Earth Surf. Dynam., 9, 105-121, 2021
https://doi.org/10.5194/esurf-9-105-2021

© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Earth Surface
Dynamics

Computing water flow through complex landscapes —
Part 3: Fill-Spill-Merge: flow routing in depression
hierarchies

Richard Barnes'>>, Kerry L. Callaghan*>, and Andrew D. Wickert*>

'Energy & Resources Group (ERG), University of California, Berkeley, USA
2Electrical Engineering & Computer Science, University of California, Berkeley, USA
3Berkeley Institute for Data Science (BIDS), University of California, Berkeley, USA

“Department of Earth & Environmental Sciences, University of Minnesota, Minneapolis, USA
3Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, USA

Correspondence: Richard Barnes (richard.barnes @berkeley.edu)

Received: 17 April 2020 — Discussion started: 5 May 2020
Revised: 18 September 2020 — Accepted: 23 November 2020 — Published: 2 March 2021

Abstract. Depressions — inwardly draining regions — are common to many landscapes. When there is sufficient
moisture, depressions take the form of lakes and wetlands; otherwise, they may be dry. Hydrological flow models
used in geomorphology, hydrology, planetary science, soil and water conservation, and other fields often elim-
inate depressions through filling or breaching; however, this can produce unrealistic results. Models that retain
depressions, on the other hand, are often undesirably expensive to run. In previous work we began to address this
by developing a depression hierarchy data structure to capture the full topographic complexity of depressions in
a region. Here, we extend this work by presenting the Fill-Spill-Merge algorithm that utilizes our depression
hierarchy data structure to rapidly process and distribute runoff. Runoff fills depressions, which then overflow
and spill into their neighbors. If both a depression and its neighbor fill, they merge. We provide a detailed ex-
planation of the algorithm and results from two sample study areas. In these case studies, the algorithm runs
90-2600 times faster (with a reduction in compute time of 2000-63 000 times) than the commonly used Jacobi
iteration and produces a more accurate output. Complete, well-commented, open-source code with 97 % test

coverage is available on GitHub and Zenodo.

1 Introduction

Depressions (see Lindsay, 2016, for a typology) are inwardly
draining regions of a digital elevation model (DEM) that
lack any outlet to an ocean or other designated base ele-
vation. Depressions occur naturally and can be formed by
glacial erosion and/or deposition (Breckenridge and Johnson,
2009), compressional and/or extensional tectonics (Reheis,
1999; Hilley and Strecker, 2005), and cratering (Cabrol and
Grin, 1999). They often host lakes and wetlands by retaining
water locally. Depressions may themselves contain depres-
sions. Such regions confound algorithms for geomorpholog-
ical and terrain analysis, as well as those for hydrological
modeling, because many such algorithms simply route water

down topographic slope following the local gradient: depres-
sions neither fill with water nor drain.

Many hydrological models deal with the complexity of
depressions by removing them. This can be done by filling
the depressions with earth so that they form a flat region
of landscape (e.g., Jenson and Domingue, 1988; Martz and
de Jong, 1988), breaching (Martz and Garbrecht, 1998) or
carving them (Soille et al., 2003) so that water flows from
their lowest point through the carved channel and onward to
downstream regions, or some combination of these (Lindsay
and Creed, 2005b; Schwanghart and Scherler, 2017; Soille,
2004; Lindsay, 2016). This approach is justified for situ-
ations in which spatiotemporal aspects of the analysis al-
low depressions to be ignored or for cases in which all de-

Published by Copernicus Publications on behalf of the European Geosciences Union.

106

7
6
5
4
3
2
1
0

ABCDEFGHTIJK

Figure 1. A single subtree of a depression hierarchy and the depres-
sion it represents. Depressions 1—4 are leaf depressions. Depression
6 is a parent depression (also termed a meta-depression) that con-
tains depressions 1 and 2. Water from the plateau on the left above
cells A and B might fill depression 1 (cell C), causing it to spill into
depression 2 (cell E). Only when both depressions are full do they
merge and begin filling depression 6 (cells C, D, and E). Modified
from Barnes et al. (2020).

pressions can be considered to be data errors (Lindsay and
Creed, 2005a). Historically, many DEMs were constructed
from sparse data, and small data errors produced depressions,
especially in flat areas (O’Callaghan and Mark, 1984). Such
an assumption is no longer justified, as improved and increas-
ingly high-resolution data have become available (Li et al.,
2011). Even coarse-resolution data are capable of resolving
real-world depressions (e.g., Riddick et al., 2018; Wickert,
2016). With this in mind, new approaches are beginning to be
examined, particularly in post-glacial landscapes where de-
pressions have a significant impact on local hydrology (e.g.,
Lai and Anders, 2018) and therefore cannot be ignored dur-
ing modeling.

FlowFill (Callaghan and Wickert, 2019) began to com-
bat this problem by routing water across landscapes in a
way that conserved water volume, creating flow-routing sur-
faces that could still contain real depressions. Under reason-
able runoff conditions, the results show landscapes that still
contain depressions and disrupted flow routes. The FlowFill
method iteratively routes water from higher to lower terrain.
As depressions fill, they pose an extreme challenge to such
a method: since water seeks a level surface, the surface of a
filled depression must eventually become flat and any fluid
flowing onto the surface diffuses across it. Even for moder-
ately sized surfaces it can take many iterations for a solver
to reach steady state; we provide a theoretical analysis of
this in Sect. 4.1. Runtimes for FlowFill ranged from sec-
onds to days: large datasets quickly became unwieldy. Of
those examples tested by Callaghan and Wickert (2019), the
slowest was a dataset of 4 176 000 cells, which took approx-
imately 33 h for FlowFill to process. In contrast, the Fill-
Spill-Merge algorithm presented here fills a similarly sized
dataset in 8.7 s.

Other authors have considered the problems of extract-
ing nested depression hierarchies and dynamically routing
water through them. However, these previous approaches

Earth Surf. Dynam., 9, 105-121, 2021

R. Barnes et al.: Fill-Spill-Merge

(a) Example
Parent Gcaan
— Link
> - Geolink
Descendants (12) —> Oceanlink
12 c
Meta-depression Parent to 4,5 ®
Parent to 10,3 Meta-dep. (4
11 o
(b) N
(12) Marginal Depression e
(11) ©
v Marg. Dep. 8
Leaf vv Leaf 00
(c) depression depressions \]
(12) Marginal Depression e
(11) s
VLeaf Marg. Dep. v
(d) depressions depressions J
2 p~°-. Depression Volume
c
Marginal Volume 5 —0 ©
10 P 3L 11 P 9
—o_ —o—
1L 2 L 4L/ \5L O0
(e) P Parent L Leaf o Spillover point

Figure 2. Terminology for the depression hierarchy and water flow
through it. The depression hierarchy shown here is drawn from
the left-hand side of Fig. 1 from the companion paper by Barnes
et al. (2020). (a) Topology. A parent and its descendants are asso-
ciated with depressions (b—d). Direct descendants are called chil-
dren. Leaves are the terminal members of the depression hierar-
chy; they have no children and represent simple depressions (i.e.,
those that are not meta-depressions). Members of a single binary
tree are joined in their hierarchy through links; directional links that
represent water-spillover directions between geospatially adjacent
depressions are called geolinks. Flow from one binary tree into an-
other and towards the ocean follows the oceanlinks. Though only
one binary tree is shown, the ocean may be the parent to an arbi-
trarily large forest of binary trees. (b) Parents in the hierarchy form
meta-depressions — depressions that encompass other depressions.
(¢) These meta-depressions contain leaf depressions — depressions
that themselves contain no depressions. These are associated with
leaves in the depression hierarchy. Meta-depression 12 also contains
another meta-depression, 10. The regions of depressions 11 and 12
that lie above their child depressions are termed “marginal depres-
sions”. (d) Meta-depression 10 contains leaf depressions 1 and 2.
(e) Using the depression hierarchy to simulate water flow. Water
first fills leaf depressions before flooding into neighboring depres-
sions. Once a depression and its neighbor are completely filled, their
parent begins to flood. The depression volume is the full geometric
volume of the depression. The water volume, naturally, is the vol-
ume of water within a given depression. The marginal volume is the
volume of water partially filling the top-level meta-depression; ap-
propriately spreading this water across the landscape is the topic of
Sect. 3.3.

https://doi.org/10.5194/esurf-9-105-2021

R. Barnes et al.: Fill-Spill-Merge

are slow, inexact, or both; additionally, most previous ef-
forts were not accompanied by source code, limiting their
utility. Barnes et al. (2020) provide a more thorough lit-
erature review, which we briefly recap here. A hierarchi-
cal segmentation by Beucher (1994) did not produce a data
structure on which flow could be routed. Salembier and Par-
das (1994) generated a hierarchical segmentation by repeat-
edly simplifying source images; hydrologically speaking,
this can lead to unacceptable degradation of terrain informa-
tion. Arnold (2010) developed an algorithm similar to the one
here but without source code; the algorithm also generates
looping topologies that require correction. Wu et al. (2015)
and Wu and Lane (2016) constructed depression hierarchies
by first smoothing a DEM and then extracting vector con-
tour lines from it. Wu et al. (2018) built on this approach
by discretizing the DEM into a number of horizontal slices.
Both approaches sacrifice exactness and the latter requires
O(N 2) time. Cordonnier et al. (2019) used planar-graph min-
imum spanning trees to construct a hierarchy of depressions
but did not produce a data structure water can be routed
on. In contrast, the Fill-Spill-Merge algorithm relies on a
well-defined data structure (Barnes et al., 2020); has com-
plete, well-commented source code with extensive correct-
ness tests (Barnes and Callaghan, 2019, 2020); has strong
efficiency guarantees (Sect. 4.1), which are realized on ac-
tual and simulated datasets (Sect. 4.2); and provides exact
answers.

To achieve this, we developed a data structure — the de-
pression hierarchy — which represents the topologic and geo-
graphic structure of depressions. In an accompanying paper,
we provide details concerning how a depression hierarchy is
constructed (Barnes et al., 2020). In this paper, we explain
how a depression hierarchy can be leveraged to accelerate
hydrological models using a paradigm we call Fill-Spill-
Merge.

2 Using the depression hierarchy

Many of the techniques in this paper are based on binary
tree data structures and their traversals. Although we define
terms below, more complete explanations and visual exam-
ples can be found in the text for any introductory undergrad-
uate course on data structures. We recommend Skiena (2008)
and Sedgewick and Wayne (2011) as good references. In par-
ticular, a good understanding of recursion will be helpful.

2.1 Terminology

Depressions can themselves contain depressions, as shown in
Fig. 1. A depression hierarchy (DH) is a data structure rep-
resenting a forest of binary trees, as shown in Fig. 2a, that
represents the relationships between depressions (Fig. 2a—d).
Each node in the DH represents a depression. Nodes higher
in the DH are depressions that themselves contain depres-
sions; we term these meta-depressions. Although the depres-

https://doi.org/10.5194/esurf-9-105-2021

107

sion hierarchy could be generalized to n-ary trees using mul-
tiple flow direction routing, the binary simplification is suf-
ficient to cover most use cases. A node in the DH can have
several classifications.

A parent is a node, such as no. 10 and no. 12 in Fig. 2a,
that represents a meta-depression and whose topologi-
cal descendants therefore also form depressions.

— A child is a depression, such as both no. 10 and no. 1
in Fig. 2a, that geographically and topologically exists
within the meta-depression formed by its parent.

— A leafis a depression, such as no. 1 and no. 2 in Fig. 2a
and d, that has no children. The leaves of the binary trees
represent the smallest, most deeply nested depressions.
If a landscape were initially devoid of water, then wa-
ter flowing down slopes would begin to collect in some
subset of these leaf depressions before it would begin to
fill their parent depressions.

— A root is a depression, such as no. 0, no. 11, and no. 12
in Fig. 2, that has no parent. This term may also refer to
any node that is used as the starting point for a traversal
that only considers the node and its descendants.

— A descendant is a child of a given parent or the child of
a child of that parent and so on. In Fig. 2a, no. 1, no. 2,
no. 3, and no. 10 are all descendants of no. 12.

— Every node has either no children (leaf nodes) or two
children. Nodes that share a parent are siblings. In
Fig. 2a, no. 1 and no. 2 are siblings, as are no. 4 and
no. 5.

As depressions fill, their water surfaces eventually reach a
spill elevation (Fig. 2e) at which they overflow into neighbor-
ing depressions. During this spilling, water flows from a de-
pression into a geographically neighboring leaf depression,
topologically connected by a geolink. The spill elevations in
Fig. 1 are the highest points of each band of color.

Each node in the DH is associated with several properties.

— Depression volume. The depression volume is the total
volume of water that the depression, including all of its
descendants, can contain before spilling over.

— Water volume. The water volume is the total volume of
water actually being stored in the depression. A par-
ent depression will have a nonzero water volume only
if both of its children are completely full and the par-
ent itself contains some additional volume of water. In
this case, the water volume will be the sum of the wa-
ter volumes of the children and the additional margin
of water contained within the parent (i.e., the “marginal
volume” indicated in Fig. 2e). Parents whose children
are not both filled with water will have a water volume

Earth Surf. Dynam., 9, 105-121, 2021

108

equal to zero. In this way, we can use this property to de-
termine which portions of the DH are fully or partially
filled and which are the highest water-containing nodes
in any of the binary trees.

— Geolinks. When a depression spills, its water passes
into the subtree rooted by its sibling. However, in a
full model of flow, the water would move downslope
from the spill cell into whichever leaf depression of the
sibling is geographically proximal to the spill cell. Ge-
olinks are pointers from depressions higher in the DH to
the leaf depressions that receive their water if they over-
flow. These are the dashed lines shown in Fig. 2a. Ge-
olinks are similar to the connections used in a threaded
binary tree (Fenner and Loizou, 1984).

— Oceanlink. Depressions high in the mountains may
overflow down escarpments to depressions far below.
In this case, the depressions do not overflow into each
other: the relationship is one-way. There can be multiple
such escarpments, so this can happen multiple times. In
such cases, each group of depressions forms a proper
binary tree. However, the root of one of the trees has
an oceanlink to a leaf node of the downstream binary
tree. In Fig. 2, both no. 11 and no. 12 are the root nodes
of a set of nested depressions. No. 12 has an oceanlink
(heavy arrow) to no. 4, one of the leaf depressions of
no. 11. No. 11 itself has an oceanlink to the ocean. In
many of the algorithms discussed below, oceanlinked
nodes are processed similarly to children.

Within the algorithm, oceanlinks and geolinks are used for
different purposes: an oceanlink tells us that the depression in
question has grafted onto the leaf node of another tree of the
depression hierarchy, locating a route for overflowing water
to eventually reach the ocean. The depression to which it is
oceanlinked is considered its parent, but it is not the child of
that depression because water flows only one way along an
oceanlink. In Fig. 2a, depression no. 4 can be considered the
parent of no. 12, but no. 12 is not the child of no. 4. This is
because no. 12 is not physically contained within no. 4, but
no. 12 will send all of its overflowing water to no. 4, as shown
in Fig. 2b—e. No. 4 will not contain the total water volume
contained within no. 12, unlike other parents. Geolinks route
water within geographically adjacent depressions contained
in the same meta-depression.

2.2 Traversals

With these linkages in place, we can consider various ways of
traversing the trees. Given a binary tree T with left and right
children T.L and T'.R, a breadth-first traversal considers both
T.L and T.R before considering T.L.L, T.L.R, T.R.L, or
T.R.R. A depth-first traversal, on the other hand, will con-
sider T.L and all of its descendants before considering 7.R

Earth Surf. Dynam., 9, 105-121, 2021

R. Barnes et al.: Fill-Spill-Merge

Fill

(c)

Fil Spil

(d)

Fill Merge

Spill
to ocean

(f)

Figure 3. The Fill-Spill-Merge process. Water moves through to-
pographic depressions by filling them, spilling over sills, and merg-
ing to form meta-depressions. (a) Topographic cross section with
labeled leaf depressions and their parents, following the left-hand
side of the depression hierarchy in Fig. 2. The number O repre-
sents the ocean; other numbers represent leaves and parents that
together form depressions and meta-depressions. (b) Map showing
this depression structure; the cross section in (a) follows the dot-
ted gray line. (¢) A water source to the left begins to fill depression
1. (d) Continued water input causes depression 1 to overflow and
spill into depression 2. (e) Depression 2 fills, causing depressions 1
and 2 to fill their parent (10) and merge to form a meta-depression.
This meta-depression overflows into depression 3. (f) Depression 3
fills and merges with meta-depression 10 (1 and 2 being implied
members based on their position in the hierarchy) to flood their par-
ent, 12. After meta-depression 12 overspills, it enters depression
4, which then fills and spills into depression 5. After depression 5
floods, its waters join with those from depression 4 to fill meta-
depression 11, which then spills to the ocean. Figures 4 and 5 de-
scribe the algorithm in more specific detail.

https://doi.org/10.5194/esurf-9-105-2021

R. Barnes et al.: Fill-Spill-Merge

Move water downhill to pits

(a) éi*w

N
4
3
o 2
13'55})

AB/CDEFGHESI 0das@ofEIF G HED

v

(RN
- ~
e o
& ~

Overflow and merge depressions
(©) (d) (e) ()

I5 I5 I5 ﬁls
123® 223® d223@ a230

Flood the landscape

7 h 7-

6-, ()6-

(9) & &

4] 4]

3 34

2] 2]

1] M1
1238 ol g@o@rcnmy | T2 ol g@olErc vl

s\ T- oy 7-

oF (3 L

5 5]

4] 4]

3] 3]

2 2]

s 1] { 5 1]
1238 ol s@oEronm@y | 2% olis@oErc nE>

|
|

Figure 4. Visual overview of the algorithm. Black outlines repre-
sent the elevations of the cells. Blue areas are the heights of water
in each cell or depression within the depression hierarchy. Capital
letters label cells, and numbers on colored dots label depressions.
Colors at the base of each panel match the colored dots and indicate
to which depression each cell belongs. The algorithm consists of
three major stages (Fig. 5). From its initial distribution (a), water is
moved downhill following flow directions in the steepest downslope
direction from each cell, as indicated by the arrows. Water continues
to move downslope until it reaches the pit cells (b, Sect. 3.1). Wa-
ter is then moved within the depression hierarchy (c—f, Sect. 3.2).
(c) The initial distribution of water within the depression hierarchy
based on how much water was in the pit cell of each depression. Wa-
ter in depressions with insufficient volume overflows first into their
sibling depressions and then — if the sibling depression becomes
filled — passes to their parents. All of the leaf depressions in (c) are
completely filled, so no sibling depressions can accommodate more
water. Therefore, depressions 1 and 2 pass their overflowing water
up to their parent, depression 6, and depressions 3 and 4 pass their
overflowing water up to their parent, depression 5. (d) Depression
6 is now overflowing, but its sibling, depression 5, is not full, so
depression 6 passes as much of its overflowing water as it can to
depression 5. (e) Once depression 5 is full, some overflowing water
still remains, so this is passed to the parent, depression 7. (f) In this
case, depression 7 is able to accommodate the remainder of the wa-
ter. Had depression 7 also overflowed, the leftover water would have
overflowed into the ocean and been disregarded. Depressions to be
flooded are then identified and flooded (Sect. 3.3). Since depression
7 contains water, we know that all of its descendants must be com-
pletely full. Therefore, we can flood these all at the same time on the
level of depression 7. Any one of the pit cells within depression 7
is arbitrarily selected as the starting point (g). More cells are added
until all of the water has been accommodated. Panels (h—j) are a
visual representation of this process, although the algorithm would
first locate affected cells C—J and then calculate the final height of
water in all of these cells in a single step.

https://doi.org/10.5194/esurf-9-105-2021

109

or any of its descendants. The tree traversals we perform in
this paper are all depth-first.

Depth-first traversals are most naturally expressed via re-
cursion and come in three types: in order, pre-order, and post-
order. Let a recursive traversal function be called r(-) and the
processing we perform on a particular node in the tree p(-);
then the traversals are given by the following:

— in order — r(T.L) then p(T) then r(T.R);
— pre-order — p(T') then (T.L) then r(T.R);

— post-order — r(T.L) then r(T.R) then p(T).

3 The algorithm

The Fill-Spill-Merge algorithm consists of several steps that
are outlined here, depicted in Figs. 3 and 4, and shown in
flowchart form in Fig. 5. This paper is also accompanied
by complete, well-commented source code; the reader may
find it helpful to download this code and refer to it as an ad-
ditional reference. First (Sect. 3.1), surface water needs to
move downhill either to the ocean (i.e., a designated sink re-
gion or the map edge) or to collect in pit cells — the deepest
points within leaf depressions. Note that the landscape may
already have standing water at this stage. This operation takes
place across all the cells of the DEM. Second (Sect. 3.2),
water is redistributed across the depression hierarchy such
that any depressions that have filled sufficiently spill over
into neighboring depressions and, if both depressions are full,
flood their parent to merge into a single, larger body of wa-
ter within a meta-depression. This operation is done without
explicitly considering the cells of the DEM, which makes it
very fast. Third and finally (Sect. 3.3), the water within the
depression hierarchy is translated into an extent and depth of
flooding across the topographic surface (DEM).

Computing a depression hierarchy (Barnes et al., 2020) is
a necessary precursor to running Fill-Spill-Merge. The spe-
cific outputs from the depression hierarchy algorithm that are
used in the Fill-Spill-Merge algorithm are the following.

— DH is the depression hierarchy itself.

— Flowdirs is a matrix of flow directions, indicating which
of a cell’s neighbors receives its flow. Because Priority-
Flood (Barnes et al., 2014) is used to generate the de-
pression hierarchy, flat areas are automatically resolved.

— Labels represent a matrix indicating the leaf depression
to which each cell belongs.

By routing water according to the DH, we significantly accel-
erate the compute speed and ensure that the full network of
depressions is a topologically correct directed tree. Each of
the following subsections details one of the numbered steps
along the central path of the flowchart shown in Fig. 5.

Earth Surf. Dynam., 9, 105-121, 2021

110

Start

Fill-Spill-Merge

Y Y Y

D}:aipe)::rscs@n / /Flow directions/ / Labels

L]

3.1. Move water
downhill to pits

Recurse through
depressions and find
those with more water
than they can
accommodate. Then
redistribute this water to
siblings and parents

Use flow directions
and a priority queue
to move water
downslope into pits.
Assign this water
to the associated
leaves in the
depression hierarchy.

3.2. Overflow and
merge depressions

in the depression
hierarchy.
Recurse through
depressions to find 3.3 Flood the
those where we can landscape

update water depth.

End
Fill-Spill-Merge

Figure 5. Flowchart showing the main steps taken by the algorithm.
These steps are described in more detail in Sect. 3.1 to 3.3.

3.1 Move water downhill to pits

We route water in a similar way as standard flow accumu-
lation algorithms (Mark, 1988; Wallis et al., 2009; Barnes,
2017), but for completeness we summarize our approach
here. Flow directions for each cell have already been iden-
tified by the depression hierarchy algorithm. Each cell cal-
culates how many of its neighbors flow into it. We call this
value the cell’s dependency count, as it describes the num-
ber of immediate upstream cells whose flow accumulation
must be resolved before flow accumulation at the given cell
can be computed. Local maxima in the DEM are identified
as those cells that receive no flow from any neighbor. These
local maxima are placed in a queue. Cells are then popped
(i.e., noted while being removed) from this queue. The cells
determine how much flow they generate locally (perhaps re-
ferring to a matrix of rainfall values, but also including ex-
isting stores of standing water) and add this to their flow
accumulation value. They then add their flow accumulation
to their downstream neighbor’s and set their own flow ac-
cumulation value to zero. The neighbor’s dependency count
is then decremented. If the neighbor’s dependency count has
reached zero during this step, it is added to the end of the
queue. This process of accumulating flow, passing it down-
stream, decrementing the dependency count, and adding cells
to the queue continues until the queue is empty, at which
point every cell on the map has been visited and any water
has been moved downslope. Braun and Willett (2013) present
an alternative formulation based on a depth-first traversal,

Earth Surf. Dynam., 9, 105-121, 2021

R. Barnes et al.: Fill-Spill-Merge

but Barnes (2019) demonstrates that a breadth-first ordering,
such as that presented here, is better suited to parallelism.

When the accumulated flow reaches the pit cell of a de-
pression, the downhill-directed flow routing stops because
there is no downhill neighbor to receive the flow. At this
point, all of the flow-accumulated water in the pit cell is
moved into the pit cell’s associated leaf depression in the DH.
That is, the water is moved out of the geographic space and
into the topologic space. This then enables mass-conserving
depression flooding via rapid Fill-Spill-Merge calculations,
as detailed below.

3.2 Overflow and merge depressions

At this point, the Fill-Spill-Merge algorithm has routed all of
the surface water into either the ocean or into the leaf nodes
of the DH. The next step is to redistribute this water through
the DH to nodes with enough volume to contain the water and
to send any excess water to the ocean. This set of operations
can be performed entirely in the depression hierarchy without
reference to the digital elevation model.

Intuitively, the process of filling, spilling, and merging can
be visualized as occurring from leaf nodes to their parents
(Fig. 3). When a leaf depression initially contains more wa-
ter than it can hold, the water will be redistributed by spilling
over into the neighboring depression. If this neighboring de-
pression is already full, then the excess water must pass to the
parent of both the depression and its neighbor. This process
continues recursively until either the supplied water is ex-
hausted or this water reaches the ultimate parent, the ocean.
In this latter case, all excess water is dropped from the model
and the ocean is unaffected.

To effect the intuition developed above, we need a well-
defined way to visit all of the nodes in the depression hierar-
chy. A post-order traversal allows us to visit both of a node’s
children and their descendants before calculating any quanti-
ties on the node itself. The result is that leaves get processed
before their parents. However, a single traversal is insuffi-
cient: we need one traversal (the “outer traversal”) to iden-
tify nodes that have excess water and another traversal (the
“inner traversal”) to distribute this water. The outer traver-
sal may launch the inner traversal many times as it works its
way up the hierarchy. Pseudo-code showing these traversals
is available in Sect. 6.1 and 6.2.

To efficiently redistribute water, the Fill-Spill-Merge al-
gorithm performs nested depth-first traversals of the DH. The
outer traversal (Sect. 6.1) is post-order and considers each
meta-depression in turn, from the most deeply nested to the
least. For each meta-depression, an inner traversal (Sect. 6.2)
handles its overflows by moving water to its sibling (starting
by filling the sibling’s descendants) and, if there is any left,
passing it to the depression’s parent. In this way, the outer
traversal maintains an invariant (a property which is true be-
fore and after each call to a function): any meta-depression it
has processed does not contain an overflow. Put another way,

https://doi.org/10.5194/esurf-9-105-2021

R. Barnes et al.: Fill-Spill-Merge

the outer traversal finds problems and the inner traversal fixes
them.

The outer traversal of the DH (which is, after all, a forest of
binary trees) begins with the ocean. For each depression, the
algorithm first recurses into its oceanlinks, if any, and then
into the left and then right child. In the post-order portion
of the traversal (which starts from the leaves and moves back
up through the depression hierarchy), the algorithm identifies
any depressions containing more water than they can accom-
modate. This process continues until the recursion returns to
the ocean, at which point any additional water is assumed to
be added to the ocean without impacting sea level, though
this total discharge to the sea is recorded within the “ocean”
depression.

When an overfilled depression is located by the outer
traversal above, its water needs to be redistributed to neigh-
boring depressions. If we call the overfilled depression D,
then the water can be redistributed by starting a second in-
ner post-order traversal at D. This inner traversal carries ex-
cess water from one depression to another until it has found
a home for all of it. When we pass water into a depression, it
can go to one of three places: the depression itself, its sibling,
or its parent. Distributing the water to any of these places
may itself cause an overflow. Therefore, the inner (pre-order)
traversal comprises the following steps.

1. Call the depression that we are currently considering
B. This may be the depression we originally consid-
ered, depression D, or it may be some other depression
reached during the steps detailed below. If B is over-
flowing, we add the overflow to the excess water the in-
ner traversal is carrying. If B has spare capacity we add
water from the excess to B until either it fills or all of
the excess water the inner traversal is carrying is used.

2. At this point, the inner traversal can terminate if (i) there
is no water left, (ii) B is the parent of D, or (iii) B was
reached via an oceanlink.

3. Otherwise, if B has a sibling and the sibling’s water vol-
ume is less than its depression volume, then start from
Step 1 with the new B set as the depression pointed to
by the current B’s geolink.

4. Otherwise, if B has no sibling or the sibling’s water vol-
ume is equal to its depression volume, then start from
Step 1 with the new B set as the parent of the current B,
or, if B has no parent, then use the depression to which
B oceanlinks.

The next step of the outer traversal, which begins one level
in the DH closer to the ocean, identifies a less nested meta-
depression for which the inner traversal might need to be
run. If this step were not supplied with information about
prior water redistribution, it could cause the inner traversal
to cover the same nodes repeatedly, which would be com-
putationally wasteful. To prevent this, the inner traversal re-

https://doi.org/10.5194/esurf-9-105-2021

111

turns the ID of the final node in which it placed water: this
node is the only node in the traversal with spare capacity so
future traversals can begin there. Therefore, on subsequent
overflows, if such a cached value is available, then the recur-
sion skips directly to that node. This ensures that all the calls
to this part of the algorithm take no more than O(N) time
collectively.

The following examples use the geometry from Sect. 2
to describe a set of inner traversals, starting with the over-
flowing depression no. 12. Step numbers mirror those above;
numbers in parentheses indicate the number of recursions —
that is, the number of times that the inner-traversal algorithm
has returned to Step 1.

1. Depression no. 12 fills and overflows.

2. Depression no. 12’s water overflows into depression
no. 4, which is not full, following its geolink.

1(rl). Depression no. 4 acts as depression no. 12’s parent
via an oceanlink. The inner traversal terminates.

At this point, the outer traversal moves one level closer to
the ocean, and the inner traversal repeats, this time starting at
depression no. 4.

1. Depression no. 4 fills and overflows.

2. Depression no. 4’s water overflows into its sibling, de-
pression no. 5, which is not full and is a leaf depression.
If depression no. 5 had descendants, water overflowing
from depression no. 4 would have followed a geolink to
one of these.

1(r1). Depression no. 5 fills and overflows.

2(rl). Depression no. 4 is full.

3(rl). Depression no. 5 overflows into its parent, depres-
sion no. 11.

1(r2). Depression no. 11 overflows into the ocean; the in-
ner traversal terminates.

Now the outer traversal moves yet another level closer to the
ocean, and the new inner traversal starts at depression no. 11.

1. Depression no. 11 fills and overflows.
2. Depression no. 11 has no sibling.

3. Depression no. 11 overflows into its parent, the ocean;
all remaining excess water is absorbed into an infinite
sink.

1(r1). The now-selected node is the ocean; the inner
traversal terminates.

At this point, the outer traversal moves one level closer to
the ocean and arrives at the ocean. The outer traversal also
terminates.

Earth Surf. Dynam., 9, 105-121, 2021

112

3.3 Flood the landscape

After water moves through the DH (Sect. 3.2, above), each
node in the DH exists in one of the three following states.

1. Empty. The depression’s water volume is equal to zero.
In this case, nothing needs to be done. The depression’s
descendants might contain water, but the water never
propagates to this level of the DH.

2. Full. The depression’s water volume is equal to the vol-
ume of the depression itself. In this case, the depression
is entirely full. If the depression’s parent contains wa-
ter, then the calculation of water depth is dealt with at
a higher stage in the DH. If the depression’s parent is
empty or if the depression’s parent is the ocean, then
the calculation is performed at this level as described
below.

3. Partially filled. The depression’s water volume is less
than its depression volume. In this case, the depth of
water across the depression and all its descendants’ cells
must be calculated at this level so that the depression
fills to an appropriate level. This is described below and
indicated as the marginal volume in Fig. 2e.

The next step is to distribute this water across the DEM, ap-
propriately flooding geographic depressions.

Given the three states described above, the algorithm lo-
cates the highest-level nodes that contain water. It does so
via a post-order traversal. Each time the traversal reaches a
leaf, the algorithm notes its label and pit cell. After identi-
fying each of these, the algorithm reverses direction, moving
from child to parent so long as the parent node contains wa-
ter. Call the highest water-bearing node within a tree L.

In many cases, the water volume contained within the de-
pression will be less than the total depression volume; there-
fore, we must calculate what the water level in the depression
will be. To do this, we pick an arbitrary pit cell within L and
its descendants and then use this as a seed from which to
start building a priority queue that will traverse the cells of
the depression. The priority queue returns cells ordered from
lowest to highest elevation. At each step through the prior-
ity queue, the algorithm checks whether the cells visited so
far collectively have enough volume to hold the water. If so,
the algorithm exits, having successfully defined the flooded
area. If not, it continues to use the priority queue to traverse
the depression cell by cell. The filling procedure is shown in
pseudo-code in Sect. 6.3.

To expand this brief conceptual discussion into a more for-
mal set of steps, let us begin by calling the active cell — that
is, the one that is currently being considered by the algorithm
— cp. This cell is initially the arbitrary pit mentioned above
and is added to the priority queue. The algorithm marks cp,
which stands for “cell of current highest priority”, as visited,
all other cells remain unvisited. The algorithm then follows
these steps.

Earth Surf. Dynam., 9, 105-121, 2021

R. Barnes et al.: Fill-Spill-Merge

1. Pop ¢, from the priority queue, call it ¢, and use its el-
evation to calculate the volume of water that can be ac-
commodated in the set of cells processed so far (Eq. 3,
below). If this volume is enough to accommodate the
volume of water available, exit the loop and compute
the final water level (Eq. 6, below). Otherwise, proceed
to Step 2.

2. Add ¢ (which was popped in Step 1) to a plain queue,
which records all of the cells scanned so far; these cells
will later be inundated.

3. Add the cells neighboring c that are not marked as vis-
ited to the priority queue if they belong to one of the
descendant depressions of the one being filled. Each of
these neighboring cells is then marked as visited.

4. Choose the lowest-elevation cell in the priority queue,
label it as the new ¢p, and return to Step 1. If the pri-
ority queue is empty, then all cells in the same meta-
depression as ¢, or its descendants have been visited
and we are now guaranteed to have sufficient depression
volume to hold all of the water.

Step 1 in this approach requires an efficient way to de-
termine the volume of a depression below any given eleva-
tion. If we call this elevation z,, and the depression below the
outlet contains N cells with elevations {z1, z2, 23, 24, ...} and
unit cell area, the volume of water that the depression can
accommodate simply equals the sum of the depth of water in
each of its cells:

(Zo—z21)+@o—22)+ (2o —23)+ (2o —24) + ...
=No—z1—22—23— 24— ...,)]

N
=No—) z.)
i=1

Now, consider cells ¢; = c1,...,cy in the plain queue: that
is, those cells that have been visited and popped from the
priority queue. We can calculate the volume of water that
can be accommodated in the depression below the elevation
zs of the last cell ¢y (the sill) as

N N
Vdep,zs =2Zs Zai - ZZiai, 3)
i=1 i=1

where z; is the elevation of cell ¢;, and g; is the area of cell ¢;.
Thus, if we keep running sums while traversing the depres-
sion, it is possible to directly calculate the volume of water
the depression can hold at each point in the traversal.

Once Viep, ;, is greater than or equal to the volume of water
in the depression, Vy,, the plain queue contains all the cells
to be flooded. At this point, the algorithm updates zy,, which
is the water level within this depression. If Vy, = Vyep ,, the
algorithm sets zy, = zy. If instead Vi, < Viep, ., the available

https://doi.org/10.5194/esurf-9-105-2021

R. Barnes et al.: Fill-Spill-Merge

volume in the depression is greater than the water volume,
and the algorithm calculates z, in the depression as follows.

N N

Vo =2w ai—) zd “4)
i=1 i=1
N N

2wy ai =Vt Y ziai ®)
i=1 i=1

N -1 N
iw = (Zai) <Vw+ZZiai) (6)
i=1 i=1

We call Eq. (6) the lake-level equation (LLE). If all cells have
a unit area, this simplifies to

| N
zwzﬁ(Vw+;zi). @)

The conditional usage of the LLE described above is purely
for computational efficiency: if Viy = Viep,z,, its solution is
that zy = zn.

After solving for the water-surface elevation, the algorithm
pops each cell in the plain queue (¢; =cq,...,CcN) corre-
sponding to the flooded region and sets its water elevation
to the computed zy,. This is the final step of the Fill-Spill-
Merge algorithm. At this point, it outputs a file representing
the topography plus water thickness across the domain (i.e.,
topography with depressions filled or partially filled with wa-
ter).

Because Fill-Spill-Merge routes water cell by cell to the
pit cells of depressions and manages an array of water depths,
it can be adapted for use with groundwater models, such as
that described by Fan et al. (2013).

4 Algorithm performance

4.1 Theory

Here we use computational complexity as a means of con-
trasting the expected runtime of our algorithm against pre-
vious algorithms such as FlowFill (Callaghan and Wickert,
2019). To do so, we describe a simple iterative solver sim-
ilar to FlowFill whose goal is to determine an appropriate
water level for a depression. The solver operates on a one-
dimensional domain of cells bounded by high cliffs on either
side in which each cell may have a column of water. At each
step, if the solver finds a discontinuity in water levels be-
tween two cells, it responds by averaging the heights of the
cells” water columns. (The solver we describe is known as
Jacobi’s method.) The challenge we present to this solver is
a direct analog of routing flow along a stretch of river with a
negligible gradient and is very similar to routing flow across
the surface of a lake or ocean.

For our analysis, we imagine that the system is initialized
with a high column of water on the left and no water any-
where else. We call the cell with the water cell 1. We call the

https://doi.org/10.5194/esurf-9-105-2021

113

cells to its right 2, 3, 4, and so on. During the solver’s first
step, cell 1 is initialized. On its second step, cell 1 averages
its height with cell 2. On the third step, cell 2 averages with
cell 3 and cell 1 then averages with cell 2. On the fourth step,
cell 3 averages to 4, 2 averages to 3, and 1 averages with 2.
Thus, the number of cells affected at each step are 1, 2, 3, 4,
and so on. Since there must be at least as many steps as there
are cells, we can say that there are N steps. The total time,
fcompute 18 then

N
fcompute = ;i = w (8)
Thus, for any model (Callaghan and Wickert, 2019; Fan
et al., 2013) that uses a scheme similar to our simple solver,
the time required to solve the model is in O(N 2,

In contrast, the new algorithm runs in O(N log N) time
in the worst case. Moving water downhill (Sect. 3.1) is a
flow accumulation algorithm. This is known to take O(N)
time (Mark, 1988), and efficient variants exist for perform-
ing flow accumulation in parallel on large datasets (Barnes,
2017) and on GPUs (Barnes, 2019), though for simplicity we
do not use these techniques here. Moving water within the
depression hierarchy (Sect. 3.2) requires a depth-first post-
order traversal of the entire hierarchy. This type of traversal
is a foundational algorithm in computer science and takes
O(N) time. Each node in this traversal has the potential to
overflow, which also results in a depth-first traversal, thereby
requiring up to O(N) time. However, by using a jump table
that persists between calls to the overflow function, we en-
sure that it is able to identify the target of the overflow in
amortized constant time; that is, the function is able to skip
over fully filled depressions. Finally, the algorithm floods the
digital elevation model from the pit cells up. This requires a
depth-first post-order traversal, which calls a flooding func-
tion (Sect. 3.3) on select subtrees of the DH. The depth-first
traversal takes O(N) time, as described above. The priority
queue used for flooding nominally takes O(N log N) time in
the worst case for floating-point data and O(/N) time in the
worst case for integer data (Barnes et al., 2014). However,
with specialized data structures the time can be reduced to
O(N) for both floating-point and integer data (Barnes et al.,
2014). Most real datasets consist of many small depressions
whose cell counts Neejis-in-dep are much smaller than the total
number of cells in the digital elevation model. Therefore, the
actual time for this step is O(Ndep Neells-in-dep)> Where Ngep is
the total number of depressions and Ngep Ncells-in-dep Can be
much less than N. Because the worst-case time complexity
of any operation is O(N), this bounds the time of the algo-
rithm as a whole. However, to reduce the potential for bugs,
we use the C++ standard library’s O(N log N) priority queue
in our implementation at the cost of reduced performance.

To put this in more concrete terms, consider a long stretch
of low-gradient river. Such a feature poses a lower bound on
the time of our simple solver. North America’s Red River of

Earth Surf. Dynam., 9, 105-121, 2021

114 R. Barnes et al.: Fill-Spill-Merge

Table 1. Datasets used, their dimensions, and algorithm wall times. Tests were performed on the Comet cluster run by XSEDE (see the main
text for full specifications). Times for Fill-Spill-Merge (FSM time) alone and this time plus the depression hierarchy construction time (total
time) are shown. Topographic data for Madagascar, the US Great Basin, Australia, Africa, and North and South America were clipped from
the GEBCO_08 30 arcsec global combined topographic and bathymetric elevation dataset (GEBCO, 2010). The Minnesota 30 m topobathy
data are the merged result of two data sources. The topography is resampled from the Minnesota Geospatial Information Office’s 1 m lidar
elevation dataset (MNGEO — Minnesota Geospatial Information Office, 2019). Bathymetric data were provided by the Minnesota Department
of Natural Resources (MNDNR — Minnesota Department of Natural Resources, 2014). Richard Lively of the Minnesota Geological Survey
merged and combined these datasets.

Dataset Dimensions Cells FSM time (s) Total time (s)
Madagascar 2000 x 1000 2.0 x 10° 0.1 0.4
US Great Basin 1920 x 2400 4.6 x 10° 0.2 8.7
Australia 5640 x 4200 2.3 x 107 9.1 15.6
Africa 9480 x 9000 8.5 x 107 65.3 118.0
N and S America 18720 x 17400 3.2 x 108 53.2 231.6
Minnesota 30 m topobathy 34742 x 23831 8.2 x 108 307.8 792.6
(b)
2000-
tev02- Algorithm
@1500_ =—o=Both
(0]
E 1000 - DH E 16400 —e— DH
== FSM
500-
1e-02
: :
10 (’)OO 20 (’)OO 30 (I)OO 40 (’)00 X x 2
Side Length 160 ap Length 10000

Figure 6. Performance on synthetic data. The left-hand plot shows the data on linear axes and the right-hand plot on log—log axes. The
number of cells in each dataset is the square of the side length. The lines show N log N fits to each algorithm’s time (R? =~ 0.99 for each).
“DH” shows the performance of the depression hierarchy algorithm, while “FSM” shows that of the Fill-Spill-Merge algorithm; “both”
shows the addition of these two values.

the North runs for 885km with a gradient that is often on
the order of 0.03mkm~!. On a 90 m grid of floating-point
data, the river would be 9833 cells long. Our simple (Ja-
cobi) solver would then take an estimated 97 million time
units to reach a solution, whereas the new solver that we de-
scribe in this paper would take 9833 time units, a speed-up
of 10000 times. Our empirical results, which are presented
below, support both the theory and this expected value.

4.2 Computational performance

We have implemented the algorithm described above in
C++17 using the Geospatial Data Abstraction Library
(GDAL) (GDAL Development Team, 2016) to read and
write data. There are 1003 lines of code, 46 % of which
are or contain comments. The code can be acquired from
https://github.com/r-barnes/Barnes2020-FillSpillMerge (last
access: 6 February 2021) and Zenodo (Barnes and Callaghan,
2020; https://doi.org/10.5281/zenod0.3755142). The code
contains extensive unit and end-to-end tests, which leverage

Earth Surf. Dynam., 9, 105-121, 2021

both deterministic and random testing; the code passes a to-
tal of 214 990 test assertions and achieves 97 % test coverage.
The missed lines flag emergency situations that can only arise
if there is a logic error, so they (in theory) cannot be reached.

Tests were run on the Comet machine of the Ex-
treme Science and Engineering Discovery Environment
(XSEDE) (Towns et al., 2014). Each node of the machine
has 2.5 GHz Intel Xeon E5-2680v3 processors with 24 cores
per node and 128 GB of DDR4 DRAM. Code was compiled
using GNU g++ 7.2.0 with full optimizations enabled.

We ran two sets of scaling tests, one on actual data and
one on synthetic data. On actual data, our scaling tests
cover datasets spanning 3 orders of magnitude in terms of
their number of cells, as shown in Table 1. The R pack-
age GuessCompx (Agenis-Nevers et al., 2019) shows that an
O(N log N) scaling relationship gives the best fit to the data,
which agrees with the theory.

To more precisely demonstrate performance, we run Fill-
Spill-Merge on synthetic landscapes of various sizes gen-
erated using RichDEM’s Perlin noise random terrain gener-

https://doi.org/10.5194/esurf-9-105-2021

R. Barnes et al.: Fill-Spill-Merge

ator (Barnes, 2018). Multiple landscapes are generated and
timed at each size to smooth timing variation due to both the
data and fluctuations in the testing environment. This results
in Fig. 6, which again shows that the performance data give
a good fit to an N log N function.

4.3 Model intercomparison

Given a depression hierarchy data structure, Fill-Spill-
Merge provides an efficient method to route water across
any surface while taking depressions into account. Further-
more, Fill-Spill-Merge can be used to assess which depres-
sions are most important in day-to-day or seasonal changes
to the hydrologic system. For example, small depressions
will become flooded and spill over even with relatively small
amounts of water reaching them, while larger depressions
may not be completely filled. These depressions impact the
hydrologic connectivity of the landscape (Callaghan and
Wickert, 2019). If standing water is retained between invoca-
tions of Fill-Spill-Merge and new water added at each invo-
cation, the algorithm can be used to simulate the movement
of water across landscapes; we will explore this further in
future work.

We have compared Fill-Spill-Merge with a prior algo-
rithm, FlowFill, at the same two sites used by Callaghan and
Wickert (2019): a reach of the Sangamon River in Illinois
(Fig. 7) and the Rio Toro basin in Argentina (Fig. 8). Like
Fill-Spill-Merge, FlowFill can be used to route water across
a landscape while preserving real depressions, but the latter
algorithm is significantly slower (Table 2). The two selected
study sites provide very different landscapes for testing the
performance of the algorithm. The Sangamon River site is
located in Illinois, USA, at 39.97° N, 88.72° W. It is a low-
relief, post-glacial landscape containing many closed depres-
sions, which may impact hydrologic connectivity as a func-
tion of runoff (Lai and Anders, 2018). It furthermore con-
tains a grid of roads and associated embankments whose ele-
vations are significant when compared to regional relief and
impact water flow paths and storage. Callaghan and Wick-
ert (2019) resampled the 0.76 m resolution lidar DEM (Illi-
nois Geospatial Data Clearinghouse, 2020) to 15 m resolu-
tion for analysis and manually removed several road bridges
using GRASS GIS (Neteler et al., 2012) to prevent artifi-
cial pooling behind these; here we use the same modified
DEM to enable a direct comparison between the algorithms.
The Rio Toro site is located mainly in Salta Province, Ar-
gentina, around 24.5°S, 65.8° W. This site exhibits more
rugged fluvially sculpted topography (Hilley and Strecker,
2005). Callaghan and Wickert (2019) resampled the 12m
TanDEM-X DEM of this region (Krieger et al., 2013; Riz-
zoli et al., 2017) to 120 m resolution. Here we use this same
resampled DEM for comparison. The runoff depths used at
each of the two study sites were selected to show a range
of water levels present in the depressions. The depths shown

https://doi.org/10.5194/esurf-9-105-2021

115

were therefore scaled based on the amount of water required
to completely fill depressions in the landscape.

As shown in Table 2, wall times using Fill-Spill-Merge
ranged from 0.227 to 0.243 s for the Sangamon River site
and 0.300 to 0.319s for the Rio Toro site. This compares
with times ranging from 20 to 643 s and 31 to 155s, respec-
tively, for FlowFill. These times for both sites correspond
to a reduction in wall time of 86-2645 times using FSM.
Since FlowFill was run with 24 processors, this translates to
a reduction in compute time of 2064—63 480 times. Consid-
ering that each of these example DEMs is quite small relative
to modern full-resolution lidar-derived elevation datasets or
continental-scale 30 m DEMs (Table 1), this speed-up and its
associated O(N log N) scaling provide a significant advan-
tage for topographic analysis and solving associated prob-
lems in hydrology and geomorphology.

Although both FlowFill and Fill-Spill-Merge route wa-
ter downslope, flooding depressions based on the quantity of
available water, our FSM results differ in some ways from
those of FlowFill (Callaghan and Wickert, 2019). In both
Figs. 7 and 8, Fill-Spill-Merge flooded some depressions
more deeply than FlowFill did and flooded some depressions
with less water. At both study sites, the differences between
the two algorithms are minimized at the extreme high and
extreme low starting runoff values. For the highest runoff
values, this is because both algorithms successfully fill all de-
pressions in the landscape so that no differences are possible.
For the lowest runoff values, both algorithms simulate only a
small amount of water filling any depression so that signifi-
cant differences between the two algorithms are not possible.
The biggest differences are therefore seen for moderate start-
ing runoff values, when depressions contain substantial water
volumes but are still only partially filled. One possible cause
of these discrepancies is FlowFill’s asymptotic approach to
an equilibrium water level, which may prevent small vol-
umes of water from reaching the depression to which they
belong. On the other hand, depressions with a narrow outlet
could be especially prone to being overfilled by FlowFill be-
cause its cell-by-cell algorithm could dynamically dam this
outlet, routing additional water into the depression. Both of
these possibilities are further linked to the fact that FlowFill
dynamically evolves a land-plus-water flow-routing surface,
whereas Fill-Spill-Merge routes flow just over the land sur-
face. These differences make FlowFill more useful for un-
derstanding temporal changes in surface water distribution,
while Fill-Spill-Merge provides a more accurate snapshot
of surface hydrology under equilibrium conditions.

5 Conclusions
Here we leverage the depression hierarchy data struc-
ture (Barnes et al., 2020) to route flow through surface de-

pressions in a realistic yet efficient manner. In comparison to
previous approaches, such as Jacobi iteration, the new algo-

Earth Surf. Dynam., 9, 105-121, 2021

116 R. Barnes et al.: Fill-Spill-Merge

- . . 1073
—10-3
—10-2
2 km
— -10-1

Figure 7. The difference between results of Fill-Spill-Merge and FlowFill at the Sangamon River site. The values for panels (a) to (e)
indicate the depth of uniform runoff applied across the landscape for both algorithms. For example, in (a), each cell across the domain starts
with 0.001 m of surface water. Orange to yellow indicates locations where Fill-Spill-Merge had more water, and purple to blue indicates
locations where FlowFill had more water. Differences of less than 3 mm have been masked out. Differences are generally small and are likely
a result of the iterative nature of the FlowFill algorithm, which causes it to asymptotically approach the correct values. In some locations,
Fill-Spill-Merge retains slightly more water in depressions than FlowFill does. This could be due to water that has not yet finished moving
downslope and into these depressions in the FlowFill algorithm. In other locations, FlowFill has retained more water. One possible reason
for this is that some depressions have a narrow outlet through which Fill-Spill-Merge is able to move all water as appropriate, but the
cell-by-cell movement of water with FlowFill can produce transient dams that reroute additional water towards these subcatchments. This
DEM was prepared by Lai and Anders (2018) and Callaghan and Wickert (2019) from lidar topographic data provided by the Illinois State
Geological Survey (Illinois Geospatial Data Clearinghouse, 2020).

=
o
|

s

Fill-Spill-Merge minus FlowFill [m]

Table 2. Time comparison of Fill-Spill-Merge vs. FlowFill. Wall times are in seconds comparing FlowFill (Callaghan and Wickert, 2019)
parallelized across 24 cores versus Fill-Spill-Merge on a single core; “speed-up” is a multiplicative factor. Using FlowFill, wall times
increased with the depth of applied runoff and on flatter landscapes. Using FSM, wall time is independent of the depth of applied runoff
and ruggedness of the landscape, but it increases for larger domains. FSM’s wall times were 86—2645 times faster than FlowFill for these
examples; compute times were 2064—63 480 times faster.

Sangamon | Rio Toro
Runoff depth FlowFill FSM Speed-up | FlowFill FSM Speed-up
(m) (®) () (x) (s (s (x)
15 642.65 0.243 2645 15470 0.317 488
10 626.59 0.241 2600 124.37 0.309 402
5 570.02 0.241 2365 93.56 0.300 312
1 47233 0.241 1960 53.09 0.316 168
0.2 508.87 0.235 2165 38.30 0.316 121
0.1 464.15 0.230 2018 3575 0.301 119
0.05 418.71 0.243 1723 33.62 0.316 106
0.01 200.81 0.227 885 32.06 0.315 102
0.001 20.12 0.235 86 30.99 0.319 97

Earth Surf. Dynam., 9, 105121, 2021 https://doi.org/10.5194/esurf-9-105-2021

R. Barnes et al.: Fill-Spill-Merge 117

Fill-Spill-Merge minus FlowFill [m]

Figure 8. The difference between results of Fill-Spill-Merge and FlowFill at the Rio Toro site. The values for panels (a) to (e) indicate
the depth of uniform runoff applied across the landscape for both algorithms. For example, in (a), each cell across the domain starts with
0.1 m of surface water. Orange to yellow indicates locations where Fill-Spill-Merge had more water, and purple to blue indicates locations
where FlowFill had more water. Differences of less than 3 mm have been masked out. In panel (e), 15 m of water was enough to fill all
depressions with both algorithms, so there are no differences between the two. The most significant difference is seen in panel (c), where
FlowFill retained additional water in a large depression. This is likely due to transient damming of its narrow inlet in FlowFill’s cell-by-cell
method of moving water, which may have prevented the full volume of water from leaving the depression. This DEM was generated with
data acquired from the TanDEM-X mission (Krieger et al., 2013; Rizzoli et al., 2017).

rithm runs in log-linear time in the input size and is accom-
panied by extensively commented source code. This com-
putationally efficient algorithm may help us to better under-
stand hydrologic connectivity and water storage across the
land surface, and it is an important step forwards in recog-
nizing the importance of depressions as real-world features
in digital elevation models.

https://doi.org/10.5194/esurf-9-105-2021 Earth Surf. Dynam., 9, 105-121, 2021

118
6 Pseudo-code
6.1 MoveWaterInDepHier

: function MoveWaterInDepHier(root, DH, JumpTable)

: Let root be the ID of the depression we are currently

considering

3: Let DH be a depression hierarchy

® N w &

=l

11:
12:
13:

15:
16:
17:
18:

19:
20:
21:
22:
23:
24:

25:

: Let JumpTable be a hash table mapping DH labels to DH

labels

: > For “children" of leaves
: if roor=NOVALUE then return

: > The traversal
. for each ocean-linked child ¢ of root do

Call MoveWaterInDepHier(c, DH, JumpTable)
end for
Call MoveWaterInDepHier(c.left_child, DH, JumpT-
able)

: Call MoveWaterInDepHier(c.right_child, DH, JumpT-

able)
if root=0CEAN then return

if root has children and both their depression volumes
equal their water volumes and root’s water volume is
zero then
root.water_vol += root.left_child.water_vol
root.water_vol += root.right_child.water_vol
end if

if root.water_vol>root.dep_vol then
Call OverflowInto(root, root.parent, DH, JumpTable,
0)

end if

6.2 OverflowInto

8:

9:
10:
11:
: end if

23:

> If depression is too full, get its excess so we can find a
home for it
if root.water_vol>root.dep_vol then
ExtraWater += root.water_vol - root.dep_vol
root.water_vol = root.dep_vol

. if root=StopNode or root=OCEAN then

root.water_vol += ExtraWater
return root

: end if

: > Ist place to stash water: in this depression
. if root.water_vol<root.dep_vol then

Let C=root.dep_vol - root.water_vol
if ExtraWater< C then
root.water_vol = root.water_vol+ExtraWater
ExtraWater =0
else
root.water_vol = root.dep_vol
ExtraWater -= C
end if

: end if

. if ExtraWater=0 then

return root
: end if
. if rooreJumpTable then
return JumpTable(root) = Overflow-

Into(JumpTable(root), StopNode, DH, JumpTable,
ExtraWater)

Earth Surf. Dynam., 9, 105-121, 2021

37:
38:
39:
40:

52:
53:
54:
55:
56:
57:

R. Barnes et al.: Fill-Spill-Merge

end if

> 2nd place to stash water: in the depression’s sibling
if root.sib#ZNOVALUE then
if root.sib.water_vol<root.sib.dep_vol then

return JumpTable(root) = Overflow-
Into(root.geolink, StopNode, DH, JumpTable,
ExtraWater)

else if root.sib.water_vol>root.sib.dep_vol then
e=root.sib.water_vol-root.sib.dep_vol
ExtraWater += e
root.sib.water_vol = root.sib.dep_vol

end if

: end if

: > 3rd place to stash water: in the depression’s parent
. if root.parent.water_vol=0 and root is not oceanlinked

to root.parent then

root.parent.water_vol += root.water_vol

if root.sib#ZNOVALUE then

root.parent.water_vol += root.sib.water_vol

end if
end if
return JumpTable(root) = OverflowInto(root.parent,
StopNode, DH, JumpTable, ExtraWater)

6.3 FillDepressions

1:

function FillDepressions(PitCell, OutCell, DepLabels,
WaterVol, dem, labels, wtd)

S v ® 3

13:
14:
15:
16:
17:

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

32:
33:
34:

: Let PitCell be the cell to start filling from
: Let OutCell be the outlet/spill cell
: Let DepLabels be the labels contained within the

metadepression we are trying to fill

: Let WaterVol be the amount of water that needs to be

spread throughout the depression

: Let dem be the topography.

: Let labels be the labels from the depression hierarchy

: Let wtd be the depth of water in each cell.

: Let visited be a hash set of cell IDs

: Let PQ be a priority queue sorted by increasing elevation

. Let affected be a plain queue
12:

Let 7, be the total elevation; initially O

if WaterVol=0 then return

Place PitCell into PQ and mark it visited
while PQ is not empty do

Let c=pop(PQ)
Let V = |affected| - c.elev — T,

if WaterVol< V then
Wi = (WaterVol + T,)/ |affected|
Set wrd for all cells in affected to Wy,
return

end if

if ¢ # OutCell then
Place ¢ into affected
T, +=c.elev
end if
Add all of ¢’s neighbors that belong to depressions in
DepLabels and are not the outlet cell to PQ and mark
them visited
if PQ is empty then
Add OutCell to PQ and mark it visited
end if

35: end while

https://doi.org/10.5194/esurf-9-105-2021

R. Barnes et al.: Fill-Spill-Merge

Code availability. Complete, well-commented source code, an
associated makefile, and correctness tests are available from
https://github.com/r-barnes/Barnes2020-FillSpillMerge (last ac-
cess: 12 February 2021) and Zenodo (Barnes and Callaghan, 2020).

Author contributions. KLC and ADW conceived the problem.
RB conceived the algorithm and developed initial implementations.
KC and RB completed, debugged, and tested the algorithm. All au-
thors contributed to the preparation of the paper.

Competing interests. The authors declare that they have no con-
flict of interest.

Acknowledgements. Richard Barnes was supported by the De-
partment of Energy’s Computational Science Graduate Fellowship
(grant no. DE-FG02-97ER25308) and, through the Berkeley In-
stitute for Data Science’s PhD Fellowship, by the Gordon and
Betty Moore Foundation (grant GBMF3834) as well as by the Al-
fred P. Sloan Foundation (grant 2013-10-27).

Kerry L. Callaghan was supported by the National Science Foun-
dation under grant no. EAR-1903606, the University of Minnesota
Department of Earth Sciences Junior F Hayden Fellowship, the Uni-
versity of Minnesota Department of Earth Sciences H.E. Wright
Footsteps Award, and start-up funds awarded to Andrew Wickert
by the University of Minnesota.

Empirical tests and results were performed on XSEDE’s Comet
supercomputer (Towns et al., 2014), which is supported by the Na-
tional Science Foundation (grant no. ACI-1053575). Portability and
debugging tests were performed on the Mesabi machine at the Min-
nesota Supercomputing Institute (MSI) at the University of Min-
nesota (http://www.msi.umn.edu last access: 6 February 2021).

The Deutsches Zentrum fiir Luft- und Raumfahrt (DLR) pro-
vided 12 m TanDEM-X DEM coverage of the Rio Toro catchment
via proposal DEM_GEOL1915 awarded to Taylor Schildgen, An-
drew Wickert, Stefanie Tofelde, and Mitch D’ Arcy. Jingtao Lai and
Alison Anders provided a copy of their Sangamon River DEM.

This collaboration resulted from a serendipitous meeting at the
Community Surface Dynamics Modeling System (CSDMS) annual
meeting, which RB attended on a CSDMS travel grant.

Financial support. This research has been supported by the
U.S. Department of Energy—Krell Institute (grant no. DE-FGO02-
97ER25308), the National Science Foundation Office of Advanced
Cyberinfrastructure (grant no. ACI-1053575), the Gordon and Betty
Moore Foundation (grant no. GBMF3834), the Alfred P. Sloan
Foundation (grant no. 2013-10-27), and the National Science Foun-
dation Division of Earth Sciences (grant no. EAR-1903606).

Review statement. This paper was edited by Wolfgang Schwang-
hart and reviewed by Daniel Hobley and one anonymous referee.

https://doi.org/10.5194/esurf-9-105-2021

119

References

Agenis-Nevers, M., Bokde, N. D., Yaseen, Z. M., and Shende, M.:
GuessCompx: An empirical complexity estimation in R, arXiv
[preprint], arXiv:1911.01420v1, 2019.

Arnold, N.: A new approach for dealing with depressions
in digital elevation models when calculating flow ac-
cumulation values, Prog. Phys. Geogr., 34, 781-809,
https://doi.org/10.1177/0309133310384542, 2010.

Barnes, R.: Parallel non-divergent flow accumulation
for trillion cell digital elevation models on desktops
or clusters, Environ. Modell. Softw., 92, 202-212,
https://doi.org/10.1016/j.envsoft.2017.02.022, 2017.

Barnes, R.: r-barnes/richdem: Zenodo DOI Release, Software, Zen-
odo, https://doi.org/10.5281/zenodo.1295618, 2018.

Barnes, R.: Accelerating a fluvial incision and landscape evo-
lution model with parallelism, Geomorphology, 330, 28-39,
https://doi.org/10.1016/j.geomorph.2019.01.002, 2019.

Barnes, R. and Callaghan, K.: Depression Hierarchy Source Code,
Zenodo, https://doi.org/10.5281/zenodo.3238558, 2019.

Barnes, R. and Callaghan, K.: Fill-Spill-Merge Source Code, Zen-
odo, https://doi.org/10.5281/zenodo.3755142, 2020.

Barnes, R., Lehman, C., and Mulla, D.: Priority-flood: An
optimal depression-filling and watershed-labeling algorithm
for digital elevation models, Comput. Geosci., 62, 117-127,
https://doi.org/10.1016/j.cage0.2013.04.024, 2014.

Barnes, R., Callaghan, K. L., and Wickert, A. D.: Computing wa-
ter flow through complex landscapes — Part 2: Finding hier-
archies in depressions and morphological segmentations, Earth
Surf. Dynam., 8, 431445, https://doi.org/10.5194/esurf-8-431-
2020, 2020.

Beucher, S.: Watershed, Hierarchical Segmentation and Waterfall
Algorithm, in: Mathematical Morphology and Its Applications
to Image Processing, edited by: Viergever, M. A., Serra, J.,
and Soille, P., Springer Netherlands, Dordrecht, vol. 2, 69-76,
https://doi.org/10.1007/978-94-011-1040-2_10, 1994.

Braun, J. and Willett, S. D.: A very efficient O(n), implicit and
parallel method to solve the stream power equation governing
fluvial incision and landscape evolution, Geomorphology, 180—
181, 170-179, https://doi.org/10.1016/j.geomorph.2012.10.008,
2013.

Breckenridge, A. and Johnson, T. C.: Paleohydrology of
the upper Laurentian Great Lakes from the late glacial
to early Holocene, Quaternary Res., 71, 397-408,
https://doi.org/10.1016/j.yqres.2009.01.003, 2009.

Cabrol, N. A. and Grin, E. A.: Distribution, classification, and ages
of Martian impact crater lakes, Icarus, 142, 160-172, 1999.

Callaghan, K. L. and Wickert, A. D.: Computing water flow
through complex landscapes — Part 1: Incorporating depressions
in flow routing using FlowFill, Earth Surf. Dynam., 7, 737-753,
https://doi.org/10.5194/esurf-7-737-2019, 2019.

Cordonnier, G., Bovy, B., and Braun, J.: A versatile, linear complex-
ity algorithm for flow routing in topographies with depressions,
Earth Surf. Dynam., 7, 549-562, https://doi.org/10.5194/esurf-7-
549-2019, 2019.

Fan, Y, Li, H., and Miguez-Macho, G.: Global Patterns
of Groundwater Table Depth, Science, 339, 940-943,
https://doi.org/10.1126/science.1229881, 2013.

Earth Surf. Dynam., 9, 105-121, 2021

120

Fenner, T. 1. and Loizou, G.: Loop-free
for Traversing Binary Trees, BIT, 24,
https://doi.org/10.1007/BF01934513, 1984.

GDAL Development Team: GDAL — Geospatial Data Abstraction
Library, Open Source Geospatial Foundation, available at: http:
/Iwww.gdal.org (last access: 6 February 2021), 2016.

GEBCO: General Bathymetric Chart of the Oceans (GEBCO),
GEBCO_08 grid, version 20100927, http://www.gebco.net (last
access: 6 February 2021), 2010.

Hilley, G. E. and Strecker, M. R.: Processes of oscillatory basin
filling and excavation in a tectonically active orogen: Quebrada
del Toro Basin, NW Argentina, GSA Bulletin, 117, 887-901,
https://doi.org/10.1130/B25602.1, 2005.

[llinois Geospatial Data Clearinghouse: [llinois
Height Modernization (ILHMP), available at:
https://clearinghouse.isgs.illinois.edu/data/elevation/
illinois-height-modernization-ilhmp-lidar-data (last access:
6 February 2021), 2020.

Jenson, S. and Domingue, J.: Extracting Topographic Structure
from Digital Elevation Data for Geographic Information Sys-
tem Analysis, Photogrammetric Engineering and Remote Sens-
ing, 54, 1-5, 1988.

Krieger, G., Zink, M., Bachmann, M., Brautigam, B., Schulze, D.,
Martone, M., Rizzoli, P., Steinbrecher, U., Walter Antony, J., De
Zan, F., Hajnsek, 1., Papathanassiou, K., Kugler, F., Rodriguez
Cassola, M., Younis, M., Baumgartner, S., Lépez-Dekker, P.,
Prats, P., and Moreira, A.: TanDEM-X: A radar interferometer
with two formation-flying satellites, Acta Astronautica, 89, 83—
98, 2013.

Lai, J. and Anders, A. M.: Modeled Postglacial Landscape Evolu-
tion at the Southern Margin of the Laurentide Ice Sheet: Hydro-
logical Connection of Uplands Controls the Pace and Style of
Fluvial Network Expansion, J. Geophys. Res.-Earth, 123, 967—
984, https://doi.org/10.1029/2017JF004509, 2018.

Li, S., MacMillan, R., Lobb, D. A., McConkey, B. G., Moulin,
A., and Fraser, W. R.: Lidar DEM error analyses and topo-
graphic depression identification in a hummocky landscape in
the prairie region of Canada, Geomorphology, 129, 263-275,
https://doi.org/10.1016/j.geomorph.2011.02.020, 2011.

Lindsay, J. and Creed, I.: Removal of artifact depressions from dig-
ital elevation models: towards a minimum impact approach, Hy-
drol. Process., 19, 3113-3126, https://doi.org/10.1002/hyp.5835,
2005a.

Lindsay, J. B.: Efficient hybrid breaching-filling sink re-
moval methods for flow path enforcement in digital el-
evation models: Efficient Hybrid Sink Removal Methods
for Flow Path Enforcement, Hydrol. Process., 30, 846-857,
https://doi.org/10.1002/hyp.10648, 2016.

Lindsay, J. B. and Creed, I. F.: Removal of artifact de-
pressions from digital elevation models: Towards a min-
imum impact approach, Hydrol. Process., 19, 3113-3126,
https://doi.org/10.1002/hyp.5835, 2005b.

Mark, D.: Modelling in Geomorphological Systems, chap. Net-
work models in geomorphology, John Wiley & Sons, Las Vegas,
Nevada, 73-97, 1988.

Martz, L. W. and Garbrecht, J.: The treatment of flat
areas and depressions in automated drainage analy-
sis of raster digital elevation models, Hydrol. Pro-

Algorithms
33-44,

Earth Surf. Dynam., 9, 105-121, 2021

R. Barnes et al.: Fill-Spill-Merge

cess., 12, 843-855, https://doi.org/10.1002/(SICI)1099-
1085(199805)12:6<843::AID-HYP658>3.0.CO;2-R, 1998.

Martz, L. W. and de Jong, E.: CATCH: A FORTRAN program
for measuring catchment area from digital elevation models,
Comput. Geosci., 14, 627-640, https://doi.org/10.1016/0098-
3004(88)90018-0, 1988.

MNDNR - Minnesota Department of Natural Resources: Lake
Bathymetric Outlines, Contours, Vegetation, and DEM, available
at: https://gisdata.mn.gov/dataset/water-lake-bathymetry (last
access: 6 February 2021), 2014.

MNGEO - Minnesota Geospatial Information Office: LiDAR Ele-
vation Data for Minnesota, available at: http://www.mngeo.state.
mn.us/chouse/elevation/lidar.html (last access: 6 February 2021),
2019.

Neteler, M., Bowman, M. H., Landa, M., and Metz, M.: GRASS
GIS: A multi-purpose open source GIS, Environ. Modell. Softw.,
31, 124-130, https://doi.org/10.1016/j.envsoft.2011.11.014,
2012.

O’Callaghan, J. and Mark, D.: The extraction of drainage networks
from digital elevation data, Comput. Vision Graph., 28, 323-344,
https://doi.org/10.1016/S0734-189X(84)80011-0, 1984.

Reheis, M.: Highest Pluvial-Lake Shorelines and Pleistocene Cli-
mate of the Western Great Basin, Quaternary Res., 52, 196205,
https://doi.org/10.1006/qres.1999.2064, 1999.

Riddick, T., Brovkin, V., Hagemann, S., and Mikolajewicz, U.:
Dynamic hydrological discharge modelling for coupled cli-
mate model simulations of the last glacial cycle: the MPI-
DynamicHD model version 3.0, Geosci. Model Dev., 11, 4291—
4316, https://doi.org/10.5194/gmd-11-4291-2018, 2018.

Rizzoli, P., Martone, M., Gonzalez, C., Wecklich, C., Tridon, D. B.,
Briutigam, B., Bachmann, M., Schulze, D., Fritz, T., Huber,
M., et al.: Generation and performance assessment of the global
TanDEM-X digital elevation model, ISPRS J. Photogramm., 132,
119-139, 2017.

Salembier, P. and Pardas, M.: Hierarchical morphological segmen-
tation for image sequence coding, IEEE T. Image Process., 3,
639-651, https://doi.org/10.1109/83.334980, 1994.

Schwanghart, W. and Scherler, D.: Bumps in river pro-
files: uncertainty assessment and smoothing using quan-
tile regression techniques, Earth Surf. Dynam., 5, 821-839,
https://doi.org/10.5194/esurf-5-821-2017, 2017.

Sedgewick, R. and Wayne, K.: Algorithms, Addison-Wesley,
Boston, USA, 4 edn., 2011.

Skiena, S. S.: The Algorithm Design Manual, Springer, New York,
USA, 2008.

Soille, P.: Optimal removal of spurious pits in grid dig-
ital elevation models, Water Resour. Res., 40, 1-9,
https://doi.org/10.1029/2004WR003060, 2004.

Soille, P., Vogt, J., and Colombo, R.: Carving and adaptive drainage
enforcement of grid digital elevation models, Water Resour. Res.,
39, 1366, https://doi.org/10.1029/2002WR001879, 2003.

Towns, J., Cockerill, T., Dahan, M., Foster, 1., Gaither, K.,
Grimshaw, A., Hazlewood, V., Lathrop, S., Lifka, D., Peterson,
G. D., Roskies, R., Scott, J. R., and Wilkins-Diehr, N.: XSEDE:
accelerating scientific discovery, Comput. Sci. Eng., 16, 62-74,
2014.

Wallis, C., Watson, D., Tarboton, D., and Wallace, R.: Parallel flow-
direction and contributing area calculation for hydrology analysis
in digital elevation models, in: Preceedings of the 2009 Interna-

https://doi.org/10.5194/esurf-9-105-2021

R. Barnes et al.: Fill-Spill-Merge

tional Conference on Parallel and Distributed Processing Tech-
niques and Applications, Las Vegas, Nevada, available at: https://
digitalcommons.usu.edu/cee_facpub/2533/ (last access: 6 Febru-
ary 2021), 2009.

Wickert, A. D.: Reconstruction of North American drainage basins
and river discharge since the Last Glacial Maximum, Earth Surf.
Dynam., 4, 831-869, https://doi.org/10.5194/esurf-4-831-2016,
2016.

Wu, Q. and Lane, C. R.: Delineation and quantification of wetland
depressions in the Prairie Pothole Region of North Dakota, Wet-
lands, 36, 215-227, 2016.

https://doi.org/10.5194/esurf-9-105-2021

121

Wu, Q., Liu, H., Wang, S., Yu, B., Beck, R., and Hinkel, K.: A
localized contour tree method for deriving geometric and topo-
logical properties of complex surface depressions based on high-
resolution topographical data, Int. J. Geogr. Inf. Sci., 29, 2041-
2060, https://doi.org/10.1080/13658816.2015.1038719, 2015.

Wu, Q., Lane, C. R., Wang, L., Vanderhoof, M. K., Christensen,
J. R, and Liu, H.: Efficient Delineation of Nested Depression
Hierarchy in Digital Elevation Models for Hydrological Analysis
Using Level-Set Method, J. Am. Water Resour. As., 55, 354-368,
https://doi.org/10.1111/1752-1688.12689, 2018.

Earth Surf. Dynam., 9, 105-121, 2021

