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Abstract

Wearable devices have been increasingly used in research to provide continuous physical

activity monitoring, but how to effectively extract features remains challenging for research-

ers. To analyze the generated actigraphy data in large-scale population studies, we devel-

oped computationally efficient methods to derive sleep and activity features through a

Hidden Markov Model-based sleep/wake identification algorithm, and circadian rhythm fea-

tures through a Penalized Multi-band Learning approach adapted from machine learning.

Unsupervised feature extraction is useful when labeled data are unavailable, especially in

large-scale population studies. We applied these two methods to the UK Biobank wearable

device data and used the derived sleep and circadian features as phenotypes in genome-

wide association studies. We identified 53 genetic loci with p<5×10−8 including genes

known to be associated with sleep disorders and circadian rhythms as well as novel loci

associated with Body Mass Index, mental diseases and neurological disorders, which sug-

gest shared genetic factors of sleep and circadian rhythms with physical and mental health.

Further cross-tissue enrichment analysis highlights the important role of the central nervous

system and the shared genetic architecture with metabolism-related traits and the metabolic

system. Our study demonstrates the effectiveness of our unsupervised methods for wear-

able device data when additional training data cannot be easily acquired, and our study fur-

ther expands the application of wearable devices in population studies and genetic studies

to provide novel biological insights.

Author summary

While wearable devices have been increasingly used in research for objective and continu-

ous activity monitoring, how to effectively extract sleep and rest-activity circadian rhythm

features remains the major obstacle for researchers, especially in population studies where
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labeled outcome data such as sleep diaries are unavailable and thus existing supervised

methods cannot be applied. Here, we developed unsupervised feature extraction methods

based on machine learning without the need for labeled outcome data. We applied the

methods to population wearable device data to extract sleep and circadian features, and

we further identified novel associated loci and the key roles of the central nervous system

and the metabolic system. The findings are essential for understanding the underlying

shared genetic architecture of sleep and circadian rhythms with physical and mental

health, and the proposed methods can largely expand and promote the use of wearable

device data in population and genetic studies.

Introduction

Sleep is essential for human health and well-being, and changes in sleeping patterns or

habits can negatively affect health, leading to physical and mental disorders [1–4]. The corre-

sponding sleep-wake circadian rhythm is also essential for human health. Circadian rhythms

are endogenous biological processes that follow a period of approximately 24 hours and are

entrained by environmental stimuli such as the light/dark cycle to adjust the 24-hour cycle [5].

The circadian system is important for sleep regulation, and dysregulated sleep-wake circadian

rhythms can cause diseases including sleep disorders, metabolic syndrome, and psychiatric

and neurodegenerative diseases [6–8]. While it is vital to obtain a thorough understanding of

the important roles of sleep and circadian rhythms in human health, they still remain poorly

understood.

Actigraphy has been increasingly used in sleep and circadian studies, as it can provide con-

tinuous and objective activity monitoring and is low-cost and easy to wear. Actigraphy can

address some of the limitations with traditional sleep diaries, including subjectivity, bias, diffi-

culty in completion by young children or patients, and extra manual work for caregivers.

While polysomnography (PSG) as the “gold standard” in sleep studies does not have the same

issues as sleep logs, it is limited by high costs, in-lab setting, intrusive measures, and difficulty

in long-time monitoring. The continuous and objective measures provided by actigraphy can

provide reliable information on sleep [9], and it is especially useful for studying long-duration

circadian rhythms. In cases of large-scale epidemiological studies, the availability of actigraphy

data provides excellent opportunities for studying population-level and individual-level sleep

characteristics and circadian rhythm patterns. However, the analysis of actigraphy data

remains a major obstacle for researchers.

One major challenge in the application of actigraphy is to extract sleep and circadian

rhythm features without additional information, such as sleep diaries and/or PSG validation

that are often unavailable or labor-intensive to collect. To extract sleep features such as sleep

start, sleep end, and sleep duration, it is typical to either obtain the gold-standard PSG records

or obtain sleep dairies on go-to-sleep time and wake-up time to build sleep identification algo-

rithms [10–13]. To ease researcher’s efforts in collecting additional data and still accurately

infer sleep features, there is a need to develop necessary methodology to infer sleep parameters

based on actigraphy in the absence of sleep records. The method will be useful in circadian

studies where PSG for long-time monitoring cannot be acquired and continuous activity logs

requires much manual work. It is also particularly useful in large-scale epidemiological studies

where collecting PSG for all participants is unrealistic and recording sleep logs is labor-

intensive.

In this paper, we analyzed data from the UK Biobank study, where accelerometer data from

over 100,000 participants and genetic data from near 500,000 participants are available. We
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applied novel data processing methods to the accelerometer data from 90,515 participants

after quality control procedures to automatically extract sleep and circadian rhythm features.

The features were then utilized in genome-wide association studies (GWAS). Our study differs

from previous studies in that we take on unsupervised and individualized approaches for fea-

ture extraction and that we extracted new features for further genetic analysis, such as activity

levels during sleep and periodic features. Among previous studies using UK Biobank wearable

device data, Doherty et al. 2018 predicted activity types using a random forest algorithm

trained with additional labelled data in a separate study, classified activities into sleep, seden-

tary, walking and moderate intensity activity behaviors, and further conducted GWAS [14,

15]. Dashti et al. 2019 and Jones et al. 2019 studied sleep related characteristics using self-

reported measures and device-based measures with a heuristic algorithm inferring posture

changes and possible sleep behaviors based on variance in the estimated z-axis angle, and

information such as sleep duration, sleep midpoint and sleep quality were used as traits in

GWAS [16, 17].

Our study proposed new unsupervised and individualized approaches for wearable device

data analysis and extracted new features such as activity levels during sleep, chronotype-related

features, and periodic features for further genetic analysis. Unsupervised approaches can be

widely applied to population studies without the need of additional studies for collecting

labeled data, and individualized approaches can well account for individual variations and cap-

ture individual characteristics. Using new features for GWAS and post-GWAS analysis, our

study provides new insights into the molecular regulation and genetic basis of sleep and circa-

dian rhythms.

The analysis pipeline for automatic sleep and circadian feature extraction from wearable

device data and further GWAS is summarized in Fig 1. We identified 19 and 34 genetic loci

associated with sleep traits and circadian rhythm traits at p<5×10−8 respectively, of which 5 and

13 loci reached the significance level p<5×10−9. Further tissue enrichment analysis highlights

the important roles of the central nervous system and the metabolic system, thereby providing

new insights into the molecular regulation and genetic basis of sleep and circadian rhythms.

Results

Loci associated with sleep-activity traits and circadian traits

The Manhattan plots of GWAS results for HMM inferred sleep and activity traits are shown in

S1 Fig. The heritability estimates from LD score regression [18] for mean activity levels during

sleep and during wake are ~5% and ~7%, respectively. For mean activity levels during sleep,

four independent regions on chromosomes 2, 5, 6, and 14 contained significant SNPs with p-

value < 5×10−8, two of which had p-values < 5×10−9 (Table 1). The strongest association sig-

nal was on chromosome 2 at SNPs within gene MEIS1, known for association with Restless

Leg Syndrome and Insomnia [19–22]. The other three genetic loci were rs188904275 in JAK-

MIP2 (p-value = 3.7×10−8), rs184670665 near IMPG1 (p-value = 2.4×10−10), and rs73586669

near OR4E1 (p-value = 2.4×10−8), with JAKMIP2 previously found to be associated with Body

Mass Index (BMI) measurements and pulmonary diseases [23]. These novel loci were not pre-

viously associated with activity levels during sleep. SNP rs7087063 in gene CELF2 on chromo-

some 10 was found to be associated with the HMM estimated activity variability during wake

(p-value = 3.0×10−8), and we note that CELF2 was previously found to be associated with Alz-

heimer’s disease [24] (Table 1). No association was detected for HMM estimated activity vari-

ability during sleep or mean activity levels during wake. The QQ-plots checking for population

stratification indicate that the population structure was properly controlled for, with small val-

ues of the inflation factor λ under 1.04 (S2 Fig).
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Fig 1. The pipeline of analyzing wearable device data and using extracted sleep and circadian features in genome-wide association studies.

https://doi.org/10.1371/journal.pgen.1009089.g001
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The Manhattan plots of GWAS results for sleep duration, sleep start and sleep end traits are

shown in S1 Fig. The heritability estimates from LD score regression [18] for sleep start and

sleep end are ~8% and ~7%, respectively. SNP rs573901234 near gene JHDM1D-AS1 on chro-

mosome 7 was associated with short sleep duration < 5 hours (p-value = 1.4×10−8), and five

SNPs were associated with long sleep duration > 10 hours, among which rs74460673 at gene

TMEM39B was previously found to be associated with BMI [25, 26] and rs573982927 at

MYO3B was associated with obesity traits [27, 28] (Table 2).

Twenty seven SNPs were found to be associated with sleep start, including three SNPs at or

near gene MEIS1 related to Restless Leg Syndrome and insomnia [19–22] and nineteen SNPs

at gene BTBD9 also related to Restless Leg Syndrome [29] (S1 Table). Sleep start is also associ-

ated with one SNP at gene CYP7B1 related to BMI, two SNPs near gene HSD17B12 related to

BMI [25, 30, 31], two SNPs near MIR129-2 also related to BMI [25, 26] and Alzheimer’s Dis-

ease [32], and two SNPs near LOC101928944 related to schizophrenia [33, 34]. As for sleep

end, association signals were found for five SNPs in the intergenic regions near LINC02260,

which is known to be related to red blood cell measures such as cell counts and hemoglobin

Table 1. The SNPs identified in genome-wide association studies at the significance level of 5 × 10−8 that are associated with sleep and activity traits inferred from

accelerometer-measured physical activity in 90,515 UK Biobank participants.

Trait Chr Position ID Novel Function Transcription

Factor

Binding Site

Nearest Gene Risk

Allele

BETA SE P

Mean Activity During Sleep 2 66745864 rs62144053 No intronic Yes MEIS1 G 0.049 0.008 3.07E-

09

2 66747480 rs62144054 No intronic No MEIS1 G 0.048 0.008 6.17E-

09

2 66750564 rs113851554 No intronic No MEIS1 G 0.091 0.011 1.71E-

17

2 66785180 rs11679120 No intronic Yes MEIS1 G 0.089 0.012 6.27E-

14

2 66799986 rs11693221 No downstream Yes MEIS1(dist = 95) C 0.089 0.012 3.91E-

14

5 147129599 rs188904275 Yes intronic Yes JAKMIP2 A -0.241 0.044 3.71E-

08

6 77084619 rs184670665 Yes intergenic Yes IMPG1

(dist = 302224)

A -0.518 0.082 2.42E-

10

14 22575973 rs73586669 Yes intergenic Yes OR4E1

(dist = 436741)

T -0.401 0.072 2.45E-

08

Activity Variability During

Wake

10 11355672 rs7087063 Yes intronic No CELF2 G 0.027 0.005 2.96E-

08

https://doi.org/10.1371/journal.pgen.1009089.t001

Table 2. The SNPs identified in genome-wide association studies at the significance level of 5 × 10−8 that are associated with sleep duration traits inferred from

accelerometer-measured physical activity in 90,515 UK Biobank participants.

Trait Chr Position ID Novel Function Transcription Factor

Binding Site

Nearest Gene Risk Allele BETA SE P

Sleep Duration < 5h 7 139916399 rs573901234 Yes intergenic No JHDM1D-AS1

(dist = 36959)

T 3.294 0.210 1.44E-08

Sleep Duration > 10h 1 32558622 rs74460673 Yes intronic Yes TMEM39B A 3.822 0.242 2.96E-08

2 171183777 rs573982927 Yes intronic No MYO3B T 3.460 0.227 4.45E-08

4 139129025 rs182651559 Yes intronic Yes SLC7A11 T 4.989 0.280 9.72E-09

8 131387296 rs571444813 Yes intronic No ASAP1 T 5.568 0.314 4.62E-08

22 24204438 rs138381486 Yes intronic Yes SLC2A11 T 1.797 0.107 4.54E-08

https://doi.org/10.1371/journal.pgen.1009089.t002
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content [35], and blood cell information is also known to be associated with sleep deprivation

and sleep disorders [36–38]. Sleep end is also associated with one SNP at gene NTNG1 related

to Restless Leg Syndrome [29] and BMI [25, 39], one SNP near LINC00963, and one SNP near

GLRX3.

From the penalized multi-band learning approach, the most dominant periodicities are:

1-day, 1/2-day, and 1/3-day. The Manhattan plots for the GWAS results are shown in S1 Fig.

The heritability estimate from LD score regression [18] for the circadian feature 1-day

periodicity is 9%. For the strength of 1-day periodicity, five circadian SNPs were identified:

rs189005747 at gene XKR4 (p-value = 9.9×10−9), rs534035399 at LINC01508 (p-value =

1.8×10−9), rs144874087 near LINC01935 (p-value = 1.9×10−8), rs181820530 near LINC01935

(p-value = 4.5×10−8), and rs554696049 at LINC01501 (p-value = 4.8×10−8), in which XKR4

was previously found to be associated with thyroid stimulating hormone [40–42] and coronary

artery disease, and LINC01508 and LINC01501 are RNA genes (shown in S2 Table).

1/2-day periodicity measures the strength of day-night rhythmicity [43] and the strongest

association signals (p-value < 5×10−9) were detected in the intergenic regions near

UBE2F-SCLY and FBXO15 and in the intronic regions at FYB1 and CFAP44, in which inter-

genic regions near FBXO15 were previously found to be associated with insomnia [44] and

FYB1 was associated with depression [45, 46]. There were also association signals for SNP clus-

ters in the intergenic regions near gene TNR as well as for SNPs at RASEF, TMEM132D,

ERCC2, MPPED1 and near BRINP3, LINC01287, and MLYCD (p-value < 5×10−8; S2 Table).

1/3-day periodicity measures the 1/3-day rhythmicity that not only involves activities dur-

ing the day but also captures activities during sleep [43]. The strongest signals (p-value < 5×10−-

9) were identified at SNP clusters in the intergenic regions near BRINP3, URB2, GRIA1 and

LOC400682 and in the intronic regions at MGAT5, C3orf20, and LINC01861, where BRINP3

was associated with BMI measurement [25, 26, 31], depression [47], and rheumatoid arthritis

[48], and GRIA1 was associated with schizophrenia [33, 49, 50] and circadian rhythm [51]. A

cluster of five SNPs at CDH6 reached significance level at 5×10−8, and CDH6 was associated

with resting heart rates [52]. Details on other novel SNP associations are listed in S2 Table.

QQ-plots show that the estimated values of the inflation factor λ are under 1.07 and that the

population structure was properly controlled for (S2 Fig).

With respect to the quality control procedures for all GWAS, the inflation factor λ was

under 1.12 for all traits considered, suggesting appropriate control of population structure in

the analysis (S2 Fig). LD Score intercepts estimated using LD score regression [18] were in the

range of 0.99–1.02, indicating that the genomic inflation was due to polygenic architectures

rather than uncorrected population structure. Further, we estimated partitioned heritability

[53] using ten broad tissue categories and no tissue was significantly enriched. For all sleep

time-related traits, the adrenal/pancreatic tissues were relatively more enriched than the other

tissues (Fig 2). For activity levels during sleep, the cardiovascular tissues were relatively more

enriched compared to the other tissues (Fig 2).

For sleep time-related traits and 1-day periodicity, the adrenal/pancreatic tissues were rela-

tively more enriched than the other tissues (Fig 2). It is known that cortisol released from the

adrenal cortex exhibits a diurnal rhythm, with a steady rise during sleep and a peak in the

morning to prepare for stresses associated with wakefulness and increased activity [54]. Insulin

secreted from pancreas also exhibits a diurnal rhythm with a peak at around 5pm and a nadir

at 4am in the morning, consistent with changes in nutrient storage in the awake/fed state and

the sleep/fasted state [54]. For activity levels during sleep, the cardiovascular tissues were rela-

tively more enriched compared to the other tissues (Fig 2). Clinical and laboratory studies

have shown bidirectional effects between sleep and the cardiovascular system, and in particu-

lar, arousals from sleep, which are common in normal sleep, and body movements are
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associated with vigorous responses in the cardiovascular system and marked changes in the

sleep-related pattern of cardiovascular activities [55, 56].

Genetic correlation of sleep and daily rhythm with other traits

To further investigate the relationships of sleep and circadian traits with other complex traits,

we estimated genetic correlation with a number of traits, including screen exposure, sleep,

mental health, BMI and diet, alcohol consumption, shift-work, and diseases such as respiratory

diseases and anemia (S3 Table) and we set the statistical significance threshold at 7.9 × 10−5

through Bonferroni correction (12 sleep and circadian traits × 53 traits). For sedentary and

screen exposure traits, we observed significant negative genetic correlation of time spent

watching TV or using computer with the strength of circadian rhythmicity (correlation =

-0.300, p = 2.1 × 10−12 and correlation = -0.294, p = 5.7 × 10−10, respectively), and we also

observed significant negative correlation of time spent using computer with sleep duration,

sleep start (go to bed early), and activity levels during the wake status(correlation = -0.238,

p = 2.7 × 10−7; correlation = -0.353, p = 3.5 × 10−5 and correlation = -0.200, p = 1.8 × 10−22

respectively). There was positive genetic correlation between the time spent watching TV and

activity levels during sleep (correlation = 0.203, p = 7.3 × 10−5). For BMI and diet related traits,

we observed significant negative genetic correlation between BMI and weight with the strength

of circadian rhythm (1-day periodicity), activity levels when awake, and sleep duration (all

negative correlations with p-values < 7.9 × 10−5). We did not observe significant genetic corre-

lation with mental health traits, alcohol consumption, shift-work, and respiratory diseases

either. While the genetic correlation with anemia was not significant, there was moderate posi-

tive genetic correlation between activity levels during sleep and iron deficiency anemia (corre-

lation = 0.404, p = 6.8 × 10−3), and iron deficiency is known to be associated with poor sleep

quality [57] and restless legs syndrome [58, 59].

We also observed significant positive genetic correlation between accelerometer-derived

and self-reported sleep duration, between accelerometer-derived sleep start/end and self-

reported chronotypes, and between accelerometer-derived sleep end and self-reported hyper-

somnia (all p-values < 7.9 × 10−5). These results suggest agreement between accelerometer-

derived measures and self-reported measures for sleep time and are also consistent with previ-

ous studies [17]. We did not observe significant genetic correlation of accelerometer-derived

measures with sleep disorders, possibly because the ambiguity in the definition of sleep disor-

ders. We did not observe significant genetic correlation between accelerometer-derived activ-

ity level measures and self-reported physical activity measures.

For the significant trait-pair of BMI and 1-day periodicity denoting the strength of circa-

dian rhythm, we further conducted two-sample Mendelian Randomization (MR) analysis

using GWAS summary statistics from the GIANT study [31]. The estimated causal effects

across different MR estimation methods are negative for both directions but were not statisti-

cally significant (S6 Table).

Cross-tissue transcriptome-wide association analysis

We applied UTMOST [60] to perform tissue enrichment analysis in 44 tissue types and identi-

fied single-tissue and cross-tissue gene-trait associations. For single-tissue tests, 124 gene-trait

pairs were identified (S4 Table). There were 43 unique genes in total and 16 gene-trait pairs

Fig 2. Partitioned heritability enrichment analysis across 10 broad tissue types for activity, sleep, and circadian

traits.

https://doi.org/10.1371/journal.pgen.1009089.g002
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were identified in more than one tissue type (p-values < 3.3×10−6 after Bonferroni correction

for 15,000 genes [60]). Among them, the GLTP-sleep duration pair was identified in 38 tissue

types, which is a novel association not reported in previous studies, and GLTP is related to

Glycolipid Transfer Protein for protein binding and lipid binding [61]. L3MBTL2, Lethal (3)

malignant brain tumor-like protein 2 related to protein binding and DNA regulation [62], was

associated with more than one trait, including activity levels during sleep and wake as well as

the circadian rhythm, and the three L3MBTL2-trait pairs were all significant in the subcutane-

ous adipose tissues. Most genes that appeared in more than one gene-trait pair have functions

in protein binding, including CEP70, GIPC2, TRAF3, ABCD2, LIMS1, SEPN1. BRSK1 and

LRFN4 are related to neurotransmitter activities [62]. TREH is related to digestion and galac-

tose metabolism [62], and the TREH-sleep start pairs are significant in mucosa esophagus,

stomach, and transverse colon, all of which belong to the digestive system. Among all 44 tissue

types, subcutaneous adipose, brain anterior cingulate cortex, and skeletal muscles are most

enriched with seven gene-trait pairs (Fig 3). Tissue enrichment analysis through UTMOST

identified novel genes associated with sleep and circadian traits and highlighted the relevance

of tissues in the central nervous system and the metabolic system in sleep and circadian

regulation.

Joint tests for gene-trait associations across tissues identified 34 gene-trait pairs with

p-values < 3.3×10−6 after Bonferroni correction for 15,000 genes [60] and 20 gene-trait pairs

with p-values < 3.3×10−7 if Bonferroni correction further adjusts for 10 traits tested (S5

Fig 3. Tissue enrichment analysis across 44 tissue types for activity, sleep, and circadian rhythm traits.

https://doi.org/10.1371/journal.pgen.1009089.g003
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Table). Three genes, CA7, DYNC1LI1, and ELMOD2, were associated with more than one

trait. CA7 was associated with activity levels during sleep and activity levels during wake, and

in previous studies its expression in brain was associated with neurological disorders [63].

DYNC1LI1 was associated with sleep duration and daily rhythmicity and its functions are

RNA binding [64] and protein binding [65]. ELMOD2 was associated with activity variability

during wake, sleep duration, sleep end and daily rhythmicity and its function may be related to

respiratory diseases [66]. Among gene-trait pairs, GRIA1 was also identified in GWAS analysis

and was associated with circadian rhythms and sleep traits in previous studies [44, 51], and its

functions involve amyloid-beta binding in hippocampal neurons and ionotropic neurotrans-

mitter receptor activities [67]. Gene Ontology (GO) enrichment analysis using DAVID [68]

did not identify significant enrichment among different GO terms.

Discussion

Using information related to sleep and activity inferred from the UK Biobank accelerometer

data, we identified five genetic loci associated with HMM derived sleep related traits. The asso-

ciation of activities during sleep with restless leg syndrome, obesity, and pulmonary diseases

may be attributed to the fact that individuals with these traits may be less likely to sleep well at

night and are prone to being restless. Sleep start and end are also strongly associated with Rest-

less Leg Syndrome, as people with this disorder may have difficulty falling asleep or staying

asleep, and because symptoms worsen at night only with a short period in early morning that

is symptom-free, people with Restless Leg Syndrome tend to have late sleep onset [69]. Sleep

duration, sleep start and sleep end are all associated with BMI, consistent with the established

association between sleep and obesity. As previous studies [70] discussed how decreased sleep

duration can elevate obesity risks and how sleep disorders can increase risks for chronic health

conditions, our study also provides evidence of genetic correlations among sleep, metabolism

and obesity. For sleep end, it is interesting to identify SNPs near LINC02260, which was previ-

ously found to be associated with red blood cell related measures [35]. It is known from previ-

ous studies that sleep deprivation and sleep disorders can lead to changes in metabolism with

altered red blood cell measurements such as increased red blood cell counts [36–38]. Thus, our

study also suggests the link between sleep and blood cell metabolism, and the complex rela-

tionship remains to be studied.

For circadian and daily rhythm analysis, we were able to identify 13 loci associated with

periodic traits. The SNPs located at FBXO15 and GRIA1 were associated with circadian

rhythms and sleep traits in previous studies [44, 51], and the associations of SNPs in XKR4

and CDH6 with thyroid stimulating hormones and resting heart rates can be explained by the

circadian oscillation natures of hormones and heart rates [71, 72]. These association results

suggest that the Penalized Multi-band Learning approach [43] is effective in extracting clini-

cally meaningful circadian features from objective physical activity measures. Furthermore, we

identified novel associations for SNPs at or near FYB1, GRIA1, CDH6 and BRINP3, which are

associated with BMI and mental problems, suggesting shared genetics between sleep-wake cir-

cadian rhythms and multiple traits.

Our study found that sleep and physical activity are closely related to mental and neurologi-

cal problems, as the identified SNPs/loci from our GWAS results were also associated with

traits including depression, schizophrenia and Alzheimer’s disease. Our cross-tissue transcrip-

tome-wide association analysis also implied the important role of the central nervous system

in physical activity, sleep, and circadian rhythm. Our results are consistent with previous UK

Biobank studies [14, 73] and confirmed the shared genetic architectures of sleep and physical

activity with mental health and neurological disorders.
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Our study shows strong evidence for shared genetics of activity and circadian rhythm with

metabolism-related traits and the metabolic system. In addition to GWAS results that suggest

shared genetic architecture with BMI, genome-wide genetic correlation estimates also provide

strong evidence that a higher BMI is associated with lower physical activity levels and weaker

daily rhythmicity. Furthermore, our UTMOST cross-tissue transcriptome-wide association

analyses also implicate that the adipose tissues and skeletal muscle tissues, which are mostly

related to metabolism and physical activity, may have important roles as they together with the

brain cortex are most enriched. Our study suggests the complex interplay among activity, cir-

cadian rhythm, metabolic phenotypes and the central nervous system.

We also note that the gene TREH, which was identified in UTMOST tissue enrichment

analysis and whose function is related to digestion and galactose metabolism, is associated

with sleep start in esophagus, stomach and colon that all belong to the digestive system, sug-

gesting the link between digestion and sleep. From daily experience, a heavy dinner or an

empty stomach may affect the ability to fall asleep, and on the other hand, insomnia may also

affect the digestive system. It is known from previous studies [57, 74, 75] that sleep problems

are associated with gastrointestinal problems and digestive disorders such as gastroesophageal

reflux disease and irritable bowel syndrome. We are just beginning to dissect the underlying

genetic architecture of sleep, and details on the complex relationships of sleep with the central

nervous system and the metabolic system remain to be studied.

This study demonstrates the utility of device measures by presenting applications of popula-

tion-level objective physical activity data in genetic studies, using novel methods to effectively

extract sleep, activity and daily rhythm features. Our results show that accelerometer-derived

sleep duration and sleep start/end correlate well with self-reported sleep duration, chrono-

types, and hypersomnia. There are discrepancies between accelerometer-derived and self-

reported physical activity measures, which may be due to commonly observed self-report bias,

as people tend to overestimate their daily activity and underestimate sedentary behaviors [76].

The HMM-based algorithm can classify sleep/wake epochs, and the estimated HMM parame-

ters can further be used as sleep and activity related features directly: mean activity levels and

activity variability during sleep or wake can characterize individual sleep-activity patterns

effectively [77]. In a similar manner, the Penalized Multi-band Learning approach [43] can

identify the population-level dominant periodic information that depicts daily rhythms, and

further, individual variations in the strength of periodic signals can be utilized as circadian and

daily rhythm features in further analyses. Our study effectively extracted periodic features

from objective physical activity data and utilized them in genetic studies to examine the genetic

architecture of circadian and daily rhythms.

Our study promotes the utility of objective activity measures in sleep and physical activity

studies when coupled with automated algorithms. The HMM-based sleep/wake identification

algorithm and the Penalized Multi-band Learning approach are particularly useful in large-

scale population studies where additional sleep validation data are unavailable and manual

data examination is labor-intensive and not feasible. More statistical methods are needed to

expand and promote the application of actigraphy in clinical and epidemiological studies. Our

current circadian study focuses on periodicities, and we will develop new methodology such as

functional analysis to extract new dimensions of information and fully exploit actigraphy data

in our future work.

In summary, using large-scale population studies like the UK Biobank study with objective

physical activity data and genetic data available, we were able to extract meaningful sleep,

activity and circadian variables from time-series data using automated algorithms and further

conduct genetic analysis to deepen our understanding of the underlying genetic structure. Our

study demonstrates the effectiveness of our methods and the utility of device-based activity
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data in sleep and circadian studies. Our methods can help expand the application of wearable

device data in health studies and further provide novel insights into the shared genetic archi-

tectures of sleep, activity, and circadian rhythms with metabolic and neurological traits.

Methods

Data

Data were collected from the UK Biobank study [78], a longitudinal population-based study

with around 500,000 participants living in the UK. Genetic data from 487,409 participants

were available when we accessed the UK Biobank data [78, 79] in September, 2017. The dataset

includes around 96 million single nucleotide polymorphisms (SNPs), including imputation

based on the UK10K haplotype, 1000 Genomes Phase 3, and Haplotype Reference Consortium

(HRC) reference panels [79]. We applied filters to exclude SNPs with Minor Allele

Frequency < 0.1%, Hardy-Weinberg equilibrium < 1e-10 and imputation quality score

(UKBB information score [79]) < 0.8. After these steps, a total of 11,024,754 SNPs remained

in further analyses.

Besides genetic data, a subset of 103,712 UK Biobank participants agreed to have their

objective physical activity data [80] collected, and they were asked to wear an Axivity AX3

wrist accelerometer for seven consecutive days from 2013 to 2015. The device has been dem-

onstrated to provide equivalent output to the GENEActiv accelerometer, which has been vali-

dated against free-living energy expenditure assessment methods [81–83]. This study was

covered by the general ethical approval for UK Biobank studies from the National Research

Ethics Service by National Health Service on 17th June 2011 (Reference 11/NW/0382). The

accelerometer dataset that we acquired in September of 2017 consists of data in the activity

count format summarized every five-second epoch from 103,706 participants. We applied sim-

ilar quality control procedures as other accelerometer studies [84]. We excluded individuals

with flagged data problems, poor wear time, poor calibration, recorded interrupted periods, or

inability to calibrate activity data on the device worn itself requiring the use of other data. We

also excluded individuals if the number of data recording errors was greater than 3rd quartile

+ 1.5×IQR. After pre-processing, 92,631 individuals remained, and 90,515 of them had geno-

typing data that were available for further genetic analyses.

Identification of loci associated with sleep and circadian rhythms

Sleep and circadian rhythm phenotypes were derived from accelerometer data. The analysis

pipeline is summarized in Fig 1. For sleep, because it is a large-scale population study and no

validation sleep logs are available, we need unsupervised algorithms to extract sleep features

from accelerometer data. Specifically, we developed an unsupervised sleep-wake identification

algorithm [77] based on Hidden Markov Model (HMM) [85, 86] to infer the sequence of “hid-

den states” of sleep or wake for each individual. This HMM can be directly applied to summary

activity count data, which are widely used activity data formats that can save storage space,

lengthen the duration of use of wearable devices, and increase computational efficiency. HMM

assumes that in the sleep state or the wake state, activity counts follow different distributions as

activity counts tend to be fewer in the sleep state compared to those in the wake state [77]. We

used log transformation of activity counts and assumed that they follow different Gaussian dis-

tributions to infer the sequence of “hidden states” [77].

In our model, we consider the log transformed data: log(count+1) as the observed data,

because the large range of observed activity counts from zero to several thousand per epoch

poses both statistical and computational challenges in data analysis. Our empirical results sug-

gest that the HMM algorithm works well for the log transformed data. We observe activity
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count data from time 1 to time T: O(T) = {O1, O2,. . .,OT}. Let X(T) = {X1, X2,. . .,XT} denote the

sequence of the corresponding hidden states across these T time points, where each Xi can be

one of the two possible hidden states S = {s1, s2} in each epoch, with s1 denoting the sleep state

and s2 denoting the wake state. We assume that Xi follows a Markov model, that is the hidden

state Xt+1 at time t+1 solely depends on Xt, and the observation Ot at time t solely depends on

the hidden state Xt.

A denotes the 2 by 2 transition probability matrix, in which aij represents the transition

probability from state si to state sj. The emission probability P(Ot|Xt) denoted by B depends on

the state of Xt. If Xt = s1 in the sleep state, we assume that the log transformed count follows

zero-inflated truncated Gaussian distribution, which is truncated from 0 to the left. It has a

zero component because sleep is associated with rare movements and activity measurements

during sleep often involve many zeros. Therefore, the emission probability b1(0) of observing 0

and the emission probability b1(k) of observing k are as follows:

b1 0ð Þ ¼ P Ot ¼ 0jXt ¼ s1ð Þ ¼ a þ 1 � að Þ �

1

s1
�

0�m1

s1

� �

1 � F
0�m1

s1

� �

b1 kð Þ ¼ P Ot ¼ kjXt ¼ s1ð Þ ¼ 1 � að Þ �

1

s1
�

k�m1

s1

� �

1 � F
0�m1

s1

� �

where α is the probability of extra zeros, μ1 is the mean, σ1 is the standard deviation, ϕ(�)is the

probability density function of the standard normal distribution, and F(�) is its cumulative dis-

tribution function.

If Xt = s2 in the wake state, we assume that the log transformed count follows the Gaussian

distribution:

b2 kð Þ ¼ P Ot ¼ kjXt ¼ s2ð Þ ¼
1

s2

�
k � m2

s2

� �

where μ2 is the mean and σ2 is the standard deviation of the Gaussian distribution.

Therefore, the set of parameters for the emission probability is B = {B1, B2} = {α, μ1, σ1, μ2,

σ2}. To initiate the Markov chain, we also need the initial state probabilities P = {π0, π1}.

HMM can be fully specified by Θ = {A, B, P}. To obtain Θ� = argmaxΘ P{O(T)|Θ}, we can use

the Baum-Welch algorithm, and we further look for the optimal path of hidden states XðTÞ�
¼

argmaxXðTÞ PfXðTÞ;OðTÞY
�
g using the Viterbi algorithm [87]. The optimal hidden states XðTÞ�

are exactly the sequence of inferred sleep/wake states. R code for implementing the HMM

algorithm is at https://github.com/xinyue-L/hmmacc.

Besides the inferred sequence of sleep/wake states, the HMM parameters estimated for each

individual, including mean activity levels and variability (standard deviation) for sleep and

wake states, can characterize individual sleep and activity behaviors and therefore were used as

sleep and activity phenotypes. In addition, we inferred sleep duration, sleep start and end

based on the inferred sequence of sleep/wake states. We created two categorical variables as

sleep duration phenotypes indicating whether the sleep duration is < 5 hours or > 10 hours,

the thresholds of which come from the National Sleep Foundation [88] and are not recom-

mended for middle-age and older adults. The inferred sleep start time and sleep end time are

used as phenotypes for the timing of sleep onset and wake-up. Sleep start and sleep end are

related to but not exactly the same as chronotypes, which describe whether a person is a

morning person, getting up early and remaining more active in the day, or a night person,
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remaining more active later of the day and staying up late at night, and chronotypes are usually

measured in self-reported questionnaires. Published work [89] using UK Biobank data has uti-

lized midpoint of sleep, the least active 5 hours of the day, as sleep timing to be compared with

self-reported chronotypes. Here we did not replicate the study but examined timing of sleep

onset and wake-up, as for different types of sleep disorders some people have difficulty falling

asleep while others find it problematic to wake up too early [90].

For circadian rhythm characteristics, we derived circadian features by utilizing the Penal-

ized Multi-Band Learning (PML) approach [43], which extracts periodic information using

Fast Fourier Transform (FFT) and then performs penalized selection based on regularization,

a classic approach used in machine learning [91, 92], to identify population-level dominant

periodicities such as 1-day, 1/2-day, and 1/3-day periodicities that can characterize daily activ-

ity rhythms. The strengths of FFT signals at dominant periodicities are then used as circadian

phenotypes in genetic analysis.

The PML algorithm is briefly described as follows [43]. Let matrix X2Rn×p, where n denotes

the number of individual observations, and p denotes the number of periodicities from FFT.

Specifically, X = (x1, x2,� � �,xp), where xj is the vector of length n for the jth periodicity.

Let Θ be the diagonal matrix selecting columns from X such that X̂ ¼ XY:

Y ¼

y1;1 0 � � � 0

0 y2;2 � � � 0

0 0 . .
. ..

.

0 0 � � � yp;p

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

where 0 �θj,j�1, j = 1,. . .,p. Θ identifies columns of dominant periodicities from X in the way

that dominant periodicities corresponding to nonzero θj,j0s are selected. We minimize the

squared Frobenius norm jjX � X̂jj
2

F, and by using properties of the Frobenius norm, we can

get:

jjX � X̂ jj
2

F ¼ jjX � XYjj
2

F ¼ trððX � XYÞ
T
ðX � XYÞÞ

¼ trðXTX � XTXY � Y
TXTX þ Y

TXTXYÞ

Because XTX is fixed, it is equivalent to minimize:

trðXTXY � Y
TXTX þ Y

TXTXYÞ ¼ �2
X

j

yj;jjjxjjj
2

þ
X

j

y
2

j;jjjxjjj
2

In order to estimate Θ and identify dominant periodicities, we use a penalized selection

method similar to Lasso, a widely used method in shrinkage and feature selection in regression

models that is most effective in selecting a few important features while suppressing other

non-selected features to 0 [92]. In our case, Lasso penalty serves to select a few dominant peri-

odicities through diagonal elements of Θ instead of regression coefficients. Further, we add an

elastic-net like penalty term onto the Frobenius norm, namely a combination of L1 and L2

norms [91]:

g yð Þ ¼ �2
X

j

yj;jjjxjjj
2

þ
X

j

y
2

j;jjjxjjj
2

þ l
1 � a

2

X

j

y
2

j;j þ a
X

j

yj;j

 !

where λ is the tuning parameter and α controls the balance between the L1 and L2 norms.

Note that θj,j’s are nonnegative and thus we do not need to take the absolute value for the L1
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norm. By setting λ large enough, all diagonal elements of Θ, namely all θj,j0s, are suppressed to

zero and no periodicities are selected. As λ decreases, some θj,j0s become nonzero and they cor-

respond to the most dominant periodicities that are selected sequentially according to how

dominant they are.

To minimize g(θ), we take the partial derivative of g(θ) with respect to each θk,k:
@gðyÞ

@yk;k
¼ �2jjxkjj

2
þ 2yk;kjjxkjj

2
þ 1 � að Þlyk;k þ al, which is convex and also subject to the con-

straint 0�θk,k�1. Thus, we have:

ŷk;k ¼ arg mingðyÞ ¼ max
2jjxkjj

2
� al

2jjxkjj
2

� ð1 � aÞl
; 0

 !

If we only have the L1 penalty, α = 1 and ŷk;k ¼ max 2jjxkjj2�l

2jjxkjj2
; 0

� �
. In our case, we use Lasso

L1 penalty alone and train λ, because we want to select the most important periodicities while

suppressing other periodicities to 0.

We use mean squared error (MSE), which is equivalent to the squared Frobenius norm

jjX � X̂ jj
2

F, as the criterion for choosing λ and the number of nonzero θj,j0s (the number of

dominant periodicities selected). We train λ from 2 � max
1�j�p

ðjjxjjj
2
Þ to 0, as l ¼ 2 � max

1�j�p
ðjjxjjj

2
Þ

suppresses all θj,j’s to 0 and λ = 0 gives no penalty. By decreasing λ, we identify dominant peri-

odicities sequentially to characterize the daily sleep-activity rhythm. An R package named

PML has been developed (https://CRAN.R-project.org/package=PML) for the implementation

of the PML algorithm [93].

To identify genetic loci associated with each sleep and circadian phenotype, we conducted

genome-wide association analysis, using PLINK (version 1.9) [94]. We included age, sex, and

the first 20 principal components as covariates when fitting linear models, and we report statis-

tically significant loci using a traditional threshold of 5×10−8. We also highlight results from a

more stringent threshold of 5×10−9 to take into account multiple testing using Bonferroni cor-

rection, which is the same threshold suggested in previous studies [14, 95].

Genetic architecture of sleep and circadian rhythm

To estimate heritability [18], we applied LD score regression [18, 53] with the LDSC tool. We

also conducted partitioned heritability analysis [53] across tissue categories using the same

tool. Significant enrichments for individual traits were identified using the Bonferroni cor-

rected threshold of p < 5 × 10−4 (10 traits ×10 tissue types).

Genetic correlation of sleep and daily rhythms with other traits

To examine the genetic correlation of sleep-activity traits and circadian rhythm traits with

other traits and diseases, we downloaded GWAS summary statistics in the second round of

results from the Neale lab released on August 1, 2018 (http://www.nealelab.is/uk-biobank/).

Specifically, we chose activity related traits including time spent doing moderate or vigorous

physical activity, screen exposure traits including time spent watching television, computer, or

mobile phone, sleep traits such as self-reported sleep duration, chronotypes, and insomnia,

mental health traits related to anxiety and depression, BMI and diet traits, alcohol consump-

tion traits, shift-work traits, and respiratory disease treats. The detailed list of 53 traits are

shown in S3 Table. We calculated cross-trait genetic correlation using GNOVA [96] and high-

light the trait-pairs with Bonferroni corrected p-values < 7.9 × 10−5 (12 sleep and circadian

traits and 53 other traits).
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For significantly correlated trait-pairs, we further investigated causal relationships by con-

ducting bi-directional Mendelian Randomization (MR) analyses. We did not analyze trait-

pairs related to sleep and activity, which have been studied elsewhere [14, 17], but primarily

focused on the circadian rhythm. We performed two-sample MR analysis using publicly avail-

able GWAS summary data extracted from the MR-Base web platform [97]. We used leave-

one-out analysis and single-SNP analysis as sensitivity analyses and considered the inverse-

variance weighted (IVW) approach, MR-Egger [98], weighted median estimation and

weighted mode estimation methods to examine whether there are consistent MR results across

methods.

Cross-tissue transcriptome-wide association analysis

To investigate functional and biological mechanisms underlying sleep-activity and circadian

rhythms, we applied UTMOST [60] that utilizes GWAS summary statistics and integrates

eQTL information to perform tissue enrichment analysis in 44 tissue types and identify single-

tissue and cross-tissue gene-trait associations. The cross-tissue gene-trait association is evalu-

ated via a joint test summarizing single-tissue association statistics and quantifying the overall

gene-trait association. The UTMOST [60] p-value threshold after Bonferroni correction for

15,120 genes is 3.3 × 10−6. Gene ontology enrichment analysis was further conducted using

DAVID [68].
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