with

p0 ¼ jp⃗j for massless quarks. This 3D symmetry connects

longitudinal and transverse parton motion.

The TMDs have finite support for 0 < pT <

M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞ
p

and vanish outside this range [53]. The

covariant functions are nonzero only for 0 < p0 < 1
2
M

for massless partons due to 0 < x < 1 in Eq. (31). In this

work we will restrict ourselves to the discussion of model

predictions after the transverse momenta are integrated out,

and present results for PDFs like h
q
1ðxÞ or g

q
TðxÞ or

transverse moments of TMDs, defined, e.g., as

h
⊥ðnÞq
1T ðxÞ ¼

Z

d2pT

�

p2
T

2M2

�

n

h
⊥q
1T ðx; pTÞ ð32Þ

and analog for other TMDs. It is convenient to describe the

respective structure functions in terms of such transverse

moments. For instance in SIDIS the functions h
q
1ðxÞ,

h
⊥ð1Þq
1L ðxÞ, h⊥ð2Þq

1T ðxÞ enter [156]. In the following we show,

unless otherwise stated, those functions (PDFs or certain

transverse moments) that are relevant for phenomenologi-

cal applications. Where possible we will test the model

predictions by comparing to parametrizations.

C. Predictions for unpolarized TMDs

In the unpolarized sector there are only three T-even

TMDs: the twist-2 f
q
1ðx; pTÞ which is input in the model,

and the twist-3 f⊥qðx; pTÞ and eqðx; pTÞ. Both TMDs are

related in the CPM to f
q
1ðx; pTÞ according to Eqs. (29a)

and (29b).

No relation between f
q
1ðx; pTÞ and f⊥qðx; pTÞ exists in

QCD due to the appearance of the function f̃⊥ðx; pTÞ.
In general in quark models the tilde terms are also nonzero

due to nontrivial quark-model interactions. It is therefore

(a) (b)

FIG. 1. The input PDFs used in this work for the model calculations as functions of x at the scale 2.5 GeV2. (a) LO parametrizations of

the unpolarized PDFs xf
q
1ðxÞ from GRV’98 [160], MRST’98 [161], MSTW’09 [162]. (b) LO parametrizations of the helicity PDFs

xg
q
1ðxÞ from GRSV’00 standard and valence scenario (see text) [163], and LSS’05 [164].

2
At this occasion we would like to make a correction regarding

[61]. The analytical results in [61] are correct (except for obvious

misprints in Eq. (18) where it should be ξ
dg

q

1
ðξÞ

dξ
on the right-hand

side instead of x
dg

q

1
ðξÞ

dξ
and Eq. (19) of [61] where it should be M2

in the denominator instead of M3). Also the numerical results in
[61] were correctly computed. But due to an unfortunate plotting
mistake the Figs. 1–4 of [61] show exactly half of the correct
results for all the TMDs. None of the conclusions of [61] is
affected by this mistake.
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interesting that the relation (29) holds in lightfront con-

stituent quark model and chiral quark soliton model even

though both models exhibit nontrivial model interactions,

encoded in the nonperturbative light front wave functions

of the former or provided by the strong chiral interactions

of the latter model [100].

The CPM prediction for xf⊥ð1ÞqðxÞ is shown in Fig. 2(a),
and corresponds exactly to the estimate for this TMD

obtained in [156] on the basis of the WW-type approxi-

mation. The result in Fig. 2(a) shows that xf⊥ð1ÞqðxÞ is

sizable.

The situation is different for xeqðxÞ which vanishes if we
neglect quark mass effects. In order to show a nonzero result

we assume mq ¼ 5 MeV for both u and d flavor. As

expected, the xeqðxÞ resulting from Eq. (29a) is very small.

Assuming TMD factorization at twist-3 level [177],

eqðx; pTÞ contributes to observables, e.g., in SIDIS with

the prefactor M=Q [4] where Q is the hard scale of the

process. The contribution of the mass term in eqðx; pTÞ is
therefore effectively proportional tomq=Q and can be safely

neglected in many phenomenological applications [156].

Only at extremely small x≲mq=Q could the mass term

contribution to xeqðxÞ become important. This kinematics

will be accessible at the Electron-Ion Collider [1]. However,

the discussion of TMDs at small x is more adequately

addressed in the approach of Refs. [178,179] which, to

the best of our knowledge, has not yet been applied to

subleading twist. It is interesting to remark that, e.g., in the

light front constituent quark model the relation (29a) is also

valid, but eqðxÞ in nevertheless sizable, because that model

operates at a low hadronic scale μ < 1 GeV where the

effective quark degrees of freedom have a constituent quark

mass of about 300 MeV [100].

No model-independent extractions of these twist-3

TMDs are currently available. In the case of eqðxÞ very

first (and model-dependent) extractions were reported in

Refs. [180,181]. For further model studies of f⊥ð1ÞqðxÞ and
eqðxÞ, including the interesting possibility of a singular

δðxÞ contribution to eqðxÞ, which is beyond our partonic

approach, we refer to Refs. [60,67,72,73,89–92,102,109,

110,182–186]. Noteworthy is the partonic interpretation of

the pure twist-3 contribution to eqðxÞ in terms of transverse

forces experienced by quarks in DIS [187].

D. Results for transversity and pretzelosity

Next we turn our attention to polarized TMDs

starting the discussion with the twist-2 transversity and

pretzelosity which can be compared to available para-

metrizations [45,46].

In Figs. 3(a) and 3(b) we compare the model predictions

for xh
q
1ðxÞ to the recent JAM’20 parametrization [45].

The CPM describes the sign and magnitude of the trans-

versity quark distributions well. For larger x≳ 0.2 the

quantitative agreement is very good and the model

results are close to or within the 1-σ region of the extraction

[45]. At smaller x≲ 0.2 the model has a tendency to

overestimate the JAM’20 parametrization foru andd flavors.

The uncertainty of the JAM’20 parametrization [45] is still

very large. For instance the d-quark transversity is compat-

ible with zero within the 1-σ uncertainty of the extraction.

Future data will constrain more strongly the extractions and

allow us to test the model predictions for h
q
1ðxÞ more

rigorously. The CPM is in good qualitative agreement with

other model calculations [60,67,72,73,75,76,80,81,84,87,

88,95,101,104,111,188] and lattice QCD [115,116].

In Figs. 3(c) and 3(d) we compare the model predictions

for xh
⊥ð1Þq
1T ðxÞ to the LP’15 fit [46] (where the (1)-moment

was extracted, though in phenomenological applications

[156,157] the (2)-moment of pretzelosity enters naturally).

The present data on the azimuthal asymmetry related to

pretzelosity are compatible with zero, which is reflected by

the uncertainty band of the LP’15 parametrization for u and

d flavors [46]. The best fit of LP’15 has opposite sign to the

CPM which should be not too disturbing considering the

large uncertainties of the fit. The CPM results agree with

other models [60,72,73,76–81,95]. More precise future

data are needed to test the model predictions for pretze-

losity. This TMD is of interest because it is related to

deviations of the nucleon’s transverse spin distribution

(a) (b)

FIG. 2. Predictions for (a) xf⊥ð1ÞqðxÞ and (b) xeqðxÞ as functions of x at the scale 2.5 GeV2 from the CPM according to Eqs. (29a) and

(29b) using the unpolarized LO input PDFs shown in Fig. 1(a).
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from spherical symmetry [189] and, in certain models, to

quark orbital momentum [70,77,122].

E. Kotzinian-Mulders functions

In this section we continue the discussion of polarized

twist-2 TMDs for which currently no extractions are

available, the Kotzinian-Mulders functions g
⊥ð1Þq
1T ðxÞ and

h
⊥ð1Þq
1L ðxÞ. In the CPM and in many other models these

TMDs are related to each other by the Eq. (21). For

clarity we nevertheless show the results for both TMDs in

separate figures.

In Fig. 4(a) we show the model results for xg
⊥ð1Þq
1T ðxÞ.

The model supports the WW-type relation (25), which was

used in Ref. [156]. This means that in Ref. [156] exactly

the same predictions as presented in Fig. 4(a) were used for

this TMD and shown to be compatible with the data

currently available on this TMD. This means that the

CPM model prediction for g
⊥ð1Þq
1T ðxÞ is also compatible

with the currently available SIDIS data. One should add

(a) (b)

FIG. 4. Model predictions for (a) xg
⊥ð1Þq
1T ðxÞ and (b) xh⊥ð1Þq

1L ðxÞ for q ¼ u, d as functions of x at the scale 2.5 GeV2 obtained using the

helicity LO input PDFs from Fig. 1(b). For comparison we show in (b) the estimate for xh
⊥ð1Þq
1L ðxÞ from [156] based on the WW-type

approximation and JAM’20 transversity parametrization [45].

(a)

(c)

(b)

(d)

FIG. 3. Model predictions for xh
q
1ðxÞ, (a) and (b), and xh

⊥ð1Þq
1T ðxÞ, (c) and (d), as functions of x at the scale 2.5 GeV2 obtained using the

helicity LO input PDFs from Fig. 1(b) in comparison to, respectively, the JAM’20 [45] and LP’15 [46] parametrizations.
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that the existing data on the pertinent SIDIS asymmetry

have sizable error bars and this test of the model is at the

current stage rather qualitative. However, more precise

future data will allow us to make more quantitative tests of

the model.

In Fig. 4(b) we plot the model results for xh
⊥ð1Þq
1L ðxÞ. For

comparison we show also the estimate for this TMD from
[156], which is based on the WW-type approximation (25b)

and JAM’20 h
q
1ðxÞ parametrization [45]. Though the CPM

supports Eq. (25b), the comparison in Fig. 4(b) is never-
theless interesting: in our model this TMD is ultimately
obtained from the input helicity PDF. In contrast to this the

WW-type-based prediction for h
⊥ð1Þq
1L ðxÞ from [156] is

based on (25b) and transversity as input. Thus, these are
two different ways of making predictions for this
Kotzinian-Mulders function and the good agreement of
the two results constitutes a consistency check in the sense
that the CPM practically supports numerical estimates of
this TMD based on the WW-type approximations [156].

F. Predictions for polarized twist-3

PDFs and TMDs

In this section we discuss polarized twist-3 TMDs

beginning with g
q
TðxÞ which is accessible in polarized

DIS making it the only well-constrained twist-3 function.

In the CPM the WW approximation (24) holds exactly.

(a) (b)

FIG. 5. Model predictions for the twist-3 PDFs (a) xg
q
TðxÞ and (b) xh

q
LðxÞ as functions of x at the scale 2.5 GeV2 obtained using the

helicity LO input PDFs from Fig. 1(b).

(a) (b)

(c) (d)

FIG. 6. Model predictions for the twist-3 polarized TMDs (a) xg
⊥ð1Þq
L ðxÞ, (b) xg⊥ð2Þq

T ðxÞ, (c) xhð1ÞqT ðxÞ, (d) xh⊥ð1Þq
T ðxÞ as functions of x

at the scale 2.5 GeV2 obtained using the helicity LO input PDFs from Fig. 1(b).
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The model prediction is shown in Fig. 5(a). Interestingly,

the Mellin moments of the pure twist-3 contribution g̃
q
TðxÞ

were shown in instanton vacuum calculations to be strongly

suppressed by powers of the instanton packing fraction

[134]. Subsequently the smallness of the g̃
q
TðxÞ contribution

to g
q
TðxÞ was confirmed in experiments [139–141] and

lattice QCD studies [137,138]. These theoretical and

experimental results have been a main motivation for

exploring the possibility of WW- and WW-type approx-

imations [39,129,156,157] though it cannot be excluded

that g̃
q
TðxÞmight be sizable in certain (so far experimentally

unexplored or poorly unconstrained) x regions [155]. The

smallness of g̃
q
TðxÞ provides important support also for the

CPM, and played an important role in the development of

this model [55].

The only further polarized twist-3 collinear PDF is h
q
LðxÞ

which, however, is chirally odd and not accessible in DIS.

Consequently almost nothing is known phenomenologi-

cally about this PDF. Interestingly, also in this case the pure

twist-3 contribution h̃
q
LðxÞ is also suppressed in the instan-

ton vacuum [135]. In the CPM the corresponding WW

relation (24b) is exact. The model prediction for xh
q
LðxÞ is

shown in Fig. 5(b). This function contributes to single spin

asymmetries in SIDIS [3] with several other unknown

twist-3 TMDs and fragmentation functions such that

phenomenological information on this TMD is difficult

to obtain [151,152]. Of interest is the CPM prediction

h
q
LðxÞ ¼ 2g

q
TðxÞ. It will be interesting to see if this

prediction will be supported phenomenologically.

Finally, we show the predictions for xg
⊥ð1Þq
L ðxÞ in

Fig. 6(a), xg
⊥ð2Þq
T ðxÞ in Fig. 6(b), xh

ð1Þq
T ðxÞ in Fig. 6(c),

xh
⊥ð1Þq
T ðxÞ in Fig. 6(d). These transverse moments are

rather small, and the contributions of these TMDs to the

SIDIS structure functions can be expected to be small.

Currently nothing is known about those TMDs from

phenomenology [156]. The model predicts the relation

g
⊥q
L ðx; pTÞ ¼ −h

q
Tðx; pTÞ, which will be interesting to test

experimentally, and both TMDs exhibit a node around

x ≈ 0.15, which is also observed in the bag model [72]. The

same relation between g
⊥q
L ðx; pTÞ and hqTðx; pTÞ holds also

in the spectator and bag model [72,73], which may hint at a

possible more general underlying quark model symmetry

responsible for such relations among twist-3 TMDs. It

would be interesting to investigate this point in more detail.

VII. CONCLUSIONS

In this work we have generalized the CPM that was

originally formulated to describe PDFs accessible in DIS

through an intuitive modeling of the hadronic tensor. We

have shown that the new formulation of the CPM allows

one to reproduce all results for the T-even twist-2 TMDs f
q
1 ,

g
q
1 , h

q
1 , g

⊥q
1T , h

⊥q
1L , h

⊥q
1T , and the twist-3 g

q
T known from prior

studies. The advantage of the new formulation is that it

allows one to evaluate systematically quark correlators in

the CPM.We have demonstrated this by deriving the model

expressions for all twist-3 T-even TMDs.

We have checked the consistency of the model by

showing that the QCD equations-of-motion relations are

valid in the CPM with tilde-terms consistently being zero

which is to be expected in a parton model approach. The

model also complies with Lorentz-invariance relations,

which are valid in quark models that respect Lorentz

symmetry but lack explicit gauge field degrees of freedom.

We have investigated the relations among TMDs in the

CPM. Some of these relations were known from prior

studies in other models, but most of them are specific to our

model. The relations among TMDs may constitute one of

the most interesting predictions of the CPM and they will

allow one to test the underlying model concepts quantita-

tively in future when more information about TMDs will

become available.
We presented numerical predictions for the T-even

TMDs and compared to studies in other models or lattice

QCD, and confronted them with TMD parametrizations

available for transversity and pretzelosity (the latter with

very large uncertainties). No extractions are available for

other TMDs and the model predictions await phenomeno-

logical tests in those cases. One interesting advantage is

that the results from the CPM refer to a high renormaliza-

tion scale where the partonic interpretation may be assumed

to be valid, while to the best of our knowledge the results

from other quark model approaches refer to very low

hadronic scales μ < 1 GeV [67–111].

The new formulation of the CPM may have further

interesting applications going far beyond the computation

of the twist-3 TMDs presented in this work. It would be

interesting to introduce a consistent modeling of off-shell-

ness effects. This would allow one to compute tilde

functions and perhaps also describe T-odd TMDs.

Another interesting application could be the extension of

the model to antiquark correlators or gluon correlators.

These aspects will be addressed in future studies.
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APPENDIX: MODEL RESULTS FOR TMDs IN

COMPACT NOTATION

In order to have a better overview, it is convenient to

introduce the compact notation for the integration measures

fdp1
Gqg ¼ dp1

p0

Gqðp0Þ
ðp0 þmÞ δ

�

x −
p0 þ p1

M

�

;

fdp1
Hqg ¼ dp1

p0

Hqðp0Þ
ðp0 þmÞ δ

�

x −
p0 þ p1

M

�

: ðA1Þ

Then the model results for the leading twist T-even TMDs

can be summarized as follows

f
q
1ðx; pTÞ ¼

Z

fdp1
Gqg½Mxðp0 þmÞ�; ðA2aÞ

g
q
1ðx; pTÞ ¼

Z

fdp1
Hqg½Mxðp0 þmÞ − p⃗2

T �; ðA2bÞ

g
⊥q
1T ðx; pTÞ ¼

Z

fdp1
Hqg½MðMxþmÞ�; ðA2cÞ

ha1ðx; pTÞ ¼
Z

fdp1
Hqg

�

Mxðp0 þmÞ − p⃗2
T

2

�

; ðA2dÞ

h
⊥q
1L ðx; pTÞ ¼

Z

fdp1
Hqg½−MðMxþmÞ�; ðA2eÞ

h
⊥q
1T ðx; pTÞ ¼

Z

fdp1
Hqg½−M2�; ðA2fÞ

and the twist-3 T-even TMDs are given by

f⊥qðx; pTÞ ¼
Z

fdp1
Gqg½Mðp0 þmÞ�; ðA3aÞ

eqðx; pTÞ ¼
Z

fdp1
Gqg½mðp0 þmÞ�; ðA3bÞ

g
⊥q
L ðx; pTÞ ¼

Z

fdp1
Hqg½MðMx − p0Þ�; ðA3cÞ

g
q
Tðx; pTÞ ¼

Z

fdp1
Hqg

�

mðp0 þmÞ þ 1

2
p⃗2
T

�

; ðA3dÞ

g
⊥q
T ðx; pTÞ ¼

Z

fdp1
Hqg½M2�; ðA3eÞ

h
q
Lðx; pTÞ ¼

Z

fdp1
Hqg½mðp0 þmÞ þ p⃗2

T �; ðA3fÞ

h
q
Tðx; pTÞ ¼

Z

fdp1
Hqg½Mðp0 −MxÞ�; ðA3gÞ

h
⊥q
T ðx; pTÞ ¼

Z

fdp1
Hqg½Mðp0 þmÞ�: ðA3hÞ

The model expressions can be rewritten by exploring

the on-shell-ness of partons which gives rise to identities

like ðp0 þ p1Þðp0 þmÞ − 1
2
p2
T ¼ 1

2
ðxM þmÞ2 and can

be used to express transversity, e.g., as h
q
1ðx; pTÞ ¼

R

fdp1
Hqg 1

2
ðxM þmÞ2.

[1] A. Accardi et al., Eur. Phys. J. A 52, 268 (2016); D. Boer

et al., arXiv:1108.1713.

[2] A. Kotzinian, Nucl. Phys. B441, 234 (1995).

[3] P. Mulders and R. Tangerman, Nucl. Phys. B461, 197

(1996).

[4] A. Bacchetta, M. Diehl, K. Goeke, A. Metz, P. J. Mulders,

and M. Schlegel, J. High Energy Phys. 02 (2007) 093.

[5] A. Metz and A. Vossen, Prog. Part. Nucl. Phys. 91, 136

(2016).

[6] D. Boer and P. J. Mulders, Phys. Rev. D 57, 5780 (1998).

[7] S. Arnold, A. Metz, and M. Schlegel, Phys. Rev. D 79,

034005 (2009).

[8] J. C. Collins and D. E. Soper, Nucl. Phys. B193, 381

(1981); B213, 545(E) (1983).

[9] A. V. Efremov and O. V. Teryaev, Sov. J. Nucl. Phys. 36,

140 (1982).

[10] A. V. Efremov and O. V. Teryaev, Phys. Lett. 150B, 383

(1985).

[11] J. C. Collins, D. E. Soper, and G. F. Sterman, Nucl. Phys.

B250, 199 (1985).

[12] J. W. Qiu and G. F. Sterman, Phys. Rev. Lett. 67, 2264

(1991).

[13] X. D. Ji, J. P. Ma, and F. Yuan, Phys. Rev. D 71, 034005

(2005).

[14] X. D. Ji, J. W. Qiu, W. Vogelsang, and F. Yuan, Phys. Lett.

B 638, 178 (2006).

[15] X. Ji, J. w. Qiu, W. Vogelsang, and F. Yuan, Phys. Rev. D

73, 094017 (2006).

[16] J. Collins, Cambridge Monogr. Part. Phys Nucl. Phys.

Cosmol. 32, 1 (2011).

[17] S. M. Aybat and T. C. Rogers, Phys. Rev. D 83, 114042

(2011).

[18] A. Bacchetta and A. Prokudin, Nucl. Phys. B875, 536

(2013).

[19] P. Sun and F. Yuan, Phys. Rev. D 88, 034016 (2013).

[20] M. G. Echevarria, A. Idilbi, Z. B. Kang, and I. Vitev, Phys.

Rev. D 89, 074013 (2014).

[21] J. Collins and T. Rogers, Phys. Rev. D 91, 074020 (2015).

[22] J. Collins, L. Gamberg, A. Prokudin, T. C. Rogers, N. Sato,

and B. Wang, Phys. Rev. D 94, 034014 (2016).

S. BASTAMI et al. PHYS. REV. D 103, 014024 (2021)

014024-16



[23] T. Gehrmann, T. Luebbert., and L. L. Yang, J. High Energy

Phys. 06 (2014) 155.

[24] M. G. Echevarria, I. Scimemi, and A. Vladimirov, Phys.

Rev. D 93, 054004 (2016).

[25] M. G. Echevarria, I. Scimemi, and A. Vladimirov, J. High

Energy Phys. 09 (2016) 004.

[26] Y. Li and H. X. Zhu, Phys. Rev. Lett. 118, 022004 (2017).

[27] A. A. Vladimirov, Phys. Rev. Lett. 118, 062001 (2017).

[28] D. Gutiérrez-Reyes, I. Scimemi, and A. A. Vladimirov,

Phys. Lett. B 769, 84 (2017).

[29] D. Gutierrez-Reyes, I. Scimemi, and A. A. Vladimirov,

J. High Energy Phys. 07 (2018) 172.

[30] M. X. Luo, X. Wang, X. Xu, L. L. Yang, T. Z. Yang, and

H. X. Zhu, J. High Energy Phys. 10 (2019) 083.

[31] M. X. Luo, T. Z. Yang, H. X. Zhu, and Y. J. Zhu, Phys.

Rev. Lett. 124, 092001 (2020).

[32] M. A. Ebert, B. Mistlberger, and G. Vita, J. High Energy

Phys. 09 (2020) 146.

[33] A. V. Efremov, K. Goeke, S. Menzel, A. Metz, and P.

Schweitzer, Phys. Lett. B 612, 233 (2005).

[34] M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian,

F. Murgia, and A. Prokudin, Phys. Rev. D 71, 074006

(2005).

[35] W. Vogelsang and F. Yuan, Phys. Rev. D 72, 054028

(2005).

[36] J. C. Collins, A. V. Efremov, K. Goeke, S. Menzel, A.

Metz, and P. Schweitzer, Phys. Rev. D 73, 014021 (2006).

[37] J. C. Collins, A. V. Efremov, K. Goeke, M. Grosse Perde-

kamp, S. Menzel, B. Meredith, A. Metz, and P. Schweitzer,

Phys. Rev. D 73, 094023 (2006).

[38] M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F.

Murgia, A. Prokudin, and C. Turk, Phys. Rev. D 75,

054032 (2007).

[39] M. Anselmino, M. Boglione, U. D’Alesio, S. Melis, F.

Murgia, and A. Prokudin, Phys. Rev. D 87, 094019

(2013).

[40] A. Signori, A. Bacchetta, M. Radici, and G. Schnell,

J. High Energy Phys. 11 (2013) 194.

[41] M. Anselmino, M. Boglione, J. O. Gonzalez Hernandez, S.

Melis, and A. Prokudin, J. High Energy Phys. 04 (2014)

005.

[42] Z. B. Kang, A. Prokudin, P. Sun., and F. Yuan, Phys. Rev.

D 91, 071501 (2015).

[43] Z. B. Kang, A. Prokudin, P. Sun, and F. Yuan, Phys. Rev. D

93, 014009 (2016).

[44] Z. B. Kang, A. Prokudin, F. Ringer, and F. Yuan, Phys.

Lett. B 774, 635 (2017).

[45] J. Cammarota, L. Gamberg, Zhong-Bo Kang, Joshua A.

Miller, D. Pitonyak, A. Prokudin, T. C. Rogers, and N.

Sato (Jefferson Lab Angular Momentum Collaboration),

Phys. Rev. D 102, 054002 (2020).

[46] C. Lefky and A. Prokudin, Phys. Rev. D 91, 034010

(2015).

[47] J. C. Collins, Acta Phys. Pol. B 34, 3103 (2003).

[48] U. D’Alesio and F. Murgia, Prog. Part. Nucl. Phys. 61, 394

(2008).

[49] V. Barone, F. Bradamante, and A. Martin, Prog. Part. Nucl.

Phys. 65, 267 (2010).

[50] C. A. Aidala, S. D. Bass, D. Hasch, and G. K. Mallot, Rev.

Mod. Phys. 85, 655 (2013).

[51] H. Avakian, B. Parsamyan, and A. Prokudin, Riv. Nuovo

Cimento 42, 1 (2019).

[52] M. Anselmino, A. Mukherjee, and A. Vossen, Prog. Part.

Nucl. Phys. 114, 103806 (2020).

[53] P. Zavada, Phys. Rev. D 55, 4290 (1997).

[54] P. Zavada, Phys. Rev. D 65, 054040 (2002).

[55] P. Zavada, Phys. Rev. D 67, 014019 (2003).

[56] A. V. Efremov, O. V. Teryaev, and P. Zavada, Phys. Rev. D

70, 054018 (2004).

[57] P. Zavada, Eur. Phys. J. C 52, 121 (2007).

[58] A. V. Efremov, P. Schweitzer, O. V. Teryaev, and P. Zavada,

Phys. Rev. D 80, 014021 (2009).

[59] P. Zavada, Phys. Rev. D 83, 014022 (2011).

[60] H. Avakian, A. V. Efremov, P. Schweitzer, O. V. Teryaev, F.

Yuan, and P. Zavada, Mod. Phys. Lett. A 24, 2995 (2009).

[61] A. V. Efremov, P. Schweitzer, O. V. Teryaev, and P. Zavada,

Phys. Rev. D 83, 054025 (2011).

[62] P. Zavada, Phys. Rev. D 85, 037501 (2012).

[63] P. Zavada, Phys. Rev. D 89, 014012 (2014).

[64] P. Zavada, Phys. Lett. B 751, 525 (2015).

[65] P. Zavada, arXiv:1911.12703.

[66] R. P. Feynman, Photon-Hadron Interactions (CRC Press,

Reading, 1972).

[67] R. L. Jaffe and X. D. Ji, Nucl. Phys. B375, 527 (1992).

[68] F. Yuan, Phys. Lett. B 575, 45 (2003).

[69] A. Courtoy, F. Fratini, S. Scopetta, and V. Vento, Phys.

Rev. D 78, 034002 (2008).

[70] H. Avakian, A. V. Efremov, P. Schweitzer, and F. Yuan,

Phys. Rev. D 78, 114024 (2008).

[71] A. Courtoy, S. Scopetta, and V. Vento, Phys. Rev. D 79,

074001 (2009).

[72] H. Avakian, A. Efremov, P. Schweitzer, and F. Yuan, Phys.

Rev. D 81, 074035 (2010).

[73] R. Jakob, P. J. Mulders, and J. Rodrigues, Nucl. Phys.

A626, 937 (1997).

[74] L. P. Gamberg, G. R. Goldstein, and M. Schlegel, Phys.

Rev. D 77, 094016 (2008).

[75] I. C. Cloet, W. Bentz, and A.W. Thomas, Phys. Lett. B

659, 214 (2008).

[76] A. Bacchetta, F. Conti, and M. Radici, Phys. Rev. D 78,

074010 (2008).

[77] J. She, J. Zhu, and B. Q. Ma, Phys. Rev. D 79, 054008

(2009).

[78] Z. Lu and I. Schmidt, Phys. Lett. B 712, 451 (2012).

[79] T. Maji, C. Mondal, D. Chakrabarti, and O. V. Teryaev,

J. High Energy Phys. 01 (2016) 165.

[80] T. Maji and D. Chakrabarti, Phys. Rev. D 94, 094020

(2016).

[81] T. Maji and D. Chakrabarti, Phys. Rev. D 95, 074009

(2017).

[82] D. Diakonov, V. Petrov, P. Pobylitsa, M. V. Polyakov, and

C. Weiss, Nucl. Phys. B480, 341 (1996).

[83] D. Diakonov, V. Petrov, P. Pobylitsa, M. Polyakov, and C.

Weiss, Phys. Rev. D 56, 4069 (1997).

[84] L. P. Gamberg, H. Reinhardt, and H. Weigel, Phys. Rev. D

58, 054014 (1998).

[85] P. V. Pobylitsa, M. V. Polyakov, K. Goeke, T. Watabe, and

C. Weiss, Phys. Rev. D 59, 034024 (1999).

[86] K. Goeke, P. V. Pobylitsa, M. V. Polyakov, P. Schweitzer,

and D. Urbano, Acta Phys. Pol. B 32, 1201 (2001).

STRUCTURE OF THE NUCLEON AT LEADING AND … PHYS. REV. D 103, 014024 (2021)

014024-17



[87] M. Wakamatsu, Phys. Lett. B 509, 59 (2001).

[88] P. Schweitzer, D. Urbano, M. V. Polyakov, C. Weiss, P. V.

Pobylitsa, and K. Goeke, Phys. Rev. D 64, 034013 (2001).

[89] P. Schweitzer, Phys. Rev. D 67, 114010 (2003).

[90] M. Wakamatsu and Y. Ohnishi, Phys. Rev. D 67, 114011

(2003).

[91] Y. Ohnishi and M. Wakamatsu, Phys. Rev. D 69, 114002

(2004).

[92] C. Cebulla, J. Ossmann, P. Schweitzer, and D. Urbano,

Acta Phys. Pol. B 39, 609 (2008).

[93] M. Wakamatsu, Phys. Rev. D 79, 094028 (2009).

[94] P. Schweitzer, M. Strikman, and C. Weiss, J. High Energy

Phys. 01 (2013) 163.

[95] B. Pasquini, S. Cazzaniga, and S. Boffi, Phys. Rev. D 78,

034025 (2008).

[96] B. Pasquini and F. Yuan, Phys. Rev. D 81, 114013 (2010).

[97] S. Boffi, A. V. Efremov, B. Pasquini, and P. Schweitzer,

Phys. Rev. D 79, 094012 (2009).
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