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Abstract. Depressions – inwardly draining regions – are common to many landscapes. When there is sufficient

moisture, depressions take the form of lakes and wetlands; otherwise, they may be dry. Hydrological flow models

used in geomorphology, hydrology, planetary science, soil and water conservation, and other fields often elim-

inate depressions through filling or breaching; however, this can produce unrealistic results. Models that retain

depressions, on the other hand, are often undesirably expensive to run. In previous work we began to address this

by developing a depression hierarchy data structure to capture the full topographic complexity of depressions in

a region. Here, we extend this work by presenting the Fill–Spill–Merge algorithm that utilizes our depression

hierarchy data structure to rapidly process and distribute runoff. Runoff fills depressions, which then overflow

and spill into their neighbors. If both a depression and its neighbor fill, they merge. We provide a detailed ex-

planation of the algorithm and results from two sample study areas. In these case studies, the algorithm runs

90–2600 times faster (with a reduction in compute time of 2000–63 000 times) than the commonly used Jacobi

iteration and produces a more accurate output. Complete, well-commented, open-source code with 97 % test

coverage is available on GitHub and Zenodo.

1 Introduction

Depressions (see Lindsay, 2016, for a typology) are inwardly

draining regions of a digital elevation model (DEM) that

lack any outlet to an ocean or other designated base ele-

vation. Depressions occur naturally and can be formed by

glacial erosion and/or deposition (Breckenridge and Johnson,

2009), compressional and/or extensional tectonics (Reheis,

1999; Hilley and Strecker, 2005), and cratering (Cabrol and

Grin, 1999). They often host lakes and wetlands by retaining

water locally. Depressions may themselves contain depres-

sions. Such regions confound algorithms for geomorpholog-

ical and terrain analysis, as well as those for hydrological

modeling, because many such algorithms simply route water

down topographic slope following the local gradient: depres-

sions neither fill with water nor drain.

Many hydrological models deal with the complexity of

depressions by removing them. This can be done by filling

the depressions with earth so that they form a flat region

of landscape (e.g., Jenson and Domingue, 1988; Martz and

de Jong, 1988), breaching (Martz and Garbrecht, 1998) or

carving them (Soille et al., 2003) so that water flows from

their lowest point through the carved channel and onward to

downstream regions, or some combination of these (Lindsay

and Creed, 2005b; Schwanghart and Scherler, 2017; Soille,

2004; Lindsay, 2016). This approach is justified for situ-

ations in which spatiotemporal aspects of the analysis al-

low depressions to be ignored or for cases in which all de-
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106 R. Barnes et al.: Fill–Spill–Merge

Figure 1. A single subtree of a depression hierarchy and the depres-

sion it represents. Depressions 1–4 are leaf depressions. Depression

6 is a parent depression (also termed a meta-depression) that con-

tains depressions 1 and 2. Water from the plateau on the left above

cells A and B might fill depression 1 (cell C), causing it to spill into

depression 2 (cell E). Only when both depressions are full do they

merge and begin filling depression 6 (cells C, D, and E). Modified

from Barnes et al. (2020).

pressions can be considered to be data errors (Lindsay and

Creed, 2005a). Historically, many DEMs were constructed

from sparse data, and small data errors produced depressions,

especially in flat areas (O’Callaghan and Mark, 1984). Such

an assumption is no longer justified, as improved and increas-

ingly high-resolution data have become available (Li et al.,

2011). Even coarse-resolution data are capable of resolving

real-world depressions (e.g., Riddick et al., 2018; Wickert,

2016). With this in mind, new approaches are beginning to be

examined, particularly in post-glacial landscapes where de-

pressions have a significant impact on local hydrology (e.g.,

Lai and Anders, 2018) and therefore cannot be ignored dur-

ing modeling.

FlowFill (Callaghan and Wickert, 2019) began to com-

bat this problem by routing water across landscapes in a

way that conserved water volume, creating flow-routing sur-

faces that could still contain real depressions. Under reason-

able runoff conditions, the results show landscapes that still

contain depressions and disrupted flow routes. The FlowFill

method iteratively routes water from higher to lower terrain.

As depressions fill, they pose an extreme challenge to such

a method: since water seeks a level surface, the surface of a

filled depression must eventually become flat and any fluid

flowing onto the surface diffuses across it. Even for moder-

ately sized surfaces it can take many iterations for a solver

to reach steady state; we provide a theoretical analysis of

this in Sect. 4.1. Runtimes for FlowFill ranged from sec-

onds to days: large datasets quickly became unwieldy. Of

those examples tested by Callaghan and Wickert (2019), the

slowest was a dataset of 4 176 000 cells, which took approx-

imately 33 h for FlowFill to process. In contrast, the Fill–

Spill–Merge algorithm presented here fills a similarly sized

dataset in 8.7 s.

Other authors have considered the problems of extract-

ing nested depression hierarchies and dynamically routing

water through them. However, these previous approaches

Figure 2. Terminology for the depression hierarchy and water flow

through it. The depression hierarchy shown here is drawn from

the left-hand side of Fig. 1 from the companion paper by Barnes

et al. (2020). (a) Topology. A parent and its descendants are asso-

ciated with depressions (b–d). Direct descendants are called chil-

dren. Leaves are the terminal members of the depression hierar-

chy; they have no children and represent simple depressions (i.e.,

those that are not meta-depressions). Members of a single binary

tree are joined in their hierarchy through links; directional links that

represent water-spillover directions between geospatially adjacent

depressions are called geolinks. Flow from one binary tree into an-

other and towards the ocean follows the oceanlinks. Though only

one binary tree is shown, the ocean may be the parent to an arbi-

trarily large forest of binary trees. (b) Parents in the hierarchy form

meta-depressions – depressions that encompass other depressions.

(c) These meta-depressions contain leaf depressions – depressions

that themselves contain no depressions. These are associated with

leaves in the depression hierarchy. Meta-depression 12 also contains

another meta-depression, 10. The regions of depressions 11 and 12

that lie above their child depressions are termed “marginal depres-

sions”. (d) Meta-depression 10 contains leaf depressions 1 and 2.

(e) Using the depression hierarchy to simulate water flow. Water

first fills leaf depressions before flooding into neighboring depres-

sions. Once a depression and its neighbor are completely filled, their

parent begins to flood. The depression volume is the full geometric

volume of the depression. The water volume, naturally, is the vol-

ume of water within a given depression. The marginal volume is the

volume of water partially filling the top-level meta-depression; ap-

propriately spreading this water across the landscape is the topic of

Sect. 3.3.
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are slow, inexact, or both; additionally, most previous ef-

forts were not accompanied by source code, limiting their

utility. Barnes et al. (2020) provide a more thorough lit-

erature review, which we briefly recap here. A hierarchi-

cal segmentation by Beucher (1994) did not produce a data

structure on which flow could be routed. Salembier and Par-

das (1994) generated a hierarchical segmentation by repeat-

edly simplifying source images; hydrologically speaking,

this can lead to unacceptable degradation of terrain informa-

tion. Arnold (2010) developed an algorithm similar to the one

here but without source code; the algorithm also generates

looping topologies that require correction. Wu et al. (2015)

and Wu and Lane (2016) constructed depression hierarchies

by first smoothing a DEM and then extracting vector con-

tour lines from it. Wu et al. (2018) built on this approach

by discretizing the DEM into a number of horizontal slices.

Both approaches sacrifice exactness and the latter requires

O(N2) time. Cordonnier et al. (2019) used planar-graph min-

imum spanning trees to construct a hierarchy of depressions

but did not produce a data structure water can be routed

on. In contrast, the Fill–Spill–Merge algorithm relies on a

well-defined data structure (Barnes et al., 2020); has com-

plete, well-commented source code with extensive correct-

ness tests (Barnes and Callaghan, 2019, 2020); has strong

efficiency guarantees (Sect. 4.1), which are realized on ac-

tual and simulated datasets (Sect. 4.2); and provides exact

answers.

To achieve this, we developed a data structure – the de-

pression hierarchy – which represents the topologic and geo-

graphic structure of depressions. In an accompanying paper,

we provide details concerning how a depression hierarchy is

constructed (Barnes et al., 2020). In this paper, we explain

how a depression hierarchy can be leveraged to accelerate

hydrological models using a paradigm we call Fill–Spill–

Merge.

2 Using the depression hierarchy

Many of the techniques in this paper are based on binary

tree data structures and their traversals. Although we define

terms below, more complete explanations and visual exam-

ples can be found in the text for any introductory undergrad-

uate course on data structures. We recommend Skiena (2008)

and Sedgewick and Wayne (2011) as good references. In par-

ticular, a good understanding of recursion will be helpful.

2.1 Terminology

Depressions can themselves contain depressions, as shown in

Fig. 1. A depression hierarchy (DH) is a data structure rep-

resenting a forest of binary trees, as shown in Fig. 2a, that

represents the relationships between depressions (Fig. 2a–d).

Each node in the DH represents a depression. Nodes higher

in the DH are depressions that themselves contain depres-

sions; we term these meta-depressions. Although the depres-

sion hierarchy could be generalized to n-ary trees using mul-

tiple flow direction routing, the binary simplification is suf-

ficient to cover most use cases. A node in the DH can have

several classifications.

– A parent is a node, such as no. 10 and no. 12 in Fig. 2a,

that represents a meta-depression and whose topologi-

cal descendants therefore also form depressions.

– A child is a depression, such as both no. 10 and no. 1

in Fig. 2a, that geographically and topologically exists

within the meta-depression formed by its parent.

– A leaf is a depression, such as no. 1 and no. 2 in Fig. 2a

and d, that has no children. The leaves of the binary trees

represent the smallest, most deeply nested depressions.

If a landscape were initially devoid of water, then wa-

ter flowing down slopes would begin to collect in some

subset of these leaf depressions before it would begin to

fill their parent depressions.

– A root is a depression, such as no. 0, no. 11, and no. 12

in Fig. 2, that has no parent. This term may also refer to

any node that is used as the starting point for a traversal

that only considers the node and its descendants.

– A descendant is a child of a given parent or the child of

a child of that parent and so on. In Fig. 2a, no. 1, no. 2,

no. 3, and no. 10 are all descendants of no. 12.

– Every node has either no children (leaf nodes) or two

children. Nodes that share a parent are siblings. In

Fig. 2a, no. 1 and no. 2 are siblings, as are no. 4 and

no. 5.

As depressions fill, their water surfaces eventually reach a

spill elevation (Fig. 2e) at which they overflow into neighbor-

ing depressions. During this spilling, water flows from a de-

pression into a geographically neighboring leaf depression,

topologically connected by a geolink. The spill elevations in

Fig. 1 are the highest points of each band of color.

Each node in the DH is associated with several properties.

– Depression volume. The depression volume is the total

volume of water that the depression, including all of its

descendants, can contain before spilling over.

– Water volume. The water volume is the total volume of

water actually being stored in the depression. A par-

ent depression will have a nonzero water volume only

if both of its children are completely full and the par-

ent itself contains some additional volume of water. In

this case, the water volume will be the sum of the wa-

ter volumes of the children and the additional margin

of water contained within the parent (i.e., the “marginal

volume” indicated in Fig. 2e). Parents whose children

are not both filled with water will have a water volume
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equal to zero. In this way, we can use this property to de-

termine which portions of the DH are fully or partially

filled and which are the highest water-containing nodes

in any of the binary trees.

– Geolinks. When a depression spills, its water passes

into the subtree rooted by its sibling. However, in a

full model of flow, the water would move downslope

from the spill cell into whichever leaf depression of the

sibling is geographically proximal to the spill cell. Ge-

olinks are pointers from depressions higher in the DH to

the leaf depressions that receive their water if they over-

flow. These are the dashed lines shown in Fig. 2a. Ge-

olinks are similar to the connections used in a threaded

binary tree (Fenner and Loizou, 1984).

– Oceanlink. Depressions high in the mountains may

overflow down escarpments to depressions far below.

In this case, the depressions do not overflow into each

other: the relationship is one-way. There can be multiple

such escarpments, so this can happen multiple times. In

such cases, each group of depressions forms a proper

binary tree. However, the root of one of the trees has

an oceanlink to a leaf node of the downstream binary

tree. In Fig. 2, both no. 11 and no. 12 are the root nodes

of a set of nested depressions. No. 12 has an oceanlink

(heavy arrow) to no. 4, one of the leaf depressions of

no. 11. No. 11 itself has an oceanlink to the ocean. In

many of the algorithms discussed below, oceanlinked

nodes are processed similarly to children.

Within the algorithm, oceanlinks and geolinks are used for

different purposes: an oceanlink tells us that the depression in

question has grafted onto the leaf node of another tree of the

depression hierarchy, locating a route for overflowing water

to eventually reach the ocean. The depression to which it is

oceanlinked is considered its parent, but it is not the child of

that depression because water flows only one way along an

oceanlink. In Fig. 2a, depression no. 4 can be considered the

parent of no. 12, but no. 12 is not the child of no. 4. This is

because no. 12 is not physically contained within no. 4, but

no. 12 will send all of its overflowing water to no. 4, as shown

in Fig. 2b–e. No. 4 will not contain the total water volume

contained within no. 12, unlike other parents. Geolinks route

water within geographically adjacent depressions contained

in the same meta-depression.

2.2 Traversals

With these linkages in place, we can consider various ways of

traversing the trees. Given a binary tree T with left and right

children T .L and T .R, a breadth-first traversal considers both

T .L and T .R before considering T .L.L, T .L.R, T .R.L, or

T .R.R. A depth-first traversal, on the other hand, will con-

sider T .L and all of its descendants before considering T .R

Figure 3. The Fill–Spill–Merge process. Water moves through to-

pographic depressions by filling them, spilling over sills, and merg-

ing to form meta-depressions. (a) Topographic cross section with

labeled leaf depressions and their parents, following the left-hand

side of the depression hierarchy in Fig. 2. The number 0 repre-

sents the ocean; other numbers represent leaves and parents that

together form depressions and meta-depressions. (b) Map showing

this depression structure; the cross section in (a) follows the dot-

ted gray line. (c) A water source to the left begins to fill depression

1. (d) Continued water input causes depression 1 to overflow and

spill into depression 2. (e) Depression 2 fills, causing depressions 1

and 2 to fill their parent (10) and merge to form a meta-depression.

This meta-depression overflows into depression 3. (f) Depression 3

fills and merges with meta-depression 10 (1 and 2 being implied

members based on their position in the hierarchy) to flood their par-

ent, 12. After meta-depression 12 overspills, it enters depression

4, which then fills and spills into depression 5. After depression 5

floods, its waters join with those from depression 4 to fill meta-

depression 11, which then spills to the ocean. Figures 4 and 5 de-

scribe the algorithm in more specific detail.
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Figure 4. Visual overview of the algorithm. Black outlines repre-

sent the elevations of the cells. Blue areas are the heights of water

in each cell or depression within the depression hierarchy. Capital

letters label cells, and numbers on colored dots label depressions.

Colors at the base of each panel match the colored dots and indicate

to which depression each cell belongs. The algorithm consists of

three major stages (Fig. 5). From its initial distribution (a), water is

moved downhill following flow directions in the steepest downslope

direction from each cell, as indicated by the arrows. Water continues

to move downslope until it reaches the pit cells (b, Sect. 3.1). Wa-

ter is then moved within the depression hierarchy (c–f, Sect. 3.2).

(c) The initial distribution of water within the depression hierarchy

based on how much water was in the pit cell of each depression. Wa-

ter in depressions with insufficient volume overflows first into their

sibling depressions and then – if the sibling depression becomes

filled – passes to their parents. All of the leaf depressions in (c) are

completely filled, so no sibling depressions can accommodate more

water. Therefore, depressions 1 and 2 pass their overflowing water

up to their parent, depression 6, and depressions 3 and 4 pass their

overflowing water up to their parent, depression 5. (d) Depression

6 is now overflowing, but its sibling, depression 5, is not full, so

depression 6 passes as much of its overflowing water as it can to

depression 5. (e) Once depression 5 is full, some overflowing water

still remains, so this is passed to the parent, depression 7. (f) In this

case, depression 7 is able to accommodate the remainder of the wa-

ter. Had depression 7 also overflowed, the leftover water would have

overflowed into the ocean and been disregarded. Depressions to be

flooded are then identified and flooded (Sect. 3.3). Since depression

7 contains water, we know that all of its descendants must be com-

pletely full. Therefore, we can flood these all at the same time on the

level of depression 7. Any one of the pit cells within depression 7

is arbitrarily selected as the starting point (g). More cells are added

until all of the water has been accommodated. Panels (h–j) are a

visual representation of this process, although the algorithm would

first locate affected cells C–J and then calculate the final height of

water in all of these cells in a single step.

or any of its descendants. The tree traversals we perform in

this paper are all depth-first.

Depth-first traversals are most naturally expressed via re-

cursion and come in three types: in order, pre-order, and post-

order. Let a recursive traversal function be called r(·) and the

processing we perform on a particular node in the tree p(·);

then the traversals are given by the following:

– in order – r(T .L) then p(T ) then r(T .R);

– pre-order – p(T ) then r(T .L) then r(T .R);

– post-order – r(T .L) then r(T .R) then p(T ).

3 The algorithm

The Fill–Spill–Merge algorithm consists of several steps that

are outlined here, depicted in Figs. 3 and 4, and shown in

flowchart form in Fig. 5. This paper is also accompanied

by complete, well-commented source code; the reader may

find it helpful to download this code and refer to it as an ad-

ditional reference. First (Sect. 3.1), surface water needs to

move downhill either to the ocean (i.e., a designated sink re-

gion or the map edge) or to collect in pit cells – the deepest

points within leaf depressions. Note that the landscape may

already have standing water at this stage. This operation takes

place across all the cells of the DEM. Second (Sect. 3.2),

water is redistributed across the depression hierarchy such

that any depressions that have filled sufficiently spill over

into neighboring depressions and, if both depressions are full,

flood their parent to merge into a single, larger body of wa-

ter within a meta-depression. This operation is done without

explicitly considering the cells of the DEM, which makes it

very fast. Third and finally (Sect. 3.3), the water within the

depression hierarchy is translated into an extent and depth of

flooding across the topographic surface (DEM).

Computing a depression hierarchy (Barnes et al., 2020) is

a necessary precursor to running Fill–Spill–Merge. The spe-

cific outputs from the depression hierarchy algorithm that are

used in the Fill–Spill–Merge algorithm are the following.

– DH is the depression hierarchy itself.

– Flowdirs is a matrix of flow directions, indicating which

of a cell’s neighbors receives its flow. Because Priority-

Flood (Barnes et al., 2014) is used to generate the de-

pression hierarchy, flat areas are automatically resolved.

– Labels represent a matrix indicating the leaf depression

to which each cell belongs.

By routing water according to the DH, we significantly accel-

erate the compute speed and ensure that the full network of

depressions is a topologically correct directed tree. Each of

the following subsections details one of the numbered steps

along the central path of the flowchart shown in Fig. 5.
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Figure 5. Flowchart showing the main steps taken by the algorithm.

These steps are described in more detail in Sect. 3.1 to 3.3.

3.1 Move water downhill to pits

We route water in a similar way as standard flow accumu-

lation algorithms (Mark, 1988; Wallis et al., 2009; Barnes,

2017), but for completeness we summarize our approach

here. Flow directions for each cell have already been iden-

tified by the depression hierarchy algorithm. Each cell cal-

culates how many of its neighbors flow into it. We call this

value the cell’s dependency count, as it describes the num-

ber of immediate upstream cells whose flow accumulation

must be resolved before flow accumulation at the given cell

can be computed. Local maxima in the DEM are identified

as those cells that receive no flow from any neighbor. These

local maxima are placed in a queue. Cells are then popped

(i.e., noted while being removed) from this queue. The cells

determine how much flow they generate locally (perhaps re-

ferring to a matrix of rainfall values, but also including ex-

isting stores of standing water) and add this to their flow

accumulation value. They then add their flow accumulation

to their downstream neighbor’s and set their own flow ac-

cumulation value to zero. The neighbor’s dependency count

is then decremented. If the neighbor’s dependency count has

reached zero during this step, it is added to the end of the

queue. This process of accumulating flow, passing it down-

stream, decrementing the dependency count, and adding cells

to the queue continues until the queue is empty, at which

point every cell on the map has been visited and any water

has been moved downslope. Braun and Willett (2013) present

an alternative formulation based on a depth-first traversal,

but Barnes (2019) demonstrates that a breadth-first ordering,

such as that presented here, is better suited to parallelism.

When the accumulated flow reaches the pit cell of a de-

pression, the downhill-directed flow routing stops because

there is no downhill neighbor to receive the flow. At this

point, all of the flow-accumulated water in the pit cell is

moved into the pit cell’s associated leaf depression in the DH.

That is, the water is moved out of the geographic space and

into the topologic space. This then enables mass-conserving

depression flooding via rapid Fill–Spill–Merge calculations,

as detailed below.

3.2 Overflow and merge depressions

At this point, the Fill–Spill–Merge algorithm has routed all of

the surface water into either the ocean or into the leaf nodes

of the DH. The next step is to redistribute this water through

the DH to nodes with enough volume to contain the water and

to send any excess water to the ocean. This set of operations

can be performed entirely in the depression hierarchy without

reference to the digital elevation model.

Intuitively, the process of filling, spilling, and merging can

be visualized as occurring from leaf nodes to their parents

(Fig. 3). When a leaf depression initially contains more wa-

ter than it can hold, the water will be redistributed by spilling

over into the neighboring depression. If this neighboring de-

pression is already full, then the excess water must pass to the

parent of both the depression and its neighbor. This process

continues recursively until either the supplied water is ex-

hausted or this water reaches the ultimate parent, the ocean.

In this latter case, all excess water is dropped from the model

and the ocean is unaffected.

To effect the intuition developed above, we need a well-

defined way to visit all of the nodes in the depression hierar-

chy. A post-order traversal allows us to visit both of a node’s

children and their descendants before calculating any quanti-

ties on the node itself. The result is that leaves get processed

before their parents. However, a single traversal is insuffi-

cient: we need one traversal (the “outer traversal”) to iden-

tify nodes that have excess water and another traversal (the

“inner traversal”) to distribute this water. The outer traver-

sal may launch the inner traversal many times as it works its

way up the hierarchy. Pseudo-code showing these traversals

is available in Sect. 6.1 and 6.2.

To efficiently redistribute water, the Fill–Spill–Merge al-

gorithm performs nested depth-first traversals of the DH. The

outer traversal (Sect. 6.1) is post-order and considers each

meta-depression in turn, from the most deeply nested to the

least. For each meta-depression, an inner traversal (Sect. 6.2)

handles its overflows by moving water to its sibling (starting

by filling the sibling’s descendants) and, if there is any left,

passing it to the depression’s parent. In this way, the outer

traversal maintains an invariant (a property which is true be-

fore and after each call to a function): any meta-depression it

has processed does not contain an overflow. Put another way,

Earth Surf. Dynam., 9, 105–121, 2021 https://doi.org/10.5194/esurf-9-105-2021
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the outer traversal finds problems and the inner traversal fixes

them.

The outer traversal of the DH (which is, after all, a forest of

binary trees) begins with the ocean. For each depression, the

algorithm first recurses into its oceanlinks, if any, and then

into the left and then right child. In the post-order portion

of the traversal (which starts from the leaves and moves back

up through the depression hierarchy), the algorithm identifies

any depressions containing more water than they can accom-

modate. This process continues until the recursion returns to

the ocean, at which point any additional water is assumed to

be added to the ocean without impacting sea level, though

this total discharge to the sea is recorded within the “ocean”

depression.

When an overfilled depression is located by the outer

traversal above, its water needs to be redistributed to neigh-

boring depressions. If we call the overfilled depression D,

then the water can be redistributed by starting a second in-

ner post-order traversal at D. This inner traversal carries ex-

cess water from one depression to another until it has found

a home for all of it. When we pass water into a depression, it

can go to one of three places: the depression itself, its sibling,

or its parent. Distributing the water to any of these places

may itself cause an overflow. Therefore, the inner (pre-order)

traversal comprises the following steps.

1. Call the depression that we are currently considering

B. This may be the depression we originally consid-

ered, depression D, or it may be some other depression

reached during the steps detailed below. If B is over-

flowing, we add the overflow to the excess water the in-

ner traversal is carrying. If B has spare capacity we add

water from the excess to B until either it fills or all of

the excess water the inner traversal is carrying is used.

2. At this point, the inner traversal can terminate if (i) there

is no water left, (ii) B is the parent of D, or (iii) B was

reached via an oceanlink.

3. Otherwise, if B has a sibling and the sibling’s water vol-

ume is less than its depression volume, then start from

Step 1 with the new B set as the depression pointed to

by the current B’s geolink.

4. Otherwise, if B has no sibling or the sibling’s water vol-

ume is equal to its depression volume, then start from

Step 1 with the new B set as the parent of the current B,

or, if B has no parent, then use the depression to which

B oceanlinks.

The next step of the outer traversal, which begins one level

in the DH closer to the ocean, identifies a less nested meta-

depression for which the inner traversal might need to be

run. If this step were not supplied with information about

prior water redistribution, it could cause the inner traversal

to cover the same nodes repeatedly, which would be com-

putationally wasteful. To prevent this, the inner traversal re-

turns the ID of the final node in which it placed water: this

node is the only node in the traversal with spare capacity so

future traversals can begin there. Therefore, on subsequent

overflows, if such a cached value is available, then the recur-

sion skips directly to that node. This ensures that all the calls

to this part of the algorithm take no more than O(N ) time

collectively.

The following examples use the geometry from Sect. 2

to describe a set of inner traversals, starting with the over-

flowing depression no. 12. Step numbers mirror those above;

numbers in parentheses indicate the number of recursions –

that is, the number of times that the inner-traversal algorithm

has returned to Step 1.

1. Depression no. 12 fills and overflows.

2. Depression no. 12’s water overflows into depression

no. 4, which is not full, following its geolink.

1(r1). Depression no. 4 acts as depression no. 12’s parent

via an oceanlink. The inner traversal terminates.

At this point, the outer traversal moves one level closer to

the ocean, and the inner traversal repeats, this time starting at

depression no. 4.

1. Depression no. 4 fills and overflows.

2. Depression no. 4’s water overflows into its sibling, de-

pression no. 5, which is not full and is a leaf depression.

If depression no. 5 had descendants, water overflowing

from depression no. 4 would have followed a geolink to

one of these.

1(r1). Depression no. 5 fills and overflows.

2(r1). Depression no. 4 is full.

3(r1). Depression no. 5 overflows into its parent, depres-

sion no. 11.

1(r2). Depression no. 11 overflows into the ocean; the in-

ner traversal terminates.

Now the outer traversal moves yet another level closer to the

ocean, and the new inner traversal starts at depression no. 11.

1. Depression no. 11 fills and overflows.

2. Depression no. 11 has no sibling.

3. Depression no. 11 overflows into its parent, the ocean;

all remaining excess water is absorbed into an infinite

sink.

1(r1). The now-selected node is the ocean; the inner

traversal terminates.

At this point, the outer traversal moves one level closer to

the ocean and arrives at the ocean. The outer traversal also

terminates.
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3.3 Flood the landscape

After water moves through the DH (Sect. 3.2, above), each

node in the DH exists in one of the three following states.

1. Empty. The depression’s water volume is equal to zero.

In this case, nothing needs to be done. The depression’s

descendants might contain water, but the water never

propagates to this level of the DH.

2. Full. The depression’s water volume is equal to the vol-

ume of the depression itself. In this case, the depression

is entirely full. If the depression’s parent contains wa-

ter, then the calculation of water depth is dealt with at

a higher stage in the DH. If the depression’s parent is

empty or if the depression’s parent is the ocean, then

the calculation is performed at this level as described

below.

3. Partially filled. The depression’s water volume is less

than its depression volume. In this case, the depth of

water across the depression and all its descendants’ cells

must be calculated at this level so that the depression

fills to an appropriate level. This is described below and

indicated as the marginal volume in Fig. 2e.

The next step is to distribute this water across the DEM, ap-

propriately flooding geographic depressions.

Given the three states described above, the algorithm lo-

cates the highest-level nodes that contain water. It does so

via a post-order traversal. Each time the traversal reaches a

leaf, the algorithm notes its label and pit cell. After identi-

fying each of these, the algorithm reverses direction, moving

from child to parent so long as the parent node contains wa-

ter. Call the highest water-bearing node within a tree L.

In many cases, the water volume contained within the de-

pression will be less than the total depression volume; there-

fore, we must calculate what the water level in the depression

will be. To do this, we pick an arbitrary pit cell within L and

its descendants and then use this as a seed from which to

start building a priority queue that will traverse the cells of

the depression. The priority queue returns cells ordered from

lowest to highest elevation. At each step through the prior-

ity queue, the algorithm checks whether the cells visited so

far collectively have enough volume to hold the water. If so,

the algorithm exits, having successfully defined the flooded

area. If not, it continues to use the priority queue to traverse

the depression cell by cell. The filling procedure is shown in

pseudo-code in Sect. 6.3.

To expand this brief conceptual discussion into a more for-

mal set of steps, let us begin by calling the active cell – that

is, the one that is currently being considered by the algorithm

– cp. This cell is initially the arbitrary pit mentioned above

and is added to the priority queue. The algorithm marks cp,

which stands for “cell of current highest priority”, as visited;

all other cells remain unvisited. The algorithm then follows

these steps.

1. Pop cp from the priority queue, call it c, and use its el-

evation to calculate the volume of water that can be ac-

commodated in the set of cells processed so far (Eq. 3,

below). If this volume is enough to accommodate the

volume of water available, exit the loop and compute

the final water level (Eq. 6, below). Otherwise, proceed

to Step 2.

2. Add c (which was popped in Step 1) to a plain queue,

which records all of the cells scanned so far; these cells

will later be inundated.

3. Add the cells neighboring c that are not marked as vis-

ited to the priority queue if they belong to one of the

descendant depressions of the one being filled. Each of

these neighboring cells is then marked as visited.

4. Choose the lowest-elevation cell in the priority queue,

label it as the new cp, and return to Step 1. If the pri-

ority queue is empty, then all cells in the same meta-

depression as cp or its descendants have been visited

and we are now guaranteed to have sufficient depression

volume to hold all of the water.

Step 1 in this approach requires an efficient way to de-

termine the volume of a depression below any given eleva-

tion. If we call this elevation zo and the depression below the

outlet contains N cells with elevations {z1,z2,z3,z4, . . .} and

unit cell area, the volume of water that the depression can

accommodate simply equals the sum of the depth of water in

each of its cells:

(zo − z1) + (zo − z2) + (zo − z3) + (zo − z4) + . . .

= No − z1 − z2 − z3 − z4 − . . ., (1)

= No −

N
∑

i=1

zi . (2)

Now, consider cells ci = c1, . . .,cN in the plain queue: that

is, those cells that have been visited and popped from the

priority queue. We can calculate the volume of water that

can be accommodated in the depression below the elevation

zs of the last cell cN (the sill) as

Vdep,zs
= zs

N
∑

i=1

ai −

N
∑

i=1

ziai, (3)

where zi is the elevation of cell ci , and ai is the area of cell ci .

Thus, if we keep running sums while traversing the depres-

sion, it is possible to directly calculate the volume of water

the depression can hold at each point in the traversal.

Once Vdep,zs
is greater than or equal to the volume of water

in the depression, Vw, the plain queue contains all the cells

to be flooded. At this point, the algorithm updates zw, which

is the water level within this depression. If Vw = Vdep,zs , the

algorithm sets zw = zN . If instead Vw < Vdep,zs , the available
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volume in the depression is greater than the water volume,

and the algorithm calculates zw in the depression as follows.

Vw = zw

N
∑

i=1

ai −

N
∑

i=1

ziai (4)

zw

N
∑

i=1

ai = Vw +

N
∑

i=1

ziai (5)

zw =

(

N
∑

i=1

ai

)−1(

Vw +

N
∑

i=1

ziai

)

(6)

We call Eq. (6) the lake-level equation (LLE). If all cells have

a unit area, this simplifies to

zw =
1

N

(

Vw +

N
∑

i=1

zi

)

. (7)

The conditional usage of the LLE described above is purely

for computational efficiency: if Vw = Vdep,zs
, its solution is

that zw = zN .

After solving for the water-surface elevation, the algorithm

pops each cell in the plain queue (ci = c1, . . .,cN ) corre-

sponding to the flooded region and sets its water elevation

to the computed zw. This is the final step of the Fill–Spill–

Merge algorithm. At this point, it outputs a file representing

the topography plus water thickness across the domain (i.e.,

topography with depressions filled or partially filled with wa-

ter).

Because Fill–Spill–Merge routes water cell by cell to the

pit cells of depressions and manages an array of water depths,

it can be adapted for use with groundwater models, such as

that described by Fan et al. (2013).

4 Algorithm performance

4.1 Theory

Here we use computational complexity as a means of con-

trasting the expected runtime of our algorithm against pre-

vious algorithms such as FlowFill (Callaghan and Wickert,

2019). To do so, we describe a simple iterative solver sim-

ilar to FlowFill whose goal is to determine an appropriate

water level for a depression. The solver operates on a one-

dimensional domain of cells bounded by high cliffs on either

side in which each cell may have a column of water. At each

step, if the solver finds a discontinuity in water levels be-

tween two cells, it responds by averaging the heights of the

cells’ water columns. (The solver we describe is known as

Jacobi’s method.) The challenge we present to this solver is

a direct analog of routing flow along a stretch of river with a

negligible gradient and is very similar to routing flow across

the surface of a lake or ocean.

For our analysis, we imagine that the system is initialized

with a high column of water on the left and no water any-

where else. We call the cell with the water cell 1. We call the

cells to its right 2, 3, 4, and so on. During the solver’s first

step, cell 1 is initialized. On its second step, cell 1 averages

its height with cell 2. On the third step, cell 2 averages with

cell 3 and cell 1 then averages with cell 2. On the fourth step,

cell 3 averages to 4, 2 averages to 3, and 1 averages with 2.

Thus, the number of cells affected at each step are 1, 2, 3, 4,

and so on. Since there must be at least as many steps as there

are cells, we can say that there are N steps. The total time,

tcompute, is then

tcompute =

N
∑

i=1

i =
N (N + 1)

2
. (8)

Thus, for any model (Callaghan and Wickert, 2019; Fan

et al., 2013) that uses a scheme similar to our simple solver,

the time required to solve the model is in O(N2).

In contrast, the new algorithm runs in O(N log N ) time

in the worst case. Moving water downhill (Sect. 3.1) is a

flow accumulation algorithm. This is known to take O(N )

time (Mark, 1988), and efficient variants exist for perform-

ing flow accumulation in parallel on large datasets (Barnes,

2017) and on GPUs (Barnes, 2019), though for simplicity we

do not use these techniques here. Moving water within the

depression hierarchy (Sect. 3.2) requires a depth-first post-

order traversal of the entire hierarchy. This type of traversal

is a foundational algorithm in computer science and takes

O(N ) time. Each node in this traversal has the potential to

overflow, which also results in a depth-first traversal, thereby

requiring up to O(N ) time. However, by using a jump table

that persists between calls to the overflow function, we en-

sure that it is able to identify the target of the overflow in

amortized constant time; that is, the function is able to skip

over fully filled depressions. Finally, the algorithm floods the

digital elevation model from the pit cells up. This requires a

depth-first post-order traversal, which calls a flooding func-

tion (Sect. 3.3) on select subtrees of the DH. The depth-first

traversal takes O(N ) time, as described above. The priority

queue used for flooding nominally takes O(N log N ) time in

the worst case for floating-point data and O(N ) time in the

worst case for integer data (Barnes et al., 2014). However,

with specialized data structures the time can be reduced to

O(N ) for both floating-point and integer data (Barnes et al.,

2014). Most real datasets consist of many small depressions

whose cell counts Ncells-in-dep are much smaller than the total

number of cells in the digital elevation model. Therefore, the

actual time for this step is O(NdepNcells-in-dep), where Ndep is

the total number of depressions and NdepNcells-in-dep can be

much less than N . Because the worst-case time complexity

of any operation is O(N ), this bounds the time of the algo-

rithm as a whole. However, to reduce the potential for bugs,

we use the C++ standard library’s O(N logN ) priority queue

in our implementation at the cost of reduced performance.

To put this in more concrete terms, consider a long stretch

of low-gradient river. Such a feature poses a lower bound on

the time of our simple solver. North America’s Red River of
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Table 1. Datasets used, their dimensions, and algorithm wall times. Tests were performed on the Comet cluster run by XSEDE (see the main

text for full specifications). Times for Fill–Spill–Merge (FSM time) alone and this time plus the depression hierarchy construction time (total

time) are shown. Topographic data for Madagascar, the US Great Basin, Australia, Africa, and North and South America were clipped from

the GEBCO_08 30 arcsec global combined topographic and bathymetric elevation dataset (GEBCO, 2010). The Minnesota 30 m topobathy

data are the merged result of two data sources. The topography is resampled from the Minnesota Geospatial Information Office’s 1 m lidar

elevation dataset (MNGEO – Minnesota Geospatial Information Office, 2019). Bathymetric data were provided by the Minnesota Department

of Natural Resources (MNDNR – Minnesota Department of Natural Resources, 2014). Richard Lively of the Minnesota Geological Survey

merged and combined these datasets.

Dataset Dimensions Cells FSM time (s) Total time (s)

Madagascar 2000 × 1000 2.0 × 106 0.1 0.4

US Great Basin 1920 × 2400 4.6 × 106 0.2 8.7

Australia 5640 × 4200 2.3 × 107 9.1 15.6

Africa 9480 × 9000 8.5 × 107 65.3 118.0

N and S America 18 720 × 17 400 3.2 × 108 53.2 231.6

Minnesota 30 m topobathy 34 742 × 23 831 8.2 × 108 307.8 792.6

Figure 6. Performance on synthetic data. The left-hand plot shows the data on linear axes and the right-hand plot on log–log axes. The

number of cells in each dataset is the square of the side length. The lines show N logN fits to each algorithm’s time (R2 ≈ 0.99 for each).

“DH” shows the performance of the depression hierarchy algorithm, while “FSM” shows that of the Fill–Spill–Merge algorithm; “both”

shows the addition of these two values.

the North runs for 885 km with a gradient that is often on

the order of 0.03 m km−1. On a 90 m grid of floating-point

data, the river would be 9833 cells long. Our simple (Ja-

cobi) solver would then take an estimated 97 million time

units to reach a solution, whereas the new solver that we de-

scribe in this paper would take 9833 time units, a speed-up

of 10 000 times. Our empirical results, which are presented

below, support both the theory and this expected value.

4.2 Computational performance

We have implemented the algorithm described above in

C++17 using the Geospatial Data Abstraction Library

(GDAL) (GDAL Development Team, 2016) to read and

write data. There are 1003 lines of code, 46 % of which

are or contain comments. The code can be acquired from

https://github.com/r-barnes/Barnes2020-FillSpillMerge (last

access: 6 February 2021) and Zenodo (Barnes and Callaghan,

2020; https://doi.org/10.5281/zenodo.3755142). The code

contains extensive unit and end-to-end tests, which leverage

both deterministic and random testing; the code passes a to-

tal of 214 990 test assertions and achieves 97 % test coverage.

The missed lines flag emergency situations that can only arise

if there is a logic error, so they (in theory) cannot be reached.

Tests were run on the Comet machine of the Ex-

treme Science and Engineering Discovery Environment

(XSEDE) (Towns et al., 2014). Each node of the machine

has 2.5 GHz Intel Xeon E5-2680v3 processors with 24 cores

per node and 128 GB of DDR4 DRAM. Code was compiled

using GNU g++ 7.2.0 with full optimizations enabled.

We ran two sets of scaling tests, one on actual data and

one on synthetic data. On actual data, our scaling tests

cover datasets spanning 3 orders of magnitude in terms of

their number of cells, as shown in Table 1. The R pack-

age GuessCompx (Agenis-Nevers et al., 2019) shows that an

O(N logN ) scaling relationship gives the best fit to the data,

which agrees with the theory.

To more precisely demonstrate performance, we run Fill–

Spill–Merge on synthetic landscapes of various sizes gen-

erated using RichDEM’s Perlin noise random terrain gener-
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ator (Barnes, 2018). Multiple landscapes are generated and

timed at each size to smooth timing variation due to both the

data and fluctuations in the testing environment. This results

in Fig. 6, which again shows that the performance data give

a good fit to an N logN function.

4.3 Model intercomparison

Given a depression hierarchy data structure, Fill–Spill–

Merge provides an efficient method to route water across

any surface while taking depressions into account. Further-

more, Fill–Spill–Merge can be used to assess which depres-

sions are most important in day-to-day or seasonal changes

to the hydrologic system. For example, small depressions

will become flooded and spill over even with relatively small

amounts of water reaching them, while larger depressions

may not be completely filled. These depressions impact the

hydrologic connectivity of the landscape (Callaghan and

Wickert, 2019). If standing water is retained between invoca-

tions of Fill–Spill–Merge and new water added at each invo-

cation, the algorithm can be used to simulate the movement

of water across landscapes; we will explore this further in

future work.

We have compared Fill–Spill–Merge with a prior algo-

rithm, FlowFill, at the same two sites used by Callaghan and

Wickert (2019): a reach of the Sangamon River in Illinois

(Fig. 7) and the Río Toro basin in Argentina (Fig. 8). Like

Fill–Spill–Merge, FlowFill can be used to route water across

a landscape while preserving real depressions, but the latter

algorithm is significantly slower (Table 2). The two selected

study sites provide very different landscapes for testing the

performance of the algorithm. The Sangamon River site is

located in Illinois, USA, at 39.97◦ N, 88.72◦ W. It is a low-

relief, post-glacial landscape containing many closed depres-

sions, which may impact hydrologic connectivity as a func-

tion of runoff (Lai and Anders, 2018). It furthermore con-

tains a grid of roads and associated embankments whose ele-

vations are significant when compared to regional relief and

impact water flow paths and storage. Callaghan and Wick-

ert (2019) resampled the 0.76 m resolution lidar DEM (Illi-

nois Geospatial Data Clearinghouse, 2020) to 15 m resolu-

tion for analysis and manually removed several road bridges

using GRASS GIS (Neteler et al., 2012) to prevent artifi-

cial pooling behind these; here we use the same modified

DEM to enable a direct comparison between the algorithms.

The Río Toro site is located mainly in Salta Province, Ar-

gentina, around 24.5◦ S, 65.8◦ W. This site exhibits more

rugged fluvially sculpted topography (Hilley and Strecker,

2005). Callaghan and Wickert (2019) resampled the 12 m

TanDEM-X DEM of this region (Krieger et al., 2013; Riz-

zoli et al., 2017) to 120 m resolution. Here we use this same

resampled DEM for comparison. The runoff depths used at

each of the two study sites were selected to show a range

of water levels present in the depressions. The depths shown

were therefore scaled based on the amount of water required

to completely fill depressions in the landscape.

As shown in Table 2, wall times using Fill–Spill–Merge

ranged from 0.227 to 0.243 s for the Sangamon River site

and 0.300 to 0.319 s for the Río Toro site. This compares

with times ranging from 20 to 643 s and 31 to 155 s, respec-

tively, for FlowFill. These times for both sites correspond

to a reduction in wall time of 86–2645 times using FSM.

Since FlowFill was run with 24 processors, this translates to

a reduction in compute time of 2064–63 480 times. Consid-

ering that each of these example DEMs is quite small relative

to modern full-resolution lidar-derived elevation datasets or

continental-scale 30 m DEMs (Table 1), this speed-up and its

associated O(N logN ) scaling provide a significant advan-

tage for topographic analysis and solving associated prob-

lems in hydrology and geomorphology.

Although both FlowFill and Fill–Spill–Merge route wa-

ter downslope, flooding depressions based on the quantity of

available water, our FSM results differ in some ways from

those of FlowFill (Callaghan and Wickert, 2019). In both

Figs. 7 and 8, Fill–Spill–Merge flooded some depressions

more deeply than FlowFill did and flooded some depressions

with less water. At both study sites, the differences between

the two algorithms are minimized at the extreme high and

extreme low starting runoff values. For the highest runoff

values, this is because both algorithms successfully fill all de-

pressions in the landscape so that no differences are possible.

For the lowest runoff values, both algorithms simulate only a

small amount of water filling any depression so that signifi-

cant differences between the two algorithms are not possible.

The biggest differences are therefore seen for moderate start-

ing runoff values, when depressions contain substantial water

volumes but are still only partially filled. One possible cause

of these discrepancies is FlowFill’s asymptotic approach to

an equilibrium water level, which may prevent small vol-

umes of water from reaching the depression to which they

belong. On the other hand, depressions with a narrow outlet

could be especially prone to being overfilled by FlowFill be-

cause its cell-by-cell algorithm could dynamically dam this

outlet, routing additional water into the depression. Both of

these possibilities are further linked to the fact that FlowFill

dynamically evolves a land-plus-water flow-routing surface,

whereas Fill–Spill–Merge routes flow just over the land sur-

face. These differences make FlowFill more useful for un-

derstanding temporal changes in surface water distribution,

while Fill–Spill–Merge provides a more accurate snapshot

of surface hydrology under equilibrium conditions.

5 Conclusions

Here we leverage the depression hierarchy data struc-

ture (Barnes et al., 2020) to route flow through surface de-

pressions in a realistic yet efficient manner. In comparison to

previous approaches, such as Jacobi iteration, the new algo-
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Figure 7. The difference between results of Fill–Spill–Merge and FlowFill at the Sangamon River site. The values for panels (a) to (e)

indicate the depth of uniform runoff applied across the landscape for both algorithms. For example, in (a), each cell across the domain starts

with 0.001 m of surface water. Orange to yellow indicates locations where Fill–Spill–Merge had more water, and purple to blue indicates

locations where FlowFill had more water. Differences of less than 3 mm have been masked out. Differences are generally small and are likely

a result of the iterative nature of the FlowFill algorithm, which causes it to asymptotically approach the correct values. In some locations,

Fill–Spill–Merge retains slightly more water in depressions than FlowFill does. This could be due to water that has not yet finished moving

downslope and into these depressions in the FlowFill algorithm. In other locations, FlowFill has retained more water. One possible reason

for this is that some depressions have a narrow outlet through which Fill–Spill–Merge is able to move all water as appropriate, but the

cell-by-cell movement of water with FlowFill can produce transient dams that reroute additional water towards these subcatchments. This

DEM was prepared by Lai and Anders (2018) and Callaghan and Wickert (2019) from lidar topographic data provided by the Illinois State

Geological Survey (Illinois Geospatial Data Clearinghouse, 2020).

Table 2. Time comparison of Fill–Spill–Merge vs. FlowFill. Wall times are in seconds comparing FlowFill (Callaghan and Wickert, 2019)

parallelized across 24 cores versus Fill–Spill–Merge on a single core; “speed-up” is a multiplicative factor. Using FlowFill, wall times

increased with the depth of applied runoff and on flatter landscapes. Using FSM, wall time is independent of the depth of applied runoff

and ruggedness of the landscape, but it increases for larger domains. FSM’s wall times were 86–2645 times faster than FlowFill for these

examples; compute times were 2064–63 480 times faster.

Sangamon Río Toro

Runoff depth FlowFill FSM Speed-up FlowFill FSM Speed-up

(m) (s) (s) (x) (s) (s) (x)

15 642.65 0.243 2645 154.70 0.317 488

10 626.59 0.241 2600 124.37 0.309 402

5 570.02 0.241 2365 93.56 0.300 312

1 472.33 0.241 1960 53.09 0.316 168

0.2 508.87 0.235 2165 38.30 0.316 121

0.1 464.15 0.230 2018 35.75 0.301 119

0.05 418.71 0.243 1723 33.62 0.316 106

0.01 200.81 0.227 885 32.06 0.315 102

0.001 20.12 0.235 86 30.99 0.319 97
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Figure 8. The difference between results of Fill–Spill–Merge and FlowFill at the Río Toro site. The values for panels (a) to (e) indicate

the depth of uniform runoff applied across the landscape for both algorithms. For example, in (a), each cell across the domain starts with

0.1 m of surface water. Orange to yellow indicates locations where Fill–Spill–Merge had more water, and purple to blue indicates locations

where FlowFill had more water. Differences of less than 3 mm have been masked out. In panel (e), 15 m of water was enough to fill all

depressions with both algorithms, so there are no differences between the two. The most significant difference is seen in panel (c), where

FlowFill retained additional water in a large depression. This is likely due to transient damming of its narrow inlet in FlowFill’s cell-by-cell

method of moving water, which may have prevented the full volume of water from leaving the depression. This DEM was generated with

data acquired from the TanDEM-X mission (Krieger et al., 2013; Rizzoli et al., 2017).

rithm runs in log-linear time in the input size and is accom-

panied by extensively commented source code. This com-

putationally efficient algorithm may help us to better under-

stand hydrologic connectivity and water storage across the

land surface, and it is an important step forwards in recog-

nizing the importance of depressions as real-world features

in digital elevation models.
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6 Pseudo-code

6.1 MoveWaterInDepHier

6.2 OverflowInto

6.3 FillDepressions
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Code availability. Complete, well-commented source code, an

associated makefile, and correctness tests are available from

https://github.com/r-barnes/Barnes2020-FillSpillMerge (last ac-

cess: 12 February 2021) and Zenodo (Barnes and Callaghan, 2020).
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