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Maximal volume entropy rigidity for RCD∗(−(N − 1), N) spaces
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Abstract

For n-dimensional Riemannian manifolds M with Ricci curvature bounded below by −(n− 1),
the volume entropy is bounded above by n− 1. If M is compact, it is known that the equality
holds if and only if M is hyperbolic. We extend this result to RCD∗(−(N − 1), N) spaces. While
the upper bound is straightforward, the rigidity case is quite involved due to the lack of a smooth
structure in RCD∗ spaces. As an application, we obtain an almost rigidity result which partially
recovers a result by Chen–Rong–Xu for Riemannian manifolds.
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1. Introduction

Volume entropy is a fundamental geometric invariant, related to the topological entropy of
geodesic flows, minimal volume, simplicial volume, bottom spectrum of the Laplacian of the
universal cover, among others. For a compact Riemannian manifold (Mn, g), the volume
entropy is defined as

h(M, g) = lim
R→∞

ln Vol(B(x,R))
R

.

Here B(x,R) is a ball in the universal cover M̃ of M . For M compact, the limit exists and is
independent of the base point x ∈ M̃ [32]. Thus, the volume entropy measures the exponential
growth rate of the volume of balls in the universal cover. It is non-zero if and only if the
fundamental group π1(M) has exponential growth.

When RicM � −(n− 1), the Bishop–Gromov volume comparison gives the upper bound
h(M, g) � n− 1, which is the volume entropy of any hyperbolic n-manifold. Ledrappier–Wang
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[29] showed that if h(M, g) = n− 1, then M is isometric to a hyperbolic manifold. This is called
the maximal volume entropy rigidity. Liu found a simpler proof [30], and recently Chen–Rong–
Xu gave a quantitative version of this rigidity result [15].

In this paper, we will show the same kind of maximal entropy rigidity holds for a class of
metric measure spaces — known by now as RCD∗(K,N) spaces — that is of interest in both
optimal transport and in the theory of limits of Riemannian manifolds with bounded Ricci
curvature (known as Ricci limit spaces).

Alexandrov geometry can be seen as a synthetic approach to the spaces that occur as limits
of smooth manifolds with sectional curvature bounded below. In this same spirit, RCD∗(K,N)
spaces can be thought of as the synthetic analog to Ricci curvature being bounded below by
K, for dimension at most N . These spaces include Ricci limit spaces and Alexandrov spaces
[38], and have been studied extensively, see Section 2 for details.

The last-named author jointly with Mondino proved that the universal cover of an
RCD∗(K,N) space with 1 < N < ∞ exists and is also an RCD∗(K,N) space [34]. This allows
us to define the volume entropy similarly for compact RCD∗(K,N) spaces.

That is, let (X, d,m) be a compact RCD∗(K,N) space, and (X̃, d̃, m̃) its universal cover. We
define the volume growth entropy of (X, d,m) as

h(X, d,m) := lim sup
R→∞

1
R

ln m̃(BX̃(x,R)).

The volume growth entropy is well defined, and it is independent of x and the measure m, (see
[10, 40]). Observe that if (M, g) is a Riemannian manifold, then with the induced distance
d = dg and the volume measure m = dvolg, both definitions coincide.

Our main results are:

Theorem 1.1. Let 1 < N < ∞ and (X, d,m) be a compact RCD∗(−(N − 1), N) space.
Then h(X) � N − 1. Furthermore, the equality holds if and only if N is an integer and
the universal cover (X̃, d̃, m̃) is isomorphic to the N -dimensional real hyperbolic space
(HN , dHN , c1HN ) for some c1 ∈ (0,∞). Here HN denotes the Hausdorff measure.

As in the smooth case, the compactness of X is essential here. For N > 1, the well-known
smooth metric measure space ((0,∞), | · |, sinhN−1(x) dx) is an RCD∗(−(N − 1), N) space
with volume entropy exactly N − 1. This example does not contradict our theorem as it is not
the universal cover of a compact RCD∗(−(N − 1), N) space.

The key step in proving the above theorem is the following result, which is of independent
interest. In the statement, we use the language of differential calculus developed by Gigli. We
refer to Section 2 for definitions and more details.

Theorem 1.2. Let 1 < N < ∞ and (X, d,m) be a complete RCD∗(−(N − 1), N) space. If
there exists a function u in Dloc(Δ) such that |∇u| = 1 m-a.e. and Δu = N − 1, then X is
isomorphic to a warped product space R ×et X

′, where X ′ is an RCD∗(0, N) space.

An immediate consequence of Theorem 1.1 and the inequality provided in [43, Theorem 5],√
λ(X̃,d,m) � 1

2 lim supR→∞
1
R lnm(BX̃(x,R)), is the following corollary.

Corollary 1.3. Let 1 < N < ∞ and (X, d,m) be a compact RCD∗(−(N − 1), N) space.
If

λ(X̃,d,m) := inf
{´

X̃
|∇f |2 dm´
X̃
f2 dm

| f ∈ Lip(X̃, d) ∩ L2(X̃,m),
ˆ
X̃

f2 dm �= 0
}

=
(N − 1)2

4
,

then X̃ is isomorphic to the N -dimensional real hyperbolic space up to a scaling of the measure.
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The corresponding results for Alexandrov spaces have recently been proved by Jiang [26].
Rigidity results for RCD∗ spaces often imply almost rigidity results given that RCD∗ spaces

are closed under measured Gromov–Hausdorff convergence. Theorem 1.1 implies an almost
rigidity result assuming the volume entropy is continuous under measured Gromov–Hausdorff
convergence, which is true when (the first) systole is uniformly bounded from below [40,
Proposition 38], cf. Proposition 8.2. As a result we have:

Theorem 1.4. Let 1 < N < ∞, s > 0, D > 0. There exists ε(N, s,D) > 0 such that for
0 < ε < ε(N, s,D), if (X, d,m) is a compact RCD∗(−(N − 1), N) space, satisfying diam(X) �
D, h(X) � N − 1 − ε, sys(X, d) � s, then X is homeomorphic and Ψ(ε|N, s,D) measured
Gromov–Hausdorff close to an N -dimensional hyperbolic manifold.

When X is a Riemannian manifold, this is proved without the systole condition in [15,
Theorem D], as the continuity of the entropy is proven for non-collapsing sequences of
Riemannian manifolds with Ricci curvature bounded from below and diameter bounded from
above converging to a manifold [15, Theorem 0.5]. The volume entropy is not necessarily
continuous when the limit is a non-collapsing Ricci limit space, as the fundamental group could
jump from having exponential growth for the sequence to a trivial one for the limit space, see
[37, Remark 6.2]. We still conjecture that Theorem 1.4 is true without the systole condition.

The strategy and techniques used in proving our results are inspired by those of Gigli’s
Splitting Theorem in the non-smooth context [20], as well as the ‘Volume cone implies
metric cone’ Theorem by De Philippis–Gigli [17]. One of the key ideas for proving these
results is to work at the level of the Sobolev spaces. In this way, we overcome obstacles that
appear due to the lack of analytical tools available in the smooth category. Once a result is
obtained at this level it can be transported to a statement at the level of the metric measure
space itself.

We now present a summary of our strategy. In order to show that the universal cover (X̃, d̃, m̃)
of an RCD∗(−(N − 1), N) space (X, d,m) with maximal volume entropy is isomorphic — that
is, via a measure preserving isometry — to a real hyperbolic space (up to a scaling of the
measure), it is sufficient to show that X̃ is isomorphic to a warped product space of the
form X ′ ×et R, and then show that X ′ is regular enough. At this point an analogy with [17]
becomes clear, as now our problem can be considered as a warped splitting theorem under the
assumption of maximality of volume entropy.

To obtain a metric measure space which is a candidate for the role of X ′, we reconstruct
in our context Liu’s ideas [30] and build a Busemann-type function u : X̃ → R in Dloc(Δ),
which is regular enough to admit a Regular Lagrangian Flow F : R × X̃ → X̃ associated to
∇u (in the sense of Ambrosio–Trevisan [6]). The issue with the non-compact space here is
dealt with by making use of the good cut-off functions of [33] and the local uniqueness of the
Regular Lagrangian Flow. The trajectories F(·)(x) of our flow induce a partition of X̃. The
high regularity of u provides useful information on how the reference measure m̃ changes under
the flow. Still, the regularity of the Regular Lagrangian Flow takes serious effort, using the
heat flow to regularize first and some uniform estimate following the ideas of [17]. With the
regularity issue addressed, an analysis of how the Cheeger energy of Sobolev functions changes
once composed with the flow shows that a representative of F can be chosen such that the
maps Ft are bi-Lipschitz. Then we proceed to obtain estimates of the local Lipschitz constants
of F .

Therefore, the natural candidate for X ′ is u−1(0), the slice at time 0 of the partition induced
by F , endowed with the natural intrinsic metric and an appropriately defined measure which
agrees with the data provided by F . Given that X ′ is non-compact, the measure defined on it
is written in a similar way to [20] and not as in [17]. The proof that it is a complete, separable
and geodesic space is more involved than in [20] and [17]. In [20], the distance in X ′ can be
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seen as the restriction of the metric of d̃ and in [17] X ′ is compact. We also have to show that
X ′ is locally doubling and not doubling as in [17].

At this point, we need to show that the natural maps from and into X̃ and R ×et X
′ are

isomorphisms of metric measure spaces. As mentioned above, we obtain this at the level of
the Sobolev spaces. The relation between the Sobolev spaces W 1,2(X̃) and W 1,2(R ×et X

′) is
explained by studying the metric speeds of curves in X̃ in relation with those in X ′. This leads
to a relationship between the minimal weak upper gradients of Sobolev functions in X ′ and
X̃. Putting everything together, and combining them with the work of Gigli–Han [23] on the
structure of Sobolev spaces of warped products, we obtain the desired isomorphism.

Finally, the structure of a warped product space naturally implies via Bochner’s inequality
and a limiting argument that X ′ is an RCD∗(0, N) space. To complete the proof of the main
theorem, we adapt Chen–Rong–Xu’s argument [15] and make use of the structure result of
[33] to show that R ×et X

′ is isomorphic to the N -dimensional hyperbolic space up to scaling
of the measure.

The article is organized as follows. In Section 2, we review definitions and properties of
metric measure spaces and, in particular, RCD∗ spaces that will be needed in the paper.
In Section 3, using the Bishop–Gromov volume comparison theorem we provide the upper
estimate of the volume entropy for RCD∗(−(N − 1), N) spaces. For the rigidity case, we
construct the Busemann function u, calculate its Hessian and construct a Regular Lagrangian
Flow F associated to ∇u. In Section 4, we estimate the minimal weak upper gradient of
functions of the form f ◦ Ft for f ∈ W 1,2(X̃, d̃, m̃). In the next section, we use this to improve
the regularity of the Regular Lagrangian Flow F , define the metric measure space quotient
(X ′, d′,m′) and estimate the minimal weak upper gradients of functions g ∈ W 1,2(X ′) in terms
of functions in W 1,2(X̃). Moreover, we prove that (X ′, d′,m′) is an infinitesimally Hilbertian
space. In Section 6, we use Gigli’s Contraction By Local Duality Lemma, and his proposition on
isomorphisms via duality with Sobolev norms, to show that the warped product space R ×et X

′

is isometric to (X̃, d̃, m̃). In Section 7, we prove that (X ′, d′,m′) is an RCD∗(0, N) space. In
the final section, we see that N ∈ N and R ×et X

′ is isometric to the hyperbolic space H
N , and

prove the stability result, Theorem 1.4.
On a complementary direction, the work of Besson–Courtois–Gallot [8, 9] treated the

minimal entropy of smooth manifolds and established major rigidity results for locally
symmetric spaces of negative curvature. Their work implies that negatively curved locally
symmetric Riemannian metrics with given total volume cannot be perturbed to non-symmetric
ones without increasing the volume entropy. A number of important corollaries in geometric
rigidity and applications to dynamics then follow. We have also extended these barycenter
techniques to RCD∗ spaces in [16].

2. Preliminaries

The following is a review of the necessary definitions and results. First we recall the
concepts pertaining to first-order calculus on metric spaces, we refer readers to [19, 20] for
further details.

2.1. Calculus on metric measure spaces

We will consider a proper metric space (X, d). Let C([0, 1];X) be the set of continuous curves in
(X, d). A curve γ ∈ C([0, 1];X) is said to be absolutely continuous if there exists an integrable
function f on [0,1] such that for every 0 � t < s � 1,

d(γt, γs) �
sˆ

t

f(r) dr.
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Absolutely continuous curves γ have a well-defined metric speed,

|γ̇t| := lim
t→0

d(γt+h, γt)
|h| ,

which is a function in L1([0, 1]). We will often use the notation mst(γ) := |γ̇t|. The set of
absolutely continuous curves in (X, d) will be denoted by AC([0, 1];X).

Let m be a non-negative Radon measure on X such that supp(m) = X and P(C([0, 1];X))
be the space of probability measures on C([0, 1];X). A measure π ∈ P(C([0, 1];X)) is called a
test plan if there exists C > 0 such that for every t ∈ [0, 1],

(et)�π � Cm

and

ˆ 1ˆ

0

|γ̇t|2 dtdπ(γ) < ∞.

Here, et : C([0, 1];X) → X is the evaluation map et(γ) = γt.
The Sobolev class S2(X) := S2(X, d,m) (respectively, S2

loc(X) := S2
loc(X, d,m)) is the space

of all Borel functions f : X → R such that there exists a non-negative function G ∈ L2(X) :=
L2(X,m) (respectively, G ∈ L2

loc(X) := L2
loc(X,m)) — called weak upper gradient — such that

for any test plan π the following inequality is satisfied

ˆ
|f(γ1) − f(γ0)|dπ(γ) �

ˆ 1ˆ

0

G(γt)|γ̇t|dtdπ(γ).

It is possible to prove that there exists a minimal G, which we denote by |∇f |, called the
minimal weak upper gradient of f . We now recall the following fundamental result.

Proposition 2.1 [3, Definition 5.6, Proposition 5.7], [19, Definition B.2, Theorem B.4]. Let
f,G : X → R be two functions. The following are equivalent.

(i) f ∈ S2(X) and G is a weak upper gradient.
(ii) For every test plan π the following holds: For π-a.e. γ the function t 
→ f(γt) is equal

at t = 0, t = 1 and almost everywhere else on [0,1] to an absolutely continuous function fγ :
[0, 1] → R whose derivative for almost every (a.e.) t ∈ [0, 1] satisfies |f ′

γ |(t) � G(γt)|γ̇t|.

A local version of the Sobolev class is produced in the following manner: A function f :
Ω ⊂ X → R, with Ω an open set, is an element of S2

loc(Ω) := S2
loc(Ω, d,m) if for any Lipschitz

function χ : X → R with supp(χ) ⊂ Ω, we have that fχ ∈ S2
loc(X). In this case, |∇f | : Ω → R

is given by

|∇f | := |∇(fχ)| m− a.e. on χ = 1.

Then, the set S2(Ω) is defined as the subset of S2
loc(Ω) of functions f such that |∇f | ∈ L2(Ω,m).

The Sobolev space is defined as

W 1,2(X, d,m) := L2(X,m) ∩ S2(X, d,m)

endowed with the norm

||f ||2W 1,2(X) := ||f ||2L2(X) + |||∇f |||2L2(X) =
ˆ

X

(f2 + |∇f |2) dm.
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We say that a proper metric measure space (X, d,m) is infinitesimally Hilbertian if W 1,2(X)
is a Hilbert space, that is, if || · ||2W 1,2(X) is induced by an inner product. This happens if and
only if the parallelogram rule is satisfied, that is

|||∇(f + g)|||2L2(X) + |||∇(f − g)|||2L2(X) = 2
(
|||∇f |||2L2(X) + |||∇g|||2L2(X)

)
for all f, g ∈ S2(X). On an infinitesimally Hilbertian metric measure space (X, d,m), for Ω ⊂ X
open and any f, g ∈ S2

loc(Ω) the functions D± : Ω → R defined m-a.e. by

D+f(∇g) = inf
ε>0

|∇(g + εf)|2 − |∇g|2
2ε

,

D−f(∇g) = sup
ε>0

|∇(g + εf)|2 − |∇g|2
2ε

,

coincide m-a.e. on Ω. We denote the common value by 〈∇f,∇g〉.
An important tool is the following first differentiation formula (see [19, (1.11)]). Recall that

a test plan π is said to represent the gradient of f ∈ S2(X) if

lim inf
t↓0

ˆ
f(γt) − f(γ0)

t
dπ(γ) � 1

2

ˆ
|∇f |2(γ0) dπ(γ) +

1
2

lim sup
t↓0

ˆ tˆ

0

|γ̇s|2 ds dπ(γ).

In the case that f ∈ S2(Ω) for some open set Ω ⊂ X, one adds to the definition the requirement
that (et)#π is concentrated on Ω for every t ∈ [0, 1] sufficiently small. Then, given f, g ∈ S2(Ω)
with Ω ⊂ X open and a test plan π representing the gradient of f , it holds that

lim
t↓0

ˆ

X

g(γt) − g(γ0)
t

dπ(γ) =
ˆ

X

〈∇f,∇g〉(γ0) dπ(γ). (2.1)

Let (X, d,m) be an infinitesimally Hilbertian metric measure space and Ω ⊂ X an open set.
Let g : Ω → R be a locally Lipschitz function. We say that g has a measure valued Laplacian,
provided there exists a Radon measure μ on Ω such that

−
ˆ

Ω

〈∇f,∇g〉 dm =
ˆ

Ω

f dμ

for all f : Ω → R Lipschitz and compactly supported in Ω. In this case, μ is the measure valued
Laplacian of g, and it is denoted by Δg|Ω. The set of all locally Lipschitz functions g admitting
a measure valued Laplacian is denoted by D(Δ,Ω). A particular instance of the notation is
that D(Δ, X) = D(Δ) and then Δg|X = Δg.

A different definition is that of the L2-Laplacian operator defined as follows. The domain
D(Δ) of the L2-Laplacian is the subset of W 1,2(X) of all g such that for some h ∈ L2(X),

−
ˆ

〈∇f,∇g〉 dm =
ˆ

fhdm (2.2)

for all f ∈ W 1,2(X), written as Δg = h. Both definitions agree in the sense that g ∈ D(Δ) if
and only if g ∈ W 1,2(X) ∩D(Δ) and Δg = hm with h ∈ L2(X) (see [20, Definition 4.6]).
We similarly define Dloc(Δ) to be the corresponding subset of W 1,2

loc (X) := L2
loc(X,m) ∩

S2
loc(X, d,m), namely the subset of all g ∈ W 1,2

loc (X) such that (2.2) holds for all f ∈ Testbs(X).
Here

Test(X) :=
{
f ∈ D(Δ) ∩ L∞(X,m) | |∇f | ∈ L∞(X,m) and Δf ∈ W 1,2(X)

}
, (2.3)

and Testbs(X) is the subset of Test(X) consisting of functions with bounded support.
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2.2. Tangent and cotangent modules

We will now give a brief account of some of the tools of the tangent and cotangent modules as
defined and developed in detail by Gigli [22] (see also the section on preliminaries of [17]).

Given an infinitesimally Hilbertian metric measure space (X, d,m), recall that there is a
unique couple (L2(T ∗X), d) (up to isomorphism) where L2(T ∗X) is an L2(m)-normed L∞(m)-
module (see [22, Definition 1.2.10]) and d : S2(X) → L2(T ∗X) is a linear operator such that
the following two conditions hold.

(i) |df | = |∇f | m-a.e. for every f ∈ S2(X). Here |df | denotes the pointwise norm of df in
L2(T ∗X).

(ii) L2(T ∗X) is spanned by {df | f ∈ S2(X)}.
The module L2(T ∗X) is called the cotangent module of X and d is the differential. Note

that we abuse the notation slightly by using d for the differential of a function and the distance
of the space.

The tangent module of X, denoted by L2(TX) is defined as the dual module of L2(T ∗X)
and the gradient ∇f ∈ L2(TX) of a function f ∈ W 1,2(X) is the unique element associated to
df via the Riesz isomorphism.

Let (Y, dY ,mY ) be a metric measure space. We will say that a map F : Y → X has bounded
compression if F�mY � Cm for some C > 0. Given an L2-normed L∞-module M over X,
the pullback module F ∗M is an L2-normed L∞-module over Y carrying a pullback operator
F ∗ : M → F ∗M defined (uniquely up to isomorphism) in the following way: F ∗ is linear and
satisfies the following.

(i) |F ∗v| = |v| ◦ F , mY -a.e. for all v ∈ M.
(ii) {F ∗v | v ∈ M} generates F ∗M as a module.

Denote by M∗ the dual module of M. Then, we have the unique duality relation

F ∗M∗ × F ∗M → L1(Y,mY ),

which is L∞(Y )-bilinear, continuous and satisfies

F ∗w(F ∗v) = w(v) ◦ F, mY -a.e. for all v ∈ M, w ∈ M∗.

For M = L2(T ∗X) (respectively, M = L2(TX)), the pullback is denoted by L2(T ∗X,F,mY )
(respectively, L2(TX,F,mY )). A special instance of this construction occurs when Y =
C([0, 1];X) equipped with the sup distance and a test plan π as reference measure. The
evaluation maps et have bounded compression and there exists a unique element π′

t ∈
L2(TX, et, π) such that

lim
h→0

f ◦ et+h − f ◦ et
h

= (e∗t df)(π′
t)

for all f ∈ W 1,2(X), where the limit is intended in the strong topology of L1(C([0, 1];X)), π),
that is, the space of integrable functions on C([0, 1];X)) with respect to the test plan π (see
[22, Theorem 2.3.18]). It follows from this result that for π-a.e. γ and a.e. t ∈ [0, 1],

|π′
t|(γ) = |γ̇t|.

2.3. CD∗(K,N) and RCD∗(K,N)-spaces

Here we briefly recall the synthetic notions of lower Ricci curvature bounds on metric
measure spaces.

A notion of metric measure spaces with Ricci curvature bounded below by K ∈ R and
dimension bounded above by N ∈ (1,∞] was first considered in the setting of Optimal
Transport Theory by Lott–Sturm–Villani [31, 44, 45], resulting in the class of spaces with



8 CHRIS ET AL.

the curvature dimension condition or briefly CD(K,N) spaces. It was then proved by Ohta
that smooth compact Finsler manifolds are CD spaces [36]. In contrast, a Finsler manifold can
only arise as a limit of Riemannian manifolds with Ricci curvature uniformly bounded below
if and only if it is Riemannian. Recall that a Finsler manifold is Riemannian if and only if the
Cheeger energy is quadratic or, equivalently, if the heat flow is linear.

To address this problem of isolating the class of Riemannian-like CD-spaces, Ambrosio–Gigli–
Savaré [4] (see also [2]) introduced the class of RCD(K,∞)-spaces as those CD(K,∞)-spaces
whose Cheeger energy is a quadratic form, condition named infinitesimal Hilbertianity after
[19]. The finite-dimensional case, that is, RCD(K,N) for N ∈ (1,∞) was then proposed in [19]
and analyzed independently in [18] and [5].

At the emergence of CD(K,N) spaces, it was not clear whether this class exhibited a local-
to-global property, that is, whether satisfying CD(K,N) for all subsets of a covering implies the
condition on the full space. To address this issue, Bacher–Sturm introduced an apriori slightly
weaker condition of Ricci curvature bounded below by K with dimension at most N , namely
the reduced curvature-dimension condition or CD∗(K,N) [7].

To state the definitions and results in this section, we begin by recalling the so-called
distortion coefficients. Given K,N ∈ R with N � 0, for (t, θ) ∈ [0, 1] × R+, we define

σ
(t)
K,N (θ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞, if Kθ2 � Nπ2,

sin(tθ
√
K/N)

sin(θ
√

K/N)
if 0 < Kθ2 < Nπ2,

t if Kθ2 < 0 and N = 0, or if Kθ2 = 0,
sinh(tθ

√−K/N)
sinh(θ

√−K/N)
if Kθ2 � 0 and N > 0.

(2.4)

For N � 1,K ∈ R and (t, θ) ∈ [0, 1] × R+, we define

τ
(t)
K,N (θ) := t1/Nσ

(t)
K,N−1(θ)

(N−1)/N . (2.5)

Let P2(X, d,m) denote the family of probability measures with finite second moment,
Opt(μ0, μ1) the set of optimal transports between μ0 and μ1 and Geo(X) the set of geodesics
of X.

Definition 2.2 (CD condition). A metric measure space (X, d,m) is a CD(K,N) space if
for each pair μ0, μ1 ∈ P2(X, d,m) there exists π ∈ Opt(μ0, μ1) such that

ρ
−1/N
t (γt) � τ

(1−t)
K,N (d(γ0, γ1))ρ

−1/N
0 (γ0) + τ

(t)
K,N (d(γ0, γ1))ρ

−1/N
1 (γ1), π-a.e. γ ∈ Geo(X),

(2.6)

for all t ∈ [0, 1], where ρt is such that (et)� π = ρtm.

It is worth remembering here that for a Riemannian manifold (M, g) of dimension n and
h ∈ C2(M) with h > 0, the metric measure space (M, g, h dvolg) verifies condition CD(K,N)
with N � n if and only if (see [45, Theorem 1.7])

Ricg,h,N � Kg, Ricg,h,N := Ricg − (N − n)
∇2

gh
1

N−n

h
1

N−n

.

Here, we follow the convention that if N = n, the generalized Ricci tensor Ricg,h,N = Ricg
makes sense only if h is constant.

The reduced CD∗(K,N) condition requires the same inequality (2.6) of CD(K,N) but
with the coefficients τ

(t)
K,N (d(γ0, γ1)) and τ

(1−t)
K,N (d(γ0, γ1)) replaced by σ

(t)
K,N (d(γ0, γ1)) and
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σ
(1−t)
K,N (d(γ0, γ1)), respectively. Hence while the distortion coefficients of the CD(K,N) condition

are formally obtained by imposing one direction with linear distortion and N − 1 directions
affected by curvature, the CD∗(K,N) condition imposes the same volume distortion in all the
N directions.

Now we will recall the generalized Bishop–Gromov comparison theorem for CD∗(K,N)-
spaces with K < 0. Let B(x,R) be the metric ball around x with radius R and we denote its
metric closure by B(x,R). Note that the sharp version of this result is valid for CD∗(K,N)
spaces as a consequence of [14, Theorem 1.1] and [35, Theorem 5.1].

Theorem 2.3 (Generalized Bishop–Gromov volume growth inequality for
CD∗(K,N)). Assume that the metric space (X, d,m) satisfies the CD∗(K,N)-condition
for some K < 0 and N ∈ [1,∞). Then for all r � R,

m(B(x, r))
m(B(x,R))

�
´ r

0
sinhN−1(

√−K/(N − 1)t) dt´ R

0
sinhN−1(

√−K/(N − 1)t) dt
.

Furthermore, for the function sm(x, r) = lim supδ→0
1
δm(B(x, r + δ) \B(x, r)), the following

inequality holds

sm(x, r)
sm(x,R)

� sinhN−1(
√−K/(N − 1)r)

sinhN−1(
√−K/(N − 1)R)

.

We now recall the definition of the reduced Riemannian curvature-dimension condition.

Definition 2.4 (RCD∗ condition). A metric measure space (X, d,m) is an RCD∗(K,N)
space if it is an infinitesimally Hilbertian CD∗(K,N) space.

Cavalletti–Milman have shown the equivalence of the CD and CD∗ conditions when the space
is essentially non-branching and has finite measure [12, Corollary 13.7]. In particular under
the assumption of finite measure, RCD(K,N) is equivalent to RCD∗(K,N). It is expected that
RCD(K,N) is equivalent to RCD∗(K,N) without any further assumptions.

Now we state the Laplacian comparison for distance functions originally proved by Gigli for
CD(K,N) spaces [19, Corollary 5.15] with some extra assumption and shown to hold sharply
on essentially non-branching CD∗(K,N) spaces (and more generally on MCP(K,N) spaces) in
[13]. We will use this result in the following section. For simplicity, we only state the result for
K < 0.

Theorem 2.5 (Laplacian comparison for distance functions). Let K < 0, N ∈ (1,∞), and
(X, d,m) be an RCD∗(K,N) space. Let r : X → R be the function given by r(x) = d(x, o),
where o ∈ X. Then r ∈ D(Δ, X \ {o}) and

Δr|X\{o} �
√

−K(N − 1) coth(
√

−K/(N − 1)r)m. (2.7)

A useful tool for localization is a system of ‘good’ cut-off functions. One such characterization
is the following.

Lemma 2.6 [33, Lemma 3.1]. Let (X, d,m) be an RCD∗(K,N) space for some K ∈ R and
N ∈ (1,∞). Then for every x ∈ X,R > 0, 0 < r < R, there exists a Lipschitz function ρ = ρr :
X → R satisfying:

(1) 0 � ρr � 1 on X, ρr ≡ 1 on B(x, r) and supp ρr ⊂ B(x, 2r);
(2) r2|Δρr| + r|Dρr| � C(K,N,R).
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Observe that for any compact set K contained in an open set U , we can apply this lemma
to find a cut-off function ρK ∈ W 1,2(X) which is Lipschitz, identically 1 on K, identically 0
on X\U and such that ρK ∈ D(Δ) with ΔρK � m with bounded density. This version is
formulated in [24, Theorem 3.12].

In order to introduce the notion of Hessian, we define Testloc(X) as the set of functions
f : X → R with the following property: For every bounded Borel set B ⊆ X, there exists a
function fB ∈ Test(X) such that fB = f m-a.e. in B. It is clear that Testbs(X) ⊂ Test(X) ⊂
Testloc(X).

An important fact is that if X satisfies RCD∗(K,N), then Testbs(X) is dense in W 1,2(X).
Furthermore, if f ∈ Testloc(X), then |∇f |2 ∈ W 1,2

loc (X) and by polarization, for every f, g ∈
Testloc(X), we have that 〈∇f,∇g〉 ∈ W 1,2

loc (X) (see, for example, [22, Proposition 3.1.3]).
Moreover, we have the following characterization.

Lemma 2.7. The set Testloc(X) admits the description

Testloc(X) =
{
f ∈ Dloc(Δ) ∩ L∞

loc(X,m) | |∇f | ∈ L∞
loc(X,m) and Δf ∈ W 1,2

loc (X)
}
, (2.8)

Proof. Let Test′loc(X) denote the right-hand side of the above expression. For f ∈ Testloc(X)
from the definition and the discussion above, we have f ∈ Dloc(Δ) ∩ L∞

loc(X,m), |∇f | ∈
L∞

loc(X,m) and Δf ∈ W 1,2
loc (X). Since on each compact set K, f agrees with fK when restricted

to K and these containments hold for fK ∈ Test(X), we obtain f ∈ Test′loc(X).
Conversely, if f ∈ Test′loc(X), then by Lemma 2.6 for any compact set K contained in an

open set U , there exist a ‘good’ cut-off function ρK ∈ W 1,2(X) which is Lipschitz, identically 1
on K, identically 0 on X\U and such that ρK ∈ D(Δ) with ΔρK � m with bounded density.
For any bounded Borel set B, we let K = B and define fB = ρKf , where ρK is the cut-off
function for K and any bounded open set U ⊃ K. By the Leibniz rule [20, (3.9)], we have
fB ∈ Test(X) and thus f ∈ Testloc(X). �

For a function u ∈ Testloc(X), we define the Hessian of u

Hess[u] : Testloc(X) × Testloc(X) → L2
loc(X,m),

by the following expression

Hess[u](f, g) :=
1
2
(〈∇f,∇〈∇u,∇g〉〉 + 〈∇g,∇〈∇u,∇f〉〉 − 〈∇u,∇〈∇f,∇g〉〉). (2.9)

We note that this is a symmetric bilinear operator and it restricts to

Hess[u] : Testbs(X) × Testbs(X) → L2(X,m).

The space W 2,2
loc (X) consists of the functions f ∈ W 1,2

loc (X) such that for any g1, g2, h ∈
Testbs(X), there exists an A ∈ L2(T ∗X) ⊗ L2(T ∗X) such that

2
ˆ

hA(∇g1,∇g2) dm =
ˆ

−〈∇f,∇g1〉div(h∇g2) − 〈∇f,∇g2〉div(h∇g1)

−h〈∇f,∇〈∇g1,∇g2〉〉 dm.

There is a unique such A in L2(T ∗X) ⊗ L2(T ∗X) which is denoted by Hess(f) (see [22, Section
1.5] for details). A very important result [22, Theorem 3.3.8] states that Test(X) ⊂ W 2,2(X)
and that for every g1, g2 ∈ Test(X),

Hess[f ](g1, g2) = Hess(f)(∇g1,∇g2). (2.10)

It can be readily checked that Testloc(X) ⊂ W 2,2
loc (X) as well, and that (2.10) is still valid

for f ∈ Testloc(X) and every g1, g2 ∈ Testbs(X).



MAXIMAL VOLUME ENTROPY RIGIDITY FOR RCD∗(−(N − 1), N) SPACES 11

The notion of divergence of a vector field is defined as follows. Recall that L2
loc(TX) consists

of those vector fields V such that |V | ∈ L2
loc(X,m). We say that V ∈ L2

loc(TX) has a divergence
in L2

loc and denote it by V ∈ Dloc(div) if there exists h ∈ L2
loc(X,m) such that for every f ∈

Testbs(X), it holds that ˆ
fhdm = −

ˆ
df(V ) dm.

In this case, we write divV = h.

2.4. Bakry–Émery condition and Bochner’s inequality

We begin this section by recalling the weak version of Bochner’s inequality obtained by
Ambrosio–Mondino–Savare [5] and Erbar–Kuwada–Sturm [18].

Theorem 2.8 (Weak Bochner’s inequality [5, 18]). Let (X, d,m) be an RCD∗(K,N)-space.
Then, for all f ∈ D(Δ) with Δf ∈ W 1,2(X, d,m) and all g ∈ D(Δ) ∩ L∞(X,m) non-negative
with Δg ∈ L∞(X,m), we have

1
2

ˆ
Δg|∇f |2 dm−

ˆ
g〈∇(Δf),∇f〉 dm � K

ˆ
g|∇f |2 dm +

1
N

ˆ
g(Δf)2 dm. (2.11)

A remarkable property is the equivalence of the RCD∗(K,N) condition and the Bochner
inequality under some conditions (namely the Sobolev to Lipschitz property — which we recall
below — and a certain volume growth estimate). The infinite-dimensional case was settled in
[4], while the (technically more involved) finite-dimensional refinement was established in [18]
and [5].

Let f, g ∈ Testloc(X) and define the measure-valued map

Γ2(f, g) :=
1
2
Δ〈∇f,∇g〉 − 1

2
(〈∇f,∇Δg〉 + 〈∇g,∇Δf〉)m.

Let Γ2(f) := Γ2(f, f). It was shown by Ambrosio–Mondino–Savaré [5] and Erbar–Kuwada–
Sturm [18] that the following non-smooth Bakry–Émery condition is satisfied on an
RCD∗(K,N)-space: For every f ∈ Test(X),

Γ2(f) �
(
K|∇f |2 +

1
N

(Δf)2
)
m. (2.12)

It follows immediately from the definition of local test functions that (2.12) is satisfied as
well for every f ∈ Testloc(X).

Now we state a fundamental technical tool (see [41]) which is useful when ‘changing
variables’. For simplicity, we state a weaker version than that in [41], suitable for our purposes.
This result follows from the fact that Testloc(X) is an algebra and from the Chain and Leibniz
Rules for differentiation.

Proposition 2.9 [41]. Let n ∈ N and Ψ : R
n → R be a polynomial with no constant term.

Let us fix f1, . . . , fn ∈ Testloc(X) and denote Ψ(f) := Ψ(f1, . . . , fn) : X → R and Ψij := ∂ijΨ.
Then, Ψ(f) is in Testloc(X) and the following formulae hold true.

(i) |∇Ψ(f)|2m =
n∑
i,j

Ψi(f)Ψj(f)〈∇fi,∇fj〉m.

(ii) Δ(Ψ(f)) =
∑
i

Ψi(f)Δ(fi) +
n∑
i,j

Ψij(f)〈∇fi,∇fj〉m.
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(iii) Γ2(Ψ(f)) =
n∑
i,j

Ψi(f)Ψj(f)Γ2(fi, fj) + 2
n∑

i,j,k

Ψi(f)Ψjk(f)Hess[fi](fj , fk)m

+
n∑

i,j,k,h

Ψik(f)Ψjh(f)〈∇fi,∇fj〉〈∇fk,∇fh〉m.

2.5. Isomorphisms of metric measure spaces

This is an account of several results in [20]. We consider metric measure spaces (X, d,m) such
that (X, d) is complete and separable and m is a non-negative Radon measure on X. We begin
by recalling the definition of isomorphism of metric measure spaces.

Definition 2.10 (Isomorphisms between metric measure spaces). We say that two met-
ric measure spaces (X1, d1,m1) and (X2, d2,m2) are isomorphic provided there exists an
isometry T : (supp(m1), d1) → (supp(m2), d2) such that T�m1 = m2. Any such T is called
an isomorphism.

The following property will allow us to study isomorphisms between metric measure spaces
in terms of isometries between their W 1,2 spaces, see Proposition 2.13.

Definition 2.11 (Sobolev to Lipschitz property). Let (X, d,m) be a metric measure space.
We say that (X, d,m) has the Sobolev to Lipschitz property if any f ∈ W 1,2(X, d,m) with
|∇f | � 1 m-a.e. admits a 1-Lipschitz representative, that is, a 1-Lipschitz map g : X → R such
that f = g m-a.e..

Gigli showed (using a result of Rajala [39]) that, for finite N , CD(K,N)-spaces have the
Sobolev to Lipschitz property. Furthermore, Ambrosio–Gigli–Savaré showed that RCD(K,∞)-
spaces also have the Sobolev to Lipschitz property for N ∈ (1,∞) (see the paragraph after
[20, Definition 4.9]). As CD∗(K,N) spaces are CD(K∗, N) spaces for a suitable value of K∗

(see [11] and [14]), RCD∗(K,N) with N ∈ (1,∞) spaces also satisfy the Sobolev to Lipschitz
property.

Lemma 2.12 (Contractions by local duality [20, Lemma 4.19]). Let (X1, d1,m1) and
(X2, d2,m2) be two metric measure spaces with the Sobolev to Lipschitz property where m2

gives finite mass to bounded sets, and T : X1 → X2 a Borel map such that T�m1 � Cm2 for
some C > 0. Then the following are equivalent.

(i) T is m1-a.e. equivalent to a 1-Lipschitz map from (supp(m1), d1) to (supp(m2), d2).
(ii) For any f ∈ W 1,2(X2, d2,m2), we have f ◦ T ∈ W 1,2(X1, d1,m1), and moreover,

|∇(f ◦ T )| � |∇f | ◦ T, m1 − a.e..

Proposition 2.13 (Isomorphisms via duality with Sobolev norms [20, Proposition
4.20]). Let (X1, d1,m1) and (X2, d2,m2) be two metric measure spaces with the Sobolev to
Lipschitz property and T : X1 → X2 a Borel map. Assume that both m1 and m2 give finite
mass to bounded sets. Then the following are equivalent.

(i) Up to a modification on a m1-negligible set, T is an isomorphism of the metric measure
spaces.

(ii) The following two are true.
(ii-a) There exist a Borel m1-negligible set N ⊂ X1 and a Borel map S : X2 → X1 such

that S(T (x)) = x, ∀x ∈ X1 \ N .
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(ii-b) The right composition with T produces an isometry of W 1,2(X2, d2,m2) in
W 1,2(X1, d1,m1), that is, f ∈ W 1,2(X2, d2,m2) if and only if f ◦ T ∈ W 1,2(X1, d1,m1)
and in this case ‖f‖W 1,2(X2) = ‖f ◦ T‖W 1,2(X1).

2.6. Warped product of metric measure spaces

Here we review the main definitions and results concerning the warped products of metric
measure spaces following Gigli–Han [23].

Let (X, dX ,mX) and (Y, dY ,mY ) be two complete and separable metric measure spaces and
wd, wm : Y → [0,∞) two continuous functions such that {wd = 0} ⊂ {wm = 0}. The lw-length
of an absolutely continuous curve γ = (γY , γX) in Y ×X is defined by

lw[γ] =
ˆ 1

0

√
|γ̇Y

t |2 + w2
d(γ

Y
t )|γ̇X

t |2 dt.

The function dw : (Y ×X)2 → R given by

dw(p, q) = inf{lw[γ] : γ is an absolutely continuous curve from p to q}
is a pseudo-metric. Hence, it induces an equivalence relation on Y ×X. By taking the quotient
and then its completion, we obtain a metric space denoted by Y ×w X and an induced distance
denoted also by dw. If wd(y) > 0, there is no abuse in denoting the elements of Y ×w X by
(y, x) with y ∈ Y and x ∈ X, because points in the completion not coming from points in
Y ×X will be negligible with respect to the measure of Y ×w X. The same holds for the set
of elements (y, x) that satisfy wd(y) = 0.

The measure mw on Y ×w X is defined as
ˆ

f(x)g(y) dmw(y, x) =
ˆ (ˆ

f(x)wm(y) dmX(x)
)
g(y) dmY (y), (2.13)

for any Borel non-negative functions f : X → R and g : Y → R.
The warped product of (X, dX ,mX) and (Y, dY ,mY ) via the functions wd and wm, called

warping functions, is the metric measure space denoted by (Y ×w X, dw,mw). By definition,
(Y ×w X, dw,mw) is complete, separable and is a length space.

Definition 2.14 (Almost everywhere locally doubling space). Let (X, d,m) be a metric
measure space. We say that it is an almost everywhere locally doubling space provided there
exists a Borel set B with m-negligible complement such that for every x ∈ B there exists an
open set U containing x and constants C,R > 0 for which

m(B(y, 2r)) � Cm(B(y, r))

for r ∈ (0, R) and y ∈ U .

Definition 2.15 (Measured-length space). Let (X, d,m) be a metric measure space. We say
that it is measured-length if there exists a Borel set A ⊂ X with m-negligible complement that
satisfies the following. For all x0, x1 ∈ A, there exist ε > 0 and a map (0, ε]2 → P(C([0, 1], X)),
(ε0, ε1) 
→ πε0,ε1 , such that:

• for any ϕ ∈ Cb(C([0, 1], X)), the map (0, ε]2 → R given by

(ε0, ε1) 
→
ˆ

ϕdπε0,ε1 ,

is Borel;
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• for every ε0, ε1 ∈ (0, ε] and i = 0, 1, we have

(ei)�πε0,ε1 =
1B(xi,εi)

m(B(xi, εi))
m;

• we have

lim sup
ε0,ε1↓0

ˆ ˆ 1

0

|γ·
t|2 dt dπε0,ε1(γ) � d2(x0, x1).

Theorem 2.16 [23, Theorem 3.22]. Let (X, d,m) be an a.e. locally doubling and measured-
length space, I ⊂ R a closed, possibly unbounded, interval and wd, wm : I → [0,∞) a couple
of warping functions. Assume that wm is strictly positive in the interior of I. Then the
warped product space (Xw, dw,mw), where Xw = I ×w X, is almost everywhere doubling and
a measured-length space. Hence, it has the Sobolev to Lipschitz property.

The following result may be shown from the equivalence of the Beppo–Levi space ([23,
Definitions 3.8 and 3.9]) and the Sobolev space on warped products obtained by Gigli–Han.
For simplicity, we will not restate here the precise definition of the Beppo–Levi space, rather
only summarize their results in a manner suitable for our purposes (cf. [23, Propositions 3.10,
3.13, and 3.14]). Given f : Xw → R, let f (t) : X → R and f (x) : I → R denote the functions
f (t)(x) = f(t, x) and f (x)(t) = f(t, x).

Theorem 2.17 [23]. Let (X, d,m) be a metric measure space, I ⊂ R a closed, possibly
unbounded, interval and wd, wm : I → [0,∞) warping functions. Suppose that {wm = 0} is
finite and for some C > 0, wm(t) � C inf{s:wm(s)=0} |t− s| for all t ∈ I, then the following two
are equivalent.

(1) f ∈ W 1,2(Xw, dw,mw).
(2) (i) For m-a.e. x ∈ X we have f (x) ∈ W 1,2(R, dEuc, wmL1).

(ii) For wmL1-a.e. t ∈ R we have f (t) ∈ W 1,2(X).
(iii) For all (t, x) ∈ Xw,

|∇f |2Xw
(t, x) = w−2

d (t)|∇f (t)|2X(x) + |∇f (x)|L2(R,wmL1). (2.14)

Remark 2.18. In the statements of Theorems 2.16 and 2.17, m is assumed to be a finite
measure. However, as explained in the remark after [23, Definition 2.9], if wm never vanishes,
as in our application, then the results still hold when m is infinite.

Corollary 2.19. With the same notation and assumptions of Theorem 2.17 the following
are true.

(i) Let f ∈ S2
loc(Xw). Then for m-a.e. x, f (x) ∈ S2

loc(ωmL1). For ωmL1-a.e. t, f (t) ∈ S2
loc(X).

Furthermore, (2.14) holds in this setting.
(ii) Let f1 ∈ S2

loc(wmR) and define f : Xw → R by f(t, x) = f1(t). Then f ∈ S2
loc(Xw) and

|∇f |Xw
(t, x) = |∇f1|wmR(t), mw − a.e. (t, x).

(iii) Let f2 ∈ S2
loc(X) and define f : Xw → R by f(t, x) := f2(x). Then f ∈ S2

loc(Xw) and

|∇f |Xw
(t, x) = w−1

d (t)|∇f2|X(x), mw − a.e. (t, x).

Proof. All the properties follow from the previous theorem with a truncation and
cut-off argument based on the locality property of minimal weak upper gradients, see
Subsection 2.1. �
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Corollary 2.20. With the same notation and assumptions of Theorem 2.17, if (X, d,m) is
infinitesimally Hilbertian, then the metric measure space (Xw, dw,mw) is infinitesimally Hilber-
tian.

Proof. Let f, g ∈ S2
loc(Xw). For simplicity, in this proof, we will write |∇f · |wmR to refer to

the weak upper gradient of a Sobolev function f in S2(R, dEuc, wmL1). By Theorem 2.17, we
get

|∇(f + g)|2Xw
+ |∇(f − g)|2Xw

= w−2
d (|∇(f + g)(t)|2X + |∇(f − g)(t)|2X)

+ (|∇(f + g)(x)|2wmR
+ |∇(f − g)(x)|2wmR

).

Now, by Corollary 2.19 above we know that f (t), g(t) ∈ S2
loc(X) and f (x), g(x) ∈ S2

loc(wmL1).
As (X, d,m) is infinitesimally Hilbertian,

|∇(f (t) + g(t))|2X + |∇(f (t) − g(t))|2X = 2
(
|∇f (t)|2X + |∇g(t)|2X

)
, m− a.e.

In a similar way, because (R, dEuc, ωmL1) is infinitesimally Hilbertian, we obtain

|∇(f (x) + g(x))|2wmR
+ |∇(f (x) − g(x))|2wmR

= 2
(
|∇f (t)|2wmR

+ |∇g(t)|2wmR

)
, wmL1 − a.e..

Putting the equations together and because the choices of f, g ∈ S2
loc(Xw) were arbitrary, we

get the result. �

Now we define,

G =
{
g ∈ S2

loc(Xw) | g(x, t) = g̃(x) for some g̃ ∈ S2(X) ∩ L∞(X)
}
,

H =
{
h ∈ S2

loc(Xw) | h(x, t) = h̃(t) for some h̃ ∈ S2(wmR) ∩ L∞(R)
}
,

A = algebra generated by G ∪ H ⊂ S2
loc(Xw).

Proposition 2.21. Let (X, d,m) be a metric measure space and wd, wm : R → [0,∞)
warping functions. Suppose that {wm = 0} is finite and for some C ∈ R,

wm(t) � C inf
{s:wm(s)=0}

|t− s|

for all t ∈ I, then the set A ∩W 1,2(Xw) is dense in W 1,2(Xw).

Proof. Consider the algebra

Ab
a = algebra generated by (G ∪ H ∩ S2

loc(([a, b] ×w X, dw,mw)).

By the Cartesian product case proved in [20, Proposition 6.6] (see also [17, Proposition 3.35]),
Ab

a ∩W 1,2(Xw) is dense in W 1,2([a, b] ×w X, dw,mw) whenever [a, b] ⊂ R \ {wm = 0}.
It follows that A ∩W 1,2(Xw) is dense in BL0(Xw) which is the closure in BL(Xw)

of the space of functions which vanish in a neighborhood of {wm = 0} ∪ {∞}. (See [23]
for the definitions of the Beppo–Levi spaces BL0(Xw) and BL(Xw).) However, under the
hypotheses, [23, Proposition 3.14] shows that BL0(Xw) = BL(Xw) = W 1,2(Xw) which implies
the statement. �

2.7. Universal covers of RCD∗ spaces

A metric space (Y, dY ) is a covering space of (X, dX) if there exists a continuous map p : Y → X
such that for every point x ∈ X there exists a neighborhood Ux ⊂ X with the property that
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p−1(Ux) is a disjoint union of open subsets of Y each of which is mapped homeomorphically
onto Ux by p.

A (connected) metric space (X̃, dX̃) is a universal cover of X, with covering map p̃, if for any
other covering space Y of X with covering map p there exists a continuous map f : X̃ → Y
such that p ◦ f = p̃. Whenever a universal cover exists, it is unique. (Note that we do not
require X to be semilocally simply connected, so X̃ need not be simply connected.)

In the presence of the RCD∗ condition, the following theorem was obtained by Mondino–Wei
[34, Theorem 1.1].

Theorem 2.22. Let (X, d,m) be an RCD∗(K,N)-space for some K ∈ R, N ∈ (1,∞). Then
(X, d,m) admits a universal cover (X̃, d̃, m̃), with m̃ given by the pullback measure via the
covering map, which is itself an RCD∗(K,N)-space.

3. Construction of a Busemann function

In this section, we first prove that the volume entropy of compact RCD∗(−(N − 1), N) spaces
is bounded above by N − 1. In the equality case, we construct a Busemann type function u
defined on the universal cover of the space. Finally we show the existence and main properties
of the Regular Lagrangian Flow of ∇u. As our space is non-compact, we need to make use
of good cut-off functions, and local uniqueness results for Regular Lagrangian Flows and the
continuity equation.

3.1. Volume growth entropy estimate for RCD∗ spaces

Theorem 3.1. Let (X, d,m) be an RCD∗(K,N)-space with N ∈ (1,∞) and K < 0. Then

h(X) �
√
−K(N − 1).

Proof. By the work of Mondino–Wei [34] (see Theorem 2.22), the universal cover space X̃
is also an RCD∗(K,N) space. In particular, it is a CD∗(K,N) space. Let R > 0 and let us fix
r0 such that 0 < r0 < R. By Theorem 2.3,

m̃(BX̃(x,R))
ˆ r0

√
−K/(N−1)

0

sinhN−1 tdt � m̃(BX̃(x, r0))
ˆ R

√
−K/(N−1)

0

sinhN−1 tdt.

Taking logarithms, dividing by R and taking the limsup on both sides of the previous inequality,
we get

h(X) � lim
R→∞

1
R

ln

(ˆ R
√

−K/(N−1)

0

sinhN−1 tdt

)
.

To conclude, we use L’Hôpital’s rule. �

The next corollary follows directly by taking K = −(N − 1) in the previous theorem.

Corollary 3.2. Let (X, d,m) be an RCD∗(−(N − 1), N)-space with N ∈ (1,∞). Then
h(X) � N − 1.

We remark that the previous volume entropy growth estimate holds in the more general
setting of spaces which satisfy the measure contraction property introduced by Ohta [35] and
Sturm [45]. Indeed, a Bishop–Gromov type inequality was obtained in [35, Theorem 5.1] and
the proofs of Theorem 3.1 and Corollary 3.2 can be carried out in this setting analogously.
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3.2. Construction of a Busemann function

In this section, we will prove the following result on the existence of a Busemann-type function
on the universal cover of a compact RCD∗(K,N) space with maximal volume entropy. We will
follow the strategy developed by Liu [30], with the necessary adaptations (cf. [26, Theorem
1.7]). More precisely, we will prove:

Theorem 3.3. Let (X, d,m) be a compact RCD∗(K,N) space with K < 0 and N ∈ (1,∞),
and let (X̃, d̃, m̃) be its universal cover. If h(X) =

√−K(N − 1), then there exists a function

u : X̃ → R with u ∈ Dloc(Δ) that satisfies |∇u| = 1 m̃-a.e. and Δu =
√−K(N − 1) m̃-a.e. In

particular, u ∈ Testloc(X).

The theorem follows from the following technical lemma.

Lemma 3.4. Let (X, d,m) be a compact RCD∗(K,N) space with K < 0, N ∈ (1,∞),
and (X̃, d̃, m̃) its universal cover. If h(X) =

√−K(N − 1), then for any y0 ∈ X̃ and R >
50 diam(X) there exists uR : B(y0, R) → R Lipschitz with |∇uR| = 1 m̃-a.e. and ΔuR =√−K(N − 1) m̃-a.e..

To prove the previous lemma, we need the following propositions. Set Q :=
√−K(N − 1).

Let us recall the definition of the function sm̃ appearing in Theorem 2.3:

sm̃(x, r) = lim sup
δ→0

1
δ
m̃
(
B(x, r + δ) \B(x, r)

)
.

Proposition 3.5. For any o ∈ X̃, we have

lim sup
r→∞

sm̃(o, r + 50R)
sm̃(o, r − 50R)

= exp(100QR).

In particular, there is a sequence of positive numbers ri with limi→∞ ri = ∞, such that
sm̃(o,ri+50R)
sm̃(o,ri−50R) converges to exp(100QR).

Proof. Since h(X) = Q > 0, X̃ has infinite diameter. Recall that by Mondino–Wei [34],
(X̃, d̃, m̃) is an RCD∗(K,N) space. By Theorem 2.3,

sm̃(o, r + 50R)
sm̃(o, r − 50R)

� sinhN−1(Q(r + 50R))
sinhN−1(Q(r − 50R))

.

Note that

lim
r→∞

sinhN−1(Q(r + 50R))
sinhN−1(Q(r − 50R))

= exp(100QR).

We will show that

lim sup
r→∞

sm̃(o, r + 50R)
sm̃(o, r − 50R)

= exp(100QR).

By contradiction, suppose that there exist r0 > 100R and ε > 0 such that for any r � r0,

sm̃(o, r + 50R)
sm̃(o, r − 50R)

� (1 − ε) exp(100QR).

Therefore, for any r > r0 big enough, we have that

sm̃(o, r) � (1 − ε) exp(100QR)sm̃(o, r − 100R).
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Iterating this inequality � r−r0
100R� times, where � r−r0

100R� is the largest integer smaller than or equal
to r−r0

100R , we get

sm̃(o, r) � ((1 − ε) exp(100QR))�
r−r0
100R �

sm̃(o, r − � r−r0
100R�100R).

Now, r − � r−r0
100R�100R = r0 + t for some t ∈ [0, 100R). Hence, by Theorem 2.3 and as the

hyperbolic sine is an increasing function:

sm̃(o, r − � r−r0
100R�100R) � sm̃(o, r0)

sinhN−1(Q(r − � r−r0
100R�100R))

sinhN−1(Qr0)

� sm̃(o, r0)
sinhN−1(Q(r0 + 100R))

sinhN−1(Qr0)
.

Thus, for r � r0

sm̃(o, r) � c(N,K, r0, R)((1 − ε) exp(100QR))
r−r0
100R ,

where we used that � r−r0
100R� � r−r0

100R . Integrating sm̃(o, ·) from r0 to r and using the previous
inequality, we get an upper bound of m̃(B(o, r) \B(o, r0)). Using this bound, we obtain

h(X) = lim sup
r→∞

1
r

ln m̃(B(o, r)) < Q.

This contradicts h(X) = Q, and concludes the proof. �

For the following proposition, let us recall that any distance function r(x) := d̃(o, x) on X̃ has
a well-defined measure valued Laplacian on X̃ \ {o}. Moreover, it is a signed Radon measure
and an exact formula is presented in [13, Corollary 4.19, Theorem 1.1]. Denote A(o, r1, r2) :=
{x ∈ X̃ | r1 � d̃(o, x) < r2}. Then, we have the following divergence formula. See [26, Lemma
2.11] for Alexandrov space case.

Proposition 3.6. For a.e. o ∈ X̃ and for all but countably many t ∈ (0,∞),ˆ
B(o,t)

Δr = sm̃(o, t).

In particular, for all but countably many t2 � t1 > 0, and a.e. o ∈ X̃,ˆ
A(o,t1,t2)

Δr = sm̃(o, t2) − sm̃(o, t1). (3.1)

Proof. Fix 0 < ε0 < t
2 , define ψε0 as

ψε0(x) =

⎧⎪⎨
⎪⎩

0 if x ∈ B(o, ε0)
r(x)
ε0

− 1 if x ∈ A(o, ε0, 2ε0)
1 otherwise.

Let {δi}i∈N be a decreasing sequence such that δi → 0. For each δi, define a function fδi : X̃ → R

by

fδi(x) :=

⎧⎪⎨
⎪⎩
ψε0(x) if x ∈ B(o, t)
1 − 1

δi
(r(x) − t) if x ∈ A(o, t, t + δi)

0 otherwise.
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We observe that fδi ∈ W 1,2(X̃, d̃, m̃) for all i ∈ N. Then,
ˆ
B(o,t+δ1)

fδiΔr =
ˆ
B(o,t)

ψε0 Δr +
ˆ
A(o,t,t+δ1)

fδiΔr.

By the definition of Δr and fδi , we now have that
ˆ
B(o,t+δ1)

fδiΔr = −
ˆ
B(o,t+δ1)

〈∇fδi ,∇r〉 dm̃

=
1
δi

ˆ
A(o,t,t+δi)

〈∇r,∇r〉 dm̃− 1
ε0

ˆ
A(o,ε0,2ε0)

〈∇r,∇r〉 dm̃

=
1
δi
m̃(A(o, t, t + δi)) − 1

ε0
m̃(A(o, ε0, 2ε0)).

Hence,
ˆ
B(o,t)

ψε0Δr +
ˆ
A(o,t,t+δ1)

fδiΔr =
1
δi
m̃(A(o, t, t + δi)) − 1

ε0
m̃(A(o, ε0, 2ε0)).

Now choose δi to be a specific sequence achieving the lim sup in the definition of sm̃. Taking
the limit when i → ∞, we get

ˆ
B(o,t)

ψε0 Δr + lim
i→∞

ˆ
A(o,t,t+δ1)

fδiΔr = sm̃(o, t) − 1
ε0
m̃(A(o, ε0, 2ε0)).

Note that 0 � fδi � 1 and ∣∣∣∣∣
ˆ
A(o,t,t+δ1)

fδi Δr

∣∣∣∣∣ �
ˆ
A(o,t,t+δi)

|Δr|.

Since |Δr| is a Radon measure, we have limi→∞
´
A(o,t,t+δi)

|Δr| = 0 for all but countably many
t ∈ (0,∞). Therefore

ˆ
B(o,t)

ψε0 Δr = sm̃(o, t) − 1
ε0
m̃(A(o, ε0, 2ε0)).

This is true for all o ∈ X̃. Now for RCD∗(K,N) space with 1 < N < ∞, for a.e. o ∈ X̃,
lim supε0→0

1
ε0
m̃(A(o, ε0, 2ε0) = 0 (see [13, Remark 5.4]). Letting ε0 → 0 for those o above gives

the result. �

Remark 3.7. The final part of the above proof shows that a.e. t sm̃(x, t) is actually a limit,

sm̃(x, r) = lim
δ→0

1
δ
m̃
(
B(x, r + δ) \B(x, r)

)
.

Let A ⊂ X̃. In the following proposition, we will use the notation
ffl
A

Δr :=
´
A

Δr

m̃(A) .

Proposition 3.8. Set Ai = {y ∈ X̃ | ri − 50R � d̃(o, y) � ri + 50R}. Then,
 
Ai

Δr � Q− Ψ(i),

where limi→∞ Ψ(i) = 0.
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Proof. We now prove that
ffl
Ai

Δr � Q− Ψ(i). By (3.1) and the definition of Ai,ˆ
Ai

Δr = sm̃(o, ri + 50R) − sm̃(o, ri − 50R).

By Proposition 3.5, as i goes to infinity,

sm̃(o, ri + 50R)
sm̃(o, ri − 50R)

−→ exp(100QR),

and therefore, there exist Ψ(i) > 0 such that limi→∞ Ψ(i) = 0 and

sm̃(o, ri + 50R)
sm̃(o, ri − 50R)

+ Ψ(i) � exp(100QR).

Thus,  
Ai

Δr =
sm̃(o, ri + 50R)

m̃(Ai)
− sm̃(o, ri − 50R)

m̃(Ai)

� sm̃(o, ri − 50R)
m̃(Ai)

(exp(100QR) − 1) − sm̃(o, ri − 50R))
m̃(Ai)

Ψ(i).

Hence we only need to show that

lim
i→∞

sm̃(o, ri − 50R)
m̃(Ai)

=
Q

exp(100QR) − 1
.

This would imply the existence of Ψ(i) > 0 that satisfies the claim.
By Theorem 2.3, we have that for t ∈ [ri − 50R, ri + 50R],

m̃(Ai)
sm̃(o, ri − 50R)

=
ˆ ri+50R

ri−50R

sm̃(o, t)
sm̃(o, ri − 50R)

dt

�
ˆ ri+50R

ri−50R

sinhN−1 (Qt)
sinhN−1 (Q(ri − 50R))

dt

=

´ ri+50R

ri−50R
sinhN−1 (Qt)dt

sinhN−1 (Q(ri − 50R))
.

Using L’Hôpital’s rule, we conclude

lim
i→∞

m̃(Ai)
sm̃(o, ri − 50R)

� lim
i→∞

´ ri+50R

ri−50R
sinhN−1 (Qt)dt

sinhN−1 (Q(ri − 50R))

= lim
i→∞

− sinhN−1(Q(ri − 50R)) + sinhN−1(Q(ri + 50R))
(N − 1)Q sinhN−2(Q(ri − 50R)) cosh(Q(ri − 50R))

=
−1 + exp(100QR)

Q
.

�Recall that Ai = {y ∈ X̃ | ri − 50R � d̃(o, y) � ri + 50R}. Fix a y0 ∈ Ai. Let π : X̃ → X be
the universal covering map, and set

Ai(y0) = {y ∈ X̃ |π(y) = π(y0), B(y,R) ⊂ Ai}.

Proposition 3.9. For every i ∈ N, there exists yi ∈ Ai(y0) such that 
B(yi,R)

Δr � Q− Ψ(i).
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Proof. Let Ei be the maximal set of Ai(y0) such that B(y1, R) ∩B(y2, R) = ∅ for distinct
points y1, y2 in Ei. Set Fi =

⋃
y∈Ei

B(y,R). Using Proposition 3.8, we will show that 
Fi

Δr � Q− Ψ(i).

As Fi =
⋃

y∈Ei
B(y,R) is the union of mutually disjoint balls, it will follow then that there is

a point yi ∈ Ei such that  
B(yi,R)

Δr � Q− Ψ(i).

To achieve this goal, first we estimate a lower bound for m̃(Fi)
m̃(Ai)

. Let Gi =
⋃

y∈Ei
B(y, 5R). The

cardinality of Ei is finite, all of its elements are pre-images of the same point under the covering
map π, and m̃ is locally equal to m, from which we obtain m̃(Fi) =

∑
y∈Ei

m̃(B(y,R)) =
card(Ei)m̃(B(y′, R))) and

m̃(Gi) �
∑
y∈Ei

m̃(B(y, 5R))) = card(Ei)m̃(B(y′, 5R)))

for y′ ∈ Ei. Thus,

m̃(Fi)
m̃(Gi)

� card(Ei)m̃(B(y′, R))
card(Ei)m̃(B(y′, 5R))

� vK,N (R)
vK,N (5R)

,

by applying Theorem 2.3 with vK,N (r) =
´ r

0
sinhN−1(Qt) dt.

Now we will find a bound for m̃(Ai). We will prove that

A(o, ri − 10R, ri + 10R) = {y ∈ X̃ | ri − 10R < d̃(o, y) < ri + 10R} ⊂ Gi.

Let z ∈ A(o, ri − 10R, ri + 10R), we will show z ∈ Gi. As z ∈ X̃, there exists a point y ∈
π−1(π(y0)) such that d̃(z, y) � diam(X). Then, by the triangle inequality

ri − 10R− diam(X) � d̃(o, y) � ri + 10R + diam(X).

The previous inequality implies y ∈ Ai(y0). From the definition of Ei, there exists a point y′ ∈
Ei such that d̃(y, y′) � R. By the triangle inequality, d̃(z, y′) � diam(X) + R. Recalling that
R > 50 diam(X̃), we deduce that d̃(z, y′) � 5R. Hence, z ∈ Gi. This proves A(o, ri − 10R, ri +
10R) ⊂ Gi.

From the previous paragraph, m̃(Gi) � m(A(o, ri − 10R, ri + 10R)). Recall that Ai =
A(o, ri − 50R, ri + 50R). Hence, by the generalized Bishop–Gromov volume comparison for
annular regions, we obtain

m̃(Gi)
m̃(Ai)

� m̃(A(o, ri − 10R, ri + 10R))
m̃(Ai)

�
´ ri+10R

ri−10R
sinhN−1(Qt) dt´ ri+50R

ri−50R
sinhN−1(Qt) dt

.

As

lim
i→∞

´ ri+10R

ri−10R
sinhN−1(Qt) dt´ ri+50R

ri−50R
sinhN−1(Qt) dt

� exp(−60QR)
5

,

we can write
m̃(Gi)
m̃(Ai)

� c(K,N,R).

Therefore,

m̃(Fi)
m̃(Ai)

=
m̃(Fi)
m̃(Gi)

m̃(Gi)
m̃(Ai)

� vK,N (R)
vK,N (5R)

c(K,N,R).
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The Laplacian comparison theorem for RCD∗(K,N)-spaces (2.7) then yields

Δr|X̃\{o} � Q coth(Qr)m̃.

Observe that Δr � (Q + δ(i,K,N))m̃ on Ai, because limr→∞ coth(r) = 1 and coth(r) � 1,
here limi→∞ δ(i,K,N) = 0. Therefore (Q + δ(i,K,N))m̃− Δr is a non-negative measure. As
Fi ⊂ Ai, we compute

0 �
ˆ
Fi

[(Q + δ(i,K,N))m̃− Δr] �
ˆ
Ai

[(Q + δ(i,K,N))m̃− Δr].

Changing sign in the above equation and taking the average integral, we find 
Fi

[Δr − (Q + δ(i,K,N))m̃] � m̃(Ai)
m̃(Fi)

 
Ai

[Δr − (Q + δ(i,K,N))m̃]

� m̃(Ai)
m̃(Fi)

(Q− ε(i,K,N,R) −Q− δ(i,K,N))

� −ε(i,K,N,R) + δ(i,K,N)
C(K,N,R)

.

From the first to the second line above, we used
ffl
Ai

Δr � Q− ε(i,K,N,R), and from the

second to the third, m̃(Fi)
m̃(Ai)

� C(K,N,R). Thus,
 
Fi

Δr � Q + δ(i,K,N) − ε(i,K,N,R) + δ(i,K,N)
C(K,N,R)

. �

We are now ready to prove Lemma 3.4, in essentially the same way as the corresponding
part of [26, Theorem 1.7].

Proof of Lemma 3.4. Let yi ∈ X̃ be as in Proposition 3.9. Then there exists a deck
transformation (measure-preserving metric isometry) ϕi : X̃ → X̃ such that ϕi(y0) = yi. Define
ui : B(y0, R) → R by ui(y) = r(ϕi(y)) − d̃(o, yi). As B(y0, R) is pre-compact and the ui are
1-Lipschitz, by the Arzelà–Ascoli Theorem, there is a subsequence of ui that converges
to a 1-Lipschitz function uR. To show that in fact |∇uR| = 1 m̃-a.e., note that the
set

{x ∈ B(y0, R) | |∇uR|(x) and |∇ui|(x) ∀i ∈ N are well defined}
has full m̃ measure. For any x in this set and i ∈ N, let γi be a geodesic from ϕi(x) to o. Then,

ui((ϕ−1
i ◦ γi)t) − ui((ϕ−1

i ◦ γi)0) = r((γi)t) − r((γi)0) = d̃(o, (γi)t) − d̃(o, (γi)0) = −t.

Now, ϕ−1
i ◦ γi subconverges to a geodesic α. Thus, in the limit, we get the previous inequality

for uR, uR(αt) − uR(α0) = −t. From this, we conclude that |∇uR|(x) = 1. Thus, |∇uR| = 1
m̃-a.e.

Moreover, the sequence ui is uniformly bounded in W 1,2(B(y0, R)), so uR ∈ W 1,2(B(y0, R))
and ˆ

X̃

ψΔuR = lim
i→∞

ˆ
X̃

ψ ◦ ϕiΔui.

Here ψ is a compactly supported Lipschitz function on B(y0, R).
The Laplacian comparison (2.7) implies

Δui(y) = Δr(ϕi(y)) � Q + Ψ(i), y ∈ B(y0, R). (3.2)
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On the other hand, Proposition 3.9 gives 
B(y0,R)

Δui =
 
B(yi,R)

Δr � Q− Ψ(i).

It follows then that  
B(y0,R)

|Δui −Qdm̃| � Ψ(i).

From these observations, we obtainˆ
X̃

ψΔuR = lim
i→∞

ˆ
B(y0,R)

ψ ◦ ϕiΔui

=
ˆ
B(y0,R)

ψ ◦ ϕQdm̃

=
ˆ
B(y0,R)

ψQdm̃.

Whence, uR ∈ D(Δ, B(y0, R)) and ΔuR = Qm̃. �

Now Theorem 3.3 is proved as follows.

Proof of Theorem 3.3. Take a sequence of radii Ri ↑ ∞ and the corresponding sequence
of functions uRi

. Then, up to passing to a subsequence, the uRi
converge to a 1-Lipschitz

function u : X̃ → R. Lemma 3.4 immediately gives that u ∈ Dloc(Δ) and that Δu = Qm̃,
that is, Δu = Q m̃-a.e. Finally, as we have seen in the proof of Lemma 3.4, |∇uRi

| = 1 m̃-a.e.
in the following stronger sense: For m̃-a.e. x, there is a geodesic γi(t) through x such that
uRi

(γi(t)) = uRi
(γi(0)) − t. Repeating the argument above in the proof of Lemma 3.4 gives

|∇u| = 1 m̃-a.e. �

3.3. The Hessian of u

Throughout this section, we maintain the assumption that (X, d,m) is an RCD∗(K,N) space
with K < 0 and N ∈ (1,∞). Let us recall that we denote the universal cover of X by (X̃, d̃, m̃)
and that X̃ is an RCD∗(K,N)-space [34]. In this section, we will compute the Hessian of the
Busemann-type function u : X̃ → R constructed in Subsection 3.2. Throughout this section,
we reserve the notation u for this function. The strategy and computations follow along the
lines of [28, Theorem 3.7], which in turn draws from [46], originally formulated in the language
of Γ-Calculus.

Fix a point x ∈ X̃, and let t ∈ R. Let v ∈ Testloc(X̃), f, g ∈ Testbs(X̃), and consider the
function

Ψ(v, f, g) =
1
2
v2 + (1 − v(x))v + t(fg − f(x)g − g(x)f).

Observe that Ψ is a smooth function with Ψ(0, 0, 0) = 0. The partial derivatives of Ψ at x are
given by

Ψ1|x = (v + (1 − v(x)))|x = 1 Ψ11|x = 1 Ψ22|x = 0
Ψ2|x = t(g − g(x))|x = 0 Ψ12|x = Ψ21|x = 0 Ψ23|x = Ψ32|x = t

Ψ3|x = t(f − f(x))|x = 0 Ψ13|x = Ψ31|x = 0 Ψ33|x = 0.

We now turn our attention to the measure valued functional Γ2 (see Subsection 2.4 for the
definition) and we let γ2m̃ be its absolutely continuous part. Proposition 2.9 guarantees that
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Ψ(u, f, g) ∈ Test(X̃) for every f, g ∈ Testbs(X̃). Therefore, following the same strategy as in
[28, Theorem 3.7], by (2.12) and Proposition 2.9 we have that for every x ∈ X̃,

0 � γ2(Ψ(u, f, g)) −K|∇Ψ(u, f, g)|2 +
1
N

(ΔΨ(u, f, g))2

= γ2(u) + 4tHess[u](f, g) + |∇u|4 + 4t〈∇u,∇f〉〈∇u,∇g〉 + 2t2|∇f |2|∇g|2

+ 2t2(〈∇f,∇g〉)2 −K|∇u|2 − (Δu)2

N
− |∇u|4

N
− 4t2

N
(〈∇f,∇g〉)2

− 4tΔu

N
〈∇f,∇g〉 − 2Δu

N
|∇u|2 − 4t

N
|∇u|2〈∇f,∇g〉.

Grouping terms we obtain

0 � γ2(u) −K|∇u|2 − (Δu)2

N
+

N − 1
N

|∇u|2 − 2Δu

N
|∇u|2 (3.3)

+ 4t
(

Hess[u](f, g) + 〈∇u,∇f〉〈∇u,∇g〉 −
(

Δu + |∇u|2
N

)
〈∇f,∇g〉

)

+ 2t2
(
|∇f |2|∇g|2 +

N − 2
N

(〈∇f,∇g〉)2
)
.

The last term of the previous inequality (3.3), namely |∇f |2|∇g|2 + N−2
N (〈∇f,∇g〉)2, is non-

negative. Hence, the discriminant of the right-hand side of (3.3) as a polynomial in t is � 0.
That is,

2
(

Hess[u](f, g) + 〈∇u,∇f〉〈∇u,∇g〉 −
(

Δu + |∇u|2
N

)
〈∇f,∇g〉

)2

�
(
γ2(u) −K|∇u|2 − (Δu)2

N
+

N − 1
N

|∇u|2 − 2Δu

N
|∇u|2

)

×
(
|∇f |2|∇g|2 +

N − 2
N

(〈∇f,∇g〉)2
)
.

Once this analysis has been performed, we can explicitly compute the Hessian of u as follows.

Corollary 3.10. Let u ∈ Testloc(X̃) with |∇u|2 = 1 m̃-a.e. and Δu = N − 1 m̃-a.e. Then
for all functions f, g ∈ Testloc(X̃),

Hess[u](f, g) = 〈∇f,∇g〉 − 〈∇u,∇f〉〈∇u,∇g〉. (3.4)

Proof. We first consider f, g ∈ Testbs(X̃). Set Φ = |∇f |2|∇g|2 + N−2
N (〈∇f,∇g〉)2, and note

that Φ has bounded support. Note also that Γ2(u) = 0 and therefore γ2(u) = 0. Plugging this
in our previous analysis and using that |∇u|2 = 1, Δu = N − 1 and K = −(N − 1) we have
that ˆ

X̃

2
(

Hess[u](f, g) + 〈∇u,∇f〉〈∇u,∇g〉 −
(

Δu + |∇u|2
N

)
〈∇f,∇g〉

)2

dm̃

is less than or equal toˆ

X̃

(
−K|∇u|2 − (Δu)2

N
+

N − 1
N

− 2Δu

N

)
Φdm̃

=
ˆ

X̃

(
N − 1 − (N − 1)2

N
+

N − 1
N

− 2(N − 1)
N

)
Φdm̃ = 0.
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Therefore,

Hess[u](f, g) + 〈∇u,∇f〉〈∇u,∇g〉 −
(

Δu + |∇u|2
N

)
〈∇f,∇g〉 = 0

and substituting the values of |∇u|2 and Δu in the previous equation, we obtain that
Δu+|∇u|2

N = 1, so that Hess[u](f, g) = 〈∇f,∇g〉 − 〈∇u,∇f〉〈∇u,∇g〉.
For general f, g ∈ Testbs(X̃), we note that the result is local and the general case follows

from a truncation argument using Lemma 2.7. �

Remark 3.11. Note that the right-hand side of (3.4) depends only on the W 1,2-norm of
f, g. Thus we can use (3.4) to extend the definition of Hessu to W 1,2(X̃), which is what we
adopt from now on.

3.4. Regular lagrangian flow of ∇u

In this section, we will show the existence of a Regular Lagrangian Flow of the gradient
of the Busemann-type function u : X̃ → R constructed in the previous section, via the work
developed by Ambrosio–Trevisan [6]. To do so, we make use of the reformulation of the results
of Ambrosio–Trevisan obtained by Gigli–Rigoni [25], which utilizes the language of Differential
Calculus developed by Gigli, [22]. Let us recall the definition of a Regular Lagrangian Flow,
following [25].

Definition 3.12. Let (X, d,m) be an RCD(K,N) space and (Vt) ∈ L2([0, 1], L2
loc(TX)).

We say that

F (Vt) : [0, 1] ×X → X

is a Regular Lagrangian Flow for (Vt) provided that:

(i) there exists C > 0 such that

(F (Vt)
s )�m � Cm, ∀s ∈ [0, 1]; (3.5)

(ii) For m-a.e. x ∈ X, the curve [0, 1] � s 
→ F
(Vt)
s (x) ∈ X is continuous and such that

F
(Vt)
0 (x) = x;

(iii) for every f ∈ W 1,2(X), we have that for m-a.e. x ∈ X the function s 
→ f(F (Vt)
s (x))

belongs to W 1,1(0, 1) and satisfies

d

ds
f(F (Vt)

s (x)) = df(Vs)(F (Vt)
s (x)), m× L1|[0,1] − a.e.(x, s). (3.6)

With this definition in hand, we now recall the main existence and uniqueness result for
Regular Lagrangian Flows in [6], as expressed in [25, Theorem 2.8]. Recall that the space of
Sobolev vector fields W 1,2

C,loc(TX) is the space of V ∈ L2
loc(TX) for which there is T in the

tensor product of L2(TX) with itself such that
ˆ

hT (∇g,∇g̃) dm =
ˆ

〈V,∇g̃〉div(h∇g) + hHess(g̃)(V,∇g) dm

for every h, g, g̃ ∈ Test(X) with bounded support. In this case, T is the covariant derivative of
V and we denote it by ∇V .
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Theorem 3.13 [6, 25]. Let (Vt) ∈ L2([0, 1],W 1,2
C,loc(TX)) ∩ L∞([0, 1], L∞(TX)) be such that

Vt ∈ Dloc(div) for a.e. t ∈ [0, 1], with
ˆ 1

0

|| |∇Vt| ||L2(X) + ||div(Vt)||L2(X) + ||(div(Vt))−||L∞(X) dt < ∞. (3.7)

Then a Regular Lagrangian Flow F (Vt) for (Vt) exists and is unique, in the sense that if F̃ (Vt)

is another flow, then F
(Vt)
s (x) = F̃

(Vt)
s (x) for m-a.e. x ∈ X and every s ∈ [0, 1].

In the previous definition, a Regular Lagrangian Flow is associated to a time-dependent
family of vector fields (Vt). When dealing with a single vector field V the hypotheses of
the previous theorem simplify. To apply Theorem 3.13, it is enough that V ∈ W 1,2

C,loc(TX̃) ∩
L∞(TX̃) and that

|| |∇V | ||L2(X̃) + ||div(V )||L2(X̃) + ||(div(V ))−||L∞(X̃) < ∞. (3.8)

To proceed, let B := B(x0, r) ⊂ X̃ be a ball of some finite fixed radius r > 0 centered at
a fixed point x0. Let ρ = ρr be the good cut-off function such that ρ = 1 on B and vanishes
outside the ball of radius 2r, as in Lemma 2.6. We now consider the vector field ρ∇u and show
that it admits a Regular Lagrangian Flow by Theorem 3.13.

Let us first note that, indeed ρ∇u ∈ W 1,2
C,loc(TX̃) ∩ L∞(TX̃): From the proof of Lemma 3.4,

we have that u ∈ Testloc(X̃) and therefore, ∇u ∈ W 1,2
C,loc(TX̃) ∩ L∞(TX̃). Moreover, since ρ

is Lipschitz and bounded, the Leibniz rule in [21, Proposition 2.18] (note that, while the
proposition requires the vector field to be in W 1,2

C (X̃), its proof makes sense almost verbatim
for vector fields in W 1,2

C,loc(X̃)) can be applied, yielding the claim.
We now show that ρ∇u satisfies (3.8). First, [21, Proposition 2.18] can be applied to obtain

that

∇(ρ∇u) = ∇ρ⊗∇u + ρHess(u), div(ρ∇u) = ρΔu + 〈∇ρ,∇u〉.
We use the first of these formulae in the following way: A bound for the Hilbert–Schmidt
norm of Hess(u) is readily obtained from Bochner’s inequality, Lemma 2.6 guarantees that
|∇ρ| � C(K,N,R) for some fixed R > r and we showed before that |∇u| = 1. Then,

|∇(ρ∇u)| � |∇ρ⊗∇u| + |ρHess(u)| � C(K,N,R) + N − 1 < ∞.

It follows that ∇(ρ∇u) ∈ L2(X̃).
A similar reasoning coupled with the formula for div(ρ∇u) gives us that

|div(ρ∇u)| � |ρΔu| + |〈∇ρ,∇u〉| � (N − 1) + C(K,N,R) < ∞.

Therefore, div(ρ∇u) ∈ L2(X̃). From this, it is also immediate that div(ρ∇u)− ∈ L∞(X̃).
Hence Theorem 3.13 applies and a Regular Lagrangian Flow F r : [0, 1] × X̃ → X̃ for ρ∇u

exists and is unique in the sense of Definition 3.12.
The uniqueness of a Regular Lagrangian Flow is tied to the uniqueness of solutions of the

continuity equation (see, for example, [25, Definition 2.9]). Given a metric measure space
(X, d,m), recall that two Borel maps t 
→ μt ∈ P(X) and t 
→ Vt ∈ L2(TX) are said to solve
the continuity equation

d

dt
μt + div(Vtμt) = 0 (3.9)

provided that the following conditions are satisfied.

(i) There exists C > 0 such that μt � Cm for every t ∈ [0, 1].
(ii)

´ 1

0

´ |Vt|2 dμt dt < ∞.
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(iii) For any f ∈ W 1,2(X), the map t 
→ ´
f dμt is absolutely continuous and

d

dt

ˆ
f dμt =

ˆ
df(Vt) dμt a.e. t.

We will often refer to the continuity equation, (3.9), as the continuity equation associated to
(Vt). The following result concerning the uniqueness of solutions of the continuity equation in
connection with the uniqueness of Regular Lagrangian Flows was obtained in [6]. We recall
the formulation of [25, Theorem 2.10].

Theorem 3.14. Let (Vt) be as in Theorem 3.13 and μ ∈ P(X) be such that μ � Cm for
some C > 0. Then there exists a unique (μt) such that the pair (μt, Xt) solves the continuity

equation, (3.9), and for which μ0 = μ. Moreover, such (μt) is given by μs = (F (Xt)
s )�μ for all

s ∈ [0, 1].

The following lemma and its proof regarding the local uniqueness of solutions of the
continuity equation and that of Regular Lagrangian Flows were indicated to us by Ambrosio
and Gigli.

Lemma 3.15. Let (X, d,m) be an RCD(K,N) space and (Vt), (Wt) ∈ L2([0, 1], L2
loc(TX))

be such that Vt = Wt, m̃-a.e. on some open set Ω ⊂ X for all t ∈ [0, 1]. Let μ ∈ P(X) be
concentrated on some Borel set in Ω and assume that solutions μt and νt for the continuity
equations associated to (Vt) and (Wt), respectively, with initial data μ exist, are unique and
are concentrated on Borel subsets contained in Ω for all t ∈ [0, 1]. Then μt = νt for all t ∈ [0, 1].
Moreover, if (Vt) ∈ L∞([0, 1];L∞(TX)) and (Vt) and (Wt) admit Regular Lagrangian Flows

F (Vt) and F (Wt), respectively, then for a.e. x ∈ Ω there exists sx ∈ (0, 1] such that F
(Vt)
s (x) =

F
(Wt)
s (x) for all s � sx.

Proof. Let f ∈ W 1,2(X, d,m). Then, by the definition of solution of the continuity equation,
the function t 
→ ´

f dμt is absolutely continuous and satisfies

d

dt

ˆ
f dμt =

ˆ
df(Vt) dμt a.e. t.

Since μt is concentrated in Ω for all t, we have that

d

dt

ˆ
f dμt =

ˆ
df(Wt) dμt a.e. t.

Hence μt is a solution to the continuity equation associated to (Wt). It then follows by
uniqueness that μt = νt for a.e. t ∈ [0, 1] and by continuity that μt = νt for all t ∈ [0, 1].

To address the part about Regular Lagrangian Flows, let us recall that by [6, Theorem 7.6]
there exists η ∈ P(C([0, 1];X) satisfying the following two conditions.

(i) η is concentrated on curves γ ∈ C([0, 1];X) satisfying that for all f ∈ W 1,2(X), the
function t 
→ f ◦ γ(t) belongs to W 1,1(0, 1) and

d

dt
f ◦ γ(t) = df(Vt)(γ(t)), a.e. t,

(ii) μt = (et)�η for all t ∈ [0, 1].

Note that the hypotheses of [6, Theorem 7.6] are satisfied by the fact that X is an RCD(K,N)
space coupled with [6, Lemma 9.2].

We now note that there exists a Borel map T : X → C([0, 1];X) such that η = T�μ. This
follows from [6, Theorem 8.4] and the arguments in [1, Theorem 18], the idea being that, if
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such a map does not exist, then one can build two different solutions to the continuity equation
associated to (Vt), contradicting the uniqueness assumption. Once we have that η = T�μ, we
obtain that μt = (et ◦ T )�μ. In particular, items (i) and (ii) stated above give us that et ◦ T is
a Regular Lagrangian Flow for (Vt). It follows that F

(Vt)
s (x) = es ◦ T (x) for μ-a.e. x and all

s ∈ [0, 1] as otherwise (F (Vt)
s )�μ and (es ◦ T )�μ would be different solutions to the continuity

equation associated to (Vt). Therefore, F (Vt) is the unique Regular Lagrangian Flow associated
to (Vt). Similarly we conclude that F

(Wt)
s is the unique Regular Lagrangian Flow associated

to (Wt).
We will now show that F

(Vt)
s (x) = F

(Wt)
s (x) for μ-a.e. x ∈ Ω for all times s � sx for some

sx ∈ (0, 1]. Recall that, [6, Theorem 7.4 and Lemma 9.2] imply that, in fact, the curves t 
→
F

(Vt)
t (x) for each x ∈ X are not only continuous but absolutely continuous and that

|Ḟ (Vt)
s (x)| = |Vt|(F (Vt)

s (x)) for a.e. s ∈ [0, 1]. (3.10)

Let S be such that |Vt| � S for all t ∈ [0, 1]. By integrating the previous equation and using
the definition of absolute continuity, we obtain that

d
(
F (Vt)
s (x), F (Vt)

t (x)
)
� S|s− t|

for all t < s, with t, s ∈ [0, 1].
Using the previous inequality, we claim the following: For each x ∈ Ω, there exists a ball

B(x, r) centered at x and some r̃ := r̃(x, r) ∈ (0, 1] such that F
(Vt)
s (B(x, r)) ⊂ Ω for all s � r̃.

We call such a ball well contained in Ω (with respect to (Vt)). Indeed, since Ω is open, there
exists a ball B(x, r0) ⊆ Ω. Now for each r < r0 and y ∈ B(x, r), we have that

d(x, F (Vt)
s (y)) � d(x, y) + d(y, F (Vt)

s (y)) � r + Ss.

Therefore, for every r̃ ∈ (0, 1] with 0 < r̃ < r0−r
S , we have that

r + Ss � r + Sr̃ � r + (r0 − r) = r0

so that F
(Vt)
s (B(x, r)) ⊆ B(x, r0) ⊆ Ω for all s ∈ [0, 1] with s � r̃. It is clear that Ω can be

covered with well-contained balls.
We will now define a map F : [0, 1] ×X → X. Let B be any well-contained ball in Ω and for

each x ∈ B denote tx ∈ (0, 1] the time such that F
(Vt)
tx (x) /∈ B but F

(Vt)
t (x) ∈ B for all t < tx.

Then we define F as

F (s, x) :=

{
F

(Vt)
s (x) if x ∈ B and s < sx

F
(Wt)
s (x) if x ∈ B but s � sx or x /∈ B.

Let us observe that F is clearly Borel measurable. Moreover, it is immediate to check that
F satisfies the definition of a Regular Lagrangian Flow for (Wt). Therefore, it follows by
uniqueness of the Regular Lagrangian Flows for (Wt) that Ft(x) = F

(Wt)
t (x) for μ-a.e. x and

by the definition of F that F
(Vt)
t (x) = F

(Wt)
t (x) for μ-a.e. x ∈ B and t < tx. As Ω can be

covered with well-contained balls, this immediately implies that F (Vt)
t (x) = F

(Wt)
t (x) for μ-a.e.

x ∈ Ω and all times t � tx for some tx ∈ (0, 1]. �

Remark 3.16. In typical applications of Lemma 3.15, (3.7) is satisfied so the existence and
global uniqueness are guaranteed. If further Ω = B(x, r) is a ball, then the above argument
shows that the local uniqueness of the continuity equation and the Regular Lagrangian Flow
hold for a smaller ball B(x, r̃) for time t � t0 provided r̃ + St0 � r. In our application, we have
S = 1 and we can work with r > 1. Hence the local uniqueness holds for B(x, r − 1) and all
t ∈ [0, 1].
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We now apply this lemma to our situation. Let x0 ∈ X̃ be the fixed point we chose after
Theorem 3.13, consider an increasing sequence of radii ri ↑ ∞ with r1 > 1 and Bi := B(x0, ri).
It is clear that X̃ =

⋃∞
i=1 Bi. We have already shown that a unique Regular Lagrangian Flow

F ri : [0, 1] × X̃ → X̃ exists for each vector field of the form ρBi
∇u, where ρBi

is the good
cut-off function which is ρBi

= 1 on Bi and zero outside B(x0, 2ri).
Let us fix an increasing sequence r̃i ↑ ∞ with r̃i < ri − 1 for all i. Observe that for each i,

|ρBi
∇u| � 1 and, moreover, following the terminology used in the proof of the previous lemma,

that the ball B(x0, r̃i) is well contained in Bi with respect to ρBi
∇u for all times s ∈ [0, 1].

Therefore, the previous lemma implies that for every i < j, both flows F ri and F rj coincide
for m̃-a.e. x ∈ B(x0, r̃i) for all times s ∈ [0, 1].

Observe now that for each ball B = B(x0, ri) considered above, and t � r̃i < ri − 1, μt =
e−(N−1)tm̃ is a solution to the continuity equation for Vt = ρBi

∇u on B(x0, r̃i) with initial
data μ = m̃. Hence, it follows from the previous theorem that on B(x, ri) and for t � r̃i,

(Ft)�m̃ = e−(N−1)tm̃. (3.11)

Here we have used the fact that one can drop the requirement that the measures are probability
measures in the previous theorem as the continuity equation (iii) implies that the total measure
is preserved.

We can then define a map F : [0, 1] × X̃ → X̃ (well defined up to a m̃-zero measure set) as

Ft(x) := F ri
t (x) if x ∈ B(x0, r̃i).

We claim that F is a Regular Lagrangian Flow for ∇u. Item (i) of Definition 3.12 follows from
having that (Ft)�m̃ = e−(N−1)tm̃ and item (ii) of the same definition is immediately verified.
For item (iii) of Definition 3.12, we know that

d

ds
f(Fs(x)) = ρBi

df(∇u)(Fs(x)), m× L1|[0,1] − a.e.(x, s).

So it suffices to take the limit when i → ∞.
As we are dealing with a single vector field ∇u (that is, in the notation of Definition 3.12,

Vt is independent of the time variable t), F can be extended uniquely to a Regular Lagrangian
Flow F : [0,∞) × X̃ → X̃. Furthermore, observe that the proof of [25, Lemma 3.18] can be
applied verbatim to our case and therefore, F can be extended uniquely (preserving the rate of
change in measure expressed in (3.11) to a Regular Lagrangian Flow F : (−∞,∞) × X̃ → X̃.

Note that the uniqueness statement in [25, Theorem 2.8] implies that for (Vt) independent
of t, F satisfies the semigroup property Ft ◦ Fs = Ft+s, m̃-a.e. and for all t, s ∈ R (cf. [25,
Equation 2.3.10]).

We summarize the previous discussion in the following proposition.

Proposition 3.17. Let u : X̃ → R be the function constructed in Theorem 3.3. Then, there
exists a unique Regular Lagrangian Flow (in the sense of Definition 3.12) F : R × X̃ → X̃ for
∇u. Moreover, F satisfies the semigroup property Ft ◦ Fs = Ft+s, m̃-a.e. for all t, s ∈ R, and
the following change of measure formula holds,

(Ft)�m̃ = e−(N−1)tm̃.

We end this section by pointing out that the following lemma holds in our setting (cf. [20,
Theorem 2.3 (iv)]).

Lemma 3.18. Let u : X̃ → R be the function constructed in Theorem 3.3 and F :
(−∞,∞) × X̃ → X̃ be the Regular Lagrangian Flow associated to ∇u. Then, for every



30 CHRIS ET AL.

t, s ∈ (−∞,∞) and x ∈ X̃,

d̃(Fs(x), Ft(x)) = |s− t| = |u(Fs(x)) − u(Ft(x))|.
In particular, u(F−u(x)(x)) = 0 for all x ∈ X̃ and the trajectories of Ft are geodesics.

Proof. Following the approach of the proof of (a) ⇒ (b) in [25, Proposition 2.7], from (3.6)
we obtain that, for all t < s,

u ◦ Fs − u ◦ Ft =
ˆ s

t

du(∇u) ◦ Fr dr.

Inverting the roles of t and s, and using that |∇u| = 1 m̃-a.e.,

|u ◦ Fs − u ◦ Ft| = |s− t|.
Furthermore, since |Ḟ (Xt)

s (x)| = |Xs|(F (Xt)
s (x)) for a.e. s ∈ [0, 1], we have that

d̃(Fs(x), Ft(x)) � |s− t| for all t < s. Moreover,

|u ◦ Fs(x) − u ◦ Ft(x)| � d̃(Fs(x), Ft(x))

because u is 1-Lipschitz. Therefore d̃(Fs(x), Ft(x)) = |s− t|. �

4. Cheeger energy along the flow

Consider the map ft = f ◦ Ft, where F : (−∞,∞) × X̃ → X̃ is the Regular Lagrangian Flow
of the Busemann-type function u : X̃ → R obtained in the previous section and f ∈ W 1,2(X̃).
In this section, we focus on computing the W 1,2(X̃) norm of ft. Here we will first resolve the
regularity and show that if f ∈ W 1,2(X̃), then ft ∈ W 1,2(X̃) as well. For this purpose, we need
to use the heat flow to regularize ft first and adopt the techniques developed by [17] to our
setting. In the process, we obtain the derivative of the Cheeger energy along Ft. Finally we
integrate and localize the result.

4.1. Derivative of the cheeger energy along the flow

Let us consider the map ft = f ◦ Ft where Ft is the Regular Lagrangian Flow of the Busemann-
type function u of Theorem 3.3 and f ∈ W 1,2(X̃). In this section, we study the W 1,2 norm of
ft. For that reason, we begin by proving a version of [20, Equation 3.39] in our setting.

Lemma 4.1. For any f ∈ S2(X̃, d̃, m̃) and t � 0,

|f(Ft(x)) − f(x)| �
tˆ

0

|∇f |(Fs(x)) ds

for m̃-a.e. x ∈ X̃. Furthermore, the result also holds for t � 0 by taking the integral from t
to 0.

Proof. Let us consider a probability measure m̄ on X̃ satisfying m̄ � m̃ and m̃ << m̄. We
define the measure π := T�m̄ ∈ P(C([0, 1]; X̃)) where T : X̃ → C([0, 1], X̃) is given by T (x)t =
Ft(x). Recall that et : C([0, 1]; X̃) → X̃ denotes the evaluation map at t. Note that for all
t � 0,

(et)�π = (Ft)�m̄ � (Ft)�m̃ = e−(N−1)tm̃ � m̃.

So π is a test plan (with compression constant � 1). Denote the set of trajectories of F by ΓF .
Observe that for any set of curves Γ ⊂ AC([0, 1]; X̃), the point x lies in T−1(Γ) if and only if
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there exists γ ∈ Γ such that γ(t) = Ft(x) for any t ∈ [0, 1]. Hence, such a γ is an element of ΓF .
It follows that T−1(Γ) = T−1(Γ ∩ ΓF ) and we find that π concentrates on trajectories of F . By
Lemma 3.18, the elements of ΓF are constant speed geodesics satisfying that d(γ(1), γ(0)) = 1.
In particular, π is concentrated on 1-Lipschitz curves.

For any Γ ⊂ C([0, 1]; X̃),

(et)�π(Γ) = m̄(T−1(e−1
t (Γ)) = (Ft)�m̄(Γ).

By [20, (3.7)], for 0 � t � 1 and f ∈ S2(X̃), for π-a.e. γ,

|f(γ(t)) − f(γ(0))| �
tˆ

0

|∇f |(γ(s))|γ′(s)|ds =

tˆ

0

|∇f |(γ(s))ds.

Therefore, using that for m̃-a.e. x ∈ X̃ the flow F is defined, and therefore for almost every
x there is a trajectory of F passing through it, for every 0 � t � 1,

|f(Ft(x)) − f(x)| �
tˆ

0

|∇f |(Fs(x)) ds. (4.1)

An iteration of this argument will yield the result for any t ∈ R. Let 1 � t � 2, then by (4.1),

ˆ

X̃

|f(Ft−1(x)) − f(x)| dm̃ �
ˆ

X̃

t−1ˆ

0

|∇f |(Fs(x)) ds dm̃.

A direct computation yields that the left-hand side of the previous inequality equalsˆ

X̃

|f(Ft−1(x)) − f(x)| dm̃ =
ˆ

X̃

|f(Ft(x)) − f(F1(x))| d(F−1)�m̃

= e(N−1)

ˆ

X̃

|f(Ft(x)) − f(F1(x))| dm̃.

Moreover, by (4.1) the right-hand side becomes

ˆ

X̃

tˆ

0

|∇f |(Fs(x)) ds dm̃−
ˆ

X̃

1ˆ

0

|∇f |(Fs(x)) ds dm̃

�
ˆ

X̃

tˆ

0

|∇f |(Fs(x)) ds dm̃−
ˆ

X̃

|f(F1(x) − f(x)| dm̃.

Combining the previous equations, using that e−(N−1) � 1, and the triangle inequality, we
obtainˆ

X̃

|f(Ft(x)) − f(x)| �
ˆ

X̃

|f(Ft(x)) − f(F1(x))| dm̃ +
ˆ

X̃

|f(F1(x) − f(x)| dm̃

� e−(N−1)

ˆ

X̃

|f(Ft−1(x)) − f(x)| dm̃ +
ˆ

X̃

|f(F1(x) − f(x)| dm̃
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�
ˆ

X̃

t−1ˆ

0

|∇f |(Fs(x)) ds dm̃ +
ˆ

X̃

|f(F1(x) − f(x)| dm̃

�
ˆ

X̃

tˆ

0

|∇f |(Fs(x)) ds dm̃.

This is precisely the result we claim in the case that 1 � t � 2. Iterating this process, the
inequality follows for any t � 0, and similarly for any t � 0. �

This implies a version of [20, (3.40)] with appropriate modifications, as will be shown in the
next lemma.

Lemma 4.2. For any f ∈ S2(X̃, d̃, m̃) and t ∈ R,ˆ

X̃

|f(Ft(x)) − f(x)|2 dm̃(x) � t

(
1 − e−(N−1)t

N − 1

)ˆ

X̃

|∇f |2(x) dm̃(x).

Proof. Taking squares, integrating the inequality of Lemma 4.1, and using Hölder’s
inequality we obtain

ˆ

X̃

|f(Ft(x)) − f(x)|2 dm̃(x) �
ˆ

X̃

⎛
⎝ tˆ

0

|∇f |(Fs(x))ds

⎞
⎠

2

dm̃(x) � t

ˆ

X̃

tˆ

0

|∇f |2(Fs(x)) ds dm̃(x)

� t

tˆ

0

ˆ

X̃

|∇f |2(Fs(x)) dm̃(x) ds = t

tˆ

0

ˆ

X̃

|∇f |2(x) d(Fs)�m̃(x) ds

= t

tˆ

0

ˆ

X̃

e−(N−1)s|∇f |2(x) dm̃(x) ds

= t

⎛
⎝ tˆ

0

e−(N−1)s ds

⎞
⎠
⎛
⎜⎝ˆ

X̃

|∇f |2(x) dm̃(x)

⎞
⎟⎠

= t

(
1 − e−(N−1)t

N − 1

) ˆ

X̃

|∇f |2(x) dm̃(x).
�

In the following lemma, we compute the L2 norm of f ◦ Ft and investigate its regularity as
a function of t.

Lemma 4.3. Let f ∈ W 1,2(X̃). Then f ◦ Ft ∈ L2(X̃, m̃) for every t ∈ R. Moreover, the map
t 
→ f ◦ Ft is locally Lipschitz.

Proof. First we compute the L2 norm of f ◦ Ft:

‖f ◦ Ft‖2
L2 =

ˆ

X̃

(f ◦ Ft)2 dm̃ =
ˆ

X̃

f2e−(N−1)t dm̃ = e−(N−1)t‖f‖2
L2 . (4.2)
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Therefore, as f ∈ W 1,2(X̃) and in particular f ∈ L2(X̃), it follows that f ◦ Ft ∈ L2(X̃). Now
we proceed with the second part of the lemma. Let t < s ∈ R, by the previous lemma,ˆ

X̃

|f ◦ Fs − f ◦ Ft|2 dm̃ =
ˆ

X̃

e−(N−1)t|f ◦ Fs−t − f |2 dm̃

� e−(N−1)t(s− t)
(

1 − e−(N−1)(s−t)

N − 1

) ˆ

X̃

|∇f |2 dm̃

= (s− t)
(
e−(N−1)t − e−(N−1)s

N − 1

)ˆ

X̃

|∇f |2 dm̃

� (s− t)2e−(N−1)t‖∇f‖2
L2 .

Hence, t 
→ f ◦ Ft is locally Lipschitz with Lipschitz constant dominated by e−(N−1)t‖∇f‖L2

(which is well defined because f ∈ W 1,2(X)). �

Before we embark on the main estimate of this section, we state the following lemma, a version
of [20, (4.34)], (see also [17, Lemma 3.11]) which holds (with the same proof) in our setting.
The proof requires (local) Lipschitz regularity of the function t 
→ f ◦ Ft (for f ∈ L2(X̃)) and
a bound on the change of measure along the flow (Ft)#m̃ � C(t)m̃ which we have by the
previous Lemma and Proposition 3.17. Once these results are at our disposal, the result is
obtained essentially by an application of Proposition 2.1 and the first differentiation formula
(2.1). It improves our previous lemmas on the t-regularity and provides a derivative formula
which we will need. Let us point out, however, the change of sign in (4.3) with respect to [20,
(4.34)] and [17, Lemma 3.11], due to the fact that our flow goes in the direction of ∇u, while
the corresponding flow in the aforementioned references goes in the opposite direction.

Lemma 4.4. Let f ∈ W 1,2(X̃). Then the map t 
→ f ◦ Ft ∈ L2(X̃) is of class C1 and its
derivative is given by

d
dt

f ◦ Ft = 〈∇f,∇u〉 ◦ Ft. (4.3)

In the remaining part of this subsection, we will provide an estimate on the energy of ft,
which will allow us to conclude that for every f ∈ W 1,2(X̃), ft ∈ W 1,2(X̃) as well, for t � 0. To
regularize we make use of the heat flow ht : L2(X̃) → L2(X̃). Recall that ht is the unique family
of maps such that for any f ∈ L2(X̃) the curve [0,∞) � t 
→ ht(f) ∈ L2(X̃) is continuous,
locally absolutely continuous on (0,∞), satisfies that h0(f) = f , ht(f) ∈ D(Δ) for t > 0 and
solves

d
dt

ht(f) = Δht(f), L1 − a.e. t > 0.

We refer the reader to [20, Section 4.1.2] for a thorough exposition of the main properties of
the heat flow on infinitesimally Hilbertian metric measure spaces.

Lemma 4.5. For each t � 0, let ht : L2(X̃) → L2(X̃) be the heat flow on X̃ and ε > 0 be
fixed. Then the map t 
→ hε(f ◦ Ft) ∈ W 1,2(X̃) is Lipschitz and, in particular, the map

t 
→ 1
2

ˆ

X̃

|∇hε(f ◦ Ft)|2 dm̃

is Lipschitz.
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Proof. Using the equivalence of (i) and (v) in [18, Theorem 7] and the fact that BL(K,N)
implies BL(K,∞), [6, Corollary 6.3] implies that the L2−Γ inequality holds true. Therefore,

‖|∇(hε(f ◦ Fs) − hε(f ◦ Ft))|‖L2 � C(ε)‖f ◦ Fs − f ◦ Ft‖L2 .

(See [6, Definition 5.1] for the precise value of C(ε)). Moreover, by [22, (3.1.2)]

‖hε(f ◦ Fs − f ◦ Ft)‖L2 � ‖f ◦ Fs − f ◦ Ft‖L2 .

Combining the previous inequalities, we find

‖hε(f ◦ Fs) − hε(f ◦ Ft)‖W 1,2 � C(ε)‖f ◦ Fs − f ◦ Ft‖L2 . (4.4)

�

The following Euler-type equation for u is also needed in our estimate. For f ∈ Test(X̃), it
allows us to compute the difference between terms of the form 〈∇u,∇Δf〉 and Δ〈∇u,∇f〉.

Proposition 4.6 (Euler equation for u). Let u : X̃ → R be the Busemann-type function of
Theorem 3.3 and f ∈ Test(X̃). Then the following identity holds true m̃-a.e.

Δ〈∇u,∇f〉 = 〈∇u,∇Δf〉 + 2Δf − 2(N − 1)〈∇u,∇f〉 − 2〈∇u,∇〈∇f,∇u〉〉.

Proof. The proof uses the same strategy as [17, Proposition 3.12]. Let us consider the
modified function eu = exp ◦u : X̃ → R. The chain rule (see, for example, [21, Theorem 1.12])
implies that eu ∈ W 1,2

loc (X̃) and that ∇eu = eu∇u. Moreover, we claim that eu ∈ Dloc(Δ).
Indeed, given f ∈ Testbs(X̃), we have thatˆ

X̃

〈∇f,∇eu〉 dm̃ =
ˆ

X̃

eu〈∇f,∇u〉 dm̃ =
ˆ

X̃

〈∇(euf) − euf∇u,∇u〉 dm̃ = −
ˆ

X̃

Neuf dm̃,

where we used the Leibniz rule (see [19, Equation 4.16]) and the fact that Δu = N − 1. The
previous identities also show that Δeu = Neu.

We now let ε > 0 and apply Bochner’s inequality (Theorem 2.8) to eu + εf where f ∈
Test(X̃) against non-negative test functions g ∈ Testbs(X̃) with g ∈ L∞(X̃, m̃) and Δg ∈
L∞(X̃, m̃) obtaining the following inequality, valid m̃-a.e.

εΔ〈∇eu,∇f〉 + ε2Δ|∇f |2 �ε

(
〈∇eu,∇Δf〉 + 〈∇f,∇Δeu〉 + 2

ΔeuΔf

N
− 2(N − 1)〈∇eu,∇f〉

)

+ε2

(
〈∇f,∇Δf〉 +

(Δf)2

N
− (N − 1)|∇f |2

)
.

We now divide by ε and take the limit when ε → 0 to obtain

Δ〈∇eu,∇f〉 � 〈∇eu,∇Δf〉 + 〈∇f,∇Δeu〉 + 2
ΔeuΔf

N
− 2(N − 1)〈∇eu,∇f〉.

By substituting the values of ∇eu and Δeu, the previous inequality becomes

Δ〈∇u,∇f〉 + 2〈∇u,∇〈∇u,∇f〉〉 � 〈∇u,∇Δf〉 + 2Δf − 2(N − 1)〈∇u,∇f〉.
An analogous argument by using ε < 0 yields the other inequality, valid m̃-a.e.,

Δ〈∇u,∇f〉 + 2〈∇u,∇〈∇u,∇f〉〉 � 〈∇u,∇Δf〉 + 2Δf − 2(N − 1)〈∇u,∇f〉. �

Before proceeding, let us remark that the term 〈∇u,∇〈∇f,∇u〉〉 in the previous inequality
makes sense since f ∈ Test(X̃) and u ∈ Testloc(X̃), so that 〈∇f,∇u〉 ∈ W 1,2

loc (X̃).
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In what follows, we adopt the convention that for f ∈ L2(X̃),
´
X̃

|∇f |2 dm̃ = ∞ if f �∈

W 1,2(X̃).

Theorem 4.7. Let f ∈ W 1,2(X̃) and let E(t) := 1
2

´
X̃

|∇ft|2 dm̃. Then, for all t � 0,

E(ft) � e−(N−1)tE(f).

In particular, ft ∈ W 1,2(X̃) for all t � 0. Moreover, we have

d
dt

E(t) = −(N − 3)E(t) −
ˆ

X̃

〈∇ft,∇u〉2 dm̃. (4.5)

The proof depends on several lemmas. Let us consider the function

G(t, s) :=
ˆ

X̃

|ft|2 − |hsft|2
4s

dm̃.

Note that G(t, s) ↑ 1
2

´
X̃

|∇ft|2 dm̃ as s ↓ 0. Thus we are interested in an uniform bound on

G(t, s). Note also that by Lemmas 4.3 and 4.5, for each s > 0, the function t 
→ G(t, s) is
locally Lipschitz.

Lemma 4.8. We have

d
dt

G(t, s) = − (N − 1)G(t, s) − 1
s

sˆ

0

ˆ

X̃

hs−τftΔhs+τft dm̃dτ

− 1
s

sˆ

0

ˆ

X̃

〈∇hs+τft,∇u〉〈∇hs−τft,∇u〉 dm̃dτ. (4.6)

Proof. By (4.2),

d
dt

1
4s

ˆ

X̃

|ft|2 dm̃ = − (N − 1)
4s

ˆ

X̃

|ft|2 dm̃. (4.7)

On the other hand,

d
dt

1
4s

ˆ

X̃

|hsft|2 dm̃ = lim
τ→0

1
2s

ˆ

X̃

hsft

(
hsft+τ − hsft

τ

)
dm̃ (4.8)

= lim
τ→0

1
2s

ˆ

X̃

h2sft

(
ft+τ − ft

τ

)
dm̃

= lim
τ→0

1
2s

ˆ

X̃

e−(N−1)τh2sft ◦ F−τ − h2sft
τ

ft dm̃

=
−(N − 1)

2s

ˆ

X̃

|hsft|2 dm̃− 1
2s

ˆ

X̃

〈∇h2sft,∇u〉ft dm̃,

where we used Lemma 4.4.
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Therefore, putting together identities (4.7) and (4.8), we obtain that

d
dt

G(t, s) = −(N − 1)G(t, s) +
(N − 1)

4s

ˆ

X̃

|hsft|2 dm̃ +
1
2s

ˆ

X̃

〈∇h2sft,∇u〉ft dm̃. (4.9)

Now, let us note that the function τ 
→ ´
X̃

〈∇hs+τft,∇u〉hs−τft is of class C1 on [0, s] as a

consequence of τ 
→ hs±τft being C1. Then, the integral in the last summand of the previous
identity can be written as

ˆ

X̃

〈∇h2sft,∇u〉ft dm̃ =
ˆ

X̃

〈∇hsft,∇u〉hsft dm̃ +

sˆ

0

d
dτ

ˆ

X̃

〈∇hs+τft,∇u〉hs−τft dm̃dτ.

(4.10)

In turn, the first summand of the right-hand side of the previous expression can be computed
as followsˆ

X̃

〈∇hsft,∇u〉hsft dm̃ =
ˆ

X̃

〈
∇|hsft|2

2
,∇u

〉
dm̃ = − (N − 1)

2

ˆ

X̃

|hsft|2 dm̃, (4.11)

where we used that Δu = N − 1. It follows from plugging the two previous computations (4.10)
and (4.11) in formula (4.9) that

d
dt

G(t, s) = −(N − 1)G(t, s) +
1
2s

sˆ

0

d
dτ

ˆ

X̃

〈∇hs+τft,∇u〉hs−τft dm̃ dτ. (4.12)

Observe that
d
dτ

ˆ

X̃

〈∇hs+τft,∇u〉hs−τft dm̃ =
ˆ

X̃

〈∇Δhs+τft,∇u〉hs−τft − 〈∇hs+τft,∇u〉Δhs−τft dm̃.

In the following computation, we will assume that hs+τft ∈ Test(X̃). We can do so without
loss of generality up to an easy approximation argument using the density of test functions in
W 1,2(X̃) and the fact that hs+τft ∈ W 1,2(X̃). Then, using Proposition 4.6, we get that

d
dτ

ˆ

X̃

〈∇hs+τft,∇u〉hs−τft dm̃ =
ˆ

X̃

−2hs−τftΔhs+τft dm̃

+
ˆ

X̃

2(N − 1)〈∇u,∇hs+τft〉hs−τft dm̃

+
ˆ

X̃

2〈∇u,∇〈∇hs+τft,∇u〉〉hs−τft dm̃.

The last term can be expressed by an integration by parts, and using that Δu = N − 1, asˆ

X̃

2〈∇u,∇〈∇hs+τft,∇u〉〉hs−τft dm̃ = − 2(N − 1)
ˆ

X̃

hs−τft〈∇hs+τft,∇u〉 dm̃

− 2
ˆ

X̃

〈∇hs+τft,∇u〉〈hs−τft,∇u〉 dm̃.
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Hence we have that
d
dτ

ˆ

X̃

〈∇hs+τft,∇u〉hs−τft dm̃ = − 2
ˆ

X̃

hs−τftΔhs+τft dm̃ (4.13)

− 2
ˆ

X̃

〈∇hs+τft,∇u〉〈∇hs−τft,∇u〉 dm̃.

Combining with (4.12) yields

d
dt

G(t, s) = − (N − 1)G(t, s) − 1
s

sˆ

0

ˆ

X̃

hs−τftΔhs+τft dm̃dτ

− 1
s

sˆ

0

ˆ

X̃

〈∇hs+τft,∇u〉〈∇hs−τft,∇u〉 dm̃dτ.
�

Our next lemma deals with the last summand of the previous identity.

Lemma 4.9. We haveˆ

X̃

〈∇hs+τft,∇u〉〈∇hs−τft,∇u〉 dm̃ = e−(N−1)t

ˆ

X̃

〈∇hs+τf,∇u〉〈∇hs−τf,∇u〉 dm̃. (4.14)

Proof. To that end, let ε > 0 and observe that

〈∇hs+τft+ε,∇u〉〈∇hs−τft+ε,∇u〉 − 〈∇hs+τft,∇u〉〈∇hs−τft,∇u〉
ε

= S1 + S2, (4.15)

where

S1 := 〈∇hs−τft+ε,∇u〉
〈∇(hs+τft+ε − hs+τft)

ε
,∇u

〉

and

S2 := 〈∇hs+τft,∇u〉
〈∇(hs−τft+ε − hs+τft)

ε
,∇u

〉
.

Now we compute limε→0 S1 as follows. First observe that by (4.4),

lim
ε→0

〈∇hs−τft+ε,∇u〉 = 〈∇hs−τft,∇u〉,

where the limit is intended in L2. Therefore,

lim
ε→0

S1 = lim
ε→0

ˆ

X̃

〈∇hs−τft,∇u〉
〈∇(hs+τft+ε − hs+τft)

ε
,∇u

〉
dm̃. (4.16)

Now, as before, we assume hsτ ft ∈ Test(X̃). The following estimate holds true in the general
case by an approximation argument. Observe that for every f, g ∈ W 1,2(X̃) the following holds,
by using Δu = N − 1, (cf. [20, (4.35)])ˆ

X̃

f〈∇g,∇u〉 dm̃ = −(N − 1)
ˆ

X̃

fg dm̃−
ˆ

X̃

g〈∇f,∇u〉 dm̃. (4.17)
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Therefore, we obtain from (4.16) that

lim
ε→0

S1 = lim
ε→0

−(N − 1)
ˆ

X̃

〈∇hs−τft,∇u〉
(
hs+τft+ε − hs+τft

ε

)
dm̃

−
ˆ

X̃

〈∇〈∇hs−τft,∇u〉,∇u〉
(
hs+τft+ε − hs+τft

ε

)
dm̃.

We claim the previous expression is equal toˆ

X̃

−(N − 1)〈∇hs−τft,∇u〉〈∇hs+τft,∇u〉 − 〈∇〈∇hs−τft,∇u〉,∇u〉〈∇hs+τft,∇u〉 dm̃.

Indeed, it follows from Hölder inequality and the fact that (ft+ε − ft)/ε is L2-weakly convergent
as ε → 0 that

lim
ε→0

∣∣∣∣∣∣∣
ˆ

X̃

〈∇hs−τft,∇u〉
(
hs+τft+ε − hs+τft

ε

)
dm̃−

ˆ

X̃

〈∇hs−τft,∇u〉〈∇hs+τft,∇u〉 dm̃

∣∣∣∣∣∣∣ = 0

and by a similar reason it is also true that∣∣∣∣∣
ˆ

X̃

〈∇〈∇hs−τft,∇u〉,∇u〉
(
hs+τft+ε − hs+τft

ε

)
dm̃

−
ˆ

X̃

〈∇〈∇hs−τft,∇u〉,∇u〉〈∇hs+τft,∇u〉 dm̃

∣∣∣∣∣
goes to 0 as ε → 0. Whence we have obtained that

lim
ε→0

S1 =
ˆ

X̃

−(N − 1)〈∇hs−τft,∇u〉〈∇hs+τft,∇u〉

− 〈∇〈∇hs−τft,∇u〉,∇u〉〈∇hs+τft,∇u〉 dm̃. (4.18)

A completely analogous procedure yields that

lim
ε→0

S2 =
ˆ

X̃

−(N − 1)〈∇hs−τft,∇u〉〈∇hs+τft,∇u〉

− 〈∇〈∇hs+τft,∇u〉,∇u〉〈∇hs−τft,∇u〉 dm̃. (4.19)

It follows by using (4.17) again and using (4.18) and (4.19) when taking the limit when ε → 0
in (4.15) that

d
dt

ˆ

X̃

〈∇hs+τft,∇u〉〈∇hs−τft,∇u〉 dm̃ = −(N − 1)
ˆ

X̃

〈∇hs+τft,∇u〉〈∇hs−τft,∇u〉 dm̃,

and therefore,ˆ

X̃

〈∇hs+τft,∇u〉〈∇hs−τft,∇u〉 dm̃ = e−(N−1)t

ˆ

X̃

〈∇hs+τf,∇u〉〈∇hs−τf,∇u〉 dm̃.

This finishes the proof of the lemma. �
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We are now ready to give the proof of Theorem 4.7.

Proof. Lemma 4.9 and the Bakry–Émery estimate (see [18, Theorem 4] ) allow us to estimate
the last summand on the right-hand side of (4.14) as∣∣∣∣∣∣∣−

1
s

ˆ

X̃

〈∇hs+τf,∇u〉〈∇hs−τf,∇u〉 dm̃

∣∣∣∣∣∣∣ �
1
s

sˆ

0

e−(N−1)t‖∇hs−τf‖L2(X̃)‖∇hs+τf‖L2(X̃) dτ

�1
s

sˆ

0

e−(N−1)te2(N−1)(s−τ)e2(N−1)(s+τ)‖∇f‖2
L2(X̃)

dτ

=e(N−1)(−t+2s)‖∇f‖2
L2(X̃).

Therefore, using this estimate and (4.12), we have the differential inequality

d
dt

G(t, s) � −(N − 1)G(t, s) − e(N−1)(−t+2s)‖∇f‖2
L2(X̃)

, (4.20)

where we have discarded the second term of the right-hand side of (4.12) since

−1
s

sˆ

0

ˆ

X̃

hs−τftΔhs+τft dm̃dτ =
1
s

sˆ

0

ˆ

X̃

|∇hsft|2 dm̃ dτ � 0.

Hence, from (4.20) we have that

d
dt

e(N−1)tG(t, s) � −e2(N−1)s‖∇f‖2
L2(X̃)

,

and it follows from Gronwall’s lemma that

e(N−1)tG(t, s) � G(0, s) + te2(N−1)s‖∇f‖2
L2(X̃)

.

Therefore, for every t � 0, we have obtained that

G(t, s) � e−(N−1)tG(0, s). (4.21)

Let us note that, in fact, G(0, s) � 1
2

´
X̃

|∇f |2 dm̃ for s � 1. Indeed, first note that

G(0, s) =
1
4s

ˆ

X̃

f(f − hsf) + hsf(f − hsf) dm̃.

Now, on one hand,

f − hsf = −
sˆ

0

d
dτ

(hτf) dτ =

sˆ

0

Δhτf dτ

from which we can conclude that

1
4s

ˆ

X̃

f(f − hsf) =
1
4s

sˆ

0

ˆ

X̃

fΔhτf dm̃dτ = − 1
4s

sˆ

0

ˆ

X̃

〈∇f,∇hτf〉 dm̃dτ.

Therefore, by the Hölder inequality and the Bakry–Emery estimate, we obtain that
1
4s

ˆ

X̃

f(f − hsf) � 1
4
e(N−1)

ˆ

X̃

|∇f |2 dm̃.

On the other hand, an analogous analysis yields the same bound for 1
4s

´
X̃

hsf(f − hsf) dm̃.



40 CHRIS ET AL.

To conclude the proof, we note that by the uniform bound (4.21), and since G(t, s) ↑
1
2

´
X̃

|∇ft|2 dm̃ as s ↓ 0, then the energies of ft are uniformly bounded for t � 0. Then, passing

to the limit as s ↓ 0 in (4.21), we have that

E(ft) � e−(N−1)tE(f)

for all t � 0. In particular, ft ∈ W 1,2(X̃) for all t � 0.
We can now pass to the limit s ↓ 0 in (4.6) to obtain

d
dt

E(t) = −(N − 1)E(t) + 2E(t) −
ˆ

X̃

〈∇ft,∇u〉2 dm̃.

This finishes our proof. �

In the following theorem, we see how the Cheeger energy of ft behaves along each of the
summands of 〈∇ft,∇ft〉 = Hess(u)(∇ft,∇ft) + 〈∇ft,∇u〉2.

Theorem 4.10. Let u : X̃ → R be the function built in Subsection 3.2. The following
identities hold for any f ∈ W 1,2(X̃):ˆ

X̃

Hess(u)(∇ft,∇ft) dm̃ = e−(N+1)t

ˆ

X̃

Hess(u)(∇f,∇f) dm̃,

ˆ

X̃

〈∇ft,∇u〉2 dm̃ = e−(N−1)t

ˆ

X̃

〈∇f,∇u〉2 dm̃.

Proof. We will first prove the second equality by studying its t-derivative as in the proof of
Lemma 4.9. We compute

〈∇ft+h,∇u〉2 − 〈∇ft,∇u〉2
h

=
〈∇ft+h,∇u〉 − 〈∇ft,∇u〉

h
(〈∇ft+h,∇u〉 + 〈∇ft,∇u〉)

= (〈∇ (ft+h − ft)
h

,∇u〉)(〈∇ft+h,∇u〉 + 〈∇ft,∇u〉).
Observe that

lim
h→0

ˆ

X̃

〈∇ (ft+h − ft)
h

,∇u〉〈∇ft+h,∇u〉dm̃ = lim
h→0

−(N − 1)
ˆ

X̃

(
ft+h − ft

h

)
〈∇ft+h,∇u〉dm̃

−
ˆ

X̃

(
ft+h − ft

h

)
〈∇〈∇ft+h,∇u〉,∇u〉dm̃.

Let us denote the first and second summands of the left-hand side of the previous equation
by A1 and A2, respectively. We claim that

A1 = −(N − 1)
ˆ

X̃

〈∇ft,∇u〉2dm̃.

To prove this claim, note thatˆ

X̃

(
ft+h − ft

h

)
〈∇ft+h,∇u〉 − 〈∇ft,∇u〉2dm̃ =

ˆ

X̃

(
ft+h − ft

h

)
(〈∇ft+h,∇u〉 − 〈∇ft,∇u〉)dm̃

+
ˆ

X̃

〈∇ft,∇u〉
((

ft+h − ft
h

)
− 〈∇ft,∇u〉

)
dm̃.
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Hölder’s inequality implies∣∣∣∣∣∣∣
ˆ

X̃

(
ft+h − ft

h

)
(〈∇ft+h,∇u〉 − 〈∇ft,∇u〉)dm̃

∣∣∣∣∣∣∣�
∥∥∥∥ft+h − ft

h

∥∥∥∥
L2

‖〈∇ft+h,∇u〉 − 〈∇ft,∇u〉‖L2 .

This last expression converges to 0 as h → 0, since ‖ ft+h−ft
h ‖L2 is bounded because ft+h−ft

h is
weakly convergent in L2 and

‖〈∇ft+h,∇u〉 − 〈∇ft,∇u〉‖L2 → 0.

Moreover, by [20, (4.34)],
ˆ

X̃

〈∇ft,∇u〉
((

ft+h − ft
h

)
− 〈∇ft,∇u〉

)
dm̃ → 0,

as h → 0, and therefore the claim is proved.
A similar procedure to the computation of A1 yields

A2 = −
ˆ

X̃

〈∇ft,∇u〉〈∇〈∇ft,∇u〉,∇u〉 dm̃.

Therefore

lim
h→0

ˆ

X̃

〈
∇
(
ft+h − ft

h

)
,∇u

〉
〈∇ft+h,∇u〉dm̃ = −(N − 1)

ˆ

X̃

〈∇ft,∇u〉2dm̃

−
ˆ

X̃

〈∇ft,∇u〉〈∇〈∇ft,∇u〉,∇u〉dm̃.

Thus, combining our observations, and using (4.17), we obtain

lim
h→0

ˆ

X̃

〈∇ft+h,∇u〉2 − 〈∇ft,∇u〉2
h

dm̃ =
ˆ

X̃

(〈∇〈∇ft,∇u〉,∇u〉)2(〈∇ft,∇u〉) dm̃

− 2(N − 1)
ˆ

X̃

〈∇ft,∇u〉2dm̃

= − (N − 1)
ˆ

X̃

〈∇ft,∇u〉2dm̃.

In conclusion, we have found that

d

dt

ˆ

X̃

〈∇ft,∇u〉2 dm̃ = −(N − 1)
ˆ

X̃

〈∇ft,∇u〉2 dm̃. (4.22)

Hence,
ˆ

X̃

〈∇ft,∇u〉2 dm̃ = e−(N−1)t

ˆ

X̃

〈∇f,∇u〉2 dm̃.
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Now we will obtain the first equality. Observe that 〈∇f,∇f〉 = Hess[u](∇f,∇f) + 〈∇f,∇u〉2
implies

d
dt

E(t) =
d
dt

1
2

ˆ
X̃

Hess(u)(∇ft,∇ft) dm̃ +
d
dt

1
2

ˆ
X̃

〈∇ft,∇u〉2 dm̃.

By (4.22), this becomes

d
dt

E(t) =
d
dt

1
2

ˆ

X̃

Hess(u)(∇ft,∇ft) dm̃− (N − 1)
2

ˆ

X̃

〈∇ft,∇u〉2 dm̃.

From Theorem 4.7, for t � 0,

d
dt

E(t) =
ˆ

X̃

Hess(u)(∇ft,∇ft) dm̃− (N − 1)
2

ˆ

X̃

〈∇ft,∇ft〉 dm̃.

Using both expressions for d
dtE(t) and solving for d

dt

´
X̃

Hess(u)(∇ft,∇ft) dm̃, we get

d
dt

ˆ
X̃

Hess(u)(∇ft,∇ft) dm̃ = −(N − 3)
ˆ
X̃

Hess(u)(∇ft,∇ft) dm̃.

We conclude that for t � 0,ˆ

X̃

Hess(u)(∇ft,∇ft) dm̃ = e−(N−3)t

ˆ

X̃

Hess(u)(∇f,∇f) dm̃.

Now we reverse the flow, that is, use the equation ft ◦ F−t = f , to see that the above equation
holds for all t. �

Remark 4.11. As Ft�m̃ = e−(N−1)tm̃, we can rewrite the equalities in the previous theorem
in the following way:ˆ

X̃

Hess(u)(∇(f ◦ Ft),∇(f ◦ Ft)) dm̃ = e2t

ˆ

X̃

Hess(u)(∇f,∇f) dFt�m̃

and ˆ

X̃

〈∇(f ◦ Ft),∇u〉2 dm̃ =
ˆ

X̃

〈∇f,∇u〉2 dFt�m̃.

4.2. Localization of the cheeger energy along the flow

Theorem 4.10 provides the behavior of 〈∇(f ◦ Ft),∇(f ◦ Ft)〉 in an integral form, that is, at
the level of the Cheeger energy. In this subsection, we localize that result, that is, we obtain a
pointwise expression for 〈∇(f ◦ Ft),∇(f ◦ Ft)〉.

Theorem 4.12. Let u : X̃ → R be the function constructed in Subsection 3.2, F :
(−∞,∞) × X̃ → X̃ our Regular Lagrangian Flow. Then for every f ∈ W 1,2(X̃), the following
identity holds

〈∇(f ◦ Ft),∇(f ◦ Ft)〉 = e2tHess(u)(∇f,∇f) ◦ Ft + 〈∇f,∇u〉2 ◦ Ft.

The proof of this theorem requires the following lemma.
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Lemma 4.13. Let f, g ∈ W 1,2(X̃, d̃, Ft�m̃), then
ˆ
X̃

〈∇(f ◦ Ft),∇(g ◦ Ft)〉dm̃

= e2t

ˆ
X̃

〈∇f,∇g〉 dFt�m̃ + (1 − e2t)
ˆ
X̃

〈∇f,∇u〉〈∇g,∇u〉dFt�m̃.

(4.23)

Proof. By Corollary (3.10) and Remark 4.11, we may writeˆ

X̃

〈∇(f ◦ Ft),∇(f ◦ Ft)〉 dm̃ = e2t

ˆ

X̃

〈∇f,∇f〉dFt�m̃ +
(
1 − e2t

) ˆ
X̃

〈∇f,∇u〉2dFt�m̃.

Now, by the definition of 〈∇·,∇·〉,

〈∇(f ◦ Ft),∇(g ◦ Ft)〉 = lim
ε>0

|∇(g ◦ Ft + εf ◦ Ft)|2 − |∇(g ◦ Ft)|2
2ε

.

Putting together both equations, we find

ˆ

X̃

〈∇(f ◦ Ft),∇(g ◦ Ft)〉dm̃ = lim
ε>0

1
2ε

⎡
⎢⎣e2t

ˆ

X̃

〈∇(g + εf),∇(g + εf)〉 − 〈∇g,∇g〉 dFt�m̃

+(1 − e2t)
ˆ

X̃

〈∇(g + εf),∇u〉2 − 〈∇g,∇u〉2dFt�m̃

⎤
⎥⎦.

The result follows. �

We can now provide the proof of Theorem 4.12.

Proof of Theorem 4.12. By a simple approximation argument using the density of Testbs(X̃)
functions in W 1,2(X̃), it suffices to show for f, g ∈ Testbs(X̃). Since Testbs(X̃) is an algebra,
f2, fg ∈ Testbs(X̃). Thus,ˆ

X̃

g|∇f |2 dFt�m̃ =
ˆ
X̃

〈∇(fg),∇f〉 −
〈
∇g,∇( f

2

2 )
〉
dFt�m̃. (4.24)

Now, applying equation (4.23) from the previous lemma to each of the summands on the
right-hand side of the previous identity, we get that
ˆ
X̃

g|∇f |2 dFt�m̃ =e−2t

(ˆ
X̃

〈∇((f ◦ Ft)(g ◦ Ft)),∇f ◦ Ft〉dm̃−
ˆ
X̃

〈
∇g ◦ Ft,∇ (f◦Ft)

2

2

〉
dm̃
)

− (e−2t − 1)
ˆ

X̃

〈∇fg,∇u〉〈∇f,∇u〉 − 〈∇g,∇u〉
〈
∇( f

2

2 ),∇u
〉
dFt�m̃.

We now use again the Leibniz rule for ∇(fg) and ∇f2 in the following computation. We also
use the following: Since f ∈ W 1,2(X̃), then by Theorem 4.7 f ◦ Ft ∈ W 1,2(X̃). Now equation
(4.23) can be applied for f ◦ Ft and g ◦ Ft. Therefore, the previous identity is written asˆ

X̃

g|∇f |2 dFt�m̃ = e−2t

ˆ
X̃

(g ◦ Ft)|∇(f ◦ Ft)|2 dm̃− (e−2t − 1)
ˆ

X̃

g〈∇f,∇u〉〈f,∇u〉dFt�m̃.
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Rearranging terms and using Corollary 3.10, we obtainˆ
X̃

(g ◦ Ft)|∇(f ◦ Ft)|2 dm̃ = e2t

ˆ
X̃

gHess(u)(∇f,∇f) dFt�m̃ +
ˆ
X̃

g〈∇f,∇u〉2 dFt�m̃

= e2t

ˆ
X̃

(g ◦ Ft)Hess(u)(∇f,∇f) ◦ Ft dm̃

+
ˆ
X̃

(g ◦ Ft)〈∇f,∇u〉2 ◦ Ft dm̃.

Finally, as g is arbitrary, we conclude the validity of the formula. �

5. The quotient metric measure space (X ′, d′,m′)

5.1. Continuous representative of F

Using our knowledge of the value of |∇ft|, we can now improve the regularity of the flow and
show that for fixed t, the function Ft is Lipschitz.

Theorem 5.1. The map F : (−∞,∞) × X̃ → X̃ admits a continuous representative with
respect to the measure L1 × m̃. Still denoting such representative by F , we have:

(i) the semigroup property holds, that is, for every t, s ∈ R and x ∈ X̃ we have Ft(Fs(x)) =
Ft+s(x). Moreover,

d̃(Ft(x), Ft+s(x)) = |s|;
(ii) for every t ∈ R, Ft is a bi-Lipschitz map with Lip(Ft) � max{et, 1};
(iii) Given a curve γ : [0, 1] → X̃ let γ̄ := Ft ◦ γ. Then one of the curves is absolutely

continuous if and only if the other is and their metric speeds are related by the following
inequality

min{1, et}|γ̇s| � | ˙̄γs| � max{1, et}|γ̇s| for a.e. s ∈ [0, 1]. (5.1)

Proof. Statements in (i) follows from Proposition 3.17 and Lemma 3.18. Now for each t ∈ R,
we will first obtain a max{1, et}-Lipschitz representative of Ft. By Theorem (4.12) we know
that for f ∈ W 1,2(X̃, d̃, m̃),

〈∇(f ◦ Ft),∇(f ◦ Ft)〉 = e2tHess(u)(∇f,∇f) ◦ Ft + 〈∇f,∇u〉2 ◦ Ft.

Therefore,

〈∇(f ◦ Ft),∇(f ◦ Ft)〉 � max{e2t, 1}
(
Hess(u)(∇f,∇f) ◦ Ft + 〈∇f,∇u〉2 ◦ Ft

)
= max{e2t, 1}〈∇f,∇f〉 ◦ Ft.

Thus, |∇(f ◦ Ft)| � max{1, et}. Because X̃ has the Sobolev to Lipschitz property, f ◦ Ft has a
max{1, et}-Lipschitz representative.

As in [20, Lemma 4.19], the functions fn,k = max{0,min{d̃(·, xn), k − d̃(·, xn)}}, with {xn}
dense in X̃ are 1-Lipschitz with bounded support and thus belong to W 1,2(X̃, d̃, m̃) with
|∇fk,n| � 1 m̃-a.e. Let D = {fn,k} ⊂ W 1,2(X̃, d̃, m̃). Then D is a countable set of 1-Lipschitz
functions with compact support such that D is dense in the space of 1-Lipschitz functions with
compact support with respect to uniform convergence. Thus, for all y0, y1 ∈ X̃,

d̃(y0, y1) = sup
f∈D

|f(y0) − f(y1)|. (5.2)
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Since D is countable, then there is an m̃-negligible Borel set N ′ such that for every f ∈ D,
the restrictions f ◦ Ft : X̃ \ N ′ → R are max{1, et}-Lipschitz. Therefore, by (5.2) for x0, x1 ∈
F−1
t (X̃ \ N ′), we have

d̃(Ft(x0), Ft(x1)) = sup
f∈D

|f(Ft(x0)) − f(Ft(x1))| � max{1, et}d̃(x0, x1).

Hence, for each (t, x), (s, y) ∈ R × X̃, we obtain

d̃(Ft(x), Fs(y)) � d̃(Ft(x), Ft(y)) + d̃(Ft(y), Fs(y)) � max{1, et}d̃(x, y) + |s− t|. (5.3)

This proves that F admits a continuous representative. Then the statements in (ii) follows.
For (iii), let us assume that γ is absolutely continuous. Then

d̃(γ̄h, γ̄s) = d̃(Ft(γh), Ft(γs)) � max{1, et}d̃(γh, γs) � max{1, et}
ˆ s

h

|γ̇r|dr.

Therefore, | ˙̄γs| � max{1, et}|γ̇s| for a.e.-s ∈ [0, 1]. The other inequality is proven in a similar
way. �

We continue this section by defining a quotient metric measure space (X ′, d′,m′) induced
by the flow F . We will show that it is an infinitesimally Hilbertian space, and that it satisfies
the Sobolev to Lipschitz property. We now provide the definition of X ′.

Definition 5.2. Let X ′ = u−1(0) and define d′ : X ′ ×X ′ → R by

d′(z, y) = inf{L(γ)|γ ∈ AC([0, 1], X̃), u ◦ γ = 0, γ0 = z, γ1 = y}.
Here L(γ) =

´ 1

0
|γ̇r|dr.

Lemma 5.3. Let X ′ be as in Definition 5.2, then d′ is a well-defined function and (X ′, d′)
is a metric space. The inclusion map ι : (X ′, d′) → (X̃, d̃) is 1-Lipschitz.

Proof. First we will show that the set

{γ ∈ AC([0, 1], X̃), u ◦ γ = 0, γ0 = z, γ1 = y}
is non-empty for any z, y ∈ X ′. As X̃ is a geodesic space, there exists an absolutely continuous
γ : [0, 1] → X̃ such that γ0 = z and γ1 = y. By Theorem 5.1, the curve t 
→ F−u(γt)(γt) is
contained in u−1(0). We only have to prove that it is absolutely continuous. To that end,
let M = max{Lip(F−u(γs)) | 0 � s � 1}. This maximum M is achieved because u, F , and γ are
continuous. Using the triangle inequality, together with the fact that F−u(γs) is a Lipschitz
function for all s and that u is a 1-Lipschitz function, gives, for all 0 � s � t � 1,

d̃(F−u(γs)(γs), F−u(γt)(γt)) � d̃(F−u(γs)(γs), F−u(γs)(γt)) + d̃(F−u(γs)(γt), F−u(γt)(γt)) (5.4)

�Lip(F−u(γs))d̃(γs, γt) + |u(γt) − u(γs)|

� (Lip(F−u(γs)) + 1)d̃(γs, γt)

� (M + 1)
ˆ t

s

|γ̇r|dr.

Hence, F−u(γt)(γt) is absolutely continuous in (X̃, d̃) and d′ is well defined.
If z, y ∈ u−1(0) then,

d̃(z, y) � inf{L(γ)|γ ∈ AC([0, 1], X̃), u ◦ γ = 0, γ0 = z, γ1 = y} (5.5)

=d′(z, y).
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This shows that ι is a 1-Lipschitz map and that d′ is positive definite. Symmetry and the
triangle inequality follow from the definition of d′. �

5.2. Metric speed of curves in the quotient space

Let π : X̃ → X ′ be given by π(x) = F−u(x)(x). By Lemma 3.18, π is well defined and from now
on we call it the projection map. The aim of this subsection is to study π and its effect on the
metric speed of curves in X̃. The main results of this subsection are collected in the following
proposition, which will be used in the next subsection to relate a subspace of W 1,2(X̃, d̃, m̃)
with W 1,2(X ′, d′,m′).

Proposition 5.4. Let π be a test plan on X̃. Then, for π-a.e. γ, the curve γ̃ = π ◦ γ in
(X ′, d′) is absolutely continuous and for a.e. t ∈ [0, 1]:

(1) | ˙̃γt| � e−u(γt) |γ̇t|;
(2) the projection map π̃ : X̃ → X ′ is locally Lipschitz, that is, for all x0 ∈ X̃ and all x, y ∈

B(x0, r),

d′(π(x), π(y)) � e−u(x0)+3rd̃(x, y).

To prove (1), we will follow the strategy developed by De Philippis–Gigli (Subsection 3.6.2
[17]) and define a ‘truncated’ and reparametrized flow F̂ with the property that for large s the
maps F̂s approximate the projection map π : u−1([−R,R]) → u−1(0), for 0 < R < 1.

Let 0 < R < R < 1 and ψ ∈ C∞(R) with support in (−R,R) such that ψ(z) = − 1
2z

2 for
all z ∈ [−R,R]. Define the function û = ψ ◦ u : X̃ → R and consider a reparametrization
function reps(r) defined by the property that ∂sreps(r) = ψ′(reps(r) + r) and rep0(r) = 0.
We now define the flow F̂ : R × X̃ → X̃ by F̂s(x) := Freps(u(x))(x) and note that F̂s(x) =
F(e−s−1)u(x)(x) on u−1([−R,R]). It follows from these definitions that F̂ is the Regu-
lar Lagrangian Flow associated to û. Moreover, the following formulae hold for all x ∈
u−1([−R,R]),

û = −1
2
u2, (5.6)

∇û = −u∇u, (5.7)

Δû = −u(N − 1) − 1, (5.8)
Hess(û) = −uId + (u− 1)(∇u⊗∇u). (5.9)

The previous formulae, imply û ∈ Test(X̃), in particular it has bounded gradient, Laplacian
and Hessian. When s → ∞, then reps(u(x)) → −u(x) for every x ∈ u−1([−R,R]), that is F̂s

converges uniformly to π := F−u(·)(·), the projection map. We observe that F̂s is the identity
on X̃ \ u−1([−R,R]) and it sends u−1([−R,R]) to itself.

In the following, for each s ∈ R, we only concern ourselves with F̂s|u−1([−R,R]), because
this will be sufficient for our purposes. Observe that [17, Lemma 3.30], [17, Proposition
3.31] hold in this setting because, as we will now see, F̂s is of bounded deformation (that is,
Lipschitz with bounded compression) for any s ∈ R. We begin by showing that F̂s is Lipschitz
on u−1([−R,R]):

d̃(F̂s(x), F̂s(y)) = d̃(F(e−s−1)u(x)(x), F(e−s−1)u(y)(y))

� d̃(F(e−s−1)u(x)(x), F(e−s−1)u(x)(y)) + d̃(F(e−s−1)u(x)(y), F(e−s−1)u(y)(y))

� max{1, e(e−s−1)(u(x))}d̃(x, y) + |(e−s − 1)| |u(x) − u(y)|
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� max{1, e(e−s−1)(u(x))}d̃(x, y) + |(e−s − 1)|d̃(x, y)

�
(
max{1, e|(e−s−1)|R)} + |(e−s − 1)|

)
d̃(x, y).

This proves F̂s|u−1([−R,R]) is Lipschitz with Lipschitz constant

max{1, e|(e−s−1)|R)} + |(e−s − 1)|
for any s ∈ R.

Let us proceed by showing that F̂s|u−1([−R,R]) is of bounded compression, as

(F̂s|u−1(−R,R]))�m̃ = (F(e−s−1)u(·))�m̃ = e−(N−1)(e−s−1)u(·)m̃ � e(N−1)|(e−s−1)|Rm̃.

We now recall [17, Lemma 3.30] and [17, Proposition 3.31].

Lemma 5.5 (De Philippis–Gigli, Lemma 3.30). Let ϕ ∈ W 1,2(X̃). Then the map s 
→ ϕ ◦
F̂s ∈ L2(X̃) is C1 and its derivative is given by

d

ds
ϕ ◦ F̂s = 〈∇ϕ,∇û〉 ◦ F̂s. (5.10)

If ϕ is further assumed to be in Test(X̃), then the map s 
→ d(ϕ ◦ F̂s) ∈ L2(TX̃) is also C1

and its derivative is given by

d

ds

(
d(ϕ ◦ F̂s)

)
= d(〈∇ϕ,∇û〉 ◦ F̂s). (5.11)

Proposition 5.6 (De Philippis–Gigli, Proposition 3.31). Let v ∈ L2(TX̃) and set vs :=
dF̂s(v). Then the map s 
→ 1

2 |vs|2 ◦ F̂ ∈ L1(X̃) is C1 on R and its derivative is given by the
formula

d

ds

1
2
|vs|2 ◦ F̂ = Hess[û](vs, vs) ◦ F̂s, (5.12)

the incremental ratios being convergent both in L1(X̃) and m̃-a.e. If v is also bounded, then
the curve s 
→ 1

2 |vs|2 ◦ F̂ is C1 also when seen with values in L2(X̃), and in this case the

incremental ratios in (5.12) also converge in L2(X̃) to the right-hand side.

We will use the previous results to prove the following monotonicity formula. The proof is
similar to that of [17, Corollary 3.32].

Corollary 5.7. Let v ∈ L2(TX̃) be concentrated on B := u−1([−R,R]) and set vs :=
dF̂s(v). Then for every s1, s2 ∈ R such that s1 � s2,(

e−2u|vs2 |2
) ◦ F̂s2 �

(
e−2u|vs1 |2

) ◦ F̂s1 , m̃-a.e. (5.13)

Proof. We may assume that v is bounded up to replacing it with vn := χ{|v|�n}v, using the
fact that |dF̂s(vn)| ◦ F̂s = |dF̂s(v)| ◦ F̂s on {|v| � n} and letting n → ∞.

Now we observe that on the complement of B both sides of (5.13) are zero m̃-a.e. (as a
consequence that v is concentrated on B). So that we only need to prove(

e−2u|vs|2 ◦ F̂s

)
χB �

(
e−2u|v|2)χB , m̃-a.e.

Observe that by Lemma 5.5 the derivative of s 
→ u ◦ F̂s is

d

ds
u ◦ F̂s = 〈∇u,∇û〉 ◦ F̂s = −u ◦ F̂s. (5.14)
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Therefore, integrating with respect to s, we obtain u ◦ F̂s = e−su. As we are assuming v is
bounded, by Proposition 5.6, the map s 
→ |vs|2

2 ◦ F̂sχB ∈ L1(X̃) is C1 and then

d

ds

(
e−2u◦F̂s

|vs|2
2

◦ F̂sχB

)
=
(

d

ds

(
e−2u◦F̂s

) |vs|2
2

◦ F̂s +
d

ds

( |vs|2
2

◦ F̂s

)
e−2u◦F̂s

)
χB

=
( |vs|2

2
◦ F̂s

〈∇e−2u,∇û
〉 ◦ F̂s + e−2u◦F̂sHess[û](vs, vs) ◦ F̂s

)
χB

=
(
(u ◦ F̂s)e−2u◦F̂s |vs|2 ◦ F̂s + e−2u◦F̂sHess[û](vs, vs) ◦ F̂s

)
χB

= e−2u◦F̂s

(
(u ◦ F̂s − 1)〈∇u, vs〉2 ◦ F̂s

)
χB

� 0.

Recall that R̄ < R � 1, from which follows that u(x) � 1 for all x ∈ B. This concludes the
proof. �

Proposition 5.8. Let π be a test plan and γ : [0, 1] → u−1([−R,R]). Then mst(γ̃) �
e−u(γt)mst(γ) for a.e. t ∈ [0, 1], π-a.e. γ, where γ̃ := π ◦ γ.

The proof of the proposition resembles that of [20, Proposition 3.33], as follows.

Proof. Abusing the notation, we will still denote by F̂s the map C([0, 1], X̃) → C([0, 1], X̃)
taking γ 
→ F̂s ◦ γ. Recall that for every t ∈ [0, 1] the differential of F̂s induces a map, still
denoted by dF̂s, from L2(TX̃, et,π) to L2(TX̃, et,πs). We claim that for any s1 � s2 and any
V ∈ L2(TX̃, et,π),(

e−2u◦et |dF̂s2(V )|2
)
◦ F̂s2 �

(
e−2u◦et |dF̂s1(V )|2

)
◦ F̂s1 π− a.e. (5.15)

To prove the claim, we first consider V to be of the form e∗t v for some v ∈ L2(TX̃). By
Proposition 5.7, for s1 � s2, π-a.e.,(

e−2u◦et |dF̂s2(e
∗
t v)|2

)
◦ F̂s2 =

(
e−2u◦et |e∗t dF̂s2(v)|2

)
◦ F̂s2

=
(
e2u|dF̂s2(v)|2

)
◦ et ◦ F̂s2

=
(
e2u|dF̂s2(v)|2

)
◦ F̂s2 ◦ et

�
(
e2u|dF̂s1(v)|2

)
◦ F̂s1 ◦ et

=
(
e−2u◦et |dF̂s1(e

∗
t v)|2

)
◦ F̂s1 .

Let (Ai)i∈N be a Borel partition of C([0, 1], X̃). The locality property of dF̂s :
L2(TX̃, et,π) → L2(TX̃, et,πs) implies that any combination of the form

∑
χAi

e∗t vi, with
vi ∈ L2(TX̃), satisfies(

e−2u◦et |dF̂s2(
∑

χAi
e∗t vi)|2

)
◦ F̂s2 �

(
e−2u◦et |dF̂s1(

∑
χAi

e∗t vi)|2
)
◦ F̂s1 π− a.e.

As the elements of the form
∑

χAi
e∗t vi are dense in L2(TX̃, et,π) and dF̂s is continuous when

considered as a map L2(TX̃, et,π) → L2(TX̃, et,πs), the claim follows.
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Let (πs)′t ∈ L2(TX̃, et,πs) be the speed at time t of the test plan πs. Applying (5.15) to π′
t

and using the Chain rule for speeds [17, Proposition 3.28], we obtain that for s1 � s2 and a.e.
t ∈ [0, 1], (

e−2u◦et |(πs2)
′
t|2
) ◦ F̂s2 �

(
e−2u◦et |(πs1)

′
t|2
) ◦ F̂s1 , π− a.e..

Now we integrate with respect to t and recall the link between point-wise norm and metric
speed given in [17, (3.58)] to obtain

ˆ 1ˆ

0

e−2u(γt)|γ̇t|2dt dπs2(γ) �
ˆ 1ˆ

0

e−2u(γt)|γ̇t|2dt dπs1(γ). (5.16)

The lower semicontinuity of the corresponding functional follows analogously as in [17,
Proposition 3.33]. Now let us consider the functions F̂s as functions from B to itself, and
recall that they converge uniformly to the projection map π : X̃ → u−1(0) as s → ∞. Then the
test plans πs weakly converge to π∗π as s → ∞ and therefore,

ˆ 1ˆ

0

|γ̇t|2dπ∗ π � lim inf
s→∞

ˆ 1ˆ

0

e−2u(γt)|γ̇t|2dπs.

From the last expression, it follows that

ˆ 1ˆ

0

ms2t (π ◦ γ)dt dπ �
ˆ 1ˆ

0

e−2u(γt)ms2t (γ)dt dπ.

Now, the argument to conclude the proof from this integral formulation follows exactly as the
corresponding part of [17, Proposition 3.33]. �

Proof of Proposition 5.4. We start by proving (1). By Proposition 5.8, (1) holds for γ ∈
u−1[−R,R]. Proceeding as in the proof of Proposition 5.8, it is possible to show that if π
is a test plan and γ : [0, 1] → u−1([c−R, c + R]), then mst(prcγ) � e−u(γt)+cmst(γ) for a.e.
t ∈ [0, 1], π-a.e. γ, where prcγ := F−u(γ)+c ◦ γ. Let c = R and

γ : [0, 1] → u−1([c−R, c + R]) = u−1([0, 2R]).

It follows by (iii) in Theorem 5.1 and Proposition 5.8 that for almost every t ∈ [0, 1],

e−Rmst(prR(γ)) � mst(pr0(prRγ)) � e−Rmst(prR(γ)).

Note that pr0(γ) = pr0(prRγ). Thus, for almost every t ∈ [0, 1],

mst(pr0γ) = e−Rmst(prR(γ)) � e−Re−u(γt)+Rmst(γ).

This shows that (1) is satisfied for curves on u−1(([0, 2R]). Proceeding in the same way,
(1) follows.

Now we prove part (2). Let x, y ∈ B(x0, r) and γ : [0, 1] → X̃ be a minimal geodesic joining
them. As u is 1-Lipschitz

u(γt) � max{u(γ0), u(γ1)} − d̃(γ0, γ1),

u(γ0) � −r + u(x0),

u(γ1) � −r + u(x0).

Thus, u(γt) � −r + u(x0) − 2r = u(x0) − 3r. From the previous paragraph | ˙̃γt| � e−u(γt) |γ̇t|.
Therefore, d′(π(x), π(y)) � L(γ̃) � e−u(x0)+3rd̃(x, y). �
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5.3. Properties of the quotient metric measure space

Here we show that (X ′, d′) is a complete, separable, and geodesic metric space. Then we
define a measure m′ on X ′ and study the relationship between the spaces W 1,2(X ′, d′,m′) and
W 1,2(X̃, d, m̃). At the end of the subsection, we show that (X ′, d′,m′) is an infinitesimally
Hilbertian space that satisfies the Sobolev to Lipschitz property.

Theorem 5.9. With the same notation and assumptions of Definition 5.2, (X ′, d′) is a
complete, separable and geodesic metric space.

Proof. By Proposition 5.4, the map π is continuous, we will show that X ′ is separable. Since
X̃ is separable, there exists a countable dense subset {xj} ⊂ X̃. Consider an open set U ⊂ X ′,
then π−1(U) is open in X̃. As X̃ is separable, there exists xj ∈ π−1(U), and then π(xj) ∈ U .
Thus, {π(xj)} is a dense subset of X ′.

To prove that (X ′, d′) is complete, let {xj} ⊂ X ′ be a Cauchy sequence. Then, because
ι : X ′ → X̃ is 1-Lipschitz, {ι(xj)} is a Cauchy sequence in X̃, and hence it has a convergent
subsequence ι(xjk) → x. Given that π is continuous, xjk = π(ι(xjk)) → π(x).

To prove that (X ′, d′) is a geodesic space recall that a complete, locally compact length space
is geodesic. So it is enough to prove that (X ′, d′) is locally compact. This is very similar to the
previous paragraph. Let x ∈ X ′ and r > 0. If {xj} ⊂ Bd′(x, r), then {ι(xj)} ⊂ Bd̃(ι(x), r). Now,
since (X̃, d̃) is locally compact, there exists a convergent subsequence ι(xjk) → y. Because π
is continuous, xjk = π(ι(xjk)) → π(y) and d′(π(y), x) = limk→∞ d′(xjk , x) � r. This concludes
the proof. �

Given that u : X̃ → R and π : X̃ → X ′ are continuous (see (2) in Proposition 5.4 where it is
shown that π is locally Lipschitz and recall that u is Lipschitz), we define a Borel measure on
X ′.

Definition 5.10. We define the measure m′ on (X ′, d′) by

m′(A) =
(ˆ 1

0

e(N−1)sds

)−1

m̃(π−1(A) ∩ u−1[0, 1])

for any Borel set A ⊂ X ′.

Lemma 5.11. Given a Borel set A ⊂ X ′, let Ab
a = {x ∈ X̃|u(x) ∈ [a, b], π(x) ∈ A}. Then,

m̃(Ab
a) = m′(A)

ˆ b

a

e(N−1)s ds. (5.17)

Proof. The proof follows that of Proposition 5.28 [20]. For completeness, we give some
details. Note that by the definition of m′, equation (5.17) holds for a = 0 and b = 1. By
Proposition 3.17 and Theorem 5.1, we know that Fa�m̃ = e−(N−1)am̃ and F−1

a = F−a. Thus,

m̃(Aa+1
a ) = e(N−1)am̃(Fa

−1(Aa+1
a )) = e(N−1)am̃(A1

0)

=m′(A)
ˆ 1

0

e(N−1)ae(N−1)sds = m′(A)
ˆ a+1

a

e(N−1)s ds.

To prove that equation (5.17) holds for a = 0 and b = 1/2, we use again Proposition 3.17
and Theorem 5.1. Thus,

m̃(A1
0) = m̃(A1/2

0 ) + m̃(A1
1/2) = (1 + e

1
2 (N−1))m̃(A1/2

0 ).
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With some algebra, we conclude

m̃(A1/2
0 ) = (1 + e

1
2 (N−1))−1m̃(A1

0) = m′(A)
ˆ 1/2

0

e(N−1)s ds.

Continuing in this way, equation (5.17) holds for a ∈ R and b = a + k/2n with k, n ∈ N. Then
an approximation argument concludes the proof. �

Proposition 5.12. Let h ∈ Lip(R) with compact support and identically 1 on [a, b]. Let
f ∈ L2(X̃) be of the form f(x) = g(π(x))h(u(x)) for some g ∈ L2(m′). If f ∈ W 1,2(X̃), then
g ∈ W 1,2(X ′) and for m̃-a.e. x ∈ u−1[a, b], we have

|∇g|X′(π(x)) � eu(x)|∇f |X̃(x). (5.18)

Proof. Let π′ be a test plan on X ′. Define
T : X ′ × [a′, b′] → X̃, T̂ : C([0, 1], X ′) × [a′, b′] → C([0, 1], X̃),

and π ∈ P(C([0, 1], X̃)) given by T (x, s) = Fs(ι(x)), T̂ (γ, s)t = T (γt, s) and
π = T̂�(π′ × (b′ − a′)−1L1

[a′,b′]),
with [a′, b′] ⊂ [a, b].

We claim that π is a test plan on X̃. That is, π has finite kinetic energy and bounded
compression. Finite kinetic energy for π follows from the fact that π′ is a test plan and so it
has finite kinetic energy, and that mst(T̂ (γ, s)) � Lip(Fs)|γ̇t| (where mst(T̂ (γ, s)) denotes the
metric speed of T̂ (γ, s)), by Theorems 5.1 and 5.3. Set M = max{Lip(Fs) | s ∈ [a′, b′]}, then,

1
2

ˆ ˆ 1

0

|γ̇t|2 dtdπ(γ) =
1
2

ˆ ˆ 1

0

ˆ b′

a′
(b′ − a′)−1mst(T̂ (γ, s))2 ds dtdπ′(γ)

�M
1
2

ˆ ˆ 1

0

|γ̇t|2 dtdπ′(γ) < ∞.

To show that π has bounded compression, it is enough to consider sets of the form

Ad
c = {x ∈ X̃ |u(x) ∈ [c, d], π(x) ∈ A},

for some Borel set A ⊂ X ′. Thus, using that π′ has bounded compression, and equation (5.17),

et�π(Ad
c) =π′ × (b′ − a′)−1L1

[a′,b′]((et ◦ T̂ )−1(Ad
c))

=π′(e−1
t (A))(b′ − a′)−1L1

[a′,b]([c, d])

�Cm′(A).

The definitions of π and f yieldˆ
|f(γ1) − f(γ0)|dπ(γ) =

ˆ
|g(γ1) − g(γ0)|dπ′(γ). (5.19)

Now, the definitions of |∇f |X̃ , and π, imply the following estimates:ˆ
|f(γ1) − f(γ0)|dπ �

ˆ ˆ 1

0

|∇f |X̃(γt)|γ̇|dtdπ (5.20)

�
ˆ ˆ 1

0

ˆ b′

a

(b′ − a′)−1|∇f |X̃(T̂ (γ, s)t)mst(T̂ (γ, s)) ds dtdπ′

�
ˆ ˆ 1

0

(b′ − a′)−1

ˆ b

a

Lip(Fs)|∇f |X̃(T̂ (γ, s)t)|γ̇t|ds dtdπ′.

In the previous inequalities, we used Theorem 5.1 to bound mst(T̂ (γ, s)) � Lip(Fs)|γ̇t|.
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Combining equality (5.19), inequality (5.20), and that π′ was chosen arbitrarily, we conclude
that g ∈ W 1,2(X ′), and the right-hand side above is an upper gradient for g, that is, that for
m′-a.e. x′,

|∇g|X′(x′) � (b′ − a′)−1

ˆ b′

a′
Lip(Fs)|∇f |X̃(T (x′, s)) ds.

This proves g ∈ W 1,2(X ′), and for 0 � a < b, gives the right estimate for |∇g|X′ when we let
a′ and b′ converge to u(x), as for s ∈ [a, b] the inequality Lip(Fs) � max{es, 1} = es holds by
Theorem 5.1 part (ii).

If a < 0, write f = f̃ ◦ Ft, here t � −a. Then f̃(x) = g(π(x)) for x ∈ u−1[a + t, b + t] and
0 � a + t � b + t. We note that 〈∇f,∇u〉 = 0. Then by the definition of Regular Lagrangian
Flow, Definition 3.12 (iii), and Corollary 3.10, the equality |∇f |2

X̃
= Hess[u](∇f,∇f) holds m̃

a.e. in u−1[a, b]. In combination with Theorem 4.12, we have thus found

〈∇f,∇f〉 = e2tHess(u)(∇f̃ ,∇f̃) ◦ Ft +
〈
∇f̃ ,∇u

〉2

◦ Ft = e2t
〈
∇f̃ ,∇f̃

〉
◦ Ft.

The previous equality holds for 0 � a � b, and so we conclude that m′-a.e. x′,

|∇f |(x) = et|∇f̃ |(Ft(x)) � ete−(u(x)+t)|∇g|X′(π(x)). �

Theorem 5.13. Assume h ∈ Lip(R) has compact support and is identically 1 on [a, b].
Let f ∈ L2(X̃) be of the form f(x) = g(π(x))h(u(x)), for some g ∈ L2(X ′,m′). Then g ∈
W 1,2(X ′, d′,m′) if and only if f ∈ W 1,2(X̃, d̃, m̃), and for m̃-a.e. x ∈ u−1[a, b], we have

|∇f |X̃(x) = e−u(x)|∇g|X′(π(x)). (5.21)

Proof. By Proposition 5.12, it is enough to prove that if g ∈ W 1,2(X ′, d′,m′), then f ∈
W 1,2(X̃, d, m̃) and |∇f |X̃(x) � e−u(x)|∇g|X′(π(x)) holds for m̃-a.e. x ∈ u−1[a, b]. Let G : X̃ →
R be given by

G(x) = e−u(x)|Dg|X′(π(x))h(u(x)) + g(π(x))|h′|(u(x)). (5.22)

We will show that G is a weak upper gradient of f . Note that G is in L2(m̃) and that G(x) =
e−u(x)|∇g|X′(π(x)) for x ∈ u−1[a, b].

For x ∈ supp(f) following the same arguments of the proof of [4, Theorem 4.19] (this is the
property of weak gradient being a local object) it is sufficient to check the definition of weak
upper gradients for f using test plans π such that for each t ∈ [0, 1],

γt ⊂ A(x, r) = {y ∈ X̃ |u(y) ∈ [u(x) − r, u(x) + r], d′(π(x), π(y)) � r}
and γ ∈ supp(π). Fix such π. By (2) in Proposition 5.4, the map π̂ : C([0, 1], A(x, r)) →
C([0, 1], X ′) given by π̂(γ) = π ◦ γ is Lipschitz. Arguing as in the proof of Proposition 5.12, we
conclude that π′ = π̂�π is a test plan on X ′.

Since g ∈ W 1,2(X ′) and the way π′ was defined, by Proposition 2.1, for π-a.e. γ the map
t 
→ g(π̂(γ)t) is equal a.e. on [0,1] and {0, 1} to an absolutely continuous map gπ̂(γ) such that
for a.e. t ∈ [0, 1]

|g′π̂(γ)|(t) � |∇g|X′(π̂(γ)t)|π̂(̇γ)t| � e−u(γt)|∇g|X′(π(γt)|γ̇t|. (5.23)

In the last inequality, we used (1) from Proposition 5.4.
For any absolutely continuous curve γ in X̃, h ◦ u ◦ γ is absolutely continuous with derivative

|(h ◦ u ◦ γ)′| � |h′|(u ◦ γ)|γ̇|. Hence, for π-a.e. γ the map t 
→ f(γt) = g(π(γt))h(u(γt)) is equal
a.e. on [0,1] and {0, 1} to the absolutely continuous map fγ(t) = gπ̂(γ)(t)h(u(γt)) such that for
a.e. t ∈ [0, 1] satisfies

|f ′
γ |(t) �

(
e−u(γt)|∇g|X′(π(γt))h(u(γt)) + g(π(γt))|h′|(u ◦ γt)

)
|γ̇t|. (5.24)
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This proves that for m̃-a.e. x ∈ u−1[a, b],

|∇f |X̃(x) � e−u(x)|∇g|X′(π(x)). �

Proposition 5.14. Under the assumptions of Definitions 5.2 and 5.10, the space (X ′, d′,m′)
is infinitesimally Hilbertian, almost everywhere locally doubling and a measured-length space.
Hence, it satisfies the Sobolev to Lipschitz property.

For the definition of locally doubling and measured-length space, see Definitions 2.15 and 2.14
in Subsection 2.6.

Proof. By Theorem 5.13 and the infinitesimally Hilbertianity of (X̃, d̃, m̃), it is easy to see
that (X ′, d′,m′) is infinitesimally Hilbertian. We now prove that (X ′, d′,m′) is everywhere
locally doubling.

Given x′ ∈ X ′ and R > 0, for r < R/2 define

A(x′, r) = {x ∈ X̃ |u(x) ∈ [−r, r], d′(x′, π(x)) < r} ⊂ B(ι(x′), 2r). (5.25)

By (2) in Proposition 5.28, there exists a Lipschitz constant L > 1 for π : B(ι(x′), R) → X ′.
Note that B(ι(x′), r/L) ⊂ B(ι(x′), 2r) because L > 1. Since u is 1-Lipschitz and by the triangle
inequality, if y ∈ B(ι(x′), 2r), then |u(y)| � u(ι(x′)) + d̃(y, ι(x′)) � 2r. Thus, B(ι(x′), 2r) ⊂
B(ι(x′), R). This shows d′(π(y), x′) � r for any y ∈ B(ι(x′), r/L). Since u is 1-Lipschitz, it
follows that u(y) � r/L < r for any y ∈ B(ι(x′), r/L). Thus,

B(ι(x′), r/L) ⊂ A(x′, r). (5.26)

Equation (5.17) gives

m̃(A(x′, r)) = m′(B′(x′, r))
ˆ r

−r

e(N−1)s ds. (5.27)

Let c(r) =
´ r

−r
e(N−1)sds. Starting with equation (5.27), then using equation (5.26), that

(X̃, d̃, m̃) is locally doubling with constant CX̃ [47], equation (5.25) and equation (5.27) once
more, we estimate

m′(B′(x′, r)) = c−1(r)m̃(A(x, r)) � c−1(r)m̃(B(ι(x′), r/L))

�CX̃c−1(r)m̃(B(ι(x′), r/2L)) � CX̃c−1(r)m̃(A(x, r/4L))

=CX̃c−1(r)c(r/4L)m′(B′(x′, r/4L)).

That is, m′(B′(x′, r)) � Cm′(B′(x′, r/4L)), for C = CX̃c−1(r)c(r/4L). Therefore (X ′, d′,m′)
is almost everywhere locally doubling.

Now we show that (X ′, d′,m′) is a measured-length space. Let x0, x1 ∈ X ′, define ε = 1 and
take ε0, ε1 ∈ (0, ε]. Let γ̃ be a geodesic in X ′ from x0 to x1, and xi = γ̃i/n for i = 0, 1, . . . , n,
n = �1 + 1/

√
ε′� and ε′ = max{ε0, ε1}.

Let εi = ε0 + i
n (ε1 − ε0), and define με0,ε1

i = (m̃(A(xi, εi))−1m̃|A(xi,εi). Here A(xi, εi) is
defined by equation (5.25). From equation (5.17),

π�μ
ε0,ε1
i = (m′(B′(xi, εi)))−1m′|B′(xi,εi). (5.28)

Let πε0,ε1
i be the only optimal geodesic plan from με0,ε1

i to με0,ε1
i+1 [48]. By the triangle inequality

and our choices of xi and εi, for yi ∈ A(xi, εi), we have

d̃(yi, yi+1) � 2εi + d′(xi, xi+1) + 2εi+1 � 4ε′ +
1
n
d′(x0, x1).
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It follows thatˆ ˆ 1

0

|γ̇t|2 dtdπε0,ε1
i (γ) = W 2

2 (με0,ε1
i , με0,ε1

i+1 ) � (4ε′ +
1
n
d′(x0, x1))2. (5.29)

From the definition of ε and ε′ for πε0,ε1
i a.e. γ, u(γt) ⊂ [−ε′, ε′] ⊂ [−1, 1].

Gluing the plans πε0,ε1
i , we construct a plan πε0,ε1 that satisfies:

(i)

(Restr
i+1
n

i
n

)�πε0,ε1 = πε0,ε1
i , i = 0, 1, . . . , n,

where Restrba is the restriction operator to [a, b];
(ii)

ˆ ˆ 1

0

|γ̇t|2 dtdπε0,ε1(γ) =n

n−1∑
i=0

ˆ ˆ 1

0

|γ̇t|2 dtdπε0,ε1
i (γ)

�n2(4ε′ +
1
n
d′(x0, x1))2 � (8

√
ε′ + d′(x0, x1))2. (5.30)

Note that n = �1 + 1/
√
ε′� and ε′ < 1 implies 4nε′ � 8

√
ε′. Then using (5.29) and taking

into account the rescaling factor, we get the previous inequality;
(iii) for πε0,ε1 a.e. γ,

u(γt) ⊂ [−ε′, ε′] ⊂ [−1, 1]. (5.31)

Define:

πε0,ε1 := π�π
ε0,ε1 (5.32)

From (5.28), we get

ei�π̄
ε0,ε1 =

1
m′(B′(xi, εi))

m′|B′(xi,εi) i = 0, 1.

By (1) in Proposition (5.28), we know that
ˆ ˆ 1

0

|γ̇t|2 dtdπ̄ε0,ε1(γ) �
ˆ ˆ 1

0

eu(γt)|γ̇t|2 dtdπε0,ε1(γ).

From equations (5.30), (5.31), and ε′ = max{ε0, ε1}, it follows that

lim sup
ε0,ε1↓0

ˆ ˆ 1

0

|γ̇t|2 dtdπ̄ε0,ε1(γ) � lim sup
ε0,ε1↓0

eε
′
(8
√
ε′ + d′(x0, x1))2 = d′(x0, x1)2. �

6. (X̃, d̃, m̃) is isomorphic to (X ′
ω, d

′
ω,m

′
ω)

Let X ′
w denote the warped product of (X ′, d′,m′) with warping functions wd′ , wm′ : R → R

given by wm′(t) = e(N−1)t and wd′(t) = et. In Subsection 6.1, we prove that there is a locally
bi-Lipschitz map from (X̃, d̃, m̃) to (X ′

ω, d
′
ω,m

′
ω) that preserves the measures. Then we show

that the spaces are isomorphic by showing that their W 1,2 spaces are isomorphic.

6.1. X̃ is measure preserving homeomorphic to a warped product

Here we prove that there is a locally bi-Lipschitz map from (X̃, d̃, m̃) to (X ′
ω, d

′
ω,m

′
ω) that

preserves the measures.
Proceeding as in Proposition 5.4, or directly using the definition of d′w, we obtain the

following.
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Proposition 6.1. For all (x′
0, t0) ∈ X ′

w and r > 0,

d′(x′, y′) � e−t0+3rd′w((x′, t), (y′, s)),

for all (x′, t), (y′, s) ∈ B((x0, t0), r).

We are now ready to construct the locally bi-Lipschitz maps.

Proposition 6.2. Let T : X ′
w → X̃ and S : X̃ → X ′

w be defined by

T (x′, t) = Ft(ι(x′))

and

S(x) = (π(x), u(x)).

Then T and S are inverses of each other, S is 2-Lipschitz and T is locally Lipschitz.

Proof. It is clear that T ◦ S = IdX̃ and S ◦ T = IdX′
ω
. Let us prove that T is locally

Lipschitz. Let (x′
0, t0) ∈ X ′

w and r > 0. Consider (x′
1, t1), (x

′
2, t2) ∈ B((x0, t0), r). By the

triangle inequality, Theorem 5.1, and Proposition 6.1, we obtain

d̃(T (x′
1, t1), T (x′

2, t2)) = d̃(Ft1(ι(x
′
1)), Ft2(ι(x

′
2)))

� d̃(Ft1(ι(x
′
1)), Ft1(ι(x

′
2))) + d̃(Ft1(ι(x

′
2)), Ft2(ι(x

′
2)))

�Lip(Ft1)d
′(x′

1, x
′
2) + |t1 − t2|

�Lip(Ft1)e
−t0+3rd′w((x′, t1), (y′, t2)) + d′w((x′, t1), (y′, t2)).

It follows that T is locally Lipschitz.
Now we prove that S is Lipschitz. Let γ : [0, 1] → X̃ be a geodesic from T (x′

1, t1) to T (x′
2, t2).

As u : X → R is 1-Lipschitz, the curve u ◦ γ is absolutely continuous and |u̇(γt)| � |γ̇t|. From
Proposition 5.4 (1), we know that eu(γt)| ˙̃γt| � |γ̇t|, here γ̃ = π ◦ γ. Thus,

2d̃(T (x′
1, t1), T (x′

2, t2)) = 2
ˆ

|γ̇t|dt

�
ˆ

eu(γt)| ˙̃γt| + |u̇(γt)|dt

�
ˆ √

e2u(γt)| ˙̃γt|2 + |u̇(γt)|2 dt

� d′w((x′
1, t1), (x

′
2, t2)). �

Applying Lemma 5.11, we see that T and S are measure preserving:

Proposition 6.3 (T and S are measure preserving). Let T : X ′
w → supp(m̃) and S :

supp(m̃) → X ′
w be given by T (x′, t) = Ft(ι(x′)) and S(x) = (π(x), u(x)). Then T�(m′

ω) = m̃
and S�m̃ = m′

ω.

Proof. As S and T are inverses of each other, it is sufficient to prove that S�m̃ = m′
w.

Given that both m′
w and S�m̃ are Borel measures defined on X ′

w which has positive warping
functions, it is enough to prove that for any Borel set E ⊂ X ′ and any interval I = [a, b] ⊂ R

the following equality holds

S�m̃(E × I) = m′
w(E × I).
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Equation (5.17) implies

S�m̃(E × I) = m̃(S−1(E × I)) = m̃(Eb
a) = m′(E)

ˆ b

a

e(N−1)s ds.

By the definition of m′
w,

m′
w(E × I) =

ˆ
I

(ˆ
X′

χE(x)wm′(t) dm′(x)
)

dt = m′(E)
ˆ b

a

wm′(t) dt = m′(E)
ˆ b

a

e(N−1)t dt.

�

Before we continue with our discussion, we establish the following lemma which is needed
here.

Lemma 6.4. For any x, y ∈ X̃,

d̃(x, y) � |u(x) − u(y)|. (6.1)

Proof. Without loss of generality, we assume u(x) � u(y). For any t ∈ R sufficiently negative,
by the triangle inequality and Theorem 5.1, we have

d̃(x, y) � d̃(x, Ft(x)) − d̃(Ft(x), y)

� −t− d̃(Ft(x), Ft+u(x)−u(y)(y)) − d̃(Ft+u(x)−u(y)(y), y)

= −t + (t + u(x) − u(y)) − d̃(Ft(x), Ft+u(x)−u(y)(y))

= u(x) − u(y) − d̃(Ft(x), Ft+u(x)−u(y)(y)). (6.2)

Let γ be a minimizing geodesic connecting x to y and γ1 = Ft+u(x)−u(γ)(γ). Then by
Proposition 5.4 (see also the proof where a similar shift is needed),

d̃(Ft(x), Ft+u(x)−u(y)(y)) � L(γ1) � et+u(x)−CL(γ),

where C = minu(γ). Clearly the right-hand side of the above inequality goes to zero as t →
−∞. Thus, by taking t → −∞ in (6.2), we obtain

d̃(x, y) � u(x) − u(y). �

The following proposition will be helpful in the next subsection.

Proposition 6.5. Let h ∈ S2
loc(wm′R) and define f : X̃ → R by f := h ◦ u. Then f ∈

S2
loc(X̃) and

|∇f |X̃(x) = |∇h|wm′R(u(x)), m̃− a.e. x ∈ X̃.

Proof. The proof follows the same strategy as that of [20, Proposition 5.29].
Let R > 0 and χ : R → [0, 1] be a Lipschitz function which is compactly supported and

identically 1 on [−R,R]. First we observe that, since the claim is a local statement, to provide
a proof it is enough to show that, if h ∈ W 1,2

loc (wm′R), then f(χ ◦ u) ∈ W 1,2
loc (X̃) and that

|∇f |X̃(x) = |∇h|wm′R(u(x)) (6.3)

is valid for m̃-a.e. x ∈ u−1([−R,R]).
Let hn be a sequence of Lipschitz functions on wm′R such that hn → h and lipwm′Rhn →

|∇h|wm′R in L2(wm′R). Such a sequence exists by [20, Theorem 4.3]. Now, we consider the
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functions fn := (hn ◦ u)(χ ◦ u). Proposition 6.3 implies that fn → f(χ ◦ u) in L2(X̃). Moreover,
since u is 1-Lipschitz, for x ∈ u−1([−R,R]) and n ∈ N, by Lemma 6.4,

lipX̃(fn)(x) = lim sup
y→x

|fn(y) − fn(x)|
d̃(x, y)

� lim sup
y→x

|hn ◦ u(y) − hn ◦ u(x)|
|u(y) − u(x)| = lipwm′Rhn ◦ u(x).

(6.4)

From the previous inequality, the Leibniz rule [20, (3.9)] and the convergence of hn, we conclude
that lipX̃(fn) is bounded in L2(X̃). Therefore, passing to a subsequence if necessary, we can
assume that there exists a Borel function G : X̃ → R such that lipX̃(fn) → G weakly in L2(X̃).

The lower semicontinuity of minimal weak upper gradients (see the paragraph after [20,
Definition 3.8]) and the convergence of fn to f(χ ◦ u) in L2(X̃) imply that |∇f(χ ◦ u)|X̃ � G
m̃-a.e.. Moreover by the locality of minimal weak upper gradients [20, (3.6)], |∇f |X̃ = |∇f(χ ◦
u)|X̃ , m̃-a.e. on u−1([−R,R]). Now, passing to the limit in (6.4), we obtain the � inequality
in (6.3).

We now proceed to prove the other inequality in (6.3) by showing the following result, and
applying it to t = u(x′): Let f ∈ W 1,2(X̃) and for x′ ∈ X ′ let f (x′) : wm′R → R be given by
f (x′)(t) := f(T (x′, t)), then for m′-a.e. x′, f (x′) ∈ S2

loc(wm′R) and

|∇f (x′)|wm′R(t) � |∇f |X̃(T (x′, t)), m′
w − a.e. (x′, t) ∈ X ′

w.

Using that for any x, y ∈ supp(m̃) with π(x) = π(y) we have |u(x) − u(y)| = d̃(x, y), we
observe the following inequality

lipX̃f(x) = lim sup
y→x

|f(x) − f(y)|
d̃(x, y)

� lim sup
y→x

π(y)=π(x)

|f(x) − f(y)|
d̃(x, y)

(6.5)

= lim sup
y→x

π(y)=π(x)

∣∣f (π(x))(u(x)) − f (π(x))(u(y))
∣∣

|u(x) − u(y)| = lipwm′Rf
(π(x))(u(x)).

By [20, Theorem 4.3], there exists a sequence (fn) ⊂ L2(X̃) of Lipschitz functions such
that fn → f and lipX̃(fn) → |∇f |X̃ in L2(X̃). Passing to a subsequence if necessary, we
can further assume that

∑
n ‖fn − fn+1‖L2(X̃) < ∞ and

∑
n ‖lipX̃fn − |∇f |X̃‖L2(X̃) < ∞.

This together with Proposition 6.3, implies that for m′-a.e. x′, fn(T (x′, ·)) → f(T (x′, ·)) and
lipX̃(fn)(T (x′, ·)) → |∇f |X̃(T (x′, ·)) in L2(wm′R).

We now fix such an x′, apply inequality (6.5) to the function fn on u−1(t) and take the
limit when n → ∞. Finally, we use that |∇f (π(x))|wm′R � lipwm′Rf

(π(x)) (by [20, (3.8)]) and
the lower semicontinuity of the minimal weak upper gradients to conclude. �

6.2. W 1,2(X̃, d̃, m̃) is isomorphic to W 1,2(X ′
ω, d

′
ω,m

′
ω)

The aim of this section is to show that (X̃, d̃, m̃) and (X ′
ω, d

′
ω,m

′
ω) are isomorphic. This will be

achieved applying Proposition 2.13. Thus, we only need to show that right composition with
S provides an isometry from W 1,2(X ′

w) to W 1,2(X̃).
In Proposition 2.21, we showed that A ∩W 1,2(X ′

w) is dense in W 1,2(X ′
w). Here

G =
{
g ∈ S2

loc(X
′
w) | g(x′, t) = g̃(x′) for some g̃ ∈ S2(X ′) ∩ L∞(X ′)

}
,

H =
{
h ∈ S2

loc(X
′
w) | h(x′, t) = h̃(t) for some h̃ ∈ S2(w′

m′R) ∩ L∞(R)
}
,

A = algebra spanned by G ∪ H ⊂ S2
loc(X

′
w).
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The proof that right composition with S provides an isometry from W 1,2(X ′
w) to W 1,2(X̃)

is divided in the following way.

(1) Proposition 6.6: For every f ∈ G or f ∈ H, we have that f ◦ S ∈ S2
loc(X̃) and |∇(f ◦

S)|X̃ = |∇f |X′
w
◦ S m̃-a.e.

(2) Lemma 6.7: For every g ∈ G and h ∈ H, 〈∇g,∇h〉X′
w

= 0 and 〈∇(g ◦ S),∇(h ◦ S)〉X̃ = 0
hold m̃− a.e..

(3) Proposition 6.8: Every f ∈ A satisfies f ◦ S ∈ S2
loc(X̃) and |∇(f ◦ S)|X̃ = |∇f |X′

w
◦ S

m̃-a.e..
(4) Proposition 6.9: Right composition with S is a homeomorphism between W 1,2(X ′

w) and
W 1,2(X̃)

Proposition 6.6. The maps

G → S2
loc(X̃), g 
→ g ◦ S,

H → S2
loc(X̃), h 
→ h ◦ S,

are well defined, and satisfy |∇(g ◦ S)|X̃ = |∇g|X′
w
◦ S and |∇(h ◦ S)|X̃ = |∇h|X′

w
◦ S m̃− a.e..

Proof. Combining Corollary 2.19 with a cut-off function f such that supp(f) ⊂ u−1[a, b] and
Theorem 5.13, one shows that g ◦ S ∈ S2

loc(X̃), and |∇(g ◦ S)|X̃ = |∇g|X′
w
◦ S m̃− a.e.

Similarly, Corollary 2.19 and Proposition 6.5 give h ◦ S ∈ S2
loc(X̃) and |∇(h ◦ S)|X̃ =

|∇h|X′
w
◦ S m̃− a.e. �

Lemma 6.7. (Orthogonality relations) With the same notation as above, let g ∈ G and
h ∈ H. Then,

〈∇g,∇h〉X′
w

= 0, m′
w-a.e., (6.6)

and

〈∇(g ◦ S),∇(h ◦ S)〉X̃ = 0, m̃-a.e. (6.7)

Proof. Let g̃ ∈ S2(X ′) ∩ L∞(X ′) and h̃ ∈ S2(wm′R) ∩ L∞(R) be such that g(x′, t) = g̃(x′)
and h(x′, t) = h̃(t). Corollary 2.19 implies

|∇(g + h)|2X′
w
(x′, t) = w−2

d (t)|∇g̃|2X′(x′) + |∇h̃|2wm′R(t), m′
w-a.e. (x′, t).

Using equation (2.14) we get equation (6.6):

2〈∇g,∇h〉X′
w

= |∇(g + h)|2X′
w
− |∇g|2X′

w
− |∇h|2X′

w
= 0, m′

w-a.e.

To prove equation (6.7), note that the Chain rule and the identity h ◦ S = h̃ ◦ u yield

〈∇(g ◦ S),∇(h ◦ S)〉X̃ = h̃′ ◦ u〈∇(g ◦ S),∇u〉X̃ , m̃-a.e.

Then to conclude, it is sufficient to show that

〈∇(g ◦ S),∇u〉X̃ = 0, m̃-a.e.

The previous equality holds because g̃ ◦ π ◦ Ft = g̃ ◦ π, and with a truncation argument we
can see that the following derivation rule is also valid for functions in S2

loc(X̃):

〈∇(g ◦ S),∇u〉X̃ = lim
t→0

g ◦ S ◦ Ft − g ◦ S
t

= lim
t→0

g̃ ◦ π ◦ Ft − g̃ ◦ π
t

= 0, m̃-a.e. �
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Proposition 6.8. With the same notation as above, every f ∈ A satisfies f ◦ S ∈
S2

loc(X̃, d̃, m̃), and

|∇(f ◦ S)|X̃ = |∇f |X′
w
◦ S, m̃− a.e..

Proof. Let f ∈ A. Then f can be written as f =
∑

i∈I gihi for some finite set I, gi ∈ G and
hi ∈ H, i ∈ I. By the infinitesimal Hilbertianity of X ′

w, Proposition 5.14 and Corollary 2.20,
we know that m′

w-a.e.

|∇f |2X′
w

=
∑
i,j∈I

gigj〈∇hi,∇hj〉X′
w

+ gihj〈∇hi,∇gj〉X′
w

+ higj〈∇gi,∇hj〉X′
w

+ hihj〈∇gi,∇gj〉X′
w

=
∑
i,j∈I

gigj〈∇hi,∇hj〉X′
w

+ hihj〈∇gi,∇gj〉X′
w
,

(6.8)

where we used (6.6) in the second step.
Corollary 6.6 implies

〈∇hi,∇hj〉X′
x
◦ S = 〈∇(hi ◦ S),∇(hj ◦ S)〉X̃ ,

〈∇gi,∇gj〉X′
w
◦ S = 〈∇(gi ◦ S),∇(gj ◦ S)〉X̃ ,

m̃-a.e. for any i, j ∈ I. Thus writing — to shorten the notation — ḡi, h̄i in place of gi ◦ S, hi ◦ S,
respectively, from (6.8) we have

|∇f |2X′
w
◦ S =

∑
i,j∈I

ḡiḡj〈∇h̄i,∇h̄j〉X′
w

+ h̄ih̄j〈∇ḡi,∇ḡj〉X′
w
.

Using the orthogonality relation (6.7) and the fact that X̃ is infinitesimally Hilbertian, we can
do the same computations as in (6.8), in reverse order, to get

|∇f |2X′
w
◦ S =

∑
i,j∈I

ḡiḡj〈∇h̄i,∇h̄j〉X̃ + ḡih̄j〈∇h̄i,∇ḡj〉X̃

+ h̄iḡj〈∇ḡi,∇h̄j〉X̃ + h̄ih̄j〈∇ḡi,∇ḡj〉X̃ = |∇(f ◦ S)|2
X̃
,

m̃-a.e. �

Recall that in Proposition 6.2, we defined functions S : X̃ → X ′
w and T : X ′

w → X̃ inverses
of each other such that S is 1-Lipschitz and T is locally Lipschitz.

Proposition 6.9. With the same notation as above the following holds.

(i) If f ∈ W 1,2(X ′
w), then f ◦ S ∈ W 1,2(X̃) and

‖|∇(f ◦ S)|‖L2(X̃) � ‖|∇f |‖L2(X′
w). (6.9)

(ii) If f ◦ S ∈ W 1,2(X̃), then f ∈ S2
loc(X

′
w) and each x ∈ X̃ has a neighborhood Ωx such

that

L−1‖|∇f |‖L2(S(Ωx)) � ‖|∇(f ◦ S)|‖L2(Ωx). (6.10)

Here L = Lip−1(T−1(x)).

Proof. Note that (X̃, d, m̃) and X ′
w = (X ′ ×w R, d′w,m

′
w) satisfy the hypotheses of

Lemma 2.12. That is, they satisfy the Sobolev to Lipschitz property, see the paragraph after [20,
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Definition 4.9] and Proposition 5.14. Moreover, T�(m′
w) = m̃ and S�m̃ = m′

w by Proposition 6.3.
To prove the first inequality recall that by Proposition 6.2 the map S is 1-Lipschitz. Then
equation (6.9) follows by Lemma 2.12.

To prove the second inequality, choose Ωx = T (B(T−1(x), r)) and rescale d′w by L. Then we
get Lip(T |B(T−1(x),r)) � 1. With this rescaling the corresponding gradient part of the Sobolev
norm is scaled by 1

L . The result follows by Lemma 2.12. �

The main theorem of this section follows.

Theorem 6.10 ((X̃, d̃, m̃) is isomorphic to (X ′
ω, d

′
ω,m

′
ω)). The maps T and S given in

Proposition 6.2 are isomorphisms of metric measure spaces.

Proof. By the paragraph after [20, Definition 4.9], X̃ has the Sobolev to Lipschitz property
and by Proposition 5.14 and Theorem 2.16, X ′

w also has the Sobolev to Lipschitz property.
Hence, it is enough to apply Proposition 2.13. By Proposition 6.3, we know that T and S are
measure preserving. It remains to prove that f ∈ W 1,2(X ′

w) if and only if f ◦ S ∈ W 1,2(X̃) and
that

‖|∇(f ◦ S)|X̃‖L2(X̃) = ‖|∇f |X′
w
‖L2(X′

w). (6.11)

Let f ∈ W 1,2(X ′
w). By Proposition 2.21, there exists a sequence {fn} ⊂ A ∩W 1,2(X ′

w)
converging to f in W 1,2(X ′

w). Then the first inequality in Proposition 6.9 implies that
both fn ◦ S, and f ◦ S are in W 1,2(X̃), with fn ◦ S converging to f ◦ S in W 1,2(X̃). From
Proposition 6.8, we get

|∇fn|X′
w
◦ S = |∇(fn ◦ S)|X̃ , m̃-a.e.

Taking the L2 norm of the functions in the previous equality and taking the limit as n → ∞,
we get (6.11).

If f : X ′
w → R is such that f ◦ S ∈ W 1,2(X̃a,b), the second inequality in Proposition 6.9

implies that each x ∈ X̃ has a neighborhood Ωx on which the above argument can be repeated.
Thus

|∇fn|S(Ωx) ◦ S = |∇(fn ◦ S)|Ωx
, m̃-a.e.

By the locality of the weak upper gradient, we have equality in the whole space and therefore
f ∈ W 1,2(X ′

w). �

7. RCD∗(0, N)-condition for X ′

Recall that X ′ is an infinitesimally Hilbertian space satisfying the Sobolev to Lipschitz property.
Under these conditions, [18] and [5] imply that the validity of the (weak) Bochner inequality
is equivalent to the RCD∗ condition. Hence, to prove that X ′ is an RCD∗(0, N)-space, we will
show that the weak Bochner inequality holds.

We begin with the following technical lemma about extending test functions on X ′ to that of
X ′

w. From this, we will obtain that (X ′, d′,m′) is an RCD∗(0, N) space via a limiting argument.
Denote the Laplacian operator of X ′ by Δ.

Lemma 7.1. Let ρ ∈ C∞
0 (R) and f ∈ D(Δ) ∩ L∞(X ′) be such that Δf ∈ W 1,2(X ′) ∩

L∞(X ′). Let f : X ′
w → R be defined as f(x, t) = f(x) and ρ : X ′

w → R as ρ(x, t) = ρ(t). Then
fρ ∈ D(Δ) ∩ L∞(X ′

w) and Δ(fρ) ∈ W 1,2(X ′
w) ∩ L∞(X ′

w).
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Proof. Clearly fρ ∈ L∞(X ′
w,m

′
w). Also, fρ ∈ L2(X ′

w,mw) becauseˆ
X′

w

|fρ|2 dm′
w � ‖f‖2

L2(X′)

ˆ
R

ρ(s)2wm′(s) ds.

By a result of [23], see Theorem 2.17 in Section 2, fρ ∈ W 1,2(X ′
w) ∩ L∞(X ′

w). We will now
prove that fρ ∈ D(Δ). It is clear that Test(X ′

w) ∩ A �= ∅. Let ϕ ∈ Test(X ′
w) ∩ A be given by

ϕ =
∑n

i aihigi, where ai ∈ R, hi ∈ H and gi ∈ G. Thenˆ
X′

w

〈∇(fρ),∇ϕ
〉
X′

w
dm′

w =
∑

ai

ˆ
X′

w

gi
〈∇(fρ),∇hi

〉
X′

w
+ hi

〈∇(fρ),∇gi
〉
X′

w
dm′

w

=
∑

ai

ˆ
X′

w

[
ρgi
〈∇f,∇hi

〉
X′

w
+ fgi〈∇ρ,∇hi〉X′

w

+ ρhi

〈∇f,∇gi
〉
X′

w
+ fhi〈∇ρ,∇gi〉X′

w

]
dm′

w

=
∑

ai

ˆ
X′

w

(
fgi〈∇ρ,∇hi〉X′

w
+ ρhi

〈∇f,∇gi
〉
X′

w

)
dm′

w.

Here we have used the validity of the Leibniz rule due to the regularity of the functions involved
as well as the orthogonality relations. Now we note that〈∇f,∇gi

〉
X′

w
= w−2

d′ 〈∇f,∇gi〉X′ , 〈∇ρ,∇hi〉X′
w

= ρ′h′
i,

as a consequence of Theorem 2.17 and polarization. Therefore we obtain∑
ai

ˆ
X′

w

ρhi

〈∇f,∇gi
〉
X′

w
dm′

w =
∑

ai

ˆ
R

ρhiw
−2
d′ wm′

ˆ
X′

〈∇f,∇gi
〉
X′ dm′ ds

= −
∑

ai

ˆ
R

ρhiw
−2
d′ wm′

ˆ
X′

giΔf dm′ ds,

and ∑
ai

ˆ
X′

w

fgi〈∇ρ,∇hi〉X′
w

dm′
w =

∑
ai

ˆ
R

ρ′h′
iwm′ ds

ˆ
X′

fgi dm′

= −
∑

ai

ˆ
R

(ρ′wm′)′hi ds
ˆ
X′

fgi dm′.

Hence, for all ϕ ∈ Test(X′
w) ∩ A, we have thatˆ

X′
w

〈∇(fρ),∇ϕ
〉
X′

w
dm′

w = −
ˆ
X′

w

ϕ[ρw−2
d′ (Δf) + f(w−1

m′ (ρ′wm′)′)]dm′
w.

Here we have abused notation and denote Δf = Δf ◦ p1 and similarly ρw−2
d′ = (ρw−2

d′ ) ◦ p2. (We
do so as well in what follows.) Since Test(X′

w) ∩ A is dense in W 1,2(X ′
w), so by an approximation

argument the previous equality holds for all ϕ ∈ W 1,2(X ′
w). Hence fρ ∈ D(Δ) and

Δ(fρ) = ρ
(
w−2

d′ Δf
)

+ fw−1
m′ (ρ′wm′)′. (7.1)

It immediately follows that Δ(fρ) ∈ W 1,2(X ′
w) ∩ L∞(X ′

w). �

We now come to the main result of this section, the RCD∗-condition for X ′. We will
accomplish this by using the RCD∗-condition for X ′

w. Namely we plug into Bochner inequality
for X ′

w those test functions constructed in Lemma 7.1. The Bochner inequality for X ′ will come
out of a suitable limit.
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Proposition 7.2. For all f ∈ D(Δ) such that Δf ∈ W 1,2(X ′, d′,m′) and all non-negative
g ∈ D(Δ) ∩ L∞(X ′,m′) such that Δg ∈ L∞(X ′,m′), the following is satisfied:

1
2

ˆ
X′

Δg|∇f |2X′ dm′ −
ˆ
X′

g〈∇(Δf),∇f〉X′ dm′ � 1
N

ˆ
X′

g(Δf)2 dm′.

In other words, (X ′, d′,m′) is an RCD∗(0, N) space.

Proof. We will show the inequality holds for functions f, g ∈ Test(X ′) since the general
case follows by the density of Test(X ′) in W 1,2(X ′). With this assumption, it follows from
Lemma 7.1 that we can apply Bochner’s inequality on X ′

w for the functions fρ and g ρ, that
is,

1
2

ˆ
X′

w

Δ(gρ)|∇(fρ)|2X′
w

dm′
w −

ˆ
X′

w

gρ
〈∇(Δ(fρ)),∇(fρ)

〉
X′

w
dm′

w

� −(N − 1)
ˆ
X′

w

gρ|∇(fρ)|2X′
w

dm′
w +

1
N

ˆ
X′

w

gρ(Δ(fρ))2 dm′
w.

We now compute each term of the inequality, using Theorem 2.17, the orthogonality relations
and equation (7.1). We will first compute them for general functions ρ ∈ C∞

0 (R) and specialize
later for the limiting argument after some simplifications.
ˆ
X′

w

Δ(gρ)|∇(fρ)|2X′
w

dm′
w =

ˆ
X′

w

(ρ
(
w−2

d′ Δg
)

+ gw−1
m′ (ρ′wm′)′)(ρ2w−2

d′ |∇f |2X′ + f2(ρ′)2) dm′
w

=
ˆ
R

ρ3w−4
d′ wm′ ds

ˆ
X′

(Δg)|∇f |2X′ dm′

+
ˆ
R

ρ(ρ′)2w−2
d′ wm′ ds

ˆ
X′

f(Δg) dm′

+
ˆ
R

ρ2w−2
d′ (ρ′wm′)′ ds

ˆ
X′

g|∇f |2X′ dm′

+
ˆ
R

(ρ′)2(ρ′wm′)′ ds
ˆ
X′

gf2 dm′.

Similarly,
ˆ
X′

w

gρ
〈∇(Δ(fρ)),∇fρ

〉
X′

w
dm′

w =
ˆ
R

ρ3w−4
d′ wm′ ds

ˆ
X′

g〈∇Δf,∇f〉X′ dm′

+
ˆ
R

ρ2w−2
d′ (ρ′wm′)′ ds

ˆ
X′

g|∇f |2X′ dm′

+
ˆ
R

ρρ′(ρw−2
d′ )′wm′ ds

ˆ
X′

gf(Δf) dm′

+
ˆ
R

ρρ′(w−1
m′ (ρ′wm′)′)′wm′ ds

ˆ
X′

gf2 dm′,

ˆ
X′

w

gρ|∇(fρ)|2X′
w

dm′
w =

ˆ
R

ρ3w−2
d′ wm′ ds

ˆ
X′

g|∇f |2X′ dm′ +
ˆ
R

ρ(ρ′)2wm′ ds
ˆ
X′

gf2 dm′,
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and ˆ
X′

w

gρ(Δ(fρ))2 dm′
w =

ˆ
R

ρ3w−4
d′ wm′ ds

ˆ
X′

g(Δf)2 dm′

+
ˆ
R

ρ(w−1
m′ (ρ′wm′)′)2wm′ ds

ˆ
X′

gf2 dm′

+2
ˆ
R

ρ2w−2
d′ (ρ′wm′)′ ds

ˆ
X′

gf(Δf) dm′.

Now let ρ ∈ C∞
0 (R) be a cut-off function on R such that ρ(t) = 1 for t ∈ [−1, 1], ρ(t) = 0 for

|t| � 2 and 0 � ρ � 1. For each n ∈ N, set ρn(t) = ρ(t + n). Replace ρ by ρn in all the formulas
above and plug them into Bochner’s inequality on X ′

w. Using wd′(t) = et, wm′(t) = e(N−1)t,
we find that ˆ

R

ρ3
nw

−4
d′ wm′ ds �

ˆ 1−n

−1−n

e(N−5)sds = C(N)e−(N−5)n, C(N) > 0,

while all other integrals over R are of lower order. For example,ˆ
R

ρ(ρ′)2w−2
d′ wm′ ds = O(e−(N−3)n),

ˆ
R

ρρ′(w−1
m′ (ρ′wm′)′)′wm′ ds = O(e−Nn).

Therefore, dividing every term by
´
R
ρ3
nw

−4
d′ wm′ ds and letting n → ∞, we obtain

1
2

ˆ
X′

Δg|∇f |2X′ dm′ −
ˆ
X′

g〈∇(Δf),∇f〉X′ dm′ � 1
N

ˆ
X′

g(Δf)2 dm′,

which is the desired result. �

Theorem 1.2 now follows from Theorem 6.10 and Proposition 7.2.

8. Proof of Theorems 1.1 and 1.4

We first adapt the ideas of Chen–Rong–Xu [15, Lemma 4.4] to conclude that (X̃, d̃, m̃) is
isometric to a real hyperbolic space. Then we prove the stability of the volume entropy when
imposing a uniform lower bound on the systoles.

Proof of Theorem 1.1. By Theorem 1.2 and Proposition 7.2, we know that (X̃, d̃, m̃) is
isomorphic to the warped product space (X ′

w, d
′
w,m

′
w), with wd′(t) = et and wm′(t) = e(N−1)t,

and that (X ′, d′,m′) is an RCD∗(0, N) space. Thus, by Mondino–Naber [33, Corollary 1.2],
there exists a point y ∈ X ′ such that every tangent space of (X ′, d′,m′) at y is isometric
to (Rk−1, dEuc,Lk−1, 0) for some k − 1 � N . That is, for any sequence of positive numbers
ri → 0, we have that (X ′, r−1

i d′, cyrim
′, y) converges in the pointed measured Gromov–Hausdorff

(pmGH) sense to (Rk−1, dEuc,Lk−1, 0), where Lk−1 denotes the normalized (k − 1)-Lebesgue
measure so that ˆ

B(0,1)

(1 − |x|)dLk−1(x) = 1 (8.1)

and the numbers cyr are given by

cyr =

(ˆ
B(y,r)

(1 − 1
rd

′(y, ·))dm′
)−1

. (8.2)
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From now on we identify (X̃, d̃, m̃) with (X ′
w, d

′
w,m

′
w). For any t ∈ R, there is a deck

transformation γt of X̃ such that

d̃(γt((0, y)), (t, y)) � diam(X) < ∞.

Note that in the last inequality we used that X is compact. As the measure m̃ is equivariant, γt
is an isomorphism of metric measure spaces, that is, an isometry that preserves the measures.

We now take a sequence ti → ∞ and a subsequence if necessary so that γ−1
ti (ti, y) converges

to p̃ in X̃ (again using the compactness of X). Then, in the pmGH sense:

(X̃, d̃, m̃, p̃) = (X̃, d̃, m̃, γti(p̃)), lim
i→∞

(X̃, d̃, m̃, γti(p̃)) = lim
i→∞

(X̃, d̃, m̃, (ti, y)). (8.3)

In particular, we have

(X̃, d̃, m̃, p̃) = lim
i→∞

(X̃, d̃, m̃, (ti, y)). (8.4)

Now we calculate the limit in (8.4). For ti ∈ R, define (X ′
i, d

′
i,m

′
i) = (X ′, etid′, e(N−1)tim′).

Consider the following sequence of positive numbers,

e(N−1)ti

cy
e−ti

. (8.5)

After passing to a subsequence, it converges to a value c ∈ [0,∞]. We will analyze the three
possible cases, c = 0, c ∈ (0,∞) and c = ∞.

From the definition of tangent space, in the pmGH sense,

lim
i→∞

(X ′
i, d

′
i,m

′
i, y) = (Rk−1, dEuc, cLk−1, 0). (8.6)

The map (X ′
w, d

′
w,m

′
w, (ti, y)) −→ (X ′

iw, d
′
iw,m

′
iw, (0, y)) given by (t, x) 
→ (t− ti, x) is a

pointed isometry that preserves the measure and hence

(X ′
w, d

′
w,m

′
w, (ti, y)) ∼= (X ′

iw, d
′
iw,m

′
iw, (0, y)).

In combination with equation (8.6), it implies that in the pmGH sense (8.4) can be written
as

(X̃, d̃, m̃, p̃) = lim
i→∞

(X̃, d̃, m̃, (ti, y)) = lim
i→∞

(X ′
iw, d

′
iw,m

′
iw, (0, y))

= (R ×w R
k−1, dEucw, cLk−1w, 0)

=(Hk, dHk , c1Hk, 0), (8.7)

where c1 = kc
ωk−1

, and ωk−1 denotes the volume of the unit ball in R
k−1. The extra constant

comes from the normalization of the Euclidean Lebesgue measure indicated before.
If c = ∞, then cLk−1 is not locally finite and this implies that m̃ is not locally finite, which

is a contradiction.
If c ∈ (0,∞), then recall that for the hyperbolic space,

h(Hk, dHk , c1Hk) = k − 1.

Since we know that h(X, d,m) = N − 1, then k = N . If c = 0, then

h(Hk, dHk , c1Hk) = 0,

which contradicts h(X, d,m) = N − 1. Hence (X̃, d̃, m̃) is isomorphic to (HN , dHN , c1HN ) for
some c1 ∈ (0,∞), and an integer N � 2. �

Before proving Theorem 1.4, we recall the definition of a systole and the following result.
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Definition 8.1. If (X, d) is a compact length space that admits a universal covering
(X̃, dX̃) → (X, d), we define the systole of (X, d) as

sys(X, d) := inf{dX̃(x̃, γ · x̃) : x̃ ∈ X̃, γ ∈ π̄1(X) − {Id}},
where π̄1(X) is the group of deck tranformations of X̃, which is referred to as the revised
fundamental group of X in [42].

Proposition 8.2 [40, Proposition 38]. Let (Xi, di) be a sequence of length spaces that have
a universal covering space such their systoles are uniformly bounded from below, and that
converge to a length space (Y, dY ) in Gromov–Hausdorff sense. Then (Y, dY ) has a universal
covering space and h(Xi, di) converges to h(Y, dY ).

Now we are ready to prove the theorem.

Proof of Theorem 1.4. By contradiction, assume that there exists a sequence
(Xi, di,mi) of compact RCD∗(−(N − 1), N) spaces, satisfying diam � D, h(Xi, di,mi) �
N − 1 − 1/i, sys(Xi,di) � s, and such that none of the spaces Xi are mGH close to the
quotient of a N -dimensional hyperbolic space. Since the collection of RCD∗(K,N) spaces,
for fixed K ∈ R and N ∈ [1,∞), are compact with respect to mGH convergence, we can
assume that (Xi, di,mi) mGH converges to some RCD∗(−(N − 1), N) space, (X∞, d∞,m∞).
Therefore Proposition 8.2 yields h(X∞, d∞,m∞) � N − 1. By Theorem 1.1, we also know that
h(X∞, d∞,m∞) � N − 1. Thus, (X∞, d∞,m∞) attains the equality case of Theorem 1.1. Then
N is an integer and the universal covering (X̃∞, d̃∞, m̃∞) of (X∞, d∞,m∞) is isometric to an
N -dimensional real hyperbolic space. The convergence to X∞ is equivariant with respect to
the actions of the revised fundamental groups π̄1(Xi) along the sequence of spaces Xi and X̃i.
Therefore X∞ is isometric to the quotient X̃∞/π̄1(X∞) of an N -dimensional real hyperbolic
space. As the systoles are bounded below, the corresponding group actions are free and hence
X∞ is isometric to an N -dimensional real hyperbolic manifold. This is a contradiction, and
we have that X is Ψ(ε|N, s,D) mGH close to an N -dimensional hyperbolic manifold. It now
follows from Theorem 6.5 of Kapovitch–Mondino [27] that X is also bi-Hölder homeomorphic
to (X∞, d∞). �
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CIMAT
Jalisco S/N
Guanajuato, Gto. 36023
Mexico

jesus.nunez@cimat.mx

Raquel Perales
Conacyt reseach fellow Instituto de

Matemáticas
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