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Maximal volume entropy rigidity for RCD*(—(N — 1), N) spaces
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ABSTRACT

For n-dimensional Riemannian manifolds M with Ricci curvature bounded below by —(n — 1),
the volume entropy is bounded above by n — 1. If M is compact, it is known that the equality
holds if and only if M is hyperbolic. We extend this result to RCD*(—(N — 1), N) spaces. While
the upper bound is straightforward, the rigidity case is quite involved due to the lack of a smooth
structure in RCD* spaces. As an application, we obtain an almost rigidity result which partially
recovers a result by Chen—Rong—Xu for Riemannian manifolds.
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1. Introduction

Volume entropy is a fundamental geometric invariant, related to the topological entropy of
geodesic flows, minimal volume, simplicial volume, bottom spectrum of the Laplacian of the
universal cover, among others. For a compact Riemannian manifold (M",g), the volume
entropy is defined as
. InVol(B(z, R))
O
Here B(z, R) is a ball in the universal cover M of M. For M compact, the limit exists and is
independent of the base point z € M [32]. Thus, the volume entropy measures the exponential
growth rate of the volume of balls in the universal cover. It is non-zero if and only if the
fundamental group 71 (M) has exponential growth.
When Ricps > —(n — 1), the Bishop—Gromov volume comparison gives the upper bound
h(M, g) < n — 1, which is the volume entropy of any hyperbolic n-manifold. Ledrappier—Wang
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[29] showed that if h(M, g) = n — 1, then M is isometric to a hyperbolic manifold. This is called
the maximal volume entropy rigidity. Liu found a simpler proof [30], and recently Chen—Rong—
Xu gave a quantitative version of this rigidity result [15].

In this paper, we will show the same kind of maximal entropy rigidity holds for a class of
metric measure spaces — known by now as RCD* (K, N) spaces — that is of interest in both
optimal transport and in the theory of limits of Riemannian manifolds with bounded Ricci
curvature (known as Ricci limit spaces).

Alexandrov geometry can be seen as a synthetic approach to the spaces that occur as limits
of smooth manifolds with sectional curvature bounded below. In this same spirit, RCD* (K, N)
spaces can be thought of as the synthetic analog to Ricci curvature being bounded below by
K, for dimension at most N. These spaces include Ricci limit spaces and Alexandrov spaces
[38], and have been studied extensively, see Section 2 for details.

The last-named author jointly with Mondino proved that the universal cover of an
RCD* (K, N) space with 1 < N < oo exists and is also an RCD* (K, N) space [34]. This allows
us to define the volume entropy similarly for compact RCD* (K, N) spaces.

That is, let (X, d, m) be a compact RCD*(K, N) space, and (X, d, ) its universal cover. We
define the volume growth entropy of (X,d, m) as

h(X,d,m) := limsup L Inm(Bg(z, R)).
R—o0 R
The volume growth entropy is well defined, and it is independent of x and the measure m, (see
[10, 40]). Observe that if (M,g) is a Riemannian manifold, then with the induced distance
d = d4 and the volume measure m = dvoly, both definitions coincide.
Our main results are:

THEOREM 1.1. Let 1 < N < oo and (X,d,m) be a compact RCD*(—(N — 1), N) space.
Then h(X) < N — 1. Furthermore, the equality holds if and only if N is an integer and
the universal cover (X .d, m) is isomorphic to the N-dimensional real hyperbolic space
(HY, dgn , 1 HY) for some ¢ € (0,00). Here HY denotes the Hausdorff measure.

As in the smooth case, the compactness of X is essential here. For N > 1, the well-known
smooth metric measure space ((0,00), | - |, sinh™ ~!(z)dz) is an RCD*(—(N — 1), N) space
with volume entropy exactly N — 1. This example does not contradict our theorem as it is not
the universal cover of a compact RCD*(—(N — 1), N) space.

The key step in proving the above theorem is the following result, which is of independent
interest. In the statement, we use the language of differential calculus developed by Gigli. We
refer to Section 2 for definitions and more details.

THEOREM 1.2. Let 1 < N < oo and (X,d,m) be a complete RCD*(—(N — 1), N) space. If
there exists a function u in Dj,.(A) such that |Vu| =1 m-a.e. and Au= N — 1, then X is
isomorphic to a warped product space R x .+ X', where X’ is an RCD*(0, N) space.

An immediate consequence of Theorem 1.1 and the inequality provided in [43, Theorem 5],
/AR dm) S Llimsupy_, . & Inm(Bg(z, R)), is the following corollary.

COROLLARY 1.3. Let 1 < N < o0 and (X,d, m) be a compact RCD*(—(N — 1), N) space.
If

Vf2d ) ) N - 1)
X

then X is isomorphic to the N-dimensional real hyperbolic space up to a scaling of the measure.
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The corresponding results for Alexandrov spaces have recently been proved by Jiang [26].

Rigidity results for RCD* spaces often imply almost rigidity results given that RCD* spaces
are closed under measured Gromov—Hausdorff convergence. Theorem 1.1 implies an almost
rigidity result assuming the volume entropy is continuous under measured Gromov—Hausdorff
convergence, which is true when (the first) systole is uniformly bounded from below [40,
Proposition 38], cf. Proposition 8.2. As a result we have:

THEOREM 1.4. Let 1 <N < o0, s >0, D >0. There exists ¢(N,s, D) > 0 such that for
0<e<e(N,s, D), if (X,d,m) is a compact RCD*(—(N — 1), N) space, satisfying diam(X) <
D, h(X)>=N—-1—¢, sys(X,d) >s, then X is homeomorphic and ¥(e|N,s, D) measured
Gromov—Hausdorff close to an N-dimensional hyperbolic manifold.

When X is a Riemannian manifold, this is proved without the systole condition in [15,
Theorem D], as the continuity of the entropy is proven for non-collapsing sequences of
Riemannian manifolds with Ricci curvature bounded from below and diameter bounded from
above converging to a manifold [15, Theorem 0.5]. The volume entropy is not necessarily
continuous when the limit is a non-collapsing Ricci limit space, as the fundamental group could
jump from having exponential growth for the sequence to a trivial one for the limit space, see
[37, Remark 6.2]. We still conjecture that Theorem 1.4 is true without the systole condition.

The strategy and techniques used in proving our results are inspired by those of Gigli’s
Splitting Theorem in the non-smooth context [20], as well as the ‘Volume cone implies
metric cone’ Theorem by De Philippis—Gigli [17]. One of the key ideas for proving these
results is to work at the level of the Sobolev spaces. In this way, we overcome obstacles that
appear due to the lack of analytical tools available in the smooth category. Once a result is
obtained at this level it can be transported to a statement at the level of the metric measure
space itself.

We now present a summary of our strategy. In order to show that the universal cover (X .d, m)
of an RCD*(—(N — 1), N) space (X, d, m) with maximal volume entropy is isomorphic — that
is, via a measure preserving isometry — to a real hyperbolic space (up to a scaling of the
measure), it is sufficient to show that X is isomorphic to a warped product space of the
form X’ x .t R, and then show that X’ is regular enough. At this point an analogy with [17]
becomes clear, as now our problem can be considered as a warped splitting theorem under the
assumption of maximality of volume entropy.

To obtain a metric measure space which is a candidate for the role of X', we reconstruct
in our context Liu’s ideas [30] and build a Busemann-type function u: X — R in Djoc(A),
which is regular enough to admit a Regular Lagrangian Flow F : R x X — X associated to
Vu (in the sense of Ambrosio-Trevisan [6]). The issue with the non-compact space here is
dealt with by making use of the good cut-off functions of [33] and the local uniqueness of the
Regular Lagrangian Flow. The trajectories F(.)(x) of our flow induce a partition of X. The
high regularity of u provides useful information on how the reference measure m changes under
the flow. Still, the regularity of the Regular Lagrangian Flow takes serious effort, using the
heat flow to regularize first and some uniform estimate following the ideas of [17]. With the
regularity issue addressed, an analysis of how the Cheeger energy of Sobolev functions changes
once composed with the flow shows that a representative of F' can be chosen such that the
maps F; are bi-Lipschitz. Then we proceed to obtain estimates of the local Lipschitz constants
of F.

Therefore, the natural candidate for X’ is u~1(0), the slice at time 0 of the partition induced
by F', endowed with the natural intrinsic metric and an appropriately defined measure which
agrees with the data provided by F. Given that X’ is non-compact, the measure defined on it
is written in a similar way to [20] and not as in [17]. The proof that it is a complete, separable
and geodesic space is more involved than in [20] and [17]. In [20], the distance in X’ can be
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seen as the restriction of the metric of d and in [17] X’ is compact. We also have to show that
X' is locally doubling and not doubling as in [17].

At this point, we need to show that the natural maps from and into X and R x.: X’ are
isomorphisms of metric measure spaces. As mentioned above, we obtain this at the level of
the Sobolev spaces. The relation between the Sobolev spaces W2(X) and Wh2(R x .« X') is
explained by studying the metric speeds of curves in X in relation with those in X’. This leads
to a relationship between the minimal weak upper gradients of Sobolev functions in X’ and
X. Putting everything together, and combining them with the work of Gigli-Han [23] on the
structure of Sobolev spaces of warped products, we obtain the desired isomorphism.

Finally, the structure of a warped product space naturally implies via Bochner’s inequality
and a limiting argument that X’ is an RCD"(0, N) space. To complete the proof of the main
theorem, we adapt Chen—Rong—Xu’s argument [15] and make use of the structure result of
[33] to show that R x.+ X’ is isomorphic to the N-dimensional hyperbolic space up to scaling
of the measure.

The article is organized as follows. In Section 2, we review definitions and properties of
metric measure spaces and, in particular, RCD* spaces that will be needed in the paper.
In Section 3, using the Bishop—Gromov volume comparison theorem we provide the upper
estimate of the volume entropy for RCD*(—(IN — 1), N) spaces. For the rigidity case, we
construct the Busemann function u, calculate its Hessian and construct a Regular Lagrangian
Flow F associated to Vu. In Section 4, we estimate the minimal weak upper gradient of
functions of the form f o F} for f € 1/1/1’2()2'7 d, m). In the next section, we use this to improve
the regularity of the Regular Lagrangian Flow F| define the metric measure space quotient
(X',d’',m') and estimate the minimal weak upper gradients of functions g € W*2(X’) in terms
of functions in W1 2(X). Moreover, we prove that (X’,d’,m’) is an infinitesimally Hilbertian
space. In Section 6, we use Gigli’s Contraction By Local Duality Lemma, and his proposition on
isomorphisms via duality with Sobolev norms, to show that the warped product space R X« X’
is isometric to (X,d,m). In Section 7, we prove that (X’,d’,m’) is an RCD*(0, N) space. In
the final section, we see that N € N and R x.+ X’ is isometric to the hyperbolic space HY, and
prove the stability result, Theorem 1.4.

On a complementary direction, the work of Besson—Courtois—Gallot [8, 9] treated the
minimal entropy of smooth manifolds and established major rigidity results for locally
symmetric spaces of negative curvature. Their work implies that negatively curved locally
symmetric Riemannian metrics with given total volume cannot be perturbed to non-symmetric
ones without increasing the volume entropy. A number of important corollaries in geometric
rigidity and applications to dynamics then follow. We have also extended these barycenter
techniques to RCD* spaces in [16].

2. Preliminaries

The following is a review of the necessary definitions and results. First we recall the
concepts pertaining to first-order calculus on metric spaces, we refer readers to [19, 20] for
further details.

2.1. Calculus on metric measure spaces

We will consider a proper metric space (X, d). Let C([0,1]; X') be the set of continuous curves in
(X,d). A curve v € C([0,1]; X) is said to be absolutely continuous if there exists an integrable
function f on [0,1] such that for every 0 <t < s < 1,

A7) < / f(r)dr.
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Absolutely continuous curves v have a well-defined metric speed,

e d(Vern )
2] := }1_% T7

which is a function in L([0,1]). We will often use the notation msg(y) := |%|. The set of
absolutely continuous curves in (X, d) will be denoted by AC([0,1]; X).

Let m be a non-negative Radon measure on X such that supp(m) = X and P(C([0,1]; X))
be the space of probability measures on C([0,1]; X). A measure 7 € P(C([0,1]; X)) is called a
test plan if there exists C' > 0 such that for every ¢ € [0, 1],

(er)ym < Cm

1
/ / 542 dt dr () < o
0

Here, e; : C(]0,1]; X) — X is the evaluation map e;(y) = ;.

The Sobolev class S?(X) := S?(X,d,m) (respectively, S _(X) := SZ_.(X,d, m)) is the space
of all Borel functions f : X — R such that there exists a non-negative function G € L?(X) :=
L2(X,m) (respectively, G € L% (X) := L2 (X, m)) — called weak upper gradient — such that
for any test plan m the following inequality is satisfied

and

/val £(30)|dr(y /watdw()

It is possible to prove that there exists a minimal G, which we denote by |V f], called the
minimal weak upper gradient of f. We now recall the following fundamental result.

PROPOSITION 2.1 [3, Definition 5.6, Proposition 5.7], [19, Definition B.2, Theorem B.4]. Let
f,G: X = R be two functions. The following are equivalent.

(i) f € S%(X) and G is a weak upper gradient.

(ii) For every test plan 7 the following holds: For w-a.e. v the function t — f(vy:) is equal
at t =0, t =1 and almost everywhere else on [0,1] to an absolutely continuous function f., :
[0, 1] — R whose derivative for almost every (a.e.) t € [0, 1] satisfies | |(t) < G(v¢)| V|-

A local version of the Sobolev class is produced in the following manner: A function f :
Q C X — R, with Q an open set, is an element of SZ_(Q) := SZ_(Q,d, m) if for any Lipschitz

loc

function x : X — R with supp(x ) C Q, we have that fy € S _(X). In this case, [Vf]: Q = R
is given by

IVfl:=|V(fx)| m— a.e. onx=1.

Then, the set S%(Q) is defined as the subset of S?

2 (Q) of functions f such that |V f| € L*(Q, m).
The Sobolev space is defined as
Wh3(X,d,m) := L*(X,m) N S*(X,d,m)

endowed with the norm

1By = A1y + NI ANy = [+ 942

X
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We say that a proper metric measure space (X, d, m) is infinitesimally Hilbertian if W2(X)
is a Hilbert space, that is, if || - ||%/Vl=2(X is induced by an inner product. This happens if and
only if the parallelogram rule is satisfied, that is

IV + DIz + NIV = DI2x) = 2(|I|Vf\|\%z(;<) + H\Vglllizm)

for all f,g € S?(X). On an infinitesimally Hilbertian metric measure space (X, d, m), for Q@ C X
open and any f,g € S2 () the functions D* : Q — R defined m-a.e. by

loc
V(g + eI~ VP

DTf(Vg) = in

9

>0 2e
2 2
e>0 2e

coincide m-a.e. on Q. We denote the common value by (V f, Vg).
An important tool is the following first differentiation formula (see [19, (1.11)]). Recall that
a test plan 7 is said to represent the gradient of f € S%(X) if

t
- f(y) = f(0) 1 1., .
hrﬁ})nf/fdﬂ'm) > §/|Vf|2(70) dm(y) + Qhrrtlfoup/o/hSP dsdn(y).

In the case that f € S%(Q) for some open set Q2 C X, one adds to the definition the requirement
that (e;)4 is concentrated on Q for every t € [0, 1] sufficiently small. Then, given f, g € S*()
with Q C X open and a test plan 7 representing the gradient of f, it holds that

i [ 200290 4a3) = [ (97, 9g)00) dn(a). (2.1)

X X

Let (X, d,m) be an infinitesimally Hilbertian metric measure space and 2 C X an open set.

Let g :  — R be a locally Lipschitz function. We say that g has a measure valued Laplacian,
provided there exists a Radon measure x4 on €2 such that

- [(vr.vgam = [ ra

Q Q

for all f: Q — R Lipschitz and compactly supported in 2. In this case, p is the measure valued
Laplacian of g, and it is denoted by Ag|q. The set of all locally Lipschitz functions g admitting
a measure valued Laplacian is denoted by D(A,Q). A particular instance of the notation is
that D(A, X) = D(A) and then Ag|x = Ag.

A different definition is that of the L2-Laplacian operator defined as follows. The domain
D(A) of the L?-Laplacian is the subset of W?(X) of all g such that for some h € L?(X),

- [ (vr.vgam = [ fham (2.9)

for all f € W12(X), written as Ag = h. Both definitions agree in the sense that g € D(A) if
and only if g € WH23(X)N D(A) and Ag = hm with h € L*(X) (see 2[207 Definition 4.6]).
We similarly define Dj,.(A) to be the corresponding subset of Wﬁj’c (X):=L (X,m)N
S2 (X, d, m), namely the subset of all g € W,"?(X) such that (2.2) holds for all f € Testys(X).

Here e
Test(X) := {f € D(A)NL>®(X,m) | [Vf| € L>(X,m) and Af € W"*(X)}, (2.3)

and Testys (X) is the subset of Test(X) consisting of functions with bounded support.
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2.2. Tangent and cotangent modules

We will now give a brief account of some of the tools of the tangent and cotangent modules as
defined and developed in detail by Gigli [22] (see also the section on preliminaries of [17]).

Given an infinitesimally Hilbertian metric measure space (X,d,m), recall that there is a
unique couple (L?(T*X),d) (up to isomorphism) where L?(T*X) is an L?(m)-normed L (m)-
module (see [22, Definition 1.2.10]) and d : S?(X) — L*(T*X) is a linear operator such that
the following two conditions hold.

(i) |df| = |V f| m-a.e. for every f € S?(X). Here |df| denotes the pointwise norm of df in
L2(T*X).
(i) L*(T*X) is spanned by {df | f € S*(X)}.

The module L?(T*X) is called the cotangent module of X and d is the differential. Note
that we abuse the notation slightly by using d for the differential of a function and the distance
of the space.

The tangent module of X, denoted by L?*(TX) is defined as the dual module of L?(T*X)
and the gradient Vf € L*(TX) of a function f € W!?(X) is the unique element associated to
df via the Riesz isomorphism.

Let (Y, dy, my) be a metric measure space. We will say that a map F': Y — X has bounded
compression if Fymy < C'm for some C' > 0. Given an L?-normed L*-module M over X,
the pullback module F*M is an L?-normed L*°-module over Y carrying a pullback operator
F*: M — F*M defined (uniquely up to isomorphism) in the following way: F* is linear and
satisfies the following.

(i) |F*v| = |v| o F, my-a.e. for all v € M.
(ii) {F*v|v € M} generates F*M as a module.

Denote by M* the dual module of M. Then, we have the unique duality relation
F*M* x F* M — LYY, my),
which is L>°(Y")-bilinear, continuous and satisfies
Frw(F*v) = w(v) o F, my-a.e. for all v € M,w € M".

For M = L?(T*X) (respectively, M = L?(T X)), the pullback is denoted by L?(T*X, F,my)
(respectively, L?(TX,F,my)). A special instance of this construction occurs when Y =
C([0,1]; X) equipped with the sup distance and a test plan 7 as reference measure. The
evaluation maps e; have bounded compression and there exists a unique element 7] €
L?(TX, e, n) such that

foern—foe

lim £2EH0 2T 08 (o gp) ()

h—0 h

for all f € W2?(X), where the limit is intended in the strong topology of L*(C([0,1]; X)), ),
that is, the space of integrable functions on C([0,1]; X)) with respect to the test plan 7 (see
[22, Theorem 2.3.18]). It follows from this result that for m-a.e. v and a.e. ¢ € [0, 1],

il (V) = el

2.3. CD*(K,N) and RCD*(K, N)-spaces

Here we briefly recall the synthetic notions of lower Ricci curvature bounds on metric
measure spaces.

A notion of metric measure spaces with Ricci curvature bounded below by K € R and
dimension bounded above by N € (1,00] was first considered in the setting of Optimal
Transport Theory by Lott—Sturm—Villani [31, 44, 45], resulting in the class of spaces with
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the curvature dimension condition or briefly CD(K, N) spaces. It was then proved by Ohta
that smooth compact Finsler manifolds are CD spaces [36]. In contrast, a Finsler manifold can
only arise as a limit of Riemannian manifolds with Ricci curvature uniformly bounded below
if and only if it is Riemannian. Recall that a Finsler manifold is Riemannian if and only if the
Cheeger energy is quadratic or, equivalently, if the heat flow is linear.

To address this problem of isolating the class of Riemannian-like CD-spaces, Ambrosio—Gigli—
Savaré [4] (see also [2]) introduced the class of RCD(K, co)-spaces as those CD(K, 0o)-spaces
whose Cheeger energy is a quadratic form, condition named infinitesimal Hilbertianity after
[19]. The finite-dimensional case, that is, RCD(K, N) for N € (1, 00) was then proposed in [19]
and analyzed independently in [18] and [5].

At the emergence of CD(K, N) spaces, it was not clear whether this class exhibited a local-
to-global property, that is, whether satisfying CD(K, N) for all subsets of a covering implies the
condition on the full space. To address this issue, Bacher—Sturm introduced an apriori slightly
weaker condition of Ricci curvature bounded below by K with dimension at most N, namely
the reduced curvature-dimension condition or CD*(K, N) [7].

To state the definitions and results in this section, we begin by recalling the so-called
distortion coefficients. Given K, N € R with N > 0, for (¢,0) € [0,1] x R, we define

0, if K62 > N2,

M if 0 < K6% < N72,

o (6) = | SMOVE/N) , o (2.4)
’ t if KO <0and N =0, orif K6° =0,

Snb(t0V=K/N) ¢ 192 < 0 and N > 0.

sinh(6y/—K/N)

For N > 1,K € R and (¢,60) € [0,1] x Ry, we define

i (8) = £Vl ()T, (25)

Let P2(X,d,m) denote the family of probability measures with finite second moment,
Opt(uo, p11) the set of optimal transports between pp and py and Geo(X) the set of geodesics
of X.

DEFINITION 2.2 (CD condition). A metric measure space (X,d,m) is a CD(K, N) space if
for each pair pg, pu1 € P2(X,d,m) there exists m € Opt(uo, 1) such that

—-1/N (1—1t) /N( (t)

- —1/N
pr N ) = TN 7%0) + T (d(y0, 1))y N (

(d(’Yo,’h))Po_l v), mae.yE€ Geo(X),

(2.6)
for all ¢ € [0, 1], where p; is such that (e;)y 7 = pym.
It is worth remembering here that for a Riemannian manifold (M, g) of dimension n and

h € C?*(M) with h > 0, the metric measure space (M, g, h dvol,) verifies condition CD(K, N)
with N > n if and only if (see [45, Theorem 1.7])

V2h e
thfn ’
Here, we follow the convention that if N = n, the generalized Ricci tensor Ricyp n = Ricg

makes sense only if A is constant.

The reduced CD*(K, N) condition requires the same inequality (2.6) of CD(K,N) but

with the coefficients T}(;?N(d(’YOa'Yl)) and Tl(g,;)(d(%,fyl)) replaced by U%?N(d(fyo,'yl)) and

Ricg,h,N 2 Kg, Ricg,h,N = Rng — (N — TL)
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crg_t) (d(v0,71)), respectively. Hence while the distortion coefficients of the CD(K, N) condition

are formally obtained by imposing one direction with linear distortion and N — 1 directions
affected by curvature, the CD* (K, N) condition imposes the same volume distortion in all the
N directions.

Now we will recall the generalized Bishop—Gromov comparison theorem for CD*(K, N)-
spaces with K < 0. Let B(z, R) be the metric ball around x with radius R and we denote its
metric closure by B(z, R). Note that the sharp version of this result is valid for CD*(K, N)
spaces as a consequence of [14, Theorem 1.1] and [35, Theorem 5.1].

THEOREM 2.3  (Generalized Bishop—Gromov — volume growth inequality for
CD*(K,N)). Assume that the metric space (X,d,m) satisfies the CD*(K, N)-condition
for some K < 0 and N € [1,00). Then for all 7 < R,

m(B(z,) _ Jo sinhV T (/=K/(N = 1)t) dt

m(B(z,R)) ~ [FsinhV "1 (\/=K/(N — )t) dt

Furthermore, for the function s,,(x,r) = limsup;_, %m(m \ B(z,r)), the following
inequality holds
5771,(9377") S SinhNil( —K/(N_ 1)7")
Sm(x7R) - SinhNil( —K/(N_ 1)R)

We now recall the definition of the reduced Riemannian curvature-dimension condition.

DEFINITION 2.4 (RCD* condition). A metric measure space (X,d,m) is an RCD*(K, N)
space if it is an infinitesimally Hilbertian CD* (K, N) space.

Cavalletti-Milman have shown the equivalence of the CD and CD* conditions when the space
is essentially non-branching and has finite measure [12, Corollary 13.7]. In particular under
the assumption of finite measure, RCD(K, N) is equivalent to RCD* (K, N). It is expected that
RCD(K, N) is equivalent to RCD* (K, N) without any further assumptions.

Now we state the Laplacian comparison for distance functions originally proved by Gigli for
CD(K, N) spaces [19, Corollary 5.15] with some extra assumption and shown to hold sharply
on essentially non-branching CD* (K, N) spaces (and more generally on MCP(K, N) spaces) in
[13]. We will use this result in the following section. For simplicity, we only state the result for
K <O0.

THEOREM 2.5 (Laplacian comparison for distance functions). Let K < 0, N € (1,00), and
(X,d,m) be an RCD*(K, N) space. Let r : X — R be the function given by r(x) = d(z, o),
where o € X. Then r € D(A, X \ {o}) and

Ar|x\ (o) < V=K(N — 1) coth(v/—K/(N — 1)r)m. (2.7)

A useful tool for localization is a system of ‘good’ cut-off functions. One such characterization
is the following.

LEMMA 2.6 [33, Lemma 3.1]. Let (X,d,m) be an RCD*(K, N) space for some K € R and
N € (1,00). Then for every x € X, R > 0,0 < r < R, there exists a Lipschitz function p = p" :
X — R satisfying:

(1) 0<p"<lonX,p"=1on B(z,r) and supp p” C B(z,2r);
(2) r?|Ap"| +r|Dp"| < C(K, N, R).
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Observe that for any compact set K contained in an open set U, we can apply this lemma
to find a cut-off function px € W12(X) which is Lipschitz, identically 1 on K, identically 0
on X\U and such that px € D(A) with Apx < m with bounded density. This version is
formulated in [24, Theorem 3.12].

In order to introduce the notion of Hessian, we define Test)o.(X) as the set of functions
f: X — R with the following property: For every bounded Borel set B C X, there exists a
function fp € Test(X) such that fp = f m-a.e. in B. It is clear that Testys(X) C Test(X) C
Testioc(X).

An important fact is that if X satisfies RCD* (K, N), then Testys(X) is dense in W12(X).
Furthermore, if f € Testi,c(X), then |[Vf|> € W,"?(X) and by polarization, for every f,g €

loc

Testioc(X), we have that (Vf,Vg) e W 2(X) (see, for example, [22, Proposition 3.1.3]).

loc
Moreover, we have the following characterization.

LEMMA 2.7. The set Test;o.(X) admits the description

Test oo (X) = { f € Dioo(A) N LE(X,m) | [Vf] € LES.(X,m) and Af € Wllof(X)}, (2.8)
Proof. Let Test|,.(X) denote the right-hand side of the above expression. For f € Testo.(X)
from the definition and the discussion above, we have f € Dioc(A)NLY.(X,m), |Vf| e

loc

L (X,m)and Af € VV&?(X) Since on each compact set K, f agrees with fx when restricted

loc

to K and these containments hold for fx € Test(X), we obtain f € Test],.(X).

Conversely, if f € Test],.(X), then by Lemma 2.6 for any compact set K contained in an
open set U, there exist a ‘good’ cut-off function px € W12(X) which is Lipschitz, identically 1
on K, identically 0 on X\U and such that px € D(A) with Apx < m with bounded density.
For any bounded Borel set B, we let K = B and define fg = px f, where pg is the cut-off
function for K and any bounded open set U D K. By the Leibniz rule [20, (3.9)], we have
fB € Test(X) and thus f € Testoc(X). O

For a function u € Testo.(X), we define the Hessian of u

Hess[u] : Testioe(X) x Testioe(X) — L (X, m),
by the following expression
1
Hess[u|(f, g) := §(<Vf, V{(Vu,Vg)) + (Vg, V{Vu,Vf)) = (Vu,V(Vf Vg))). (2.9)
We note that this is a symmetric bilinear operator and it restricts to
Hess[u] : Testys(X) x Testys(X) — L*(X,m).
The space Wli’f(X ) consists of the functions f € Wli’f(X ) such that for any g1, g2, h €
Testys(X), there exists an A € L*(T*X) ® L*(T*X) such that
2 [ hA(Vg1, Ve i = [ (91, Tg2)dv(1:52) — (V. V) iv ()

— V[, V(Vgi,Vga))dm.

There is a unique such A in L?(T*X) ® L?(T*X) which is denoted by Hess(f) (see [22, Section
1.5] for details). A very important result [22, Theorem 3.3.8] states that Test(X) C W22(X)
and that for every g1, g2 € Test(X),

Hess|[f](g1,92) = Hess(f)(Vg1, Vga). (2.10)
It can be readily checked that Testjo.(X) C W22(X) as well, and that (2.10) is still valid

loc

for f € Testioc(X) and every g1, g2 € Testys(X).
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The notion of divergence of a vector field is defined as follows. Recall that L2 (TX) consists
of those vector fields V such that |V| € L2 (X, m). We say that V € L% (T X) has a divergence
in L _ and denote it by V € Djoc(div) if there exists h € L (X, m) such that for every f €

Testys(X), it holds that
/fhdm = —/df(V)dm

2.4. Bakry-Emery condition and Bochner’s inequality

In this case, we write divV = h.

We begin this section by recalling the weak version of Bochner’s inequality obtained by
Ambrosio-Mondino-Savare [5] and Erbar-Kuwada—Sturm [18].

THEOREM 2.8 (Weak Bochner’s inequality [5, 18]). Let (X,d, m) be an RCD*(K, N)-space.
Then, for all f € D(A) with Af € Wh2(X,d,m) and all g € D(A) N L>(X,m) non-negative
with Ag € L>°(X, m), we have

%/Ag|Vf|2dm—/g<V(Af),Vf>dm2K/g|Vf|2dm+f/ (Af)*dm. (2.11)

A remarkable property is the equivalence of the RCD*(K, N) condition and the Bochner
inequality under some conditions (namely the Sobolev to Lipschitz property — which we recall
below — and a certain volume growth estimate). The infinite-dimensional case was settled in
[4], while the (technically more involved) finite-dimensional refinement was established in [18]
and [5].

Let f,g € Testio.(X) and define the measure-valued map

La(f.) = 3A(VL.Vg) — (VL. VAg) + (T4, TAf)m

Let Ta(f) :=='2(f, f). It was shown by Ambrosio-Mondino—Savaré [5] and Erbar-Kuwada—
Sturm [18] that the following non-smooth Bakry—Emery condition is satisfied on an
RCD*(K, N)-space: For every f € Test(X),

ra(f) > (KIS + 5807 )m (212)

It follows immediately from the definition of local test functions that (2.12) is satisfied as
well for every f € Testioc(X).

Now we state a fundamental technical tool (see [41]) which is useful when ‘changing
variables’. For simplicity, we state a weaker version than that in [41], suitable for our purposes.
This result follows from the fact that Testjo.(X) is an algebra and from the Chain and Leibniz
Rules for differentiation.

PROPOSITION 2.9 [41]. Let n € N and ¥ : R” — R be a polynomial with no constant term.
Let us fix fi1,..., fn € Testioc(X) and denote U(f) := U(f1,..., fn) : X > R and ¥;; := 0,; V.
Then, U(f) is in Test;,.(X) and the following formulae hold true.

(i) [Ve(f Z\P UV Y fym

(i) AM() =D WilHA) + Z Vi (V£ V fi)m
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(if) T Z (T2 f) + 23 TP (HHess{ ], fom
@7,k
+ Z U (U0 (P fir VN fi, Y fr)m
1,5,k,h

2.5. Isomorphisms of metric measure spaces

This is an account of several results in [20]. We consider metric measure spaces (X, d, m) such
that (X, d) is complete and separable and m is a non-negative Radon measure on X. We begin
by recalling the definition of isomorphism of metric measure spaces.

DEFINITION 2.10 (Isomorphisms between metric measure spaces). We say that two met-
ric measure spaces (X1,d;,m;) and (Xs,ds, mo) are isomorphic provided there exists an
isometry T : (supp(ma),di) — (supp(ms),ds) such that Tym; = mso. Any such T is called
an isomorphism.

The following property will allow us to study isomorphisms between metric measure spaces
in terms of isometries between their W12 spaces, see Proposition 2.13.

DEFINITION 2.11 (Sobolev to Lipschitz property). Let (X, d,m) be a metric measure space.
We say that (X,d,m) has the Sobolev to Lipschitz property if any f € WY2(X,d, m) with
|V f| < 1 m-a.e. admits a 1-Lipschitz representative, that is, a 1-Lipschitz map g : X — R such
that f = g m-a.e..

Gigli showed (using a result of Rajala [39]) that, for finite N, CD(K, N)-spaces have the
Sobolev to Lipschitz property. Furthermore, Ambrosio—Gigli-Savaré showed that RCD (K, co)-
spaces also have the Sobolev to Lipschitz property for N € (1,00) (see the paragraph after
[20, Definition 4.9]). As CD*(K, N) spaces are CD(K*, N) spaces for a suitable value of K*
(see [11] and [14]), RCD*(K, N) with N € (1, 00) spaces also satisfy the Sobolev to Lipschitz
property.

LEMMA 2.12 (Contractions by local duality [20, Lemma 4.19]). Let (X1,dy,m1) and
(X2,d2,m2) be two metric measure spaces with the Sobolev to Lipschitz property where ms
gives finite mass to bounded sets, and T : X1 — X5 a Borel map such that Tym; < Cmsy for
some C' > 0. Then the following are equivalent.

(i) T is my-a.e. equivalent to a 1-Lipschitz map from (supp(mi),di) to (supp(ms),ds).
(ii) For any f € W%(Xy,do, ms), we have f o T € WH2(Xy,dy, m1), and moreover,

IV(foT)| < |Vf|oT, my — a.e..

PROPOSITION 2.13 (Isomorphisms via duality with Sobolev norms [20, Proposition
4.20]). Let (X1,d1,m1) and (Xs,da, m2) be two metric measure spaces with the Sobolev to
Lipschitz property and T : X1 — X5 a Borel map. Assume that both m, and ms give finite
mass to bounded sets. Then the following are equivalent.

(i) Up to a modification on a mq-negligible set, T is an isomorphism of the metric measure
spaces.
(ii) The following two are true.
(ii-a) There exist a Borel m-negligible set N' C X, and a Borel map S : X5 — X, such
that S(T(z)) =z, Vo € X1 \ N.
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(ii-b) The right composition with T produces an isometry of W12(Xy, dy, mso) in
W1’2(X1,d1,m1), that is, f S W172(X2,d2,m2) if and Only Iff ol e W1’2(X1,d1,m1)
and in this case || f|lw12(x,) = [|f o Tllwr2(x,)-

2.6. Warped product of metric measure spaces

Here we review the main definitions and results concerning the warped products of metric
measure spaces following Gigli-Han [23].

Let (X,dx,mx) and (Y, dy, my) be two complete and separable metric measure spaces and
W, Wy, © Y — [0,00) two continuous functions such that {w,; = 0} C {w,, = 0}. The [,,-length
of an absolutely continuous curve v = (7¥,4%) in Y x X is defined by

1
= [ e e uiannea

The function d,, : (Y x X)? — R given by

dyw(p,q) = inf{l,,[7] : v is an absolutely continuous curve from p to ¢}

is a pseudo-metric. Hence, it induces an equivalence relation on Y x X. By taking the quotient
and then its completion, we obtain a metric space denoted by Y x,, X and an induced distance
denoted also by d,. If wy(y) > 0, there is no abuse in denoting the elements of Y x,, X by
(y,x) with y € Y and z € X, because points in the completion not coming from points in
Y x X will be negligible with respect to the measure of Y x,, X. The same holds for the set
of elements (y, ) that satisfy wy(y) = 0.

The measure m,, on Y x,, X is defined as

[ 1@t amatve) = [ ([ st ams () )t amr o), (2.13)

for any Borel non-negative functions f: X - Rand g:Y — R.

The warped product of (X,dx,mx) and (Y, dy,my) via the functions wy and w,, called
warping functions, is the metric measure space denoted by (Y X, X, dw,m,). By definition,
(Y %, X, dy,my,) is complete, separable and is a length space.

DEFINITION 2.14 (Almost everywhere locally doubling space). Let (X,d,m) be a metric
measure space. We say that it is an almost everywhere locally doubling space provided there
exists a Borel set B with m-negligible complement such that for every x € B there exists an
open set U containing x and constants C;, R > 0 for which

m(B(y,2r)) < Cm(B(y,r))
forr € (0,R) and y € U.
DEFINITION 2.15 (Measured-length space). Let (X, d, m) be a metric measure space. We say
that it is measured-length if there exists a Borel set A C X with m-negligible complement that

satisfies the following. For all 2o, z; € A, there exist ¢ > 0 and a map (0, ¢]?> — P(C([0,1], X)),
(€0,€1) = w01 such that:

e for any ¢ € C,(C([0,1], X)), the map (0,£]*> — R given by

(5()751)*—>/de71'50’61,

is Borel;
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o for every €g,e1 € (0,¢] and ¢ = 0,1, we have

£0,61 — 1B(I7175L)

e = B )™

e we have

1
1imsup// |y, 2 dt dm=0t () < d* (20, 21).
0

€0,€140

THEOREM 2.16 [23, Theorem 3.22]. Let (X, d,m) be an a.e. locally doubling and measured-
length space, I C R a closed, possibly unbounded, interval and wq,w,, : I — [0,00) a couple
of warping functions. Assume that w,, is strictly positive in the interior of I. Then the
warped product space (X, dw, M), where X,, = I x,, X, is almost everywhere doubling and
a measured-length space. Hence, it has the Sobolev to Lipschitz property.

The following result may be shown from the equivalence of the Beppo-Levi space ([23,
Definitions 3.8 and 3.9]) and the Sobolev space on warped products obtained by Gigli-Han.
For simplicity, we will not restate here the precise definition of the Beppo—Levi space, rather
only summarize their results in a manner suitable for our purposes (cf. [23, Propositions 3.10,
3.13, and 3.14]). Given f: X, = R, let f® : X = R and f* : I — R denote the functions

f(t) (x) = f(ta Z‘) and f(T) (t) = f(t,l‘).

THEOREM 2.17 [23]. Let (X,d, m) be a metric measure space, I C R a closed, possibly
unbounded, interval and wg,w,, : I — [0,00) warping functions. Suppose that {w,, = 0} is
finite and for some C > 0, w,, (t) < Cinfy,. ,, (s)=0y [t — s| for all t € I, then the following two
are equivalent.

(1) fe WLQ(X’wvdwamw)-

(2) (i) For m-a.e. z € X we have f*) € WH2(R, dpye, wnL").
(ii) For w,,L'-a.e. t € R we have f) € W2(X).
(iii) For all (t,z) € X,

IV, ta) = w2 ()| f D% (@) + |vf(w)‘L2(R,me1)~ (2.14)

REMARK 2.18. In the statements of Theorems 2.16 and 2.17, m is assumed to be a finite
measure. However, as explained in the remark after [23, Definition 2.9], if w,, never vanishes,
as in our application, then the results still hold when m is infinite.

COROLLARY 2.19. With the same notation and assumptions of Theorem 2.17 the following
are true.

(i) Let f € S2.(Xy). Then form-a.e.z, f@) € S _(w,L'). Forw,, L -a.e.t, fV) € S2_(X).
Furthermore, (2.14) holds in this setting.
(ii) Let f; € SE.(w,R) and define f : X, — R by f(t,x) = fi(t). Then f € SE.(X,,) and

IVfx. (t2) = IV filw,r(t),  me—ae (tz)
(iii) Let fo € S2_.(X) and define f : X,, — R by f(t,x) := fo(z). Then f € S%_(X,) and
Vflx, (t2) =w; ()| Valx(x),  my—ae (t2).
Proof. All the properties follow from the previous theorem with a truncation and

cut-off argument based on the locality property of minimal weak upper gradients, see
Subsection 2.1. O
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COROLLARY 2.20. With the same notation and assumptions of Theorem 2.17, if (X,d, m) is
infinitesimally Hilbertian, then the metric measure space (X, d.,, m,,) is infinitesimally Hilber-
tian.

Proof. Let f,g € S?.(X,,). For simplicity, in this proof, we will write |V f - |, & to refer to
the weak upper gradient of a Sobolev function f in S?(R, dgyc, w,,L'). By Theorem 2.17, we
get

V(f+ o)k, + IV -9k, =w(V( +9) V% + V(=913
IV + 9 m + V(=9 R)-
Now, by Corollary 2.19 above we know that f(), gV € S? (X) and f*), () € S2 (w,,L").
As (X,d,m) is infinitesimally Hilbertian,
VU + g + VD =g =21V + VO ). m—ae.
In a similar way, because (R, dgyc,w,, L) is infinitesimally Hilbertian, we obtain

VU + g+ VGO =g, o =2(1VF D e+ V9O ), wnl! —ae.

Putting the equations together and because the choices of f, g € S’IQOC (X)) were arbitrary, we
get the result. O

Now we define,

G ={g € SL.(X.) | glx,t) = §(a) for some g € S*(X) N L*(X) },
H :{h € S2.(Xy) | h(z,t) = h(t) for some h € §?(w,,R) N LOO(R)},
A = algebra generated by G UH C S2.(X,).

PRrROPOSITION 2.21. Let (X,d,m) be a metric measure space and wq,wy, : R — [0, 00)
warping functions. Suppose that {w,, = 0} is finite and for some C' € R,

wn(t) < C  inf [t — s
{s:wm, (s)=0}

for all t € I, then the set ANW?'2(X,,) is dense in Wh?(X,,).

Proof. Consider the algebra
AY = algebra generated by (GUH N SE.(([a,b] Xuw X, duw, M)

By the Cartesian product case proved in [20, Proposition 6.6] (see also [17, Proposition 3.35]),
AL N Wh2(X,,) is dense in W2([a,b] x4 X,d,,m,,) whenever [a,b] C R\ {w,, = 0}.

It follows that ANW?Y2(X,) is dense in BLy(X,) which is the closure in BL(X,)
of the space of functions which vanish in a neighborhood of {w,, =0} U {oco}. (See [23]
for the definitions of the Beppo—Levi spaces BLy(X,,) and BL(X,,).) However, under the
hypotheses, [23, Proposition 3.14] shows that BLy(X,,) = BL(X,,) = W'?(X,,) which implies
the statement. O

2.7. Universal covers of RCD* spaces

A metric space (Y, dy ) is a covering space of (X, dx) if there exists a continuous mapp : ¥ — X
such that for every point x € X there exists a neighborhood U, C X with the property that
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p~1(U,) is a disjoint union of open subsets of Y each of which is mapped homeomorphically
onto U, by p.

A (connected) metric space (X,dg) is a universal cover of X, with covering map p, if for any
other covering space Y of X with covering map p there exists a continuous map f: X — Y
such that po f = p. Whenever a universal cover exists, it is unique. (Note that we do not
require X to be semilocally simply connected, so X need not be simply connected.)

In the presence of the RCD* condition, the following theorem was obtained by Mondino—Wei
[34, Theorem 1.1].

THEOREM 2.22. Let (X,d,m) be an RCD*(K, N)-space for some K € R, N € (1,00). Then
(X,d,m) admits a universal cover (X,d,m), with m given by the pullback measure via the
covering map, which is itself an RCD* (K, N)-space.

3. Construction of a Busemann function

In this section, we first prove that the volume entropy of compact RCD*(—(N — 1), N) spaces
is bounded above by N — 1. In the equality case, we construct a Busemann type function u
defined on the universal cover of the space. Finally we show the existence and main properties
of the Regular Lagrangian Flow of Vu. As our space is non-compact, we need to make use
of good cut-off functions, and local uniqueness results for Regular Lagrangian Flows and the
continuity equation.

3.1. Volume growth entropy estimate for RCD* spaces
THEOREM 3.1. Let (X,d,m) be an RCD* (K, N)-space with N € (1,00) and K < 0. Then

h(X) < /—K(N —1).

Proof. By the work of Mondino—Wei [34] (see Theorem 2.22), the universal cover space X
is also an RCD* (K, N) space. In particular, it is a CD*(K, N) space. Let R > 0 and let us fix
ro such that 0 < ry < R. By Theorem 2.3,

/T’O\/—K/(N—l)

0

Ry/—K/(N=1)
(B (x, R)) sinh™ ¢ dt < m(Byg (. 0)) / sinh™ ¢ dt.
0

Taking logarithms, dividing by R and taking the limsup on both sides of the previous inequality,
we get

1 R\/—K/(N-1)
h(X) < lim Eln / sinh™ ¢ dt |.
0

To conclude, we use L’Hopital’s rule. (I
The next corollary follows directly by taking K = —(N — 1) in the previous theorem.

COROLLARY 3.2. Let (X,d,m) be an RCD*(—(N — 1), N)-space with N € (1,00). Then
h(X)<N-1.

We remark that the previous volume entropy growth estimate holds in the more general
setting of spaces which satisfy the measure contraction property introduced by Ohta [35] and
Sturm [45]. Indeed, a Bishop—-Gromov type inequality was obtained in [35, Theorem 5.1] and
the proofs of Theorem 3.1 and Corollary 3.2 can be carried out in this setting analogously.
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3.2. Construction of a Busemann function

In this section, we will prove the following result on the existence of a Busemann-type function
on the universal cover of a compact RCD*(K, N) space with maximal volume entropy. We will
follow the strategy developed by Liu [30], with the necessary adaptations (cf. [26, Theorem
1.7]). More precisely, we will prove:

THEOREM 3.3. Let (X, d,m) be a compact RCD (K, N) space with K < 0 and N € (1, 00),
and let (X7 d, m) be its universal cover. If h(X) = \/—K(N — 1), then there exists a function

u: X — R with u € Dj,.(A) that satisfies |Vu| =1 m-a.e. and Au =+/—-K(N —1) m-a.e. In
particular, u € Test,.(X).

The theorem follows from the following technical lemma.

LEMMA 3.4. Let (X,d,m) be a compact RCD*(K, N) space with K <0, N € (1,00),
and (X,ci, m) its universal cover. If h(X) = \/—K(N — 1), then for any yo € X and R >
50 diam(X) there exists up : B(yo, R) —>R L1psch1tz W1th |Vugr| =1 m-a.e. and Aup =

—K(N —1) m-a.e..

To prove the previous lemma, we need the following propositions. Set @ := /—K(N —1).
Let us recall the definition of the function s, appearing in Theorem 2.3:

sm(x,7) = limsup 1ﬁz(B(x, r+0)\ B(x, r))
6—0 0

PROPOSITION 3.5. For any o € X, we have

. sm (0,7 4+ 50R)
limsup ——— = = exp(100QR).
r—>oop 577L(07 r—= 50R) p( Q )
In particular, there is a sequence of positive numbers r; with lim; ., r; = 0o, such that

% converges to exp(100QR).

Proof. Since h(X)=Q >0, X has infinite diameter. Recall that by Mondino-Wei [34],
(X,d,m) is an RCD*(K, N) space. By Theorem 2.3,

sm(o,7 + 50R) . sinh™ 1 (Q(r + 50R))
sm(0,7 —50R) ~ sinh™ ~(Q(r — 50R))

Note that
V-1
lim 22 i 1(Q(T +50R)) = exp(100QR).
r—oo ginh™ ~ (Q(r — 50R))
We will show that
(0,7 +50R
lim sup sm(0,7 + ) _ xp(100QR).

r—oo S0, —BOR)
By contradiction, suppose that there exist ro > 100R and £ > 0 such that for any r > rg,

sm(o,r+ 50R)
sm(o,r —50R)

Therefore, for any r > r¢ big enough, we have that

sim(0,7) < (1 —€) exp(100QR)s (0,7 — 100R).

< (1 — ) exp(100QR).
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Iterat;ng this inequality | {555 ] times, where | {553 | is the largest integer smaller than or equal
to foom, we get

sm(0,7) < (1 - £) exp(100QR)) -0 s, (0, r — | 55 | 100R).

Now, r — [ 555 /100R = ro +t for some t € [0,100R). Hence, by Theorem 2.3 and as the

hyperbolic sine is an increasing function:

sinhV 1 (Q(r — | 5528 ]100R))

sinhV ! (Qro)

s (0,7 — | {558 ] 100R) < 5.7, (0,70)

sinh™ 71 (Q(ro + 100R))

< S'ﬁl,(07 TO) SinhN_l(QT’o)

Thus, for r > rq

sm(0,7) < (N, K, 9, R)((1 — €) exp(100QR)) ™% ,

where we used that | {555] < {555 Integrating s (o,-) from r¢ to r and using the previous

inequality, we get an upper bound of m(B(o,r) \ B(o,70)). Using this bound, we obtain

h(X) = limsup = Inm(B(o,1)) < Q.

r—oo T

This contradicts A(X) = @, and concludes the proof. a

For the following proposition, let us recall that any distance function r(z) := d(o,z) on X has
a well-defined measure valued Laplacian on X \ {o}. Moreover, it is a signed Radon measure
and an exact formula is presented in [13, Corollary 4.19, Theorem 1.1]. Denote A(o,r1,72) :=
{z € X | ry <d(o,z) < ra}. Then, we have the following divergence formula. See [26, Lemma

2.11] for Alexandrov space case.

PROPOSITION 3.6. For a.e. 0o € X and for all but countably many t € (0, c0),

/ Ar = s5(0,1).
B(o,t)

In particular, for all but countably many t, > t; > 0, and a.e. 0 € X,

/ Ar = sz(0,t2) — sm(0,t1). (3.1)
A(o,t1,t2)

Proof. Fix 0 < ¢y < 5, define ¢, as

0 if x € B(o, )
'l/)eo(x) = %Zc) -1 ifzxe A(O, €0, 260)
1 otherwise.

Let {d; }ien be a decreasing sequence such that 6; — 0. For each §;, define a function f, : X >R
by
e, () if x € B(o,t)
fs,(x) =< 1— 5—11(1"(x) —t) ifxe Ao, t,t+ ;)

0 otherwise.
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We observe that f5, € W2(X,d,m) for all i € N. Then,

/ fo,Ar = / Ve, AT + / fs,Ar.
B(o,t+51) B(o,t) A(o,t,t+61)

By the definition of Ar and fs,, we now have that

/ ftSiAT = _/ <Vf5mvr> dm
B(o,t+61) B(o,t+61)

1
/ (Vr,Vrydm — —/ (Vr,Vr)ydm
A(o,t,t+68;) €0 J A(0,¢0,2¢0)

(Ao, 6,1 +6,)) — %m(A(o, €0, 2¢0)).

=

S| =

Hence,

1 1
/ Ve Ar +/ P AT = (Aot + 01)) — Sii(Alo, €0, 260)).
B(o,t) A(o,t,t4681) d; €0

Now choose d; to be a specific sequence achieving the lim sup in the definition of s,. Taking
the limit when ¢ — oo, we get

1
/ e, Ar + lim fs.Ar = s5(0,t) — —m(A(o, €0, 2¢0)).
B(o,t) 1700 J A(o,t,t+61) €0

Note that 0 < f5, <1 and

/ fs, Ar g/ |A7r|.
A(o,t,t461) A(o,t,t457)

Since |Ar| is a Radon measure, we have lim; fA(O_t t165) |Ar| = 0 for all but countably many
t € (0,00). Therefore

1
/ ey AT = s7,(0,t) — —m(A(o, €9, 2€p)).
B(o,t) €0

This is true for all o € X. Now for RCD*(K, N) space with 1 < N < oo, for ae. o€ X,
limsup, o éﬁz(A(o7 €0,2¢€0) = 0 (see [13, Remark 5.4]). Letting g — 0 for those o above gives
the result. (|

REMARK 3.7. The final part of the above proof shows that a.e. t s;5(z,t) is actually a limit,

sz, ) = lim %m(m\B(x, 7'))

6—0

—

Let A C X. In the following proposition, we will use the notation f AT = 7%(3;'

PROPOSITION 3.8. Set A; = {y € X |r; — 50R < d(0,y) < r; + 50R}. Then,
][ Ar> Q- 0(i),
Ai

where lim; o, ¥(7) = 0.
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Proof. We now prove that f, Ar > @ — ¥(i). By (3.1) and the definition of A;,
/ Ar = sz (0,7 + 50R) — s;5,(0,7; — 50R).
A;

By Proposition 3.5, as ¢ goes to infinity,
sm(0,7; + 50R)
sm(o,m; — 50R)

and therefore, there exist ¥(¢) > 0 such that lim; o, ¥(i) = 0 and

sim(0,7; + 50R)
sm(o,m; — 50R)

— exp(100QR),

+ U(i) > exp(100QR).

Thus,
][ sim(o,m;i + 50R)  sm(o,7; — 50R)
Ar = — - —
Ai m(A;) m(A;)
sm(o,r; —50R) sm(o,r; —50R)) _ .
> — 7 _ _im\%» e TYRMT i
> S (exp(100QR) - 1) )
Hence we only need to show that
. si(o,r; —50R) Q
lim — = .

This would imply the existence of (i) > 0 that satisfies the claim.
By Theorem 2.3, we have that for ¢ € [r; — 50R, r; + 50R],

Th(A?) _ /T71+50R S'ﬁl(07 t) dt
sm(0,m; —50R) /., _sor sm(o,7; — 50R)

< /\T’i+50R SinhN—l (Qt)
= Jrsor sinh™ "t (Q(r; — 50R))

f:f;?; sinh™¥ 1 (Qt)dt

sinh¥ ™1 (Q(r; — 50R))

Using L’Hopital’s rule, we conclude

ri+50R . | N—1
(A -np» Sinh t)dt
lim m(A;) < 1 fri—oOR (Q1)

i=00 8;,(0,7; = 50R)  imoe sinh™ 1 (Q(r; — 50R))

— sinh™ 1 (Q(r; — 50R)) + sinh™ 1 (Q(r; + 50R))
i—oo (N — 1)Qsinh™ ~2(Q(r; — 50R)) cosh(Q(r; — 50R))
~ —1+4exp(100QR)
Q
Recall that 4; = {y € X |r; — 50R < d(0,y) < r; + 50R}. Fix a yo € A;. Let 7: X — X Thd

the universal covering map, and set

Ailyo) = {y € X |n(y) = 7(yo), By, R) C A;}.

PROPOSITION 3.9. For every i € N, there exists y; € A;(yo) such that

][ Ar > Q— ().
B(y:,R)
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Proof. Let E; be the maximal set of A;(yo) such that B(y1, R) N B(y2, R) = 0 for distinct
points y1,y2 in E;. Set F; = UyeE B(y, R). Using Proposition 3.8, we will show that

][ Ar>Q — ().
F;

As Iy =, cp, B(y, R) is the union of mutually disjoint balls, it will follow then that there is
a point y; € E; such that

][ Ar>Q— V().
B(yi,R)

To achieve this goal, first we estimate a lower bound for :Z((i)) -Let Gi = U, cp, B(y,5R). The
cardinality of F; is finite, all of its elements are pre-images of the same point under the covering
map 7, and 7 is locally equal to m, from which we obtain m(F;) =3 cp m(B(y, R)) =
card(E;)m(B(y’, R))) and

m(G;) < ) m(B(y,5R))) = card(E;)m(B(y', 5R)))

yeE;

for y' € E;. Thus,

m(E;) _ card(E)m(B(y, R)) _ vk~ (R)
m(G;) = card( E)m(B(y,5R)) ~ vk n(5R)’

by applying Theorem 2.3 with v n( fo sinh™¥ ~1(Qt) d.
Now we will find a bound for m(A; ) We will prove that

A(o,7; —10R,7; + 10R) = {y € X |r; — 10R < d(0,y) < r; + 10R} C G;.

Let 2z € A(o,r; — 10R,r; + 10R), we will show z € G;. As z € X, there exists a point y €
7Y (m(yo)) such that d(z,y) < diam(X). Then, by the triangle inequality

r; — 10R — diam(X) < d(o,y) < r; + 10R + diam(X).

The previous inequality implies y € A;(yo). From the definition of £;, there exists a point 3’ €
E; such that d(y, ') < R. By the triangle inequality, J(z,y’) < diam(X) + R. Recalling that
R > 50 diam(X), we deduce that d(z,y') < 5R. Hence, z € G;. This proves A(o,; — 10R, r; +
10R) C G;.

From the previous paragraph, m(G;) > m(A(o,r; — 10R,r; + 10R)). Recall that A; =
A(o,7; — 50R,r; + 50R). Hence, by the generalized Bishop—Gromov volume comparison for
annular regions, we obtain

(Gi) _ (A(o,ri = 10R,7: + 10R)) _ S o sinh™Y TH(@Qt) dt
m(A;) ~ m(4;) - L:T;O()g sinh™ 1 (Qt) dt
As
ri+10R
lim f _10R sinh™ Q1) dt S exp(—60QR)
i—oo f“*;fg sinh™ 1 (Qt) dt 5 ’
we can write
m(G)
K, N
Th(AL) ( 5 ,R)
Therefore,
W(E)  i(F) (G _ vin(R)
= = ; K? Na
(&)~ G (A~ oenGR) N
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The Laplacian comparison theorem for RCD* (K, N)-spaces (2.7) then yields
AT[ 3\ (o} < Qcoth(Qr)m.

Observe that Ar < (Q +0(i, K, N))m on A;, because lim,_,, coth(r) =1 and coth(r) > 1,
here lim; o, (i, K, N) = 0. Therefore (Q + §(i, K, N))m — Ar is a non-negative measure. As
F; C A;, we compute

0<AJ@+MLKNNm—Aﬂ<A[@+&@mNﬁm_A¢

i i

Changing sign in the above equation and taking the average integral, we find

— i ) > A r— i i
1. (87— (@ati < Nyl > E f (Ar = (@ oG K N
m(A;) , _
Z m(Fz)(Qia(%KvaR)7Q75(7’?K7N))
_ i, K,N,R) +5(i, K, N)
-~ C(K,N,R)

From the first to the second line above, we used fA~ Ar > Q —¢e(i, K, N,R), and from the

second to the third, Z((i)) > C(K,N,R). Thus,

e(i, K,N,R) +6(i, K, N)
C(K,N,R) ‘ O

][ Ar>Q+6(i, K,N) —
Fl

We are now ready to prove Lemma 3.4, in essentially the same way as the corresponding
part of [26, Theorem 1.7].

Proof of Lemma 3.4. Let y; € X be as in Proposition 3.9. Then there exists a deck
transformation (measure-preserving metric isometry) ¢; : X — X such that ¢;(yo) = ;. Define
u; : B(yo, R) = R by u;(y) = r(@i(y)) — d(o,y;). As B(yo, R) is pre-compact and the wu; are
1-Lipschitz, by the Arzela—Ascoli Theorem, there is a subsequence of w; that converges
to a 1-Lipschitz function ugr. To show that in fact |Vug|=1 m-a.e., note that the

set
{z € B(yo, R) | |Vug|(z) and |Vu;|(x) Vi € N are well defined}

has full m measure. For any z in this set and ¢ € N, let ; be a geodesic from ¢;(x) to o. Then,

ui (@5 omi)e) — uil(p; o vi)o) = r((vi)e) — r((vi)o) = d(o, (vi)e) — d(o, (vi)o) = —t.

Now, (pi_l o y; subconverges to a geodesic a. Thus, in the limit, we get the previous inequality
for ur, ur(oy) — ur(ap) = —¢t. From this, we conclude that |Vug|(x) = 1. Thus, |Vug| =1
m-a.e.

Moreover, the sequence u; is uniformly bounded in W12 (B(yo, R)), so ur € W12 (B(yo, R))
and

/@/}AuR: vlim/qﬁogoiAui.
X 1—> 00 X

Here v is a compactly supported Lipschitz function on B(yo, R).
The Laplacian comparison (2.7) implies

Aui(y) = Ar(pi(y)) < Q+ ¥(i), y € B(yo, R). (3.2)
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On the other hand, Proposition 3.9 gives

][ Aui:][ Ar>Q—TU(i).
B(yo,R) B(yi,R)

It follows then that
F o 1au— Q| < v
B(yo,R)

From these observations, we obtain

/ PYAur = lim Y o p; Au,
X ¥ J B(yo,R)
— [ vevqan
B(yo,R)
- / b Qdi.
B(yo,R)
Whence, ur € D(A, B(yo, R)) and Aur = Qm. O

Now Theorem 3.3 is proved as follows.

Proof of Theorem 3.3. Take a sequence of radii R; 1 co and the corresponding sequence
of functions ug,. Then, up to passing to a subsequence, the upr, converge to a 1-Lipschitz
function u: X — R. Lemma 3.4 immediately gives that u € Dj,.(A) and that Au = Qm,
that is, Au = @ m-a.e. Finally, as we have seen in the proof of Lemma 3.4, |[Vug,| = 1 m-a.e.
in the following stronger sense: For m-a.e. x, there is a geodesic v;(t) through x such that
ur, (7i(t)) = ur, (7:(0)) — t. Repeating the argument above in the proof of Lemma 3.4 gives
[Vu| =1 m-a.e. O

3.3. The Hessian of u

Throughout this section, we maintain the assumption that (X, d, m) is an RCD* (K, N) space
with K < 0 and N € (1,00). Let us recall that we denote the universal cover of X by (X, d, )
and that X is an RCD*(K, N)-space [34]. In this section, we will compute the Hessian of the
Busemann-type function u: X — R constructed in Subsection 3.2. Throughout this section,
we reserve the notation u for this function. The strategy and computations follow along the
lines of [28, Theorem 3.7], which in turn draws from [46], originally formulated in the language
of I'-Calculus.

Fix a point z € X, and let t € R. Let v € Testloc(f()7 /g€ Testbs(X), and consider the
function

(o, f,9) = 307 + (1~ v@)v + 1(fg — f()g — g(x)1).

Observe that ¥ is a smooth function with ¥(0,0,0) = 0. The partial derivatives of ¥ at x are
given by

\I’1|m:(1}+(1—v($)))|m:1 \Ifll‘zzl \1122|:r:0
Uol, =t(g—g(x))|. =0 Uinly = Woile =0 Wozl, = Uso|, =1t
Vsl =t(f — f(x))]. =0 Uigl, = Wa1|, =0 W3l =0.

We now turn our attention to the measure valued functional I'y (see Subsection 2.4 for the
definition) and we let yomm be its absolutely continuous part. Proposition 2.9 guarantees that
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U (u, f,g) € Test(X) for every f,g € Testys(X). Therefore, following the same strategy as in
[28, Theorem 3.7], by (2.12) and Proposition 2.9 we have that for every = € X

0 < 7(W(u, £,9) — KITW(u, £,9)° + - (A(u, f,9))

= o (u) + 4tHess[u](f, g) + |Vu|* + 4t(Vu, V) (Vu, Vg) + 22|V f|?|Vg|*

+26°((V£,Vg))* = K|Vul* - =~ — —— — —((Vf,Vg))’

4tAu 2Au 4t
- (Vf,Vg) — T|VU|2 - N|VU|2<Vf7 Vg).

N
Grouping terms we obtain
Au)? N -1 2Au
< K 2 (7 N -1 2 48U 2 )
0 < () — KVuf - S + S |vul? - 22 vl (33)

+ 4t (Hess[u]( f.9) + (Vu, V) (Vu,Vg) — (A“NW“F> (Vf, V9>)

w2 (1919 + 229

The last term of the previous inequality (3.3), namely |V f|>|Vg|* + 22 ((V f, Vg))?, is non-
negative. Hence, the discriminant of the right-hand side of (3.3) as a polynomial in ¢ is < 0.
That is,

2<Hess[u]( £,9) + (Vu, V) (Vu, Vg) — <W> (Vf, Vg>>2

(Au)? n N -1
N N

2Au
< (vatu) - K17 - vl - 259

< (wsrwar + 2w,

Once this analysis has been performed, we can explicitly compute the Hessian of u as follows.

COROLLARY 3.10. Letu € I‘estloc(X) with |[Vu|? = 1 m-a.e. and Au = N — 1 m-a.e. Then
for all functions f, g € Testo.(X),
Hess[u](f,9) = (V/,Vg) — (Vu, V[){Vu, Vg). (3-4)
Proof. We first consider f, g € Testys(X). Set ® = |V f|*|Vg|? + X2 ((V £, Vg))?, and note
that ® has bounded support. Note also that I's(u) = 0 and therefore v2(u) = 0. Plugging this
in our previous analysis and using that |[Vu[? =1, Au= N —1 and K = —(N — 1) we have
that

/2<Hess[u](f,g) (Y, V) (Vu, V) — (A“NW)) (v, vg>>2 din

is less than or equal to

2 _
/(—K|vu|2 _(Quf N1 m”)@dm

N N N

:/(N_l_(N]—Vl)QJFN]\;l _Q(NN_U)(I’dm:O'
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Therefore,

Au + |Vul?

Hess[u(/.9) + (Y, 91}V, V) — (2450

)(v59a) =0

and substituting the values of |Vu|?> and Awu in the previous equation, we obtain that
2

% =1, so that Hess[u](f,g) = (Vf,Vg) — (Vu,V){(Vu,Vg).

For general f,g € Testps(X), we note that the result is local and the general case follows
from a truncation argument using Lemma 2.7. O

REMARK 3.11. Note that the right-hand side of (3.4) depends only on the Wh2.norm of
f,g. Thus we can use (3.4) to extend the definition of Hessu to W'2?(X), which is what we
adopt from now on.

3.4. Regular lagrangian flow of Vu

In this section, we will show the existence of a Regular Lagrangian Flow of the gradient
of the Busemann-type function wu : X — R constructed in the previous section, via the work
developed by Ambrosio—Trevisan [6]. To do so, we make use of the reformulation of the results
of Ambrosio—Trevisan obtained by Gigli-Rigoni [25], which utilizes the language of Differential
Calculus developed by Gigli, [22]. Let us recall the definition of a Regular Lagrangian Flow,
following [25].

DEFINITION 3.12. Let (X,d,m) be an RCD(K, N) space and (V;) € L*([0,1],L? (T X)).
We say that

FY) 00,1 x X —» X
is a Regular Lagrangian Flow for (V;) provided that:
(i) there exists C' > 0 such that
(FV))ym < Om, Vs € [0,1]; (3.5)
(ii) For m-a.e. x € X, the curve [0,1] 5 s — Fs(vt)(x) € X is continuous and such that
FyY (@) =

(iii) for every f € WH2(X), we have that for m-a.e. * € X the function s — f(Fs,(Vt)(z))
belongs to W1(0,1) and satisfies
d
TS F @) = df (V) (EL (@), mox Loy — ace(w, 5). (36)
With this definition in hand, we now recall the main existence and uniqueness result for
Regular Lagrangian Flows in [6], as expressed in [25, Theorem 2.8]. Recall that the space of
Sobolev vector fields WéfOC(TX ) is the space of V € L (T'X) for which there is T in the
tensor product of L?(TX) with itself such that

/ WT(Vg, V) dm = / (V. Vi)div(hVg) + hHess(§)(V, Vg) dm

for every h, g,g € Test(X) with bounded support. In this case, T' is the covariant derivative of
V' and we denote it by VV.
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THEOREM 3.13 [6, 25]. Let (V;) € L*([0,1], W57, (T X)) N L>=([0,1], L (T X)) be such that
Vi € Djoe(div) for a.e. t € [0,1], with

1
N9V gz vVl o)+ 1wV Tl e < oc. (37)
0

Then a Regular Lagrangian Flow F(**) for (V) exists and is unique, in the sense that if F(V?)
is another flow, then Fs(vt)(x) = ngt)(x) for m-a.e. x € X and every s € [0, 1].

In the previous definition, a Regular Lagrangian Flow is associated to a time-dependent
family of vector fields (V;). When dealing with a single vector field V' the hypotheses of
the previous theorem simplify. To apply Theorem 3.13, it is enough that V & Wéfoc(TX )N

L>®(TX) and that
YV g2y + 1AV 2 ) + II(divV)) 7 oo ) < 00 (3-8)

To proceed, let B := B(zg,7) C X be a ball of some finite fixed radius 7 > 0 centered at
a fixed point xy. Let p = p" be the good cut-off function such that p =1 on B and vanishes
outside the ball of radius 2r, as in Lemma 2.6. We now consider the vector field pVu and show
that it admits a Regular Lagrangian Flow by Theorem 3.13.

Let us first note that, indeed pVu € Wé’i)c(TX) N L>(TX): From the proof of Lemma 3.4,
we have that u € Testi,.(X) and therefore, Vu € Wéfoc(TX) N L>®(TX). Moreover, since p
is Lipschitz and bounded, the Leibniz rule in [21, Proposition 2.18] (note that, while the
proposition requires the vector field to be in WéQ()N( ), its proof makes sense almost verbatim
for vector fields in Wé%oc(f( )) can be applied, yielding the claim.

We now show that pVu satisfies (3.8). First, [21, Proposition 2.18] can be applied to obtain
that

V(pVu) = Vp ® Vu + pHess(u), div(pVu) = pAu+ (Vp, Vu).

We use the first of these formulae in the following way: A bound for the Hilbert—Schmidt
norm of Hess(u) is readily obtained from Bochner’s inequality, Lemma 2.6 guarantees that
|Vp| < C(K, N, R) for some fixed R > r and we showed before that [Vu| = 1. Then,

[V(pVu)| < |[Vp @ Vu| + |pHess(u)| < C(K,N,R)+ N — 1 < oo.

It follows that V(pVu) € L*(X).
A similar reasoning coupled with the formula for div(pVu) gives us that

[div(pVu)| < [pAul + [(Vp, Vu)| < (N = 1) + C(K, N, R) < .

Therefore, div(pVu) € L?(X). From this, it is also immediate that div(pVu)~ € L®(X).

Hence Theorem 3.13 applies and a Regular Lagrangian Flow F" : [0, 1] x X — X for pVu
exists and is unique in the sense of Definition 3.12.

The uniqueness of a Regular Lagrangian Flow is tied to the uniqueness of solutions of the
continuity equation (see, for example, [25, Definition 2.9]). Given a metric measure space
(X,d,m), recall that two Borel maps ¢ — uy € P(X) and ¢t — V; € L*(TX) are said to solve
the continuity equation

d .
pria +div(Vip) =0 (3.9
provided that the following conditions are satisfied.

(i) There exists C' > 0 such that p; < Cm for every ¢ € [0,1].

(i) [ [ |Vi|? dpe dt < oo.
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(iii) For any f € W'2(X), the map ¢ — [ fdpu; is absolutely continuous and

d
%/fd“t = /df(Vt)dut a.e. t.

We will often refer to the continuity equation, (3.9), as the continuity equation associated to
(V4). The following result concerning the uniqueness of solutions of the continuity equation in
connection with the uniqueness of Regular Lagrangian Flows was obtained in [6]. We recall
the formulation of [25, Theorem 2.10].

THEOREM 3.14. Let (V;) be as in Theorem 3.13 and 1t € P(X) be such that 1 < Cm for
some C > 0. Then there exists a unique (u:) such that the pair (p, Xt) solves the continuity

equation, (3.9), and for which pg = fi. Moreover, such (u:) is given by us = (FS(X"))ﬁﬁ for all
s €[0,1].

The following lemma and its proof regarding the local uniqueness of solutions of the
continuity equation and that of Regular Lagrangian Flows were indicated to us by Ambrosio
and Gigli.

LeEMMA 3.15. Let (X,d,m) be an RCD(K, N) space and (V;), (W;) € L?([0,1], L} (T X))

loc

be such that V; = Wi, m-a.e. on some open set Q C X for all t € [0,1]. Let m € P(X) be
concentrated on some Borel set in () and assume that solutions u; and v; for the continuity
equations associated to (Vi) and (W), respectively, with initial data @i exist, are unique and
are concentrated on Borel subsets contained in € for all t € [0,1]. Then pu; = v, for allt € [0, 1].
Moreover, if (V) € L*°([0,1]; L>°(TX)) and (V;) and (W,) admit Regular Lagrangian Flows
F) and FW) | respectively, then for a.e. x € Q there exists s, € (0, 1] such that FS(V')(:B) =
Ffwt)(x) for all s < 8.

Proof. Let f € WY2(X,d, m). Then, by the definition of solution of the continuity equation,
the function ¢ — f fduy is absolutely continuous and satisfies

%/fd,ut:/df(Vt)dut a.e. t.

Since p; is concentrated in €2 for all ¢, we have that

d
%/fthZ/df(Wt)th a.e. t.

Hence p; is a solution to the continuity equation associated to (Wp). It then follows by
uniqueness that p; = v, for a.e. ¢ € [0,1] and by continuity that p; = 14 for all ¢ € [0, 1].

To address the part about Regular Lagrangian Flows, let us recall that by [6, Theorem 7.6]
there exists n € P(C([0,1]; X) satisfying the following two conditions.

(i) n is concentrated on curves v € C([0,1]; X) satisfying that for all f € W12(X), the
function ¢ — f o y(t) belongs to W1(0,1) and
d
LI on() =Af(M6(), aet,
(i) pe = (e)yn for all t € [0, 1].

Note that the hypotheses of [6, Theorem 7.6] are satisfied by the fact that X is an RCD(K, N)
space coupled with [6, Lemma 9.2].

We now note that there exists a Borel map T': X — C([0, 1]; X) such that n = T;G. This
follows from [6, Theorem 8.4] and the arguments in [1, Theorem 18], the idea being that, if
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such a map does not exist, then one can build two different solutions to the continuity equation
associated to (V;), contradicting the uniqueness assumption. Once we have that n = Ty, we
obtain that p; = (e; o T')4fi. In particular, items (i) and (ii) stated above give us that e; o T is
a Regular Lagrangian Flow for (V;). It follows that FS(V")(;E) = e, 0T (z) for m-a.e. x and all

s € ]0,1] as otherwise (FS(V"))ﬂﬁ and (es o T')yfi would be different solutions to the continuity
equation associated to (V). Therefore, F(4) is the unique Regular Lagrangian Flow associated
to (V4). Similarly we conclude that F. SW” is the unique Regular Lagrangian Flow associated
to (Wh).

We will now show that Fs(vt)(a:) = FS(Wt)(x) for -a.e. x € Q for all times s < s, for some
sz € (0,1]. Recall that, [6, Theorem 7.4 and Lemma 9.2] imply that, in fact, the curves ¢ —
Ft(vt>(x) for each z € X are not only continuous but absolutely continuous and that

|EYD (2)] = |[V|(FY) () for ae. s € [0, 1]. (3.10)
Let S be such that |V;| < S for all ¢ € [0, 1]. By integrating the previous equation and using
the definition of absolute continuity, we obtain that

a(FY @), FY () < SJs — 1)

for all t < s, with ¢, s € [0, 1].

Using the previous inequality, we claim the following: For each z € €, there exists a ball
B(z,r) centered at x and some 7 := 7(x,r) € (0,1] such that Fs(vt)(B(:v,r)) C Qfor all s < 7.
We call such a ball well contained in © (with respect to (V4)). Indeed, since €2 is open, there
exists a ball B(z,rg) C Q. Now for each r < ry and y € B(z,r), we have that

d(x, ") (y)) < d(,y) + d(y, F') () <7+ Ss.

Therefore, for every 7 € (0,1] with 0 < 7 < ==, we have that
r+Ss<r+Sr<r+(ro—r)=rg

so that FS(Vt)(B(:U,r)) C B(x,rg) CQ for all s €[0,1] with s <7. It is clear that 2 can be
covered with well-contained balls.

We will now define a map F : [0,1] x X — X. Let B be any well-contained ball in Q and for
each x € B denote t, € (0,1] the time such that Ft(zv‘)(x) ¢ B but Ft(v")(x) € B for all t < t,.
Then we define F' as

Fls,z) F,S(Vt)(x) ifx e Band s <s,
$,x) =
Fs(Wt)(SC) ifx € Bbuts>s, orz ¢ B.

Let us observe that F' is clearly Borel measurable. Moreover, it is immediate to check that
F satisfies the definition of a Regular Lagrangian Flow for (W;). Therefore, it follows by

uniqueness of the Regular Lagrangian Flows for (W}) that Fi(x) = Ft(W”(x) for i-a.e. x and
by the definition of F' that Ft(vt)(a:) = Ft(Wf')(x) for fi-a.e. z € B and t < t,. As Q can be

covered with well-contained balls, this immediately implies that Ft(vt)(m) = Ft<Wt>(x) for fi-a.e.
x € Q and all times ¢ < ¢, for some ¢, € (0, 1]. O

REMARK 3.16. In typical applications of Lemma 3.15, (3.7) is satisfied so the existence and
global uniqueness are guaranteed. If further 2 = B(z,r) is a ball, then the above argument
shows that the local uniqueness of the continuity equation and the Regular Lagrangian Flow
hold for a smaller ball B(x,7) for time ¢t < tg provided 7 + Sty < r. In our application, we have
S =1 and we can work with r > 1. Hence the local uniqueness holds for B(z,r — 1) and all
t e [0,1].
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We now apply this lemma to our situation. Let 29 € X be the fixed point we chose after
Theorem 3.13, consider an increasing sequence of radii r; 1 co with 1 > 1 and B; := B(xq, ;).
It is clear that X = U;2, Bi. We have already shown that a unique Regular Lagrangian Flow
Fri:]0,1] x XX eXlsts for each vector field of the form pp,Vu, where pp, is the good
cut-off function which is pp, =1 on B; and zero outside B(xq, 21;).

Let us fix an increasing sequence 7; T co with 7; < r; — 1 for all <. Observe that for each 4,
|pB, Vu| < 1 and, moreover, following the terminology used in the proof of the previous lemma,
that the ball B(xzg,7;) is well contained in B; with respect to pp,Vu for all times s € [0,1].
Therefore, the previous lemma implies that for every i < j, both flows F"i and F’"7 coincide
for m-a.e. x € B(xzg,7;) for all times s € [0,1].

Observe now that for each ball B = B(xg,r;) considered above, and t <7 <r; — 1, uy =
e~ (V=D is a solution to the continuity equation for V; = pB; Vu on B(:co,rz) with initial
data & = m. Hence, it follows from the previous theorem that on B(z,r;) and for t < 7;,

(Fy)ym = e~ V=D, (3.11)

Here we have used the fact that one can drop the requirement that the measures are probability
measures in the previous theorem as the continuity equation (iii) implies that the total measure
is preserved.

We can then define a map F : [0,1] x X — X (well defined up to a m-zero measure set) as

Fi(x):=F/'(z) if z € B(xo,7;).

We claim that F' is a Regular Lagrangian Flow for Vu. Item (i) of Definition 3.12 follows from
having that (Fy)ym =e ~(N=Dtp and item (i) of the same definition is immediately verified.
For item (iii) of Definition 3.12, we know that

%f(Fs(x)) = pp,df(Vu)(Fs(z)), m x ﬁl\[o,l] —a.e.(z,s).

So it suffices to take the limit when i — oc.

As we are dealing with a single vector field Vu (that is, in the notation of Definition 3.12,
V4 is independent of the time variable ¢), F' can be extended uniquely to a Regular Lagrangian
Flow F :[0,00) x X — X. Furthermore, observe that the proof of [25, Lemma 3.18] can be
applied verbatim to our case and therefore, F' can be extended uniquely (preserving the rate of
change in measure expressed in (3.11) to a Regular Lagrangian Flow F : (—oo,00) x X — X.

Note that the uniqueness statement in [25, Theorem 2.8] implies that for (V;) independent
of t, F satisfies the semigroup property F; o Fs = Fyi,, m-a.e. and for all ¢,s € R (cf. [25
Equation 2.3.10]).

We summarize the previous discussion in the following proposition.

PROPOSITION 3.17. Let u: X — R be the function constructed in Theorem 3.3. Then, there
exists a unique Regular Lagrangian Flow (in the sense of Definition 3.12) F : R x X — X for
Vu. Moreover, F satisfies the semigroup property F; o Fs = Fy 4, m-a.e. for all t,s € R, and
the following change of measure formula holds,

(Fy)ym = e~ W=Dty

We end this section by pointing out that the following lemma holds in our setting (cf. [20
Theorem 2.3 (iv)]).

LEmMA 3.18. Let w: X — R be the function constructed in Theorem 3.3 and F :
(—00,00) x X — X be the Regular Lagrangian Flow associated to Vu. Then, for every
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t,s € (—o0,00) and = € X,

d(Fy(2), Fy()) = |s — 1] = [u(Fy(2)) — u(F,(2))]-

In particular, u(F_, ;) (x)) = 0 for all x € X and the trajectories of F, are geodesics.

Proof. Following the approach of the proof of (a) = (b) in [25, Proposition 2.7], from (3.6)
we obtain that, for all ¢ < s,

UOFS—UOFt:/L du(Vu) o F,.dr.
t

Inverting the roles of ¢ and s, and using that |Vu| = 1 m-a.e.,
|luo Fy —uo Fy| =|s—t|

Furthermore, since |F5(Xt)(33)| = |XS|(F£Xt)(a:)) for ae. se€]0,1], we have that
d(Fs(z), Fi(x)) < |s —t| for all t < s. Moreover,

|uo Fs(x) —uo Fy(x)| < d(Fs(z), Fi(x))
because  is 1-Lipschitz. Therefore d(F,(z), Fy(z)) = |s — t|. O

4. Cheeger energy along the flow

Consider the map f; = f o Fy, where F : (—o0,00) x X — X is the Regular Lagrangian Flow
of the Busemann-type function u : X — R obtained in the previous section and f € W'?(X).
In this section, we focus on computing the W12?(X) norm of f;. Here we will first resolve the
regularity and show that if f € W172(X), then f; € Wl’Q(X') as well. For this purpose, we need
to use the heat flow to regularize f; first and adopt the techniques developed by [17] to our
setting. In the process, we obtain the derivative of the Cheeger energy along F;. Finally we
integrate and localize the result.

4.1. Derivative of the cheeger energy along the flow

Let us consider the map f; = f o F; where F; is the Regular Lagrangian Flow of the Busemann-
type function u of Theorem 3.3 and f € W12(X). In this section, we study the W2 norm of
f+. For that reason, we begin by proving a version of [20, Equation 3.39] in our setting.

LEMMA 4.1. For any f € S*(X,d,7) and t >0,
F(E) /\Vf\

for m-a.e. z € X. Furthermore, the result also holds for t <0 by taking the integral from t
to 0.

Proof. Let us consider a probability measure m on X satisfying m < m and m << m. We
define the measure 7 := Tym € P(C([0,1]; X)) where T': X — C([0, 1], X) is given by T'(z); =
Fy(z). Recall that e; : C([0,1]; X) — X denotes the evaluation map at t. Note that for all
t>0,

(er)ym = (Fi)ym < (Fy)ym = e~ NV Lo,

So 7 is a test plan (with compression constant < 2 Denote the set of trajectories of F' by I'p.
Observe that for any set of curves I' € AC([0,1]; X), the point  lies in 7-(T) if and only if
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there exists v € I' such that (t) = Fy(x) for any ¢ € [0, 1]. Hence, such a + is an element of I'p.
It follows that 7-1(I') = T-(I' N T'r) and we find that 7 concentrates on trajectories of F. By
Lemma 3.18, the elements of I'r are constant speed geodesics satisfying that d(v(1),v(0)) = 1.
In particular, 7 is concentrated on 1-Lipschitz curves.
For any I' ¢ C(]0,1]; X),
(e)gm(T) = m(T" (e; (1) = (Fy)ym(T).

By [20, (3.7)], for 0 <t < 1 and f € S?(X), for m-a.e. 7,

(1)) — / VA1 ()1 (5)]ds = / VAl

Therefore, using that for m-a.e. 2 € X the flow F is defined, and therefore for almost every
x there is a trajectory of F' passing through it, for every 0 <t < 1,

|f(Fi(z /\Vf| (4.1)

An iteration of this argument will yield the result for any ¢ € R. Let 1 < ¢ < 2, then by (4.1),

] (P () / (L 0)) dedin

A direct computation yields that the left-hand side of the previous inequality equals

/ F(Frs(2)) — f()] diin = / F(F@)) = F(FL ()] d(F_y)yn

= e [ |f(Fifa)) - £y ()] i

X

Moreover, by (4.1) the right-hand side becomes

//|Vf| ) dsdm — //|Vf| ) dsdm

/\Vf| ) dsdm — /|fF1 f(@)] dim.

Combining the previous equations, using that e~ (V=1 < 1, and the triangle inequality, we
obtain

[ 1) - / F(F@)) - F(Fu(a))] i+ / F(Fu() — £(a)] dm

X

<e ™[I @) - 1@ dmt [ 1F(F @) - f@)] dn
b X
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/ A dsdm+/|f Fi(x) — f(a)] dm

/ / |V f|(Fs(z)) dsdm.
This is precisely the result we claim in the case that 1 <t < 2. Iterating this process, the
inequality follows for any ¢ > 0, and similarly for any ¢ < 0. (]

This implies a version of [20, (3.40)] with appropriate modifications, as will be shown in the
next lemma.

LEMMA 4.2. For any f € Sz(X,cf, m) and t € R,

17 - f@P di) < t(l‘Nle)) 191 @) ainga).
X X

Proof. Taking squares, integrating the inequality of Lemma 4.1, and using Holder’s
inequality we obtain

) — @ an) < [ [ [ 19 IVfI ) ds d(z)
X x \0
/ VA (Fu(2)) diiz) ds = t / IV £2(2) d(Fo)gin(z) ds

t
= t//e<N1)5|Vf|2(x) din(z) ds
0 x
t

=t /e_(N_l)s ds /|Vf|2(x) dm(z)

0

e ”t)/w (@), ;

In the following lemma, we compute the L? norm of f o F; and investigate its regularity as
a function of t.

LEMMA 4.3. Let f € Wh2(X). Then f o F; € L*>(X, 1) for every t € R. Moreover, the map
t — f o F} is locally Lipschitz.

Proof. First we compute the L? norm of f o F}:

If o Fil7- = / (f o Fy)* din = / frem WDl d = e (N £)12,. (4.2)
X

X
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Therefore, as f € WH2(X) and in particular f € L?(X), it follows that f o F, € L?(X). Now
we proceed with the second part of the lemma. Let ¢t < s € R, by the previous lemma,

/|foFs — foFy? dm = /e*<N*1>t|foFS_t — fI? din
X X

1— —(N—-1)(s—t)
< e<N1>t(st)<6N1)/Vf|2 dsm

X

e~ (N=1)t _ —(N-1)s ,
-0 =) [ 19 am

< (s =% NV V20

Hence, t — f o F, is locally Lipschitz with Lipschitz constant dominated by e~ N~V f|| >
(which is well defined because f € WH2(X)). O

Before we embark on the main estimate of this section, we state the following lemma, a version
of [20, (4.34)], (see also [17, Lemma 3.11]) which holds (with the same proof) in our setting.
The proof requires (local) Lipschitz regularity of the function t — f o Fy (for f € L*(X)) and
a bound on the change of measure along the flow (F})gm < C(t)m which we have by the
previous Lemma and Proposition 3.17. Once these results are at our disposal, the result is
obtained essentially by an application of Proposition 2.1 and the first differentiation formula
(2.1). Tt improves our previous lemmas on the ¢-regularity and provides a derivative formula
which we will need. Let us point out, however, the change of sign in (4.3) with respect to [20,
(4.34)] and [17, Lemma 3.11], due to the fact that our flow goes in the direction of Vu, while
the corresponding flow in the aforementioned references goes in the opposite direction.

LEMMA 4.4. Let f € WY2(X). Then the map t — fo Fy € L*(X) is of class C' and its
derivative is given by
d

&f o Fy = (Vf,Vu)o F;. (4.3)

In the remaining part of this subsection, we will provide an estimate on the energy of f;,
which will allow us to conclude that for every f € Wh2(X), f, € W12(X) as well, for t < 0. To
regularize we make use of the heat flow h; : L>(X) — L?(X). Recall that h; is the unique family
of maps such that for any f € L?(X) the curve [0,00) 3t h(f) € L*(X) is continuous,
locally absolutely continuous on (0, 00), satisfies that ho(f) = f, he(f) € D(A) for t > 0 and
solves

d B 1
aht(f) = Aht(f), L a.e. t > 0.

We refer the reader to [20, Section 4.1.2] for a thorough exposition of the main properties of
the heat flow on infinitesimally Hilbertian metric measure spaces.

LEMMA 4.5. For each t > 0, let hy : LQ(XN) — L*(X) be the heat flow on X and & > 0 be
fixed. Then the map t + h.(f o F;) € WY2(X) is Lipschitz and, in particular, the map

1
t §/|Vh5(foFt)|2dm
X

is Lipschitz.
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Proof. Using the equivalence of (i) and (v) in [18, Theorem 7] and the fact that BL(K, N)
implies BL(K, 00), [6, Corollary 6.3] implies that the L?—T inequality holds true. Therefore,

IV (he(f o Fs) = he(f o F))ll[2 < C(e)l[f o Fs — f o Fy 1.
(See [6, Definition 5.1] for the precise value of C(g)). Moreover, by [22, (3.1.2)]
[he(foFs— foF)|re <|foFs—fokFre.
Combining the previous inequalities, we find
1he(f © Fi) = he(f o Fy)llwrz < Ce)||f o Fys — f o Fyl 2. (4.4)
(I

The following Euler-type equation for u is also needed in our estimate. For f € Test(X), it
allows us to compute the difference between terms of the form (Vu, VAf) and A(Vu, Vf).

PROPOSITION 4.6 (Euler equation for u). Let u : X — R be the Busemann-type function of

Theorem 3.3 and f € Test(X). Then the following identity holds true m-a.e.
A(Vu,Vf) = (Vu,VAF) + 2Af — 2(N — 1)(Vu, Vf) — 2(Vu, V{V f, Vu)).

Proof. The proof uses the same strategy as [17, Proposition 3.12]. Let us consider the
modified function " = expou : X — R. The chain rule (see, for example, [21, Theorem 1.12])
implies that e € Wllof(X) and that Ve" = e"Vu. Moreover, we claim that e € Dj,.(A).

Indeed, given f € Testys(X), we have that

/(Vf, Ve'ydm = /e“(Vf, Vu)dm = / (V(e"f) —e“fVu,Vu)dm = —/Ne“fdrh,
X X X
where we used the Leibniz rule (see [19, Equation 4.16]) and the fact that Au = N — 1. The
previous identities also show that Ae" = Ne".

We now let ¢ >0 and apply Bochner’s inequality (Theorem 2.8) to e" +¢ef where f €
Test(X) against non-negative test functions g € Testys(X) with g € L>(X,m) and Ag €
L*°(X,m) obtaining the following inequality, valid m-a.e.

X

Ae*Af

eA(Ve", V) + 2 AV f|? >e(<ve“, VAF) +(Vf, VAe") +2 —2(N —1)(Ve", Vf>)
(Af)?

+e2 <(Vf, VAS) + AJ; (N — 1)|Vf2>.

We now divide by ¢ and take the limit when ¢ — 0 to obtain
Ae"Af
N

A(Ve" Vf) =2 (Ve", VASY + (V[ VAe") +2 —2(N = 1)(Ve", V).

By substituting the values of Ve* and Ae", the previous inequality becomes
A(Vu, V) +2(Vu, V(Vu, V) = (Vu, VAF) + 2Af — 2(N — 1)(Vu, V).

An analogous argument by using € < 0 yields the other inequality, valid m-a.e.,

A(Vu, V) + 2(Vu, V(Vu, VF)) < (Vu, VAF) + 2Af — 2(N — 1)(Vu, V£). O

Before proceeding, let us remark that the term (Vu, V(V f, Vu)) in the previous inequality

makes sense since f € Test(X) and u € Testioc(X), so that (Vf, Vu) € I/Vlif(X)
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In what follows, we adopt the convention that for f e L*(X), f\Vdem oo if f ¢

B X
wWh2(X).
THEOREM 4.7. Let f € W'"(X) and let £(t) := 5 [ |V fi|* di. Then, for all t <0
X
E(fr) < e NTVIE(f).
In particular, f, € W'2(X) for all t < 0. Moreover, we have
ie() (N = 3)E() —/<Vft,Vu>2dﬁz. (4.5)

X
The proof depends on several lemmas. Let us consider the function

G(t,s) = /ft|2 _4|h5ft|2 din

S

X

Note that G(t,s) 15 [|Vfi|?>di as s | 0. Thus we are interested in an uniform bound on

X
G(t,s). Note also that by Lemmas 4.3 and 4.5, for each s > 0, the function t — G(t,s) is
locally Lipschitz.

LEMMA 4.8. We have

%G(t, S) = — (N — 1)G(t, S) — 1\/‘/ hsf‘rftAhsﬁ»Tft dmdr
S

0 ¥
1 S
- - Vhsirfe, Vu)(Vhs_r fr, Vu) dmdr. 4.6
s
0 x
Proof. By (4.2),
d1 - N -1 -
azs/|ft|2dm= —%/Iﬁ?dm. (4.7)
X X
On the other hand,
dt4 /|h ft\2dm—hm —/h It (M) dm (4.8)
X
R T 1 ft+‘l’ ft
iy o [ hzsft(
X
— lim i ei(Nil)ThZSft o Ff'r - h2sftf dm
7—0 28 T ¢
X
—(N-1) 9 1~ 1 -
= 9s |hs fi|” drm — %8 (Vhas ft, Vu) fi din,
X X

where we used Lemma 4.4.
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Therefore, putting together identities (4.7) and (4.8), we obtain that

X X

d
SG(ts) = —(N = 1)G(t.s) +

Now, let us note that the function 7 — [(Vhgi,f, Vu)hs_-f; is of class C* on [0,s] as a
X
consequence of 7+ hgi, f; being C'. Then, the integral in the last summand of the previous

identity can be written as

/<Vh25ft,vu>ft dm:/<Vhsft,Vu>hsft dm+/%/<Vh5+7ft,vu>h577ftdmd7.
X X 0 X
(4.10)

In turn, the first summand of the right-hand side of the previous expression can be computed
as follows

/(Vhsft,vwhsftdm:/<V|hsft2,Vu> d = V= 1) /|hsft|2dﬁz, (4.11)
X X X

2 2

where we used that Au = N — 1. It follows from plugging the two previous computations (4.10)
and (4.11) in formula (4.9) that

S

d 1 d -
&G(t, S) = —(N — 1)G(t7 S) + % / E / <Vhs+7-ft7 Vu)hs,Tft dmdr. (412)
0 X

Observe that

d - -
E / <Vhs+7'ft7 v’u>h5_7-ft dm = / <VAI’LS+7—ft, Vu>hs_7ft - <Vhs+7—ft, VU>AhS_7—ff dm.
X X

In the following computation, we will assume that hgy,f; € Test(X). We can do so without
loss of generality up to an easy approximation argument using the density of test functions in
W2(X) and the fact that hsi,f; € WH2(X). Then, using Proposition 4.6, we get that

d - -
E / <Vhs+'rft, vu>h57'rft dm = / _2h577'ftAhs+'rft dm
X X

+/2(N (Y, Vo fi) b fr it

X

+ / 2<VU, V<Vh5+-,—ft, Vu>>hs_7ft dm.

X

The last term can be expressed by an integration by parts, and using that Au = N — 1, as

/2<Vu, V<Vhs+7—ft7 Vu>>hs_7ft dm = — 2(N - 1) / hs_ﬂ,—ft<Vhs+7—ft, V’LL> dm

X X

- 2/ <Vh5+7—ft, Vu) <hsf‘rfta V’LL> dm.

X
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Hence we have that

d
E / <Vh5+7—ft, vu>h5,7-ft dm=-2 / hsfrftAhs+Tft dm (413)
X X

- 2/ <Vhs+7—ff, VU> <Vhs_-,—ff, VU> dm.
X

Combining with (4.12) yields

d 17
SG(ts) == (N = 1)Gt.) - - // hyr fiDhg sy fo didr
0%

1 S
- ;// <Vhs+‘rft7vu><Vhszft7vu> dmdr.
0%

Our next lemma deals with the last summand of the previous identity.

LEMMA 4.9. We have

/ (Vhiir fro VUV r fr, V) din = e~ (VD1 / (Vhair f, VU (Vhy_ f,Vu) din.  (4.14)

X X
Proof. To that end, let € > 0 and observe that

<Vhs+7'ft+8a VU,> <Vhs—7'ft+aa VU,> _ <Vhs+7'ft7 V”U,> <Vhs—7'ft; V’U,>
&

=51+ 59, (415)

where

h@ TJT E*hs TJT
S, = <Vhs—7—ft+savu><V( s+ fr+€ + ff),Vu>

and

SQ = <Vhs+7'ft7 vu><v(h5_7ft+; — h5+7ft) ’ vu>

Now we compute lim._,o S; as follows. First observe that by (4.4),
lim (Vhs_y fore, Vi) = (Vhy_r fr, Vi),
e—0

where the limit is intended in L?. Therefore,

lim S; = lim / (Vhe +fr, vu><v(hs“f”€ = hsirft) : Vu> drn. (4.16)
e—0 e—0
X

€

Now, as before, we assume h,_f; € Test(X). The following estimate holds true in the general
case by an approximation argument. Observe that for every f, g € W12(X) the following holds,
by using Au = N — 1, (cf. [20, (4.35)])

/f(Vg,Vu) drhz—(N—l)/fgdﬁz—/g(Vf,Vu)dTh. (4.17)
X X X
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Therefore, we obtain from (4.16) that

lim Sl = lim —(N — 1) / <Vh5_7—ft, Vu) (
X

e—0 e—0

hsirfiqe — hs+7ft> din
€

- / <V<Vhs-rft,VU>,Vu>(

hs+Tft+E - hs+7‘ft> d?’h
S

We claim the previous expression is equal to

/ —(N = 1)(Vhyr fr, VU) (Vhir fr, V) — (V(Vhgr fr, Vi), VU (Vg s s fr, Vo) din.

X

Indeed, it follows from Holder inequality and the fact that (f;,. — f;)/e is L?-weakly convergent
as € — 0 that

lim / (Vhe_, ft,Vu><hs+Tft+E€_ h“"'”ft) drn — / (Vhe_r f1, Vu)(Vhayr fr, V) din| = 0

e—0

and by a similar reason it is also true that

/ <V<Vhs—‘rfta Vu>’ VU> (h5+7ft+5 — hS+Tft) a5

3

X

— / <V<Vhsf-,—ft, VU>, V’U,><Vhs+7-ft, Vu) d’fh‘

X
goes to 0 as € — 0. Whence we have obtained that

lim 5 = /—(N — W)(Vhe_r fr, V) (Vhoir fr, Vi)

X
— (V(Vhysr fr, V), VUl (Vhy 1 fr, V) diia. (4.18)

A completely analogous procedure yields that

lim 5, = / (N = 1)(Vhor o, V) (Vhasr fo, Vi)

X

— <V<Vh5+7—ft, VU>, VU> <Vh57‘,—ft, V’LL> dm. (419)

It follows by using (4.17) again and using (4.18) and (4.19) when taking the limit when ¢ — 0
in (4.15) that
d

E <Vhs+7—ft, Vu) <Vh577—ft, V’U,> dm = —(N - 1) / <Vh5+7—ft7 VU><Vh3,-,-ft7 VU> dm,

X X

and therefore,
/ (Vhgirfr, Vu)(Vh_r fr, Vu) dm = e~ (N 11 / (Vheir f, Vu)(Vhe_, f, Vu) din.

X X

This finishes the proof of the lemma. O
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We are now ready to give the proof of Theorem 4.7.

Proof. Lemma 4.9 and the Bakry-Emery estimate (see [18, Theorem 4] ) allow us to estimate
the last summand on the right-hand side of (4.14) as

S

1 1
1 [ £V T Vi) <5 [ O TRl [Tl 0
X 0
1 r —(N—-1)t 2(N—1)(s—1) 2(N—1 s+7’
gg/B (V11N ENDED g p2, o dr
0
1) (—t492s 2
=N D )||Vf”L2(X)-
Therefore, using this estimate and (4.12), we have the differential inequality
d N—1)(—t+2s 2
7 C(t:5) > (N = 1)G(ts) - NV VST, o), (4.20)
where we have discarded the second term of the right-hand side of (4.12) since
**// S§— TffAhg_‘_-,—ftdde* *//th, ft' dmdr > 0.
Hence, from (4.20) we have that
d (v o2(N—1
SN DG 1,5) > PNV g,
and it follows from Gronwall’s lemma that
eNTIIG(t,5) < G(0,5) + te* N VAV 2, o
Therefore, for every t < 0, we have obtained that
G(t,s) < e~ NVDrx(0, 5). (4.21)
Let us note that, in fact, G(0,s) < 3 [ |V f|?dm for s < 1. Indeed, first note that
X

G(0.5) = 3= [ (0 = e+ hef(f = o) i
X

/dilT (h f)dTO/SAhdeT

0

Now, on one hand,

from which we can conclude that

—/ff hsf) = //fAh fdde———// Vf,Vh.fydmdr.

Therefore, by the Holder inequality and the Bakrnyrnery estlmate we obtain that
—/ff hf) < /IVf|2dm

On the other hand, an analogous analysis yields the same bound for ﬁ [ hsf(f —hsf)dm
X
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To conclude the proof, we note that by the uniform bound (4.21), and since G(t,s) t
% [ IV fi|>dm as s | 0, then the energies of f; are uniformly bounded for ¢ < 0. Then, passing

X
to the limit as s | 0 in (4.21), we have that

E(fi) <e”TVE(S)
for all ¢t < 0. In particular, f, € W12(X) for all ¢ < 0.
We can now pass to the limit s | 0 in (4.6) to obtain

d 2
SE(t) = ~(N — 1)E@) +2£(0) /(Vft,vw i

This finishes our proof. (I

In the following theorem, we see how the Cheeger energy of f; behaves along each of the
summands of (Vf;, Vf,) = Hess(u)(Vfi, Vfi) + (Vfi, Vu)?.

THEOREM 4.10. Let u:X — R be the function built in Subsection 3.2. The following
identities hold for any f € W12(X):

/HQSS(U)(Vft,Vft)dﬁl:67<N+1)t/Hess(u)(Vf, Vf)dm
X X
/(Vft,Vu>2 dm:e_(N_l)t/<Vf, Vu)? dr.

X X

Proof. We will first prove the second equality by studying its ¢-derivative as in the proof of
Lemma 4.9. We compute
<Vft+h’ VU>2 — <vft7 VU>2 _ <Vft+h7 VU’) - <vft7 vu>
h h

(Y fean, Vu) + (V fi, Vu))

= (I Gy (9 fon, V) + (95, T,

Observe that

lim [ (V geen = 1) VNV frin, Vi) diin = lim (N—1)/<ff+”h ft)(VfH;,,,Vu)dm

h—0 h h—0
X

_/(ff+hh ft)<v<Vft+h,vu>,vu>dm

Let us denote the first and second summands of the left-hand side of the previous equation
by A; and As, respectively. We claim that

A =—(N-1) /(Vft,Vu)Qdm

b
To prove this claim, note that

/(ft+hh ﬁ)w Foans T — (V. V) = / <W><<Vft+h,w>—<Vft,vu>)dm
X

+/<Vft,w><(f”hh f’f) <Vft,Vu>>dm
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Hoélder’s inequality implies

Sirn = Ji

L ||<vft+havu> - <vft,vu>||L2.

L2

/(ftJrhh ft>(<vft+h,Vu><vft’vu>)d <

X

This last expression converges to 0 as h — 0, since ||W|| 12 is bounded because £ S g

weakly convergent in L? and
IV fean, Vu) = (V fe, Vu) | 2 — 0.

Moreover, by [20, (4.34)],

/(Wt,vw((f”hh ft) - (Vft,Vu>>dm -0,

as h — 0, and therefore the claim is proved.
A similar procedure to the computation of A; yields

Ay = —/(Vft,Vu><V<Vft,Vu>,Vu> it

X
Therefore
. Jivn = fi -
lim ,Vu  (V frin, Vu)ydm = — (V f1, Vu)?
h—0 h
X X

_ /<Vft,Vu>(V<Vft,Vu),Vu) i
X
Thus, combining our observations, and using (4.17), we obtain

}h_>n10 <Vft+h,,vu>2h_ <Vft,vu>2 drn :/((V(Vft,Vu>,Vu>)2(<Vft,Vu>) dm

X X

—2(N —1) /(Vft, Vu)?dm

X

=—(N-1) /<Vft,vu>2dm

X

In conclusion, we have found that

d

7 (Vf, Vu)?dm = —(N — 1)/<Vft,Vu>2dm. (4.22)

X X
Hence,

/ (Vfi, Vuy® din = e (V" / (Vf,Vu)? din

X X
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Now we will obtain the first equality. Observe that (V f, V f) = Hess[u](V f, V) + (V f, Vu)?

implies

sl d1 d 2 4.

Sew =12 / Hess(u)(V fi, V f) din oTi/ (V1 V) din
By (4.22), this becomes

d d1 - -

&S() dt2/HeSS( WV fe, Vi) dm — Vu m.

X X
From Theorem 4.7, for ¢ < 0,
/Hess (Vf,Vfi)dm Vfi)d

X

Using both expressions for (%E(t) and solving for < f Hess(u)(V ft, V fi) din, we get

%/};HGSS(U)(Vft,Vft)d’ﬁl =—(N-3) /~ Hess(u)(V fi, Vf;) dm

X
We conclude that for ¢ < 0,

/Hess(u)(Vft, Vi) dm =e N30 /Hess(u)(Vf7 Vf)dm

X X
Now we reverse the flow, that is, use the equation f; o F_; = f, to see that the above equation
holds for all ¢. 0

REMARK 4.11. As Fyym = e~ (N=Dt we can rewrite the equalities in the previous theorem
in the following way:

/Hess(u)(V(f o ), V(f o Fy)) di = ¢ /Hess(u)(Vf, Vf) dFy i
X X
and

/ (V(foF,),Vu) dm = / (Vf,Vu)® dF, .

X X
4.2. Localization of the cheeger energy along the flow

Theorem 4.10 provides the behavior of (V(f o F}),V(f o F})) in an integral form, that is, at
the level of the Cheeger energy. In this subsection, we localize that result, that is, we obtain a
pointwise expression for (V(f o F}),V(f o F})).

THEOREM 4.12. Let u: X — R be the function constructed in Subsection 3.2, F:
(—00,00) x X — X our Regular Lagrangian Flow. Then for every f € W12(X), the following
identity holds

(V(foF),V(foF)) =ecHess(u)(Vf,Vf)oF, + (Vf,Vu)’ o F,.

The proof of this theorem requires the following lemma.
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LEMMA 4.13. Let f,g € W'3(X,d, Fyyin), then

/ (V(foF,),V(go F))dm

. (4.23)

= o / (Vf,Vg) dFpym+ (1 — ) / (Vf, Vu)(Vg, Vu)dFyyii.
% X

Proof. By Corollary (3.10) and Remark 4.11, we may write
/ (V(foF),V(foF))dmn=.e* / (V£ V)dEym+ (1—e*) / (V £, Vu) dFyym.
X X X

Now, by the definition of (V-, V),

. |V(goF +efoF)|?—|V(go F)?
(V(f o F), V(g0 F) = lim .

2e
Putting together both equations, we find
[ (¢ o F).9lgo F)jaim =tim o | [ (T(g-+ 1), (g + 1)) ~ (V9. Vo) dEign
X X

X

The result follows. O
We can now provide the proof of Theorem 4.12.

Proof of Theorem 4.12. By a simple approximation argument using the density of Test; (X )
functions in Wt 2(X), it suffices to show for f, g € Testys(X). Since Testys(X) is an algebra,
12, fg € Testys(X). Thus,

/Xg|vf|2dFmﬁz:/X<V(fg),Vf>—<Vg, (%)>dFtﬁm (4.24)

Now, applying equation (4.23) from the previous lemma to each of the summands on the
right-hand side of the previous identity, we get that

o . (foF,)? B
[ aiwstarin = ( [ 7o o F).VF o g [ (o B VU Yan)

(e ) / (Vfg, Vu)(V f,Vu) — (Vg, Vu><V(f§)’ VU>dem-

X

We now use again the Leibniz rule for V(fg) and V f 2 in the following computation. We also
use the following: Since f € WH?(X), then by Theorem 4.7 f o F; € W?(X). Now equation
(4.23) can be applied for f o F} and g o F;. Therefore, the previous identity is written as

/~ gIVfI?dFym = e / (go F)|V(f o Fy)*dmn — (e — 1)/g<Vf,Vu><f,Vu)derh.
X X

X



44 CHRIS ET AL.

Rearranging terms and using Corollary 3.10, we obtain

/~ (g0 FIV(f o F)[> din = ¢ / g Hess(u)(V £,V f) dFyyin + / 9(V f,Vu)? dF i
X X

X
=e?t /~ (go Fy)Hess(u)(Vf,Vf)o F,dm
e

+/~ (9o F)(Vf,Vu)? o F, dm.
X

Finally, as g is arbitrary, we conclude the validity of the formula. O

5. The quotient metric measure space (X', d',m’)

5.1. Continuous representative of F'

Using our knowledge of the value of |V f;|, we can now improve the regularity of the flow and
show that for fixed ¢, the function F} is Lipschitz.

THEOREM 5.1. The map F : (—00,00) x X — X admits a continuous representative with
respect to the measure L' x . Still denoting such representative by F', we have:

(i) the semigroup property holds, that is, for every t,s € R and x € X we have F;(F,(z)) =
Fi4s(x). Moreover,

d(Fy(2), Frys(@)) = |sl;
(ii) for every t € R, Fy is a bi-Lipschitz map with Lip(F;) < max{e’, 1};
(iii) Given a curve 7 :[0,1] = X let 7 := F,o0~. Then one of the curves is absolutely
continuous if and only if the other is and their metric speeds are related by the following
inequality

min{1, e'}4s] < |¥s| < max{1,e"}|5s] for a.e. s € [0,1]. (5.1)

Proof. Statements in (%) follows from Proposition 3.17 and Lemma 3.18. Now for each t € R,
we will first obtain a max{1, e!}-Lipschitz representative of F;. By Theorem (4.12) we know

that for f € W1’2(X,J, m),
(V(foF,),V(foF)) =e*Hess(u)(Vf,Vf)oF+ (Vf,Vu)’ oF,.

Therefore,

(V(foF),V(foF)) < max{e, 1}(Hess(u)(Vf, Vi) oF, + (Vf, Vu)’ o Ft>

= max{e* , 1}(Vf,Vf)o F}.

Thus, |V(f o F})| < max{1,e'}. Because X has the Sobolev to Lipschitz property, f o F} has a
max{1, e’ }-Lipschitz representative. B 3

As in [20, Lemma 4.19], the functions f, = max{0, min{d(-, z,),k — d(-,x,)}}, with {z,}
dense in X are 1-Lipschitz with bounded support and thus belong to Wl*Q(X,J, m) with
|V fren| <1 i-ae. Let D= {f,.} C W"2(X,d,7m). Then D is a countable set of 1-Lipschitz
functions with compact support such that D is dense in the space of 1-Lipschitz functions with
compact support with respect to uniform convergence. Thus, for all yg,y; € X ,

d(yo,y1) = sup |f(yo) — fy1)l- (5.2)
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Since D is countable, then there is an m-negligible Borel set N7 such that for every f € D,
the restrictions f o Fy : X \ W/ — R are max{1, e’ }-Lipschitz. Therefore, by (5.2) for zo,z; €
F7H (X \N), we have

d(Fi(w0), Fy(a1)) = sup |/ (Fu(20)) = f(Fy(1))| < max{L,e'}Yd(wo, 21).

Hence, for each (t, ), (s,y) € R x X, we obtain
d(Fy(z), Fs(y)) < d(Fy(x), Fi(y)) + d(Fi(y), Fs(y)) < max{L,e'}d(z,y) +|s —t|.  (5.3)

This proves that F' admits a continuous representative. Then the statements in (i) follows.
For (i), let us assume that v is absolutely continuous. Then

d(n,7s) = d(Fi (), Fi (7)) < max{1, e }d(vn,75) < maX{l,et}/ || dr
h

Therefore, || < max{1,e'}|¥s| for a.e.-s € [0,1]. The other inequality is proven in a similar
way. O

We continue this section by defining a quotient metric measure space (X’,d’,m’) induced
by the flow F. We will show that it is an infinitesimally Hilbertian space, and that it satisfies
the Sobolev to Lipschitz property. We now provide the definition of X'.

DEFINITION 5.2. Let X’ =« ~1(0) and define d’ : X’ x X’ — R by

d'(z,y) = inf{L(v)|y € AC([0,1], X), uoy =0, = 2, 1 = y}.
Here L(v) = fol |4 | dr.

LEMMA 5.3. Let X' be as in Definition 5.2, then d’ is a well-defined function and (X', d")
is a metric space. The inclusion map ¢ : (X’,d") — (X, d) is 1-Lipschitz.

Proof. First we will show that the set

{7 € AC([071]7X)7 uoy=0,v%=z2 7= y}
is non-empty for any z,y € X’. As X is a geodesic space, there exists an absolutely continuous
7:[0,1] = X such that 79 = z and ~; =y. By Theorem 5.1, the curve ¢+ F_y(y)(7e) s
contained in u~!(0). We only have to prove that it is absolutely continuous. To that end,
let M = max{Lip(F_,,)) |0 < s < 1}. This maximum M is achieved because u, F', and ~y are
continuous. Using the triangle inequality, together with the fact that F_,(, ) is a Lipschitz
function for all s and that u is a 1-Lipschitz function, gives, for all 0 < s <t < 1,

CZ(F—U,(%)(’YS)a F—u(%)(’yt)) < (Z(F—u(’ys)(78)7 F—?J,('yg)('yt)) + CZ(F—U('VS)(PYt)a F—u('yt)(’yt)) (5'4)
SLAP(F_y(y))d(sr ve) + [ulye) — u(vs))|

S (Lip(F_y(y,)) + 1)d(vs, 7e)

t
<or+1) [ iilar

Hence, F_,,)(7:) is absolutely continuous in (X,d) and d' is well defined.
If z,y € u=1(0) then,

(i(z,y) <inf{L(vy)|y € AC([0, 1}7)2), uoy=0,v%=2 7=y} (5.5)

=d'(z,y).
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This shows that ¢ is a 1-Lipschitz map and that d’ is positive definite. Symmetry and the
triangle inequality follow from the definition of d’. |

5.2. Metric speed of curves in the quotient space

Let 7 : X — X’ be given by 7(z) = F_y(z) (7). By Lemma 3.18, 7 is well defined and from now
on we call it the projection map. The aim of this subsection is to study 7 and its effect on the
metric speed of curves in X. The main results of this subsection are collected in the following
proposition, which will be used in the next subsection to relate a subspace of W12 ()Nf .d, m)
with Wh2(X' d',m’).

PROPOSITION 5.4. Let 7t be a test plan on X. Then, for m-a.e. v, the curve ¥y = mo~y in
(X',d") is absolutely continuous and for a.e. t € [0, 1]:

(1) Pl e Ol )
(2) the projection map 7 : X — X' is locally Lipschitz, that is, for all xqg € X and all z,y €
B(zg,T),

d'(m(2),m(y)) < e " d(a,y).

To prove (1), we will follow the strategy developed by De Philippis—Gigli (Subsection 3.6.2
[17]) and define a ‘truncated’ and reparametrized flow F with the property that for large s the
maps F, approximate the projection map 7 : u Y([-R,R]) = u=*(0), for 0 < R < 1.

Let 0 < R < R <1 and ¢ € C*°(R) with support in (—R, R) such that ¢(z) = —32z% for
all z € [-R, R]. Define the function @ = owu: X - R and consider a reparametrization
function rep,(r) defined by the property that dsrep,(r) = ¢'(rep,(r) +r) and repy(r) = 0.
We now define the flow F: R x X — X by Fi(z):= Fiep. (u(z))(7) and note that Fy(z) =
Fle—_1yu(x)(x) on u '([-R,R]). It follows from these definitions that F is the Regu-
lar Lagrangian Flow associated to 4. Moreover, the following formulae hold for all x €

u”'([-R, R)),

N 1,
i = —gu?, (5.6)
Vi = —uVu, (5.7)
At = —u(N - 1) — 1, (5.8)
Hess(i) = —uld + (u — 1)(Vu ® Vu). (5.9)

The previous formulae, imply @ € Test(X), in particular it has bounded gradient, Laplacian
and Hessian. When s — oo, then rep, (u(z)) — —u(z) for every z € u='([—R, R]), that is F,
converges uniformly to 7 := F_,,y(-), the projection map. We observe that F, is the identity
on X \ v~ ([~R, R]) and it sends u~'([-R, R]) to itself.

In the following, for each s € R, we only concern ourselves with Fs\u,l([_ﬁﬁ])7 because
this will be sufficient for our purposes. Observe that [17, Lemma 3.30], [17, Proposition
3.31] hold in this setting because, as we will now see, F, is of bounded deformation (that is,
Lipschitz with bounded compression) for any s € R. We begin by showing that F,is Lipschitz
on u~([-R, R]):

CZ(FS (.’1?), FS (y)) = CZ(F(e*S—l)u(z) (33)’ F(efs—l)u(y) (y))
< d~(F(e_S—1)u(w) (QIJ), F(e—s—l)u(z) (y)) + (i(F(e_S—l)u(m)(y)7 F(e—s—l)u(y) (y))

< max{L, e VY@ y) + (e = 1) ul@) — uly)l
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< max{1,el® VN d(2, ) 4 |(e7* = 1)]d(x,y)
< (max{L eI} 4 [(e* 1)) d(a,y).
This proves Fi|, (77, is Lipschitz with Lipschitz constant

max{L, el TV} 4 |(e7 1))

for any s € R. R
Let us proceed by showing that Fs|u,1([_§7§]) is of bounded compression, as

(Fulyor () = (Flemsyu()ei = e V702010 < (VDI DR,

We now recall [17, Lemma 3.30] and [17, Proposition 3.31].

~LeEMMA 5.5 (De Philippis-Gigli, Lemma 3.30). Let ¢ € W'?(X). Then the map s — ¢ o
F, € L*(X) is C* and its derivative is given by

d “ N
570 Fy = (Vp, Vi) o F. (5.10)

If ¢ is further assumed to be in Test(X), then the map s — d(po Fy) € L%(TX) is also C!
and its derivative is given by

%(d@p o FS)) = d((Ve, Vii) o F). (5.11)

PROPOSITION 5.6 (De Philippis-Gigli, Proposition 3.31). Let v € L*(TX) and set v, :=
dF(v). Then the map s+ 3|vs[* o F' € L*(X) is C' on R and its derivative is given by the
formula

d1 . .
£§|US|QOF:HGSS[’LAL](US,’US)OFS, (512)

the incremental ratios being convergent both in Ll(f( ) and m-a.e. If v is also bounded, then
the curve s 3|vs[* o F' is C' also when seen with values in L?(X), and in this case the
incremental ratios in (5.12) also converge in L?(X) to the right-hand side.

We will use the previous results to prove the following monotonicity formula. The proof is
similar to that of [17, Corollary 3.32].

COROLLARY 5.7. Let v € L*(TX) be concentrated on B :=u"'([-R,R]) and set v, :=
dF;(v). Then for every si1,s2 € R such that s; < sa,

(e |y, %) 0 E., < (e7|vg,|?) o E.,, m-a.e. (5.13)

Proof. We may assume that v is bounded up to replacing it with v,, := Xx{jv|<n}v, using the
fact that |dE,(v,)| o By = |dE,(v)] o Fy on {|v] < n} and letting n — oc.

Now we observe that on the complement of B both sides of (5.13) are zero m-a.e. (as a
consequence that v is concentrated on B). So that we only need to prove

(e oul? 0 B )xs < (e oP)xs, e

Observe that by Lemma 5.5 the derivative of s — wu o Fj is

diuo F, = (Vu,Vi)o Fy = —uoF,. (5.14)
s
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Therefore, integrating with respect to s, we obtain u o F, = e *u. As we are assuming v is
bounded, by Proposition 5.6, the map s — losl” *l oF.xp € Ll( X) is C' and then

d [ _ouck, | s| d [ _ouok |vg]? | o o—2uoF,
_ uo s — _ UO L' s F _ F UOL g
ds (6 5 ©Foxn ds (e ) 2 N d 2 ° X

2 - ~
= ('Uql o F3<Ve_2“, Vi) o Fy 4 e~ 2P+ Hess[] (vs, vs) o FS)XB

oF, +e 2“OFSHess[ ](vs,vs)of?’s)XB

Recall that R < R < 1, from which follows that u(x) < 1 for all z € B. This concludes the
proof. O

PROPOSITION 5.8. Let 7 be a test plan and v:[0,1] = u~'([~R, R]). Then ms;(y) <
e "0 ms,(v) for a.e. t € [0,1], T-a.e. vy, where 7 := wo .

The proof of the proposition resembles that of [20, Proposition 3.33], as follows.

Proof. Abusing the notation, we will still denote by F, the map c([0,1], X) = C([0,1], X)
taking v — Fo ~. Recall that for every t € [0 1] the differential of F, induces a map, still
denoted by dF,, from L2(TX,e;,m) to L2(TX, e;, 7). We claim that for any s; < so and any
V e LA(TX, e, m),

(6_2“06t|dF52(V)|2) oFs, < (e_2“°€t|dFSI(V)|2> o F,, T — a.e. (5.15)

To prove the claim, we first consider V to be of the form ejv for some v € L?(TX). By
Proposition 5.7, for s; < sg, T-a.e.,

<672uoet|dﬁvs2 ((—;’f’U )

e 2uoe,|€2< (’U)|2> OFS2

62“|dFS oe ol

e*|dE,, (v)|*) o Ey, o

(€2u|dF5 ) o by,
(6_2“°€’|dF e;v)| )oﬁsl.

Let (A;)ien be a Borel partition of C([0, 1], X). The locality property of dF, :
LQ(TX,et,]t) — L?(TX,es,m,) implies that any combination of the form Y ya,efv;, with
v; € L*(TX), satisfies

(672”0% |dFsg (Z XA; ezvi)|2> © ﬁsz < <672UO6t |dﬁs1 (Z XA; 6:’01')|2> © FS] T — a.e.

As the elements of the form »  x4,e;v; are dense in L*(TX,e;, ) and dF, is continuous when
considered as a map L*(TX,e;, 1) — L*(TX, e, 7t,), the claim follows.
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Let (m,), € L>(TX, e, ) be the speed at time ¢ of the test plan 7t,. Applying (5.15) to 7,
and using the Chain rule for speeds [17, Proposition 3.28], we obtain that for s; < s2 and a.e.
t €10,1],

(6_2uoet|(7'[52);|2) ° FSQ < (e—2uoet|(7.t51);|2) OFSU T —a.e..

Now we integrate with respect to ¢ and recall the link between point-wise norm and metric
speed given in [17, (3.58)] to obtain
1

1
[ ot imy < [ e am o), 516
0 0

The lower semicontinuity of the corresponding functional follows analogously as in [17,
Proposition 3.33]. Now let us consider the functions F, as functions from B to itself, and
recall that they converge uniformly to the projection map 7 : X — u~'(0) as s — co. Then the
test plans 7ty weakly converge to 7,7 as s — oo and therefore,

1 1
[ [ ian. < i [ [ e2o0ps P,
0 0

From the last expression, it follows that

1 1
// ms? (7 o y)dt dm < // e~ 240 ms? (v)dt dm.
0 0

Now, the argument to conclude the proof from this integral formulation follows exactly as the
corresponding part of [17, Proposition 3.33]. O

Proof of Proposition 5.4. We start by proving (1). By Proposition 5.8, (1) holds for v €
u~![~R, R]. Proceeding as in the proof of Proposition 5.8, it is possible to show that if 7
is a test plan and v :[0,1] = u~!([c — R,c + R]), then ms,(pr.y) < e "0 ms,(v) for a.e.
t € [0,1], w-a.e. v, where prey := F_y(y)4c 0. Let ¢ = R and

v :10,1] = u *([e = R,c + R]) = u ([0, 2R]).

It follows by (iii) in Theorem 5.1 and Proposition 5.8 that for almost every ¢ € [0, 1],

e s (pre(v)) < ms; (pro(przy)) < ¢ ms; (prg(y)).
Note that pro(y) = pro(prg7v). Thus, for almost every ¢ € [0, 1],

ms; (pro7y) = e Fmsy(prip(y)) < e e 00 Fg, (4).

This shows that (1) is satisfied for curves on u~!(([0,2R]). Proceeding in the same way,
(1) follows.

Now we prove part (2). Let x,y € B(zo,r) and 7 : [0,1] = X be a minimal geodesic joining
them. As w is 1-Lipschitz

u(ve) = max{u(y0), u(y1)} — d(v0,m),
u(y0) = —r + u(wo),

u(m1) = —r +u(zo).

Thus, u(y) = —r + u(zo) — 2r = u(wg) — 3r. From the previous paragraph el < e ) |4, ).
Therefore, d' (m(x),7(y)) < L(7) < e “=0)+37d (2, y). O
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5.3. Properties of the quotient metric measure space

Here we show that (X’,d’) is a complete, separable, and geodesic metric space. Then we
define a measure m’ on X’ and study the relationship between the spaces W2?(X’,d’,m’) and
W12(X,d,m). At the end of the subsection, we show that (X', d’,m’) is an infinitesimally
Hilbertian space that satisfies the Sobolev to Lipschitz property.

THEOREM 5.9. With the same notation and assumptions of Definition 5.2, (X',d’) is a
complete, separable and geodesic metric space.

Proof. By Proposition 5.4, the map 7 is continuous, we will show that X'’ is separable. Since
X is separable, there exists a countable dense subset {:173} C X. Consider an open set U C X,

then 7~ (U) is open in X. As X is separable, there exists z; € 7—'(U), and then 7(z;) € U.
Thus, {m(x;)} is a dense subset of X"

To prove that (X',d’) is complete, let {z;} C X' be a Cauchy sequence. Then, because

: X" — X is 1-Lipschitz, {¢(x;)} is a Cauchy sequence in X, and hence it has a convergent
subsequence t(xj,) — x. Given that 7 is continuous, z;, = W(L(I’jk)) — 7(z).

To prove that (X', d’) is a geodesic space recall that a complete, locally compact length space
is geodesic. So it is enough to prove that (X’,d’) is locally compact. This is very similar to the
previous paragraph. Let # € X’ and 7 > 0.If {z;} € B (z,7), then {(z;)} C B(u(z), ). Now,
since ()N( ,J) is locally compact, there exists a convergent subsequence ¢(xj, ) — y. Because 7
is continuous, z;, = 7(t(z;,)) — m(y) and d'(7(y), z) = limy_, d'(xj,,x) < r. This concludes
the proof. [l

Civen that u : X — R and 7 : X — X’ are continuous (see (2) in Proposition 5.4 where it is
shown that 7 is locally Lipschitz and recall that u is Lipschitz), we define a Borel measure on
X'

DEFINITION 5.10. We define the measure m’ on (X’,d’) by
-1

1
m'(A) = ( / e<N1>3ds) m(r~ Y (A)Nut0,1])
0
for any Borel set A C X'.

LEMMA 5.11. Given a Borel set A C X', let A’ = {z € X|u(z) € [a,b], w(x) € A}. Then,

m(A%) = m/(A) /be(N_l)Sds. (5.17)

Proof. The proof follows that of Proposition 5.28 [20]. For completeness, we give some
details. Note that by the definition of m’, equation (5.17) holds for a =0 and b=1. By
Proposition 3.17 and Theorem 5.1, we know that F,ym = e~ (V=Y and F; ! = F_,. Thus,

(AZH) = NV (B, (A1) = Vo4l
1 a+1
=m/(A) / eWN=Daeg(N=1s g5 — m/(A) / eN=1s gs.
0 a

To prove that equation (5.17) holds for a = 0 and b = 1/2, we use again Proposition 3.17
and Theorem 5.1. Thus,

(AL = (AY?) + (AL ) = (1+ 2V D)in(4l/).
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With some algebra, we conclude
1 1/2
m(Ay/?) = (1+ 2N "D)"In(A)) = m’(A)/ eN D3 s,
0

Continuing in this way, equation (5.17) holds for @ € R and b = a + k/2" with k,n € N. Then
an approximation argument concludes the proof. O

PROPOSITION 5.12. Let h € Lip(R) with compact support and identically 1 on [a b]. Let
f € L*(X) be of the form f(z) = g(n(x))h(u(z)) for some g € L*(m/). If f € W'2(X), then
g € WH2(X'") and for m-a.e. x € u~*[a, b], we have

Vglxr (m(x)) < @V f| 5 (2). (5.18)
Proof. Let 7' be a test plan on X’. Define
T:X' x[d, V] =X, T:C(0,1],X") x [d,b] = C(]0,1], X),
and 7t € P(C([0,1], X)) given by T(x,s) = Fy((z)), T(7,5); = T(v:, s) and
T = T’i(ﬂ/ X (b/ ) 1£[u b' )

with [a’, V'] C [a, b]. )

We claim that 7r is a test plan on X. That is, 7t has finite kinetic energy and bounded
compression. Finite kinetic energy for 7t follows from the fact that 7t is a test plan and so it

has finite kinetic energy, and that ms; (T'(7, s)) < Lip(Fy)|3:| (where ms,(T'(v,s)) denotes the
metric speed of T'(7, s)), by Theorems 5.1 and 5.3. Set M = max{Lip(F5)|s € [da’,V']}, then,

// 4| dt dre(v) /// " — ) 'ms (T, 5))? ds dt dr ()
<M%//O |7 [* dt A7’ (v) < oo

To show that 7t has bounded compression, it is enough to consider sets of the form
Al = {z € X |u(z) € [¢,d], n(x) € A},
for some Borel set A C X’. Thus, using that 7t/ has bounded compression, and equation (5.17),

ey (AL) =70 x (V' —a') 7 Ly (e 0 T)7H(AD)

=7 (e; (A) (V' — a') " Ly ([, d])

<Cm/(A).
The definitions of 7t and f yield
1760 = felant) = [latn) - gl a2, (5.19)
Now, the definitions of |V f| ¢, and 7t, imply the following estimates:
[1560 - sewian< [ [ 1ensoopiain (5.20)

1 pb
g//o /a (b/_a/)71|Vf|X(T(’y, ))mst( ( ))dsdtdﬂf

</ / / Lip(FL) [V ] (7. 8)0)l] ds i dre’

In the previous inequalities, we used Theorem 5.1 to bound ms, (T'(7, s)) < Lip(Fs)|4|.
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Combining equality (5.19), inequality (5.20), and that 7t/ was chosen arbitrarily, we conclude
that g € W12(X’), and the right-hand side above is an upper gradient for g, that is, that for
m’-a.e. a,

Y
Vol (o) < =) [ Lip(B)[9F5(T(a',5) ds.
This proves g € WH2(X’), and for 0 < a < b, gives the right estimate for |Vg|x when we let
a’ and b’ converge to u(z), as for s € [a, b] the inequality Lip(Fs) < max{e®, 1} = e holds by
Theorem 5.1 part (ii).

If a < 0, write f = f o F}, here t > —a. Then f(z) = g(n(z)) for z € u='[a +t,b+1t] and
0<a+t<b+t. We note that (Vf, Vu) = 0. Then by the definition of Regular Lagrangian
Flow, Definition 3.12 (iii), and Corollary 3.10, the equality |Vf|§~( = Hess[u](Vf, Vf) holds m

a.e. in u~'[a, b]. In combination with Theorem 4.12, we have thus found
< - 2 L
(V/,Vf) = e Hess(u)(VF,V ) o Fi + (V). Vu) o F, =e*(V],V[)oF,.
The previous equality holds for 0 < a < b, and so we conclude that m’-a.e. z’,
V(@) = |V FI(Fi(2) > e'e” Vg x (n (). =

THEOREM 5.13. Assume h € Lip(R) has compact support and is identically 1 on |a,b].
Let f e L*(X) be of the form f(x) = g(m(x))h(u(x)), for some g € L*(X',m’). Then g €
Wh2(X' d',m') if and only if f € WH%(X,d,m), and for m-a.e. x € u~'[a,b], we have

IV fl5 (@) = e | Vglx (n(x)). (5.21)

Proof. By Proposition 5.12, it is enough to prove that if g € Wh(X' d',m'), then f €
W2(X,d,m) and |V f|5(z) < e ) |Vg|x/ (n(x)) holds for mm-a.e. x € u~'[a,b]. Let G : X —
R be given by

G(z) = e " |Dglx (n(x))h(u(x)) + g(m (2))|1'| (u(x)). (5.22)

We will show that G is a weak upper gradient of f. Note that G is in L?(1h) and that G(z) =
e @) |Vg|x: (r(x)) for € u~a, b].

For z € supp(f) following the same arguments of the proof of [4, Theorem 4.19] (this is the
property of weak gradient being a local object) it is sufficient to check the definition of weak
upper gradients for f using test plans 7t such that for each t € [0, 1],

e C Alw,r) = {y € X |u(y) € [u(z) —r,u(@) + 7], d'(r(x),7(y)) < r}

and v € supp(m). Fix such 7. By (2) in Proposition 5.4, the map #:C([0,1], A(z,7)) —
C([0,1], X’) given by 7 (y) = 7 o 7 is Lipschitz. Arguing as in the proof of Proposition 5.12, we
conclude that ' = 747t is a test plan on X'

Since g € W12(X’) and the way 7' was defined, by Proposition 2.1, for m-a.e. v the map
t = g(7(7)¢) is equal a.e. on [0,1] and {0,1} to an absolutely continuous map gs(,) such that
for a.e. t € [0, 1]

195 (1) < Vgl (F(N))FR)e] < e 00 [Vglx (7 () el (5.23)

In the last inequality, we used (1) from Proposition 5.4.

For any absolutely continuous curve vy in X, h o u o 7y is absolutely continuous with derivative
[(howox)| < |hW|(uo~)|¥|. Hence, for m-a.e. v the map t — f(y:) = g(mw (7)) h(u(y:)) is equal
a.e. on [0,1] and {0, 1} to the absolutely continuous map f(t) = gz(+)(t)h(u(y:)) such that for
a.e. t € [0,1] satisfies

1) < (€709 Vgl () () + g (r) | (w0 7)) el (5.24)



MAXIMAL VOLUME ENTROPY RIGIDITY FOR RCD*(—(N — 1), N) SPACES 53

This proves that for m-a.e. x € u~*[a, b,
V5 (2) < e |Vglx (n()). -

PROPOSITION 5.14. Under the assumptions of Definitions 5.2 and 5.10, the space (X', d', m')
is infinitesimally Hilbertian, almost everywhere locally doubling and a measured-length space.
Hence, it satisfies the Sobolev to Lipschitz property.

For the definition of locally doubling and measured-length space, see Definitions 2.15 and 2.14
in Subsection 2.6.
1,7m), it is easy to see

Proof. By Theorem 5.13 and the infinitesimally Hilbertianity of (X ,
X',d',m’) is everywhere

that (X’,d’,m’) is infinitesimally Hilbertian. We now prove that (
locally doubling.
Given 2’ € X’ and R > 0, for r < R/2 define

Az’ r) = {z € X|u(z) € [-r,7], d (2, 7(2)) < r} C B(u(a'),2r). (5.25)

By (2) in Proposition 5.28, there exists a Lipschitz constant L > 1 for 7 : B(¢(2’), R) — X'.
Note that B(c(x'),r/L) C B(t(z'),2r) because L > 1. Since u is 1-Lipschitz and by the triangle
inequality, if y € B(c(x'),2r), then |u(y)| < u(u(2’)) +d(y,c(z")) < 2r. Thus, B((z'),2r) C
B(u(x'), R). This shows d'(7(y),2’) <r for any y € B(«(a'),r/L). Since u is 1-Lipschitz, it
follows that u(y) < r/L < r for any y € B(«(«’),r/L). Thus,

B(u(2"),r/L) C A(z',r). (5.26)

Equation (5.17) gives
m(A(z',r)) :m'(B’(x',r))/ eN=1s s, (5.27)
Let c(r) = [" eN=Dsds. Starting with equation (5.27), then using equation (5.26), that

(X,d, ) is locally doubling with constant C'y [47], equation (5.25) and equation (5.27) once
more, we estimate

m'(B'(a', 1)) = ¢ (r)ym(A(z, 7)) = ¢ (r)m(B(u(a"),r/L))
> CXC_l(T)ﬁ’L(B(L(.Z’/),T/QL)) > C'Xc_l(r)rh(A(x, r/4L))
cc H(r)e(r/ALYm! (B' (2,7 /AL)).

That is, m/(B'(z/,r)) > Cm/(B'(2/,r/AL)), for C = Cc ' (r)c(r/4AL). Therefore (X', d’,m’)
is almost everywhere locally doubling.

Now we show that (X', d’,m’) is a measured-length space. Let xg, 21 € X', define e = 1 and
take €9,e1 € (0,¢]. Let 4 be a geodesic in X' from x¢ to x1, and x; = 7,/,, for i = 0,1,...,n,
n=[14+1/Ve'| and & = max{eg,e1}.

Let &; = g0+ (g1 —€0), and define p5*" = (M(A(wi, &) "Ml a(s, -,). Here A(zi,e;) is
defined by equation (5.25). From equation (5.17),

€0,€1

Ty = (m ( (xhgl))) m/lB/(ri.e,»)- (528)

Let 7t;°°" be the only optimal geodesic plan from ;" to u;77" [48]. By the triangle inequality
and our choices of x; and ¢;, for y; € A(z;,&;), we have

~ 1
d(yi,yit1) < 2e; +d (@i, xi41) + 26541 < 4’ + Ed/(ffo,ﬁﬂl)-
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It follows that

1
1
[ e ) = WG i) < (4 + G (5.29)
0

£0,€1

From the definition of ¢ and ¢’ for 7;"°" a.e. 7, u(y) C [—¢’,€'] C [-1,1].
Gluing the plans 7r;”°", we construct a plan 70! that satisfies:

(i)

41
£0,E .
Tyttt =m0t i=0,1,...,n,

(Restrz

n

where Restrz is the restriction operator to [a, b];

(i
1 n—1 1
[ [ raramrsoy=n Y [ [ P acann)
0 — ) Jo

1
<n?(4e’ + Ed’(xo,xl))z < (8Ve + d' (zo, 1)) (5.30)

Note that n = |14 1/v/¢’| and ¢’ < 1 implies 4ne’ < 8v/¢’. Then using (5.29) and taking
into account the rescaling factor, we get the previous inequality;
(iii) for 7=0-°t a.e. v,

u(y) C [-€',¢'] C [-1,1]. (5.31)
Define:

T = e (5.32)
From (5.28), we get
v
m/(B'(z;,¢€i))
By (1) in Proposition (5.28), we know that

1 1
/ / a2 dt Ao () < / / €400 3,2 dt Ao ().
0 0

From equations (5.30), (5.31), and ¢’ = max{eg, €1}, it follows that

eiuﬁso,sl - m/|B’(:vi.,Ez) t=0,1.

1
lim sup// 5,12 dt A7t %1 () < limsup e (8Ve + d' (20, 21))? = d (w0, 21)?. 0
0

€0,€140 €0,6140

6. (X,d,m) is isomorphic to (X!,,d.,,m/,)

w? Fw? w

Let X! denote the warped product of (X’,d’,m’) with warping functions wg, w,, : R = R
given by w, (t) = e(N_l)f and wg (t) = e'. In Subsection 6.1, we prove that there is a locally
bi-Lipschitz map from (X, d,m) to (X/,,d],,m],) that preserves the measures. Then we show

that the spaces are isomorphic by showing that their W2 spaces are isomorphic.

6.1. X is measure preserving homeomorphic to a warped product

Here we prove that there is a locally bi-Lipschitz map from (X,d, m) to (X/,,d,,m.,) that
preserves the measures.

Proceeding as in Proposition 5.4, or directly using the definition of d
following.

U

', we obtain the
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PROPOSITION 6.1. For all (z(,ty) € X, and r > 0,
d'(2',y) < e "Td,((2,1), (¥, 5)),
for all («',t), (v, s) € B((zo,t0),7).

We are now ready to construct the locally bi-Lipschitz maps.

PROPOSITION 6.2. Let T: X/, — X and S: X — X!, be defined by
T(',t) = Fy(u(2"))
and
S(x) = (w(x), u(x)).
Then T and S are inverses of each other, S is 2-Lipschitz and T is locally Lipschitz.
Proof. 1t is clear that ToS=1Idg and SoT =1Idx,. Let us prove that T is locally
Lipschitz. Let (z(,t0) € X/, and r > 0. Consider (x},t1), (2%, t2) € B((zo,t0),r). By the

triangle inequality, Theorem 5.1, and Proposition 6.1, we obtain

Ci(T("E/lv tl)a T(x/Za tQ)) = d(Ftl (L(xll))a th (L(x/Q)))
< d(Fy, (u(@))), Fyy ((25))) + d(F (), Fr, (u(25)))
<Lip(Fy, )d' (2, 25) + [t — to|

< Lip(Fh)eitUJrsrdgu((z/a t1)7 (y/’ t2)) + d’lzu((xlv tl)v (yla tQ))'

It follows that T is locally Lipschitz.

Now we prove that S is Lipschitz. Let + : [0,1] — X be a geodesic from T'(x, t1) to T(zh,t2).
As u: X — R is 1-Lipschitz, the curve u oy is absolutely continuous and |a(v:)| < |4¢|. From
Proposition 5.4 (1), we know that €“(*)|3,| < |¥;|, here 4 = 7 0 . Thus,

(T (i), 1), T 12)) = 2 / 5]t

> /eu(%)|§’t| + ()| dt

g /\/62“(””%2 + [y |? dt

2 d:u(($/17t1)>(x/27t2))' O

Applying Lemma 5.11, we see that 7" and S are measure preserving;:

PROPOSITION 6.3 (T and S are measure preserving). Let T : X| — supp(m) and S :
supp(m) — X, be given by T(z',t) = Fi(«(2')) and S(z) = (w(x),u(x)). Then Tj(m.,) =m
and Sym =m/,.

Proof. As S and T are inverses of each other, it is sufficient to prove that Sym = m,.
Given that both m, and Sym are Borel measures defined on X, which has positive warping
functions, it is enough to prove that for any Borel set £ C X’ and any interval I = [a,b] C R
the following equality holds

Sym(E x I) =m!,(E x I).
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Equation (5.17) implies
b
Sum(E x 1) = (S (E x 1)) = m(E) = m'(B) [ e "

a

By the definition of m!,,

mi (B x 1) = [ ( [ xetwn dm’<x>) at=m'(E) [ "t () dt = (E) / s

I
(|

Before we continue with our discussion, we establish the following lemma which is needed
here.

LEmMMA 6.4. For any x,y € X,

d(z,y) = |u(z) — u(y)| (6.1)

Proof. Without loss of generality, we assume u(z) > u(y). For any t € R sufficiently negative,
by the triangle inequality and Theorem 5.1, we have

d(x,y) > d(z, Fy(z)) — d(Fi(x),y)
z —t— Cz(Ft(x)7 FtJru(a:)*u(l/) (y)) - J(FtJru(w)fu(y) (y)v y)
= —t+ (t+u(@) — u(y) — d(F(2), Fru@)—u(y) (¥))

U(Ji) - u(y) - d(Ff (1‘), Ft+u(az)7u(y) (y)) (62)

Let v be a minimizing geodesic connecting = to y and 1 = Fiiy@)—u(y) (7). Then by
Proposition 5.4 (see also the proof where a similar shift is needed),

d(Fi(@), Frute)—ut () < Ln) < eTO7CL(y),
where C' = minu(y). Clearly the right-hand side of the above inequality goes to zero as t —
—o00. Thus, by taking ¢ — —oo in (6.2), we obtain
d(z,y) > u(z) — uly). =

The following proposition will be helpful in the next subsection.

PROPOSITION 6.5. Let h € S} _(w, R) and define f:X — R by f:=hou. Then f €

52 (X) and

loc

Vg () =|Vh

w,, &(u(T)), m—aexcX.

Proof. The proof follows the same strategy as that of [20, Proposition 5.29].
Let R >0 and x :R — [0,1] be a Lipschitz function which is compactly supported and
identically 1 on [—R, R]. First we observe that, since the claim is a local statement, to provide

a proof it is enough to show that, if h € W22 (w,,/R), then f(x o u) € W ?(X) and that

loc loc
V1% (@) = [Vhlw,, & (u(z)) (6.3)

is valid for m-a.e. € u= ([~ R, R]).
Let h, be a sequence of Lipschitz functions on w,, R such that h,, — h and lipwm,Rhn —

|Vh|y, = in L?(wp,R). Such a sequence exists by [20, Theorem 4.3]. Now, we consider the
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functions f,, := (hy, o u)(x o u). Proposition 6.3 implies that f, — f(x o u) in L?(X). Moreover,
since u is 1-Lipschitz, for z € u=!([~R, R]) and n € N, by Lemma 6.4,
[fn(y) = fn(@)] fun 0 u(y) = hn © u(z)|

lip (f)(2z) = limsup —Z———= < limsup =lip,, ,ghn o u(x).
X y—x d(x, y) y—T |u(y) - u($)| R

(6.4)

From the previous inequality, the Leibniz rule [20, (3.9)] and the convergence of h,,, we conclude
that lip ¢ (f,) is bounded in L?(X). Therefore, passing to a subsequence if necessary, we can
assume that there exists a Borel function G : X — R such that lip ¢ (f,,) — G weakly in L?(X).

The lower semicontinuity of minimal weak upper gradients (see the paragraph after [20,
Definition 3.8]) and the convergence of f, to f(x owu) in L*(X) imply that |Vf(xou)| s < G
m-a.e.. Moreover by the locality of minimal weak upper gradients [20, (3.6)], [V f|¢ = [V f(x o
u)| 5, m-a.e. on u” ([~ R, R]). Now, passing to the limit in (6.4), we obtain the < inequality
in (6.3).

We now proceed to prove the other inequality in (6.3) by showing the following result, and
applying it to ¢t = u(a2’): Let f € W'2(X) and for 2/ € X' let @) :w,, R — R be given by
FEt) == f(T(2',t)), then for m’-a.e. 2/, f*) € 82 _(w,,/R) and

V£, m(t) < [VFIg(T(,1),  m, —ae. (2,t) € X],.

Using that for any z,y € supp(/m) with m(z) = 7(y) we have |u(x) — u(y)| = d(z,y), we
observe the following inequality

o 0) — oy LD =IO 50) — £00) o
y—a d(z,y) 325 d(z,y)
. |f(7r(x))(u(x)) - f(ﬁ(m))(u(y)” . (7 ()
= 1 :1 .

By [20, Theorem 4.3], there exists a sequence (f,) C L*(X) of Lipschitz functions such
that f, — f and lip¢(fn) = [Vf|g¢ in L*(X). Passing to a subsequence if necessary, we
can further assume that >, [[fn — fut1llp2x) < oo and X, [[lipgfo — [Vflxllpe(x) < o
This together with Proposition 6.3, implies that for m/-a.e. 2/, f,(T(2,-)) = f(T(2’,-)) and
lip g (f) (T, ) = [V 1 (T(@', ) in L2(woR).

We now fix such an 2/, apply inequality (6.5) to the function f,, on u~!(¢) and take the
limit when n — co. Finally, we use that [Vf™@)|,  <lip, 5f™®@) (by [20, (3.8)]) and
the lower semicontinuity of the minimal weak upper gradients to conclude. O

6.2. WY2(X,d,m) is isomorphic to WY2(X!,,d,, m/

w? W OLJ)

The aim of this section is to show that (X,d, m) and (X!, d/,, m/,) are isomorphic. This will be

w? w?

achieved applying Proposition 2.13. Thus, we only need to show that right composition with
S provides an isometry from W2(X/) to Wh2(X).
In Proposition 2.21, we showed that AN W12(X!) is dense in W12(X/ ). Here
g z{g € SE (X)) | g(a’,t) = g(z') for some g € S*(X') N LOO(X’)},
H z{h € 82 (X)) | h(z',t) = h(t) for some h € S*(w,,R) N LOO(R)},

A = algebra spanned by G UH C Sp.(XL,).



58 CHRIS ET AL.

The proof that right composition with S provides an isometry from W1H2(X/,) to W?(X)
is divided in the following way.

(1) Proposition 6.6: For every f € G or f € H, we have that foS € SIQOC()NC) and |[V(fo
Sz =IVflx, oS m-a.e.

(2) Lemma 6.7: For every g € G and h € H, (Vg,Vh)x; = 0and (V(goS5),V(hoS)) 5 =0
hold m — a.e..

(3) Proposition 6.8: Every f € A satisfies fo S €S2 (X) and |V(foS)|z = IV flx:, o8
m-a.e..

(4) Proposition 6.9: Right composition with .S is a homeomorphism between W2(X! ) and
W1’2(X)

PRrROPOSITION 6.6. The maps

G — Sp.(X), grgos,

H = Se(X), hihoS,
are well defined, and satisfy [V (g o S)| ¢ = |[Vg|x, oS and |[V(ho S)|z = |Vh|x;, oS —a.e..

Proof. Combining Corollary 2.19 with a cut-off function f such that supp(f) C u~![a,b] and

Theorem 5.13, one shows that go S € S2_(X), and |[V(go S)|x = IVglx, oS m —a.e.

Similarly, Corollary 2.19 and Proposition 6.5 give hoS € S (X) and |[V(hoS)|y

loc

|Vh|x: oS m — a.e. O
LEMMA 6.7. (Orthogonality relations) With the same notation as above, let g € G and
h € H. Then,
(Vg, Vh)X{U = 0, miﬂ-a.e., (66)
and

(V(goS),V(hoS))s =0, m-a.e. (6.7)

Proof. Let e S%(X")NL>®(X’) and h € 52(w,/R) N L(R) be such that g(z’,t) = §(2')

and h(2’,t) = h(t). Corollary 2.19 implies
Vg + bz, (@) = wg ()Y @) + VAP, o), ml-ae. (@,0).
Using equation (2.14) we get equation (6.6):
2(Vg,Vh)x; = |V(g+ h)|§(' - |Vg|§% - |Vh|§% =0, My, -a.e.
To prove equation (6.7), note that the Chain rule and the identity ho S = hou yield
(V(go8),V(ho8)z =h ou(V(goS),Vu)g,  m-ae.
Then to conclude, it is sufficient to show that
(V(geS),Vu) ¢ =0, m-a.e.

The previous equality holds because gomo F; = g ow, and with a truncation argument we

can see that the following derivation rule is also valid for functions in SZ_(X):

o goSok,—goS . gomokF,—gom
(V(geS), Vu)x = lim ; = lim ;

=0, m-a.e. 0
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ProposITION 6.8. With the same notation as above, every f € A satisfies foS €
SE (X,d,m), and

IV(foS)lx =IVflx, oS, m — a.e..
Proof. Let f € A. Then f can be written as f =), _; g;h; for some finite set I, g; € G and

h; € H, i € I. By the infinitesimal Hilbertianity of X, , Proposition 5.14 and Corollary 2.20,
we know that m/ -a.e.

VI = Y 9i9;(Vhi, Vhy) x;, + gih (Vhi, Vg;) x,
ijel
+ higj <Vgi7th>X1/U + hihj<Vgi,ng>X{U (6.8)
= Z 9i9;(Vhi, Vhj)x: +hihj(Vgi, V) x: ,
ij€l
where we used (6.6) in the second step.
Corollary 6.6 implies

<Vh7,th>X; oS = <V(h7 o S),V(h] o S)>X7
(Vgi, Vgj)x:, 08 =(V(gioS),V(gjo9))x,

m-a.e. for any 4,7 € I. Thus writing — to shorten the notation — g;, h; in place of g; 0 S, h; 0 S,
respectively, from (6.8) we have

IVf5 08 =Y 6g;(Vhi,Vhj)x;, +hih;(VGi, V) x;, -
igel

Using the orthogonality relation (6.7) and the fact that X is infinitesimally Hilbertian, we can
do the same computations as in (6.8), in reverse order, to get

VI3 08 =Y 6g;(Vhi, Vi) 5 + Gih;(Vhi, Vg;) 5
ijel
+hig;(Vai, Vhy) 5 + hihi (Vi Vi) x = V(S 0 9%,
m-a.e. (]
Recall that in Proposition 6.2, we defined functions S : X — X/, and T : X/, — X inverses
of each other such that S is 1-Lipschitz and T is locally Lipschitz.
PrROPOSITION 6.9. With the same notation as above the following holds.
(i) If f e WY2(X), then fo S € W'2(X) and
IV (F oSz ) < MVl xy,)- (6.9)

ii oS € 2(X), then f € and each z € X has a neighborhood €2, suc
ii) If foS € WH2(X), then f 5120(: X!, d h X h hborhood €} h
that

LNVl 2sceny) < MV o Dll2ca)- (6.10)
Here L = Lip™ (T~ '(x)).

Proof. Note that (X,d,7m) and X! = (X’ x,R,d,,m!) satisfy the hypotheses of

» w w

Lemma 2.12. That is, they satisfy the Sobolev to Lipschitz property, see the paragraph after [20,
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Definition 4.9] and Proposition 5.14. Moreover, T;(m/,) = m and Sym = m/, by Proposition 6.3.
To prove the first inequality recall that by Proposition 6.2 the map S is 1-Lipschitz. Then
equation (6.9) follows by Lemma 2.12.

To prove the second inequality, choose Q, = T(B(T~*(z),r)) and rescale d/, by L. Then we
get Lip(T|p(r—1(a),r)) < 1. With this rescaling the corresponding gradient part of the Sobolev
norm is scaled by % The result follows by Lemma 2.12. (]

The main theorem of this section follows.

THEOREM 6.10 ((X,d,7) is isomorphic to (X', d',,m.)). The maps T and S given in

w? w?
Proposition 6.2 are isomorphisms of metric measure spaces.

Proof. By the paragraph after [20, Definition 4.9], X has the Sobolev to Lipschitz property
and by Proposition 5.14 and Theorem 2.16, X also has the Sobolev to Lipschitz property.
Hence, it is enough to apply Proposition 2.13. By Proposition 6.3, we know that 7" and S are
measure preserving. It remains to prove that f € WH2(X/)) if and only if fo S € WI’Q(X) and

that
IIV(f o) gl =V

Let fe W12(X/). By Proposition 2.21, there exists a sequence {f,} C ANW12(X!)
converging to f in W12(X/). Then the first inequality in Proposition 6.9 implies that

both f, oS, and fo S are in W2(X), with f, oS converging to foS in W2?(X). From
Proposition 6.8, we get

L2(x1)- (6.11)

w

’
X‘IH

|vfn|X,{U oS = |V(fn°S)|j(7 m-a.e.

Taking the L? norm of the functions in the previous equality and taking the limit as n — oo,
we get (6.11).

If f:X! — R is such that foS € W"?(X,,), the second inequality in Proposition 6.9
implies that each z € X has a neighborhood €, on which the above argument can be repeated.
Thus

|an|S(Qm) o S = |V(fn o S)|Qz7 m-a.e.

By the locality of the weak upper gradient, we have equality in the whole space and therefore
fewh3(x). O

7. RCD*(0, N)-condition for X’

Recall that X’ is an infinitesimally Hilbertian space satisfying the Sobolev to Lipschitz property.
Under these conditions, [18] and [5] imply that the validity of the (weak) Bochner inequality
is equivalent to the RCD* condition. Hence, to prove that X’ is an RCD*(0, N)-space, we will
show that the weak Bochner inequality holds.

We begin with the following technical lemma about extending test functions on X’ to that of
X/,. From this, we will obtain that (X’,d’,m’) is an RCD*(0, N) space via a limiting argument.
Denote the Laplacian operator of X’ by A.

LEMMA 7.1. Let pe Cg°(R) and f e D(A)NL>(X') be such that Af € W(X')n
L>(X'). Let f : X, — R be defined as f(x,t) = f(x) and p: X, — R as p(x,t) = p(t). Then
75 € D(&) N I=(X7,) and A(Fp) € W'2(X1,) N L= (X)).
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Proof. Clearly fp € L>(X/,,m.,). Also, fp € L*(X],, m,) because
[ oty < W [ (6 () ds,

By a result of [23], see Theorem 2.17 in Section 2, fp € W?(X],) N L*>(X],). We will now
prove that fp € D(A). It is clear that Test(X/,) N A # 0. Let ¢ € Test(X],) N.A be given by
0 =>""a;h;g;, where a; € R, h; € H and g; € G. Then

[, (909 5e) g amiy = Yo [ 0977, Th) (T TR, Vo)

w

- / 79:(VT, Vi), + (V. Vhi)
+ Phi(VF, Vi) y, + ThilVP, Vi), |dom,

- / F9:(V5, Vi), +Phi(VF, Vi) y, ),

Here we have used the validity of the Leibniz rule due to the regularity of the functions involved
as well as the orthogonality relations. Now we note that

<V?7 V9i>X;U = w;/2<Vf, Vi) xrs (Vp, Vhi)x;ﬂ = p'h;,

as a consequence of Theorem 2.17 and polarization. Therefore we obtain

Sa / Phi(VF, Vi), dmly = / phiw 7w / (V. V), dm' ds
X v R X/
= —Zai/ph,,;w;?wm// giAfdm' ds,
R X

and

Zal fgz VP, Vhi)y, dm, Zaz/ph Wy ds fgidm’

= —Zai/(p’wm/)’hi ds fgidm'.
R X

Hence, for all ¢ € Test(X],) N A, we have that

[ 9TVt == [ el @)+ T ()
Here we have abused notation and denote A f = A f o p; and similarly pwdi2 = (pwcf) o py. (We
do so as well in what follows.) Since Test(X{,) N A is dense in W'?(X] ), so by an approximation
argument the previous equality holds for all ¢ € W12(X/ ). Hence fp € D(A) and

A(fp) = p(wz*Af) + Fwr, (p'wn)'. (7.1)
It immediately follows that A(fp) € W12(X.) N L>®(X]). O

We now come to the main result of this section, the RCD*-condition for X’. We will
accomplish this by using the RCD*-condition for X/ . Namely we plug into Bochner inequality
for X!, those test functions constructed in Lemma 7.1. The Bochner inequality for X’ will come
out of a suitable limit.
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PROPOSITION 7.2. For all f € D(A) such that Af € WY2(X',d’,m’) and all non-negative
g € D(A) N L*>°(X',m') such that Ag € L>°(X',m'), the following is satisfied:

1 1
5 [ BalVitdm — [ (VAN h) dm' > L [ gan)?dm'
2 X/ X/ N X/

In other words, (X’,d',m') is an RCD*(0, N) space.

Proof. We will show the inequality holds for functions f,g € Test(X’) since the general
case follows by the density of Test(X’) in W'?(X’). With this assumption, it follows from
Lemma 7.1 that we can apply Bochner’s inequality on X/ for the functions fp and gp, that
is,

5 [ A@IVEa, i, - [ gV AT, VI
X! X

>-(v-1) [

We now compute each term of the inequality, using Theorem 2.17, the orthogonality relations
and equation (7.1). We will first compute them for general functions p € C§°(R) and specialize
later for the limiting argument after some simplifications.

_ 1 _
oIV (o), i+ [ ap(AFR)” d,

’
w

. Agp)|V (fp)|%;, dm;, = /X (p(wz*Ag) + gw (p'we ) ) (P*wz [V 50 + f2(p)?) dm,

/
w w

— [ Fugtonds [ @oVs dm
R X/
+ [ ol Pyt s [ (ag)dm
R X’
+ [ Py ds [ gV
R X’

+ [Py as [ o am.
R X/
Similarly,

/ go(V(A(fP)): VD), dm;, = / pPwg e ds / 9(VAF, V) dm/
X R ’

’ w
w

+/02w;2(p’wm')'d8/ 9V fl5 dm’
R X!
+/pp/(pw(i_,2)lw7,l/ d5/ gf(Af)dm’
R X!
+ / pp (W) (P W))Wy ds / gf*dm’,
R X’

/ W|V(7ﬁ)|§% dm!, :/p3wd72wm/ ds/ gV % dm’—i—/p(p’)me/ ds/ gf?dm/,
X7, R X’ R

’
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and

/

[ aamam, = [ pugteds [ gan?an

w

+/ P(w,_n/l (plw'm’)/)2wm/ dS/ gf2 dm/
R X’

+2/p2wdi2(p’wm/)/ds/ gf (Af)dm'.
R X/

Now let p € C§°(R) be a cut-off function on R such that p(¢t) = 1 for t € [-1,1], p(¢) = 0 for
[t| > 2 and 0 < p < 1. For each n € N, set p,(t) = p(t + n). Replace p by p,, in all the formulas
above and plug them into Bochner’s inequality on X' . Using wg (t) = €', w(t) = eV -1t
we find that

1—n
/ pRw w,, ds > / eN=9)3qs = C(N)e~N=2" C(N) >0,
R —1-n
while all other integrals over R are of lower order. For example,
/ p(p 2wy Pw,y ds = O(e™ N9, / 99 (390 ) Y s ds = O(e=N").
R R

Therefore, dividing every term by fR piwd74wm/ ds and letting n — 0o, we obtain

1

1
5 [ BalViedm = [ g@@n. V) = L [ gar?ant,
X’ X’ X’

which is the desired result. U

Theorem 1.2 now follows from Theorem 6.10 and Proposition 7.2.

8. Proof of Theorems 1.1 and 1.4

We first adapt the ideas of Chen-Rong-Xu [15, Lemma 4.4] to conclude that (X,d,m) is
isometric to a real hyperbolic space. Then we prove the stability of the volume entropy when
imposing a uniform lower bound on the systoles.

Proof of Theorem 1.1. By Theorem 1.2 and Proposition 7.2, we know that (X'7cz, m) is
isomorphic to the warped product space (X, d’,,m.,), with wa (t) = e’ and w,, (t) = eV =D,
and that (X’,d’,m’) is an RCD*(0, N) space. Thus, by Mondino-Naber [33, Corollary 1.2],
there exists a point y € X’ such that every tangent space of (X', d’;m’) at y is isometric
to (R*1 dpye, Lx_1,0) for some k —1 < N. That is, for any sequence of positive numbers
r; — 0, we have that (X', 7, L, c¥ m’,y) converges in the pointed measured Gromov-Hausdorff
(pmGH) sense to (R*~!, dgyc, L1.—1,0), where £, _; denotes the normalized (k — 1)-Lebesgue

measure so that
/ (1—|z|)dLk_1(z) =1 (8.1)
B(0,1)

and the numbers ¢ are given by

= ( / - id’<y,~>>dm'> . (8.2)



64 CHRIS ET AL.

From now on we identify (X,d,m) with (X/,,d,,,m!). For any t € R, there is a deck
transformation ~; of X such that

d(7+((0,9)), (t,y)) < diam(X) < oo.

Note that in the last inequality we used that X is compact. As the measure m is equivariant, y;
is an isomorphism of metric measure spaces, that is, an isometry that preserves the measures.
We now take a sequence ¢; — oo and a subsequence if necessary so that «; 1(ti, y) converges

to p in X (again using the compactness of X). Then, in the pmGH sense:

In particular, we have

(X,d,m,p) = lim (X,d,m, (t;,y)). (8.4)

1—00
Now we calculate the limit in (8.4). For t; € R, define (X!, d;,m}) = (X', e"d’,eN=Dtim/).
Consider the following sequence of positive numbers,

(N—l)t,;
E— (8.5)

After passing to a subsequence, it converges to a value ¢ € [0, 00]. We will analyze the three
possible cases, ¢ =0, ¢ € (0,00) and ¢ = oo.
From the definition of tangent space, in the pmGH sense,

Jim (X d,m},y) = (R dpye, cLi_1,0). (8.6)

(Rt %]

The map (X, dysmly, (tr,)) — (XL diy i, (0,)) given by (t,2) - (¢ — ti,2) is a

wr w? 11)’ Tw? rw?

pointed isometry that preserves the measure and hence

(X7/J17d;i)7 iu»(tivy)) (Xz/wad;wv zw7(0 y))

In combination with equation (8.6), it implies that in the pmGH sense (8.4) can be written
as

(X,d,m,p) = lim (X,d,m, (t;,y)) = lim (X;Wd;u, m},,,(0,9))

- (R Xw Rkila dEucwac»Ckflwa 0)

=(H*, g, c1H",0), (8.7)

where ¢; = kcl, and wy_; denotes the volume of the unit ball in R¥~!. The extra constant

W —
comes from the normalization of the Euclidean Lebesgue measure indicated before.

If ¢ = o0, then c¢Li_1 is not locally finite and this implies that m is not locally finite, which
is a contradiction.
If ¢ € (0, 00), then recall that for the hyperbolic space,

h(H", dyr, e H*) = k — 1.
Since we know that h(X,d,m) =N — 1, then k = N. If ¢ = 0, then
h(HF, dyg, c1H”) =
which contradicts h(X,d,m) = N — 1. Hence (X, d, m) is isomorphic to (HY, dy~,ciHY) for
some ¢; € (0,00), and an integer N > 2. O

Before proving Theorem 1.4, we recall the definition of a systole and the following result.
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DEerINITION 8.1. If (X,d) is a compact length space that admits a universal covering
(X,dg) = (X,d), we define the systole of (X, d) as

sys(X,d) := inf{dg(%,7-%) : € X,y€m(X)—{Id}},

where 7;(X) is the group of deck tranformations of X, which is referred to as the revised
fundamental group of X in [42].

PROPOSITION 8.2 [40, Proposition 38]. Let (X;,d;) be a sequence of length spaces that have
a universal covering space such their systoles are uniformly bounded from below, and that
converge to a length space (Y,dy) in Gromov—Hausdorff sense. Then (Y, dy) has a universal
covering space and h(X;,d;) converges to h(Y,dy).

Now we are ready to prove the theorem.

Proof of Theorem 1.4. By contradiction, assume that there exists a sequence
(X;,d;,m;) of compact RCD*(—(N —1),N) spaces, satisfying diam < D, h(X;,d;,m;) >
N —1-1/i, sys(Xj,d;) = s, and such that none of the spaces X; are mGH close to the
quotient of a N-dimensional hyperbolic space. Since the collection of RCD*(K, N) spaces,
for fixed K € R and N € [1,00), are compact with respect to mGH convergence, we can
assume that (X;,d;,m;) mGH converges to some RCD*(—(N — 1), N) space, (Xoo,doos Moo )-
Therefore Proposition 8.2 yields h(Xs,doo, Moo) = N — 1. By Theorem 1.1, we also know that
h(Xoo,doo, Moo) < N — 1. Thus, (X, doo, Moo ) attains the equality case of Theorem 1.1. Then
N is an integer and the universal covering (Xoo, doo, Moo ) of (X0, doo, Moo ) 18 isometric to an
N-dimensional real hyperbolic space. The convergence to X, is equivariant with respect to
the actions of the revised fundamental groups 71 (X;) along the sequence of spaces X; and X;.
Therefore X, is isometric to the quotient Xoo /71(Xo) of an N-dimensional real hyperbolic
space. As the systoles are bounded below, the corresponding group actions are free and hence
X is isometric to an N-dimensional real hyperbolic manifold. This is a contradiction, and
we have that X is U(¢|N, s, D) mGH close to an N-dimensional hyperbolic manifold. It now
follows from Theorem 6.5 of Kapovitch-Mondino [27] that X is also bi-Holder homeomorphic
t0 (Xoo, doo)- O
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