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Abstract

Recently, Souza introduced blowup Ramsey numbers as a generalization of bipartite
Ramsey numbers. For graphs G and H, say G — H if every r-edge-coloring of G
contains a monochromatic copy of H. Let HJ[t] denote the t-blowup of H. Then
the blowup Ramsey number of G, H,r, and ¢ is defined as the minimum n such that
G[n] - H][t]. Souza proved upper and lower bounds on n that are exponential in ¢,
and conjectured that the exponential constant does not depend on G. We prove that
the dependence on G in the exponential constant is indeed unnecessary, but conjecture
that some dependence on G is unavoidable.

An important step in both Souza’s proof and ours is a theorem of Nikiforov, which
says that if a graph contains a constant fraction of the possible copies of H, then it
contains a blowup of H of logarithmic size. We also provide a new proof of this theorem
with a better quantitative dependence.

1 Introduction

A graph G is called 7-Ramsey for a graph H, denoted G — H., if every r-edge-coloring of G
contains a monochromatic copy of H. Given a graph H and an integer ¢, the t-blowup of H,
denoted H[t], is the graph obtained from H by replacing every vertex of H by an independent
set of order ¢, and replacing every edge of H by a complete bipartite graph K, between the
corresponding parts. Say that a copy of H[t] in G[n| is canonical if it is the t-blowup of a
copy of H in G. Recently, Souza [6] introduced the notion of blowup Ramsey numbers, which
are a natural generalization of several well-studied problems in Ramsey theory, such as that
of bipartite Ramsey numbers.
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Definition 1 (Souza [6]). Let G, H be graphs and r an integer such that G — H. For an
integer ¢, define the blowup Ramsey number B(G — H:t) to be the minimum n such that
every r-coloring of G[n] contains a monochromatic canonical copy of H[t].

Souza proved that these numbers exist and are finite, and further obtained an exponential
upper bound on them.

Theorem 1 (Souza [6]). Let G, H be graphs and r an integer such that G — H. Then
there is a number ¢ = ¢(G, H,r) such that for every t,

B(G - H;t) < .

Moreover, using the Lovasz Local Lemma, Souza showed that an exponential-type bound
is necessary. Indeed, he proved that if ¢ is sufficiently large in terms of G and n < (¢)
for some constant ¢ = (H,r) > 1, then there exists an r-edge-coloring of G[n] with no
monochromatic canonical copy of H[t].

The exponential constant in Souza’s upper bound depends on G, while the exponential
constant in his lower bound does not depend on G. Souza conjectured that the dependence on
G in Theorem 1 is unnecessary. In this paper, our main result is that the exponential constant
indeed does not depend on (G, but our upper bound nevertheless has some dependence on
G. More precisely, we prove the following result.

Theorem 2. Let G, H be graphs and r > 2 an integer such that G — H. There exist
constants a = a(G, H,r) and b = b(H,r) such that for every integer t,

B(G - H;t)<a-l.
Moreover, for v > 0 sufficiently small with respect to r, we may take b = 7“<T+”’)‘E(H)‘7l,
long as a is sufficiently large with respect to ~y.

This result shows that if we are only interested in the exponential rate of growth of
B(G - H;t) as a function of ¢, then indeed the choice of G' does not matter. However,
for fixed t, the upper bound in Theorem 2 does depend on G, and we believe that this
dependence is in fact necessary for some H; for more details, see the concluding remarks.

An important step in Souza’s proof of Theorem 1 is the following result of Nikiforov,
which says that a graph with many copies of H must contain a blowup of H of logarithmic
size.

Theorem 3 (Nikiforov [5, 4]). For everyn > 0 and every graph H on k vertices, there exists
a constant X > 0 such that the following holds for all n sufficiently large. Let G be a graph
on n wvertices containing at least nn* copies of H. Then G contains a blowup H|[t], where
t = Mlogn. Moreover, one can take A\ = n* if H is a clique and A = T]k2 of H is an arbitrary
graph.



As a consequence of our main technical result, whose proof is inspired by Nikiforov’s orig-
inal proof but further adds ideas from graph regularity, we provide a new proof of Theorem
3 with a better quantitative dependence between A\ and 7. Specifically, we prove that one
can take A = n!~/IPUD+e() in Theorem 3; see Section 3 for details.

The paper is organized as follows. In Section 2, we state and prove several technical
lemmas, related to regularity of graphs, that we will need in the proof of Theorem 2. In
Section 3, we use these lemmas to state and prove our stronger version of Theorem 3. In
Section 4, we again use these lemmas to prove Theorem 2. We end with some concluding
remarks. For the sake of clarity of presentation, we systematically omit floor and ceiling
signs whenever they are not crucial. All logarithms in this paper are base e unless otherwise
stated.

2 Tools from regularity theory

Our first technical result is the weak regularity lemma of Duke, Lefmann, and Rédl [1]. In
fact, we will use a generalization of it due to Fox and Li [2] which is well-adapted for dealing
with colorings, as opposed to single graphs. The main advantage of their result over that of
Duke, Lefmann, and Rodl is that the bounds do not depend on the number of colors. Before
stating it, we will need to recall some standard terminology.

Definition 2. Let ¢ > 0 be a parameter, and let X,Y be vertex subsets of a graph F.
Let e(X,Y) denote the number of pairs in X x Y that are edges in F', and let d(X,Y) =
e(X,Y)/(|X]]Y]) denote the edge density between X and Y. We say that the pair (X,Y) is
e-reqular if for every X' C XY’ C Y with | X'| > ¢|X]|, |Y’| > €|Y|, we have that

d(X,Y) — d(X",Y")| < e.

Suppose now that F' is m-partite, with m-partition V" =V, U --- U V,,. A cylinder K is
a set of the form Wy x ---W,,, where W; C V; for all i € [m]. For such a cylinder K, let
Vi(K) = W,. We say that K is e-reqular if (W;, W;) is e-regular for all 1 < i < j < m.
A cylinder partition K is a partition of V; x --- x V,,, into cylinders, and we say that K is
e-reqular if at most an e-fraction of the m-tuples (vy,...,v,) € Vi X -+ x V,, are not in
e-regular cylinders of K.

Lemma 1 (Duke-Lefmann-Rédl [1], Fox—Li [2, Theorem 7.2]). Let r > 1,m > 2 be integers,
0 < & < 5 a parameter, and define § = ™€ Suppose that F = (V, E) is an m-partite
graph with m-partition ViU- - -UV,, whose edges are r-colored, so that E = E(Fy)U---LUE(F,).
Then there exists a cylinder partition IC of Vi X -+ - x V,,, into at most gme cylinders that is
e-reqular in each of the graphs Fy, ..., F,.. Moreover, for each K € K and i € [m|, we have

that |Vi(K)| > BV

We will use this result in conjunction with our main technical lemma below. If V(H) =k
and I' is a k-partite graph with parts Wi, ..., Wy, we say a copy of H[t] in I" is canonical if
all copies of vertex i € V(H) are in part W; of I". This generalizes the earlier definition of
canonical copies in case I is a blowup G[n].



Lemma 2. Let H be a graph with V(H) = [k|, where we suppose that {1,2} € E(H). For
every ij € E(H), let p;; € (0,1] be a real number, with pia < %, and let 0 < a < HijeE(H) Dij
be another parameter. Then the following holds for sufficiently large n. Suppose that T' is
a k-partite graph with k-partition Wy U -« - U Wy, with |W;| > n for all i. Suppose that
whenever ij € E(H), the pair (W;, W;) is %—T@gular with d(W;, W;) > pij. ThenT' contains
a canonical copy of HI[t], where

logn
t= H bij — o log L
ijeB(H)\{1,2}

Remark. Note that by relabelling the vertices of H, we can exclude any p;; we want from
the product and instead replace the factor (log i)_l by (log ﬁj)_l, as long as p; < 3.
As y = (zlogl/x)~! is a decreasing function of x for x € [0,1/¢] and is bounded for
x € [1/e,1/2], this result is strongest, up to an absolute constant factor, when we pick pia
to be the minimum of the p;;.

Proof of Lemma 2. In a blowup H[t], we call t vertex-disjoint copies of H a perfect matching
of copies of H. Let H; be the subgraph of H induced on the first i vertices, and for j > i, let
N;(j) denote the set of neighbors ¢ of vertex j in graph H with ¢ < i. We let deg(7) denote
the degree of vertex i in H. We also set ¢ = o®/(8%%) and § = 8ke/(pi2log ;-); observe
that both § and e are in (0,1) and do not depend on n. Finally, let ¢; = HéeNi_l(i) pg; for
2 <i <k andlet t; = (1 —deg(1)e)|Wi], t2 = (1 — &) logn/log o=, and t; = (¢ — ke)tia
for 3 <i<k.

A copy of H; in I' is canonical if the copy of vertex j is in W; for j <i. A copy of H;
in I" is good if it is canonical and for each j > ¢, the number of extensions of this copy of H;
to a copy of the induced subgraph H[{1,...,i} U{j}] with the copy of vertex j in W is at
least ([T, (s (e — €)W,

We prove by induction on i for 1 < ¢ < k that we can find a copy of H;[t;] which
contains a perfect matching M; of copies of H;, each of which is good. Observe that by
regularity, for any ij € FE(H) and subset Wj C W; with [Wi| > ¢[W;|, the number of
vertices in W; with less than (p;; — €)|W}| neighbors in W7 is less than ¢|W;|. So, all but at
most (deg(i) — |N;—1(4)])e|W;| vertices in W; have degree at least (p;; — €)|[W| to W7 for all
neighbors j > 4. In particular, applying this observation with i = 1 and W; = W for all
Jj yields that W contains at least ¢; = (1 — deg(1)e)|W;| good vertices (i.e. good copies of
Hy), which together trivially form a perfect matching M;. This proves the base case i = 1
of our induction.

For the inductive step, assume that our claim has been shown for a given i. Fix a copy L;
of H; in the perfect matching M, of good copies of H;. For j > ¢, let W, ; denote the subset
of vertices in W; which together with L; form induced copies of H[{1,...,i} U {j}]. Since
L; is good, we have [W;;[ > (I[,ep,j)(Pej — €)Wl for each i < j < k. A vertex v in Wity
together with L; form a good copy of H;;; so long as v has degree at least (pgy1); — €)Wl
to W, for each neighbor j > 7+ 1 of i + 1. Applying the regularity observation above with



WJ’ = W, we conclude that the number of such v is at least

[Wigil—(deg(i + 1) = [Ni(i + 1)[)e[ Wit

v

(Peie1y —€) | — (deg(i +1) — [Ni(i + 1)])e | [Wita|

LEN;(i+1)

> H Pegi+r) — deg(i + 1)e | [Wig|
LEN; (i+1)

> <Qi+1 - kff) ’Wi+1|-

Consider the auxiliary bipartite graph B with parts M; and W;,, where a copy L; of H;
in M; and a vertex w € W;,, are adjacent if L; together with w form a good copy of H;,.
In B, each vertex in M; has degree at least (g;41 — ke) |[W;11], and hence B has edge density
at least p := q;11 — ke. For the rest of the argument, we split into two cases to deal with the
smallest case separately:

Case 1: i+ 1 = 2. In this case, M; is actually a subset of W;. By adding back in the
remaining vertices of W as disconnected vertices, we can view B as a bipartite subgraph of I'
between W and W,, with edge density at least pl‘%ﬂ = (1 —deg(1)e)(p12 — k&) > p12 — 2ke.
Then, by deleting vertices of lowest degree from each part one at a time, we can find an
induced subgraph with exactly n vertices in each part and edge density at least pjo — 2ke
between its parts. The Koévari-Sés-Turdn theorem [3] implies that a K, ,-free bipartite
graph where both parts have n vertices has at most (r — 1)Y/"n2=%/" 4 (r — 1)n edges. Let
7=ty = (1-6)logy,,n. Observe that

log 1 n\ /"
ra\1/r g1 1 loglogn — loglog(1/p12) 1 1+35/4
r < P12 _ 1 — <
(n) - ( n ) P [(nglg) ( (1—10)logn 1—06)| =Pe

for n sufficiently large in terms of pj. Also for n sufficiently large, we have that r/n < ke.
By the definition of 4, we see that p:fg/ b= kel < 3ke/p12, using the inequality

e <27 <1—x/2for z €[0,1]. Therefore, we find that

1/r
(r— DYV 4 (r —1)n < (<Z> + Z> n* < <pi;36/4 + ks) n? < (p1a — 2ke)n’.
n n

Thus, B contains a K, ,, since it has a bipartite subgraph with n vertices in each part and
at least (p1a — 2ke)n® edges. This K., corresponds to a canonical Hs[ts] in T', all of whose
edges are good; we finish by choosing any perfect matching M, inside this Halts].

Case 2: i+ 1 > 2. In this case, the average degree of vertices in W, in B is at least
pt; =ty 1. For a given vertex w € Wiy, letting degy(w) denote the degree of w in graph B,
there are exactly (degB(w)) pairs (w, S) with w € W,y and S is a subset of M; of size t;,,

tit1
and in B the vertex w is adjacent to all vertices in S. So the total number of such pairs,



ranging over all vertices w € W1, is ZweWiH (detgi (lw)). Define the convex function f by

fla) = {é) if 2>ty - 1

if$<ti+1—17

which agrees with ( til) if x is a nonnegative integer. Applying Jensen’s inequality to f, we
see that there are at least n pairs (w,S), where S is a subset of M; of size t;;; and in B
the vertex w is adjacent to all vertices in S. The number of subsets S of M; of size ¢;,; is
(t:il) < 2% <22 < n'7? 50 there is such a set S C M; for which at least n/n'=% =nd > t;,,
vertices w are adjacent to all vertices in S in the bipartite graph B, as long as n is large
enough so that n? > log, iz 02 g1 These t;11 copies of H; together with ¢;,1 such vertices
w € Wiy form the vertex set of a copy of H;yq[t;11] which has a matching M;,; of good
copies of H; 1 which extends the matching M; of good copies of H;. Thus in either case we
get a copy of H; 1[t;y1] with the desired properties. This completes the induction proof.
Hence, we get a copy of Hy[tx] = H[t] with

te = (qr — ke) (qr—1 — ke) -+ (g3 — ke) ta

logn
> I  pi— k-2 (1-0) >+
ijeE(H)\{1,2} & P12
1
> H piy— ke =10 og?
5 log —
ijeE(H)\{1,2} P12
logn
> H Pij — | 7/
ijeE(H)\{1,2} & P12
where the last step uses that k*c = o?/8 < a//6 and that
LS o e G
p1zlog -~ kpizlog -~ kpizlog -~ = 6

since a < [[pi; < p12 and klogﬁ > 2log2 > %. This is precisely the blowup we were

looking for. O]

Finally, we will need a standard counting lemma in Section 3.

Lemma 3 (See e.g. [7, Theorem 3.30]). Let H be a graph with V(H) = [k], and let T be
a graph with disjoint vertex subsets Wy, ..., Wy. Suppose that (W;, W;) is e-reqular for all
ij € E(H). Let N(H) denote the number of canonical copies of H in I, i.e.

N(H) = [{(wy,...,wg) € Wy X -+ X Wy : wyw; € E(T') for all ij € E(H)}|.
Then
k k
NH) = T awiwy)-TTwil| < ele@) [T Wil
i=1 i=1

ijEE(H)



Remark. Usually, the counting lemma is stated for the number of homomorphisms from H
to I', which might be larger by a lower-order term than the number of copies of H. However,
since we require W1, ..., Wy to be disjoint, these quantities actually coincide.

3 A new proof of Nikiforov’s theorem

Using Lemma 2, we can prove a version of Theorem 3 with stronger quantitative dependence
in its parameters. Specifically, in this section, we prove the following theorem.

Theorem 4. If 0 < n < e ', H is a graph on k vertices, and X = %@W} then the
n

following holds for all n sufficiently large. If G is a graph on n vertices containing at least
nn* labeled copies of H, then G contains a blowup H|[t], where t = Xlogn.

Proof. Let V(H) = [k]. Consider an equitable partition of V(G) picked uniformly at random
with parts Vi, ..., Vi, each of size n/k. Every labeled copy of H has a probability at least
n=k Hle |V;| of being canonical with respect to this partition, namely having vertex ¢ in V;
for all 7 € [k]. Therefore, by linearity of expectation, there exists a partition V3, ..., V; with
|Vi] = n/k for all i and such that Vi, ...V} contain at least n [, |Vi| canonical copies of
H.

Let F be the k-partite subgraph of G whose parts are Vi, ..., V, obtained by deleting all
edges contained in each V;. We apply Lemma 1 to F, with m = k, r = 1, and e = n**" /(8k?).
We obtain an e-regular cylinder partition IC of Vj x --- x Vi, with |V;(K)| > fn/k for all i,
where 8 = ¢¥=". Notice that if K € K is an e-regular cylinder, then the counting lemma
implies that the number of canonical copies of H in K is at most

[ dvi(E),Viy(K)) +e|E(H Hyv

ijeE(H)

Moreover, recall that at most an e-fraction of the tuples in V; x - - - x V}, are in non-e-regular
cylinders, and in particular at most ¢ Hle |Vi| canonical copies of H are in such cylinders.
Adding these two facts up over all cylinders in K, we find that the total number of canonical
copies of H in F' is at most

JTvil+ 30 | TI i), Vi) + el (i H\V

K regular \ijeE(H)

On the other hand, we know that the number of such copies is at least n Hle |Vi|. Therefore,
there must exist an e-regular cylinder K in the cylinder partition for which

[ dvi(E). Vy(K)) + el E(H)| = n —e.

ijeEE(H)



Fixing such a K, let W; = V;(K), and let I" be the subgraph of G induced on Wy U - U Wj.
We know that each part of I' has size at least fn/k. Suppose without loss of generality
that d(W;,W,) is minimum among all d(W;, W;), and let pi» = min(d(Wy, Wa), 1) and
pij = d(W;, W;) for all other ij € E(H). Then by Lemma 2 (assuming n, and thus fn/k, is

sufficiently large), we find that " contains a copy of H[t], where

t =

Y

log(Bn/k)
Il v =05
ijeE(H)\{1,2} & P12
and @ = VB = 1", Let P = [[;p by We have P = 3 TT, oy dVA(). Vi (K)) =
1n—(|E(H)|+ 1)) > 21 > 9o and P < pp < PYIEHI 5o for n sufficiently large in terms
of n, we can bound
P—p

12¢ P—a
—>1 k
przlog ;o SN P log 3

_ 1 —1/|E(H)|
> (logn + log(g/k)) L —a )P

t > log(fn/k)

log

9 8 (L)1 1/1EH) 0 8 9 pl-1/IEGD)
> (—logn) 28— >ijogp—o 1
= (10 Ogn) 9log L +10g2 = "°"10920 Zlog !

771—1/|E(H)\

> — logn,

5log5

as claimed. O]

Remark. In contrast with Nikiforov’s result, where he assumes a bound on the number of
unlabeled copies, we work here with labeled copies, which allows us to pick an n which is a
factor the number of automorphisms of H larger.

Also, just as in Nikiforov’s original proof of Theorem 3, we can use the same technique
to find an unbalanced blowup of H. Namely, for any ¢ > 0, there is a 0 < X" < X such that
we can find a blowup of H in G where the first k — 1 parts have size A’ logn and the last part
has size n'~¢. Indeed, this follows directly by examining the proof of Lemma 2, which shows
that at each step, we can actually pick out n'=¢ vertices in the second part of the auxiliary
graph, as long as t; is decreased by a sufficiently large constant factor.

4 Proof of Theorem 2

In this section, we prove Theorem 2.

Proof of Theorem 2. Fix 0 < o < r~1FUH| and let v = a2r? be the parameter in the theorem
statement. Let m = |V(G)| and k = |V(H)|. Let a = a(G,H,r) and b = b(H,r) be
parameters to be defined later, and let n = a - b'. Let F = G[n], and fix an r-coloring

8



E(F)=E(F))U---U E(F,); we wish to show that this coloring contains a monochromatic
canonical copy of H[t]. We identify V(G) with [m], and let Vi,...,V,, be the parts of
F = G[n]. We also identify the vertex set of H with [k].

Let € = a?/(8k?) be the parameter from Lemma 2. We apply Lemma 1 with parameters
r,m and €. Then we obtain a cylinder partition IC of V| x - - - x V,,, which is e-regular for each
of the color classes Fi, ..., F,. Fix an e-regular cylinder K € K, say K = W} x -+ x W,,.
By Lemma 1, we have |W;| > fn for all i € [k], where § = ™", Define an r-coloring of
E(G) by coloring the edge ij by the most popular color in W; x W;, breaking ties arbitrarily.
Since G —— H, this r-coloring must contain a monochromatic copy of H. By renaming the
colors and the parts, we may assume without loss of generality that this copy of H is on the
vertices 1,...,k, so that 75 is of color 1 if 75 is an edge of H.

Therefore, we find that among all the pairs (W;, W;) where 1 < i < j < k and ij is an edge
of H, we have that color 1 is the densest color in (W;, W;). Let I" be the induced subgraph of
Fyon WiU---UW,. Then we know that each pair (W;, W;) with ij an edge of H is e-regular
in I' (since the cylinder K was e-regular in each color) and satisfies dr(W;, W;) > p, where
dr denotes the edge density in I', and p = 1/r. Since o < 7~ FU) ()l we may apply
Lemma 2 with all p;; equal to p to find a canonical blowup H[t*] (which is monochromatic),
where

| = plE

()1 P-IEE)] _

t* a log(pn) = log(pn).

log % log r

Now, we define a = a(G, H,r) =1/ and b = b(H,r) = pr DI (Ubar PE0N) C o that

r1_|E(H)‘ —

= Ta log(b') = t [(r*~E| — o) (rIEEDI=L(1 4 op|EE)]

=1 [(1 — arPHIEN (1 4 ar'E(H”)} =t [1 + arPEI — =t = ar|E(H)\_1)]
> ¢ [1+ ar!PHI(1 - 2r7h)]
t. -

v

5 Concluding remarks

In addition to eliminating the unnecessary dependence on G in the exponential constant of
B(G — H;t), Theorem 2 also provides quite good bounds on the exponential constant in
many instances. For instance, Souza’s results [6] imply the bounds

ot < B(K6 L Kg;t) < e(3.3><107)t7
and he asked whether the upper bound could be made more reasonable. Theorem 2 implies
B(Ks — K t) < 2008 — (16 4 o(1))".

Moreover, the same bound holds for B(G 2 K3;t) for any graph G with G 2 K3, as long
as the o(1) term above is allowed to depend on G. We expect that the upper bound can

9



be improved further using some of our techniques, but such an improvement would likely
require some new ideas.

The most natural question left open by Theorem 2 is whether the dependence on G can
be entirely eliminated, or whether B(G —— H;t) must depend on G. Unlike Souza, we
believe the latter to be the case, and make the following conjecture.

Conjecture 1. There exists a graph H and integers r,t > 2 for which the following holds.
There exist graphs G1,Gs, ... such that G; — H for all i and sup; B(G; — H;t) = oo.

We even conjecture this holds with H is a triangle and r =t = 2.

Conjecture 2. For every s, there exists a graph G such that G — K but Gls] s K3[2].

For certain graphs H and integers r, Conjecture 1 does not hold, and B(G = H;t)
can be bounded by an exponential function independent of G. One example of such graphs,
as observed by Souza, are the r-Ramsey-finite graphs. Let M, (H) denote the set of all G
which are minimal with respect to the property G — H, i.e. all graphs G with G — H but
G' —~ H for any proper subgraph G’ of G. H is called 7-Ramsey-finite if |M,(H)| < oo,
and r-Ramsey-infinite otherwise. If H is r-Ramsey-finite, then B(G — H;t) < ¢ for a
constant ¢ that does not depend on G; indeed, we may find such a ¢ by taking the maximum
¢ from Theorem 1 over all G € M,.(H).

However, there is at least one Ramsey-infinite graph H (namely the path P; with two

edges) for which Conjecture 1 fails to hold and further B(G 2 H; t) < ¢ for all G with
G 2 H where ¢ does not depend on G. Indeed, My(Ps) is infinite, consisting of K 3

and the odd cycles. Equivalently, G N P; if and only if G has a vertex of degree at
least 3 or GG contains an odd cycle Cyy1. If G has a vertex of degree at least 3, then

B(G 2, Ps;t) < B(Ki3 2, Ps;t), so we can use the same upper bound for all such G. On
the other hand, it is a simple exercise to show that for each £ > 0 there is 6 > 0 such that if
a 2-edge-coloring of Py[n] has at most dn® monochromatic canonical P, then, apart from at
most en? edges, the coloring is monochromatic between consecutive parts and alternates color
along the path. In particular, taking ¢ = 1/3, if a 2-edge-coloring of Cyy11[n] does not contain
%n?’ monochromatic canonical P3 between any three consecutive parts, then the most common
color used between consecutive pairs of parts alternates along the cycle, contradicting that
an odd cycle is nonbipartite. That is, every 2-edge-coloring of Cyy1[n] must contain at least
gn3 monochromatic canonical P3 between some three consecutive parts. Applying Nikiforov’s
theorem between these three consecutive parts, there is a monochromatic canonical copy of

Ps[t] with ¢t = Q(logn) and the implicit constant is absolute. Hence, although P; is not
2-Ramsey-finite, there is still an absolute constant ¢ such that B(G 25 Py; t) < forall G
with G - Ps.

Souza defined the robustness B.(H;G) to be the minimum number of monochromatic
copies of H in an r-coloring of G, divided by the total number of copies of H in G. Thus,
B-(H; G) measures the fraction of copies of H that must be monochromatic in any r-coloring
of G. He also showed, again as a consequence of Theorem 1, that if inf{5,(H;G) : G €
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M, (H)} > 0, then Conjecture 1 fails to hold for H. If H is r-Ramsey-finite, then this
infimum is certainly positive, so we recover the above observation that Conjecture 1 fails
for r-Ramsey-finite graphs. Moreover, Souza [6, Conjecture 5.4] conjectured that these two
observations are in fact the same, namely that inf{5,(H;G) : G € M,(H)} > 0 if and only
if H is r-Ramsey-finite. Indeed, this conjecture is true.

Proposition 1. If H is r-Ramsey-infinite, then inf{5,(H;G): G € M,(H)} = 0.

This proposition follows from the next lemma and sup{e(G) : G € M, (H)} = o if H is
r-Ramsey-infinite; this fact follows from the observation that a Ramsey-minimal graph for
H can have at most as many isolated vertices as H itself, so the number of edges of G must
tend to infinity as G runs over the infinite set M,.(H).

e(H)
re(G)”

Lemma 4. If G is Ramsey minimal for H with r colors, then B,.(H;G) <

Proof. 1f we fix a copy of H in G and then pick an edge of G uniformly at random, the
probability that it lands in this copy is exactly e(H)/e(G). Therefore, by linearity of ex-
pectation, there exists an edge e € E(G) such that e lies in at most an e¢(H)/e(G) fraction
of the copies of H in G. Since G is Ramsey-minimal for H, we can color G — e so that it
contains no monochromatic copy of H. We then color e according to which color it would
participate in the least number of monochromatic copies of H. We thus find that the total

fraction of copies of H that are monochromatic is at most fe((lé)), since every such copy must
contain e and there are r colors. Thus, §,.(H;G) < :e((lg) ]

It is natural to modify the definition of blowup Ramsey numbers to allow for non-
canonical copies. More precisely, we can define

B'(G,H,r,t) = min{n : G[n] — H[t]}.

Note that B(G — H;t) is finite if and only if G — H; the if direction was proven by
Souza, while the only if follows from blowing up any coloring of G with no monochromatic
copy of H. However, B'(G, H,r,t) can be finite for all ¢ even if G —— H. Indeed, let’s say
that G—»H if every r-edge-coloring of G contains a monochromatic homomorphic image
of H, where we say that H’ is a homomorphic image of H if it can be gotten from H by
repeatedly identifying non-adjacent vertices. In this case, a sufficiently large blowup of H’
will contain a copy of H. Therefore we can conclude that B'(G, H,r,t) is finite if and only
if G—»H , where the only if direction follows by blowing up a coloring of G containing no
monochromatic homomorphic image of H. Moreover, we thus find that

B'(G, H,r,t) <B(G — H;t) <B'(G,H,r,ct),
where ¢ = ¢(H) > 1 is a constant depending on how small a homomorphic image of H

can be. Thus, %log B(G -~ H;t) and %log B'(G, H,r,t) differ only by a constant factor
depending on H.
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