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ABSTRACT

Landslides pose a major natural hazard, and heterogeneous conditions and limited data
availability in the field make it difficult to connect mapped landslide inventories to the under-
lying mass-failure mechanics. To test and build predictive links between landslide observa-
tions and mechanics, we monitored 67.89 h of physical experiments in which an incising and
laterally migrating river generated landslides by undercutting banks of moist sand. Using
overhead photos (every 20 s) and 1-mm-resolution laser topographic scans (every 15-30 min),
we quantified the area, width, length, depth, volume, and time of every visible landslide, as
well as the scarp angles for those within 3 min prior to a topographic scan. Both the landslide
area—frequency distribution and area—volume relationship are consistent with those from
field data. Cohesive strength controlled the peak in landslide area—frequency distribution.
These results provide experimental support for inverting landslide inventories to recover the
mechanical properties of hillslopes, which can then be used to improve hazard predictions.

INTRODUCTION

Each year, documented landslides kill
~8200 people (Haque et al., 2019) and cause
over U.S.$15 billion in direct damages to build-
ings and infrastructure (Kjekstad and Highland,
2009). Landslide hazards continue to rise as
humans destabilize slopes through mining and
construction activities (Froude and Petley, 2018)
and ongoing climate change increases the prob-
ability of high-magnitude rainfall events (Pen-
dergrass and Hartmann, 2014) that saturate the
shallow subsurface and induce failure (Pelle-
tier et al., 2015; Chae et al., 2017; Haque et al.,
2019). Therefore, understanding landslide trig-
gers and the links between observed landslide
statistics and their mechanistic causes is essen-
tial to further our fundamental understanding of
Earth’s dynamic surface and inform emergency-
management decisions that can mitigate loss of
life and property.

Efforts to link landscape-scale field obser-
vations to explicit physical landslide failure
conditions and mechanisms are stymied by (1)
heterogeneous and time-varying conditions in
the natural environment (Pelletier et al., 1997,
Chae et al., 2017) and (2) inconsistent and often

insufficient data with which to uniquely resolve
these failures and link them to a discrete cause
(Marc and Hovius, 2015). Field inventories from
before and after landslide-triggering events pro-
vide a basis for understanding landsliding statis-
tics (Malamud et al., 2004; Larsen et al., 2010),
but they often include only areal extent (Kirsch-
baum et al., 2015; Chae et al., 2017) and may
be biased toward larger landslides (Stark and
Hovius, 2001). In this study, we leveraged this
readily available information to gain insights
into the underlying mechanics of landslides and
estimate material parameters relevant to elastic
(i.e., Mohr-Coulomb) failure.

To reduce the number of unknowns while
retaining key elements of the natural system,
we turned to physical experiments (Paola et al.,
2009; Prancevic et al., 2018). In these experi-
ments, we investigated the mechanistic reason
behind the shape of landslide area—frequency
distributions (Malamud et al., 2004). Field ob-
servations of landslides spanning different en-
vironments, triggers, and failure mechanisms
share a common humped distribution that
includes a few very small landslides, a peak
in landslide frequency at a relatively modest

size, and a heavy tail of larger landslides (No-
ever, 1993; Pelletier et al., 1997; Dai and Lee,
2001; Stark and Hovius, 2001; Guzzetti et al.,
2002; Malamud et al., 2004; Hurst et al., 2013).
Hypotheses to explain the low occurrence of
small landslides include (1) undersampling due
to imagery resolution (Stark and Hovius, 2001;
Guzzetti et al., 2002; Tanyas et al., 2017); (2)
undersampling due to “landscape annealing,”
i.e., the natural regrading and revegetation of
landslide scars that make them smaller and less
visible over time (Hurst et al., 2013); (3) limits
of cohesive and/or frictional forces acting on
hillslopes and landslide blocks (Frattini and
Crosta, 2013; Milledge et al., 2014; Jeandet
etal., 2019), including their modulation by soil
moisture (Pelletier et al., 1997); (4) self-arrest
within the granular medium (Noever, 1993);
and (5) limits in relief above channel heads
and valley bottoms (Pelletier et al., 1997; Guz-
zetti et al., 2002; Jeandet et al., 2019). In the
field, multiple conditions that could produce
arollover toward fewer small landslides com-
monly coexist, making it difficult to extract the
underlying cause(s). When analyzing complete
(i.e., fully sampled) inventories, researchers
interpret the rollover to result from cohesion,
friction, and/or topographic relief (Pelletier
et al., 1997, Stark and Hovius, 2001; Guzzetti
et al., 2002; Malamud et al., 2004; Jeandet
etal., 2019).

METHODS

Within a 3.9 X 2.4 X 0.4 m box filled with
uniform 0.140 + 0.04 mm sand (Tofelde et al.,
2019; Savi et al., 2020), we allowed a braided
river to incise the material from a water-and-
sediment feed toward a user-defined sea lev-
el, carving into its valley walls and triggering
autogenic landslides in the process (Fig. 1A;
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Figure 1. Physical exper-
iment and landslide
mapping. (A) Perspective
photo of the basin while
inactive. A Weir sets the
base level by control-
ling the elevation of the
pool at the outlet. Sedi-
ment and dyed water are
fed into the basin at the
input point. Dye in the
sand is residual from
earlier experiments. (B)
Georeferenced and ortho-
rectified overhead photo
of experiment during
operation: 10,782 s into
200 mm/h base-level fall
run. (C) Digital elevation

model of the same run
and time. Landslides are
marked in white outlines;
black rectangle marks
the portion shown in D.
(D) Close-up of landslid-
ing zone. (E) Topographic
profile along the line in D,
which crosses the recent
landslide.
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Figs. S1 and S2 in the Supplemental Material').
We applied standard remote-sensing approach-
es for landslide mapping (Larsen et al., 2010;
Chae et al., 2017) to this mesoscale experiment

!Supplemental Material. Supplemental methods
and figures for landslide experiment analysis. Please
visit https://doi.org/10.1130/GEOL.S.13232330 to
access the supplemental material, and contact edit-
ing @ geosociety.org with any questions.

using 0.89-mm-resolution overhead photos
(every 20 s; Fig. 1B; Fig. S1) and 1-mm-res-
olution topographic scans (every 15-30 min;
Figs. 1C and 1D) to identify and map failures
(Figs. 1C-1E; Fig. S1). These data sources
are analogous to high-resolution lidar digital
elevation models (DEMs) and remotely sensed
imagery used in field-based landslide studies.
All data and analysis code are freely avail-
able via DOI-linked repositories; see Beaulieu
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et al. (2020), Wickert (2020), and Witte and
Wickert (2020).

Visual tests indicated the minimum detect-
able landslide to be ~100 mm?. We then defined
a limit of consistent detections (Guzzetti et al.,
2002) below which we excluded landslides from
our area—frequency analysis (Fig. 2); this value
was twice the minimum in each horizontal di-
mension (i.e., 400 mm?). Both our minimum-
detection limit and limit of consistent detections
were more conservative than pixel-to-landslide-
size ratios used similarly in the field (Guns and
Vanacker, 2014). Furthermore, the 20 s lag time
between images allowed us to record every land-
slide before landscape annealing (through ero-
sion or reworking of deposits; Hurst et al., 2013)
or landslide amalgamation (Marc and Hovius,
2015) became significant sources of error.

Although the 15-30 min lag between topo-
graphic scans prevented us from directly observ-
ing topographic change between each individual
landslide, we were able to measure individual
scarp angles for landslides that occurred within
3 min prior to each scan (Figs. 1D and 1E). Un-
dercutting acted as the dominant landslide trig-
ger (Figs. 1B; Fig. S1), creating failure blocks
with a trapezoidal cross section bounded by the
plateau surface, free surface, undercut surface,
and scarp (Fig. 3). For these, we defined failure
planes by projecting scarps to the thalweg eleva-
tion (Fig. 1E). For blocks too narrow to construct
atrapezoid at the given scarp angle (4% of the to-
tal inventory), we inferred a triangular geometry
with a steeper scarp defined by landslide width
and plateau-to-thalweg height. To estimate land-
slide volume, we multiplied this cross-sectional
area by the down-valley length of each landslide
(see the Supplemental Material). In addition, we
solved the stress balance along the failure plane
to compute the cohesion of the unsaturated sand
at the time of failure (Fig. 3).

RESULTS

Landslides in each of our six experiments
(Table S1) were triggered by slope instability as
the river incised and widened its valley. We mea-
sured scarp geometries (76° £ 11°, one standard
deviation) and failure mechanisms (2% top-
ples; 98% landslides), indicating that failures
occurred predominantly as steep translational
slides (Fig. 3) as the river undercut and desta-
bilized valley walls. From these landslides, we
characterized area—frequency and area—volume
relationships, analyzed waiting times between
individual landslides, and established a rela-
tionship between landslide width and substrate
cohesion. Our goal was to characterize these
observables beyond what has been possible in
the field and link them to stress conditions at
failure (Gallen et al., 2015; Jeandet et al., 2019).

The first measure, area—frequency distribution,
is the most common measure in field-based land-
slide inventories due to its amenability to remotely
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sensed imagery. The area—frequency distribution
of landslides in the experiment closely matched
an inverse-gamma (I') distribution (Figs. 2A and
2B) popularized by Malamud et al. (2004):
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al’'(r)| A—s P A-s (D

Here, fis the probability density, A is the
landslide area, r+1 is the power-law exponent
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that describes the decay in frequency of me-
dium and large landslides, a is the exponential
decay constant that describes the decrease in
frequency of small landslides, and s is the
area of the most frequent (i.e., modal) land-
slide. When fit to our experimental data, the
modal landslide area was 13 cm?, which is
significantly greater than the limit for con-
sistent detection (4 cm?), demonstrating that
the rollover in the landslide area—frequency

Trapezoidal slide

Triangular slide

Topple

Figure 3. Failure mechanisms. W is landslide-block width at the upper surface; H is landslide-
block height; a is the angle between the failure plane and the horizontal; o, is driving shear
stress; ¢, is resisting shear stress, which was defined as a combination of cohesion and fric-
tional resistance; , is tensile stress; o, is gravitational stress. Landslide failure scarps were often
arcuate and elongated in the down-valley direction (Fig. 1; Fig. S1 [see footnote 1]). Because of
these often-shallow angles and longer down-valley dimension, we approximated their full three-
dimensional stress balance using this cross-sectional approach. The vast majority of failures

occurred as trapezoidal slides.
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distribution is real and not an artifact of inven-
tory resolution.

Measurements of landslide areas are much
more common than those of volumes, which
require field measurements (Larsen et al., 2010)
and/or repeat elevation surveys (Dietze et al.,
2017). To estimate landslide volumes, which are
significant values for determining total erosion,
sediment mass delivery to rivers, and links be-
tween physical erosion and atmospheric carbon
dioxide consumption, researchers often use a
power-law scaling relationship (Hovius et al.,
2000; Malamud et al., 2004; Larsen et al., 2010;
Marc and Hovius, 2015),

V=0A". 2)

Here, V is landslide volume, o is the scal-
ing coefficient, A is landslide area, and 7y is the
scaling exponent. The landslide area—volume
relationship for all of our experiments fol-
lowed Equation 2, with o0 = 0.34 and y=1.36
(Fig. 2C). This scaling exponent falls within the
field-observed ranges for landslides in both soil
(y=1.1toy=14)androck (y=13toy=1.6)
(Larsen et al., 2010).

DISCUSSION

Implementing physics-based approaches to
mapping landslide susceptibility (Casadei et al.,
2003; Bellugi et al., 2015; Chae et al., 2017) can
be difficult due to (1) data resolution, (2) data
quality, (3) spatial variability in geotechnical
properties, and (4) temporal variability in water
content (i.e., pore-fluid pressure) (Pelletier et al.,
1997; Chae et al., 2017). Our experiments over-
came most of these observational limitations,
thus allowing us to directly compare landslide
sizes with stress balances, which then could be
applied to analyze hazard potential in a land-
scape (e.g., following Jeandet et al., 2019).

Using the measured mass-failure geome-
tries, we computed the corresponding cohesion
of unsaturated sand, ., by applying a stress
balance at incipient slip (Fig. 3, combined for
slides) to each block (Equations S1 and S2 in
the Supplemental Material). By comparing this
with block-topple torque-balance calculations
across the full data set (Equation S3), we found
that assuming a slide-type failure overpredicted
the failure strength of toppled blocks by 30%—
35%. If 10% of failures occurred as topples,
which is greater than the 2% observed and
closer to the 11% predicted from linear Mohr-
Coulomb theory, this would shift the peak in
the predicted stress—frequency distribution by
3.0%-3.5%. This difference is insignificant
compared to the range of experimentally de-
termined (250-750 Pa) and landslide-inverted
(~100-2300 Pa) cohesion values (Fig. 4A), in-
dicating that our results are robust despite the
lack of a documented mechanism for each in-
dividual failure.
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Because the exact moisture content of the un-
saturated sand in our experiments was unknown
and spatially variable, we computed both the
weight of the landslide block (this changed little,
see the Supplemental Material; our density cal-
culations here assumed 10% of the pores were
water-filled pores) and its cohesion as functions
of moisture content. Experiments employing
fine sands (Richefeu et al., 2006; Lu et al., 2009)
and associated theory (Lu et al., 2009) predict
a cohesive-strength range of 250-750 Pa. This
range encompasses the peak in our cohesion—
frequency distribution (Fig. 4A).

The overlap between the literature-based co-
hesion and the peak in calculated cohesion at
failure from our landslide inventory provides
experimental support for the idea that landslide
inventories may be inverted to obtain the physi-
cal properties of the underlying substrate (Gal-
len et al., 2015; Jeandet et al., 2019). Landslide
areas and slopes are observable from imagery
and DEMs, while cohesive strength at failure is
the key variable we hope to constrain. Fortunate-
ly, as landslide area increases, so does the shear
stress at failure due to the increased thickness
and—in the case of undercutting—unsupported
width of the sliding block (Figs. 2B and 3). The
tight range of failure angles within our experi-
ment (76° = 11°) suggests that the dominant
relationship should be between landslide area

102
Landslide area A [m?]

and cohesion. An analysis of the landslide dis-
tribution (Fig. 4B) demonstrated that the area—
frequency peak corresponds with failure at the
expected cohesion for unsaturated fine sand
(Richefeu et al., 2006; Lu et al., 2009).

Our experimental work provides a data-rich
basis for inverting landslide distributions in the
field to estimate cohesion. This inversion also
requires knowledge of slope, slide thickness,
pore-fluid pressure, and seismic accelerations.
DEMs and seismic networks may provide slope
and seismic accelerations. Topographic surveys
or scaling arguments (Larsen et al., 2010; Marc
and Hovius, 2015) can provide thickness. Pore-
fluid pressure integrates heterogeneous rainfall
patterns and substrate properties, making it a
critical parameter to measure. Lacking this, one
can bracket the solution using a range of plau-
sible water pressures at failure. These cohesion
estimates can then be applied to generate phys-
ics-based maps of landslide hazard.

CONCLUSIONS

Our physical experiments triggered landslides
through river incision and lateral erosion. We
mapped a complete inventory of these landslides.
Their area—volume relationship is consistent with
field inventories from landslides in both soil and
bedrock. Their area—frequency distribution fol-
lows an inverse gamma function in which the peak
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is controlled by cohesion in moist, unsaturated,
fine sand. This conveniently means that landslide
statistics provide a measure of the Mohr-Coulomb
cohesion that determines their occurrence.
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