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Abstract

We consider m-colorings of the edges of a complete graph, where each color class is defined
semi-algebraically with bounded complexity. The case m = 2 was first studied by Alon et al.,
who applied this framework to obtain surprisingly strong Ramsey-type results for intersection
graphs of geometric objects and for other graphs arising in computational geometry. Considering
larger values of m is relevant, e.g., to problems concerning the number of distinct distances
determined by a point set.

For p > 3 and m > 2, the classical Ramsey number R(p;m) is the smallest positive integer
n such that any m-coloring of the edges of K, the complete graph on n vertices, contains a
monochromatic K,,. It is a longstanding open problem that goes back to Schur (1916) to decide
whether R(p;m) < 2°™, where ¢ = ¢(p). We prove that this is true if each color class is defined
semi-algebraically with bounded complexity, and that the order of magnitude of this bound is
tight. Our proof is based on the Cutting Lemma of Chazelle et al., and on a Szemerédi-type
regularity lemma for multicolored semi-algebraic graphs, which is of independent interest. The
same technique is used to address the semi-algebraic variant of a more general Ramsey-type
problem of Erdés and Shelah.

1 Introduction

The Ramsey number R(p;m) is the smallest integer n such that any m-coloring on the edges of the
complete n-vertex graph contains a monochromatic copy of K,. The existence of R(p;m) follows
from the celebrated theorem of Ramsey [20] from 1930, and for the special case when p = 3, Issai
Schur proved the existence of R(3;m) in 1916 in his work related to Fermat’s Last Theorem [21].
He showed that

Q(2™) < R(3;m) < O(m!).

While the upper bound has remained unchanged over the last 100 years, the lower bound was
successively improved and the current record is R(3;m) = ©(3.199™) due to Xiaodong et al. [25].
It is a major open problem in Ramsey theory, for which Erdds offered some price money, to close
the gap between the lower and upper bounds for R(3;m).

In this paper, we study edge-colorings of complete graphs where each color class is defined
algebraically with bounded complexity. Over the last decade, several researchers have shown that
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some of the classical theorems in extremal combinatorics can be significantly improved if the un-
derlying graphs are intersection graphs of geometric objects of bounded “description complexity”
or bounded VC-dimension, graphs of incidences between points and hyperplanes, distance graphs,
or, more generally, semi-algebraic graphs [1, 11, 5, 10, 22]. To make this statement more precise,
we need to introduce some terminology. Let V be an ordered point set in R?, and let E C (‘2/)
We say that E is a semi-algebraic relation on V' with complexity at most t if there are at most t
polynomials g1,...,9s € Rlz1,...,2e4], s < t, of degree at most ¢t and a Boolean formula ® such

that for vertices u,v € V such that u comes before v in the ordering,

(u,v) e E <  ®(g1(u,v) >0;...;95(u,v) >0) =1.

At the evaluation of gy(u,v), we substitute the variables xy,...,z4 with the coordinates of u, the
variables 4. 1,. .., Toq with the coordinates of v. We may assume that the semi-algebraic relation £
is symmetric, i.e., for all points u,v € R?, (u,v) € E if and only if (v,u) € E. Indeed, given such an
ordered point set V' € R? and a not necessarily symmetric semi-algebraic relation E of complexity
at most ¢, we can define V* C R with points (v, i) where v € V and v is the ith smallest element
in the given ordering of V. Then we can define a symmetric semi-algebraic relation E* on the
pairs of V* with complexity at most 2t + 2, by comparing the value of the last coordinates of the
two points, and checking the relation F using the first d coordinates of the two points. We will
therefore assume throughout this paper that all semi-algebraic relations we consider are symmetric,
and the vertices are not ordered. Hence, all edges are unordered and we denote uv = {u,v}. We
also assume that the dimension d and complexity ¢ are fixed parameters, and n = |V| tends to
infinity.

Let Rq(p;m) be the minimum n such that every n-element point set V in R? equipped with
m semi-algebraic binary relations (edge-colorings) Ei, ..., E, C (‘2/), each of complexity at most
t, where £y U---UE,, = (‘2/), contains a subset S C V of size p such that (g) C Ej. for some k.
Note that the relations F; are not necessarily disjoint, that is, an edge uv may have several colors.
Clearly Rq:(p;m) < R(p;m). It was known that for fixed d,t > 1, Rq(3;m) = 20(mloglogm)
which is much smaller than Schur’s bound R(3;m) = O(m!) mentioned in the first paragraph of
the Introduction; see [22]. In this paper, we completely settle Schur’s problem for semi-algebraic
graphs, by showing that in this setting Schur’s lower bound (which is semi-algebraic with bounded
complexity) is tight in the sense that these Ramsey numbers grow exponentially in the number of
colors. In fact, we prove this in a more general form, for any p > 3.

Theorem 1.1. For integers d,t > 1 and p > 3, there is a constant ¢ = c(d, t,p) such that
R(p;m) < 2°™.

Our proof uses geometric techniques and is based on the Cutting Lemma of Chazelle, Edels-
brunner, Guibas, and Sharir [3] described in Section 2.

Edge-colorings of semi-algebraic graphs with m colors can be used, e.g., for studying problems
concerning the number of distinct distances determined by a point set; see [12]. One can ex-
plore the fact that multicolored semi-algebraic graphs have a very nice structural characterization,
reminiscent of Szemerédi’s classic regularity lemma for general graphs [24], but possessing much
stronger homogeneity properties. Our next theorem provides such a characterization, which is of
independent interest. To state our result, we need some notation and terminology.



A partition is called equitable if any two parts differ in size by at most one. According to
Szemerédi’s lemma, for every € > 0 there is a K = K () such that the vertex set of every graph has
an equitable partition into at most K parts such that all but at most an e-fraction of the pairs of
parts are e-regular.! It follows from Szemerédi’s proof that K (¢) may be taken to be an exponential
tower of 2s of height e~9(). Gowers [14] used a probabilistic construction to show that such an
enormous bound is indeed necessary.

Alon et al. [1] (see also Fox, Gromov et al. [9]) established a strengthening of the regularity
lemma for point sets in R? equipped with a semi-algebraic relation E. It was shown in [1] that for
any semi-algebraic graph of bounded complexity defined on the vertex set V C R? (that is, for any
semi-algebraic binary relation £ C (‘2/)), V has an equitable partition into a bounded number of
parts such that all but at most an e-fraction of the pairs of parts (V1, V) behave not only regularly,
but homogeneously in the sense that either V3 x V5 C E or Vi x Vo N E = (). The first proof of
this theorem was essentially qualitative: it gave a poor estimate for the number of parts in such a
partition. Fox, Pach, and Suk [11] gave a stronger quantitative form of this result, showing that
the number of parts can be taken to be polynomial in 1/e.

Let V be an n-element point set in R? equipped with m semi-algebraic relations E1, ..., Ep,
such that Fy U---U Ep, = (‘2/) of bounded complexity. In other words, suppose that the edges of
the complete graph on V are colored with m colors, where each color class is semi-algebraic. Then,
for any € > 0, an m-fold repeated application of the result of Fox, Pach, and Suk [11] gives an
equitable partition of V' into at most K < (1/¢)“™ parts such that all but an e-fraction of the pairs
of parts are complete with respect to some relation Ey, i.e., all edges between the two parts are of
color k, for some k. In Section 4, we strengthen this result by showing that the number of parts
can be taken to be polynomial in m/e.

Theorem 1.2. For any positive integers d,t > 1 there exists a constant ¢ = c(d,t) > 0 with the
following property. Let 0 < e < 1/2 and let V' be an n-element point set in R? equipped with semi-
algebraic relations Fn, ..., Ey, such that each Ey has complexity at most t and (‘2/) =FEU---UE,,.
Then V' has an equitable partition V =V, U---U Vi into at most 4/ < K < (m/e)¢ parts such
that all but an e-fraction of the pairs of parts are complete with respect to some relation Ey.

In Section 5, we apply this result to solve a problem of Erdds and Shelah [6] in the semi-algebraic
setting. Let d, ¢, p, ¢, n be positive integers, p > 3, and 2 < ¢ < (g) Let fq+(n,p,q) be the minimum
m such that there exists a semi-algebraic m-coloring of the edges of the complete graph of n vertices
(with parameters d and ¢, as above) with the property that each edge has exactly one color and
any set of p vertices induces at least ¢ distinct colors. Notice that here we must assume that the
color classes E; are disjoint, since otherwise fg:(n,p,q) = ¢ by assigning all ¢ colors to every edge.
Our next theorem precisely determines the smallest ¢ for a given p, where fg(n,p, ¢) changes from
a logn to a power of n.

Theorem 1.3. For fized integers d,t > 1, there is a ¢ = c¢(d,t) > 0 such that for p > 3, we have

1
far(n,p, logp] +1) =Q (nclogzp) '

Moreover, fort > 4,

'For a pair (V;,V;) of vertex subsets, e(Vi, V;) denotes the number of edges in the graph running between V; and
V;. The density d(Vi,V;) is defined as “0=¥3)  The pair (V;,V;) is called e-regular if for all V; C V; and V] C V;
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with |V/| > €|Vi| and |V} | > ¢|V}|, we have |[d(V/,V]) — d(V;, V;)| <e.

'V




fd,t(napv |710gp-|) = O(logn)

In [12], we studied a geometric instance of this problem, where every set of p points induces at
least g distinct distances.

Our paper is organized as follows. In the next section, we describe the Cutting Lemma of
Chazelle et al., which is the main geometric tool used in all proofs. In Section 3, we establish
Theorem 1.1. Section 4 contains the proof of our multicolored semi-algebraic regularity lemma,
Theorem 1.2, which is applied in the following section to deduce Theorem 1.3. We end this paper
with some concluding remarks.

2 The cutting lemma

The main tool we use to prove Theorems 1.1 and 1.2 is commonly referred to as the cutting lemma,
which we now recall. A set A C R? is semi-algebraic if there are polynomials gi,...,g; and a
boolean formula ¢ such that

A={zeR": ®(gi(x) >0;...;9:(z) > 0) =1},

We say that a semi-algebraic set in d-space has description complexity at most t if the number of
inequalities is at most ¢, and each polynomial g; has degree at most t. Let o C R? be a surface
in R?, that is, o is the zero set of some polynomial h € R[zy,...,24]. The degree of a surface
o ={x € R: h(x) = 0} is the degree of the polynomial h. We say that the surface o C R? crosses
a semi-algebraic set A if cNA # ) and A ¢ o.

Let X be a collection of surfaces in R, each having bounded degree. A (1/r)-cutting for ¥ is a
family W of disjoint (possibly unbounded) semi-algebraic sets of bounded complexity such that

1. each A € ¥ is crossed by at most |X|/r surfaces from 3, and

2. the union of all A € ¥ is R%.

In [3], Chazelle et al. (see also [15]) proved the following.

Lemma 2.1 (Cutting lemma). Let ¥ be a multiset of N surfaces in RY, each surface having degree
at most t, and let r be an integer parameter such that 1 < r < N. Then there is a constant
c1 = c1(d,t) such that ¥ admits a (1/r)-cutting ¥, where |¥| < 172, and each semi-algebraic set
A €V has complexity at most cy.

We note that the original statement of Chazelle et al. [3] and Koltun [15] is stronger. Namely, they
also guarantee that the number of cells in the cutting ¥ is at most r2¢=4*¢ for d > 4. Here, for
simplicity, we use the weaker bound of ¢;72?, as stated above.

3 Multicolor Ramsey numbers for small cliques
—Proof of Theorem 1.1

Theorem 1.1 will easily follow from Theorem 3.1 below. For integers pi,...,pm > 2, d,t > 1, let
Rg¢(p1,-..,pm) be the minimum integer n with the following property. Every complete graph K,



whose n vertices lie in R% and whose edges are colored with m colors such that each color class is
defined by a semi-algebraic relation of description complexity ¢, contains a monochromatic copy of
K, in color k for some 1 <k < m.

Theorem 3.1. For any d,t > 1 and p > 3, there exists a constant ¢ = c(d,t,p) satisfying the
following condition. For any m integers p1,...,Pm < p, we have

Rit(p1,...pm) < 9C k1 Pk

Proof. Fix d,t > 1, p > 3 and set ¢ = ¢(d,t,p) to be a large constant that will be determined
later. We will show that Rq+(p1,...,pm) < 2¢22k=1Pk by induction on s = > pey pk- The base case
s < 10 - 2194 follows for ¢ sufficiently large.

Now assume that the statement holds for s’ < s. Set n = 2 and let V' be an n-element point
set in R? equipped with semi-algebraic relations F, ..., E,, C (‘2/) such that (‘2/) =FU---UE,
and each Ej has complexity at most ¢. Recall that an edge uv may have several colors. We will
show that there is a subset S C V of size p; such that (g) C Ej, for some k € [m], in other words,
we will find a monochromatic copy of K, in color k for some k € [m]. Throughout the proof, we
will let ¢1 be as defined in Lemma 2.1.

For each relation Fj, there are ¢ polynomials gy 1,..., gk of degree at most ¢, and a Boolean
function ®;, such that

weFE, & Qpgri(u,v) >0,...,95:(u,v) >0)=1.

For 1 <k <m,1</{<twveV,wedefine the surface oy ¢(v) = {x € R?: gi 4(v, ) = 0}.

Before we continue, let us briefly sketch the idea of the proof. We start by applying Lemma 2.1
(the cutting lemma) to ¥ = {0} ¢(v) : k € [m],£ € [t],v € V'}, the set of surfaces which determines
the neighborhoods of each vertex, and obtain a space partition which induces a partition of the
vertex set V = V3 U--- U V. If there is a “large” part V; with many distinct colors appearing in
Vj x (V' \'V}), then we show that V; induces few distinct colors, and by induction we can find a
monochromatic copy of K, for some k € [m]. If none of the “large” parts has the above property,
the colors of nearly all edges can be defined by much fewer polynomial inequalities, i.e., by a much
smaller set of surfaces ¥’ C ¥ . Now we can repeat.

In what follows, we spell out these ideas in full detail. Set my = m and define m; =
4dlog(cymi—1t) for i > 0. We will establish the following claim.

Claim 3.2. Let V and E1,...,E,, C (‘2/) be defined as above. Then for i > 0 we will recursively
find either

1. a monochromatic copy of Kp, in color k for some k € [m], or

2. a function x; : V — 2™ such that |xi(v)| < ms, and the number of edges uv € (‘2/) with the
property that for one of its endpoints, say w, no color assigned to uv belongs to x;(u), is at
most %. We will refer to these edges as bad at stage i. All edges that are not bad are
called good at this stage, meaning that, there is a color k appearing on wv such that k € x;(u),
and there is a color k' appearing on uv such that k' € x;(v).

Proof. We start by setting xo(v) = [m] for all v € V, and mo = m. Having found y; with the
properties above, we will produce x;+1 as follows. We have m;;1 = 4dlog(cym;t), and let us assume



that m; > (8c1dtp)?. Hence, there are at most t;‘:il bad edges. Let X be the set of surfaces oy, ¢(v),

where v € V| k € x;(v), and 1 < ¢ < ¢. This implies that || < nm;t.

We apply Lemma 2.1 to ¥ with parameter r = (tm;)? to obtain a (1/(tm;)?)-cutting ¥ =
{A1,Ag, ..., Ak, }, such that Ky < ¢ (tm;)*?. Hence, we have a partition Py : V =V U---U Vi,
where V; = VN A, for Aj € U. For each part V; of size greater than 2n/(tm;), we (arbitrarily)
partition Vj into parts of size [2n/(tm;)] and possibly one additional part of size less than 2n/(tm;).
Let P:V =V U---UVik be the resulting partition, where K < 2¢;(tm;)* and |V;| < 2n/(tm;)
for all j.

Now we define x;4+1(v) for all v € V.
Case 1. If v € V; for some V; with |V;| < W, we set xi11(v) = 0.

Case 2. Suppose v € V; such that |Vj| > W. In order to define x;4+1(v), we need some
preparation. Let A; € ¥ such that V; C A;. We define X; C V' \ V; to be the set of vertices from
V'\'V; that gives rise to a surface in ¥ that crosses A;. By Lemma 2.1, the cutting lemma, we have
1] < n/(tmy).

Fix a vertex v € V' \ {V}, X;}. Since none of the surfaces of the form oy, ¢(v), where k € x;(v)
and ¢ € {1,...,t}, cross Aj, either v x V; is monochromatic with color k for some k € x;(v), or
none of the colors in x;(v) appear in v x Vj. Let S; be the set of vertices v € V'\ {V}, X;} satisfying
the former condition and let 7 denote a set of vertices v € V' \ {V}, X} satisfying the latter one.
Since there are at most 4n?/(tm;_1) bad edges, we have

| n < 4n?
J 201(tmi)4d+1 B tmi_1’

which implies

) < 8ney (tm;)4+! < n 7

tmi_l tmi
where the last inequality follows from the fact that m;_; = 27/ 4d/(c1t), and the assumption
m; > (8c1dtp)?. Now, suppose there are at least m;y1 = 4dlog(citm;) distinct colors between Vj
and Sj. Let I = {k1,...,km,,,} C [m] be the set of these m; 1 distinct colors. Then there are
M1 vertices vy, ..., Uy, ., € Sj, possibly with repetition, such that v, x V; is monochromatic with
color k,, € I, for each w € {1,...,m;;1}. Hence, if V; contains a monochromatic copy of K,, 1 in

color k € I, we would have a monochromatic copy of K, in color k. On the other hand, if V; does
not contain a monochromatic copy of K, _1 in color k for no k € I, then, using that

|VJ| > 2071(“:1')4‘“‘1 > gcs—8dlog(cimit)  oc(s—mit1) — QC(ZkeI(pk*1)+Zk€[Pk)
for a sufficiently large ¢, we obtain by induction that there is a monochromatic copy of K, in color
k where k & I.

Therefore, we can assume that the number of distinct colors between V; and S; is less than
mi+1 = 4dlog(cim;t). For every vertex v € Vj, define x;41(v) as the set of all colors that appear
on the edges belonging to v x 5.

Now that we have defined m;1 and x;4+1 such that |x;+1(v)| < mjitq for all v € V it remains
to show that the number of edges uv € (‘2/) with the property that for one of its endpoints, say



u, no color assigned to uv belongs to x(u), is at most 4” . Let B C ( ) be the collection of such
edges. Notice that if uv € B, then either

1. both v and v lie inside the same part in the partition P, or

2. wor v lies inside a part V; such that |Vj| < W’ or

3. uw e V; with |Vj| > rand v € X; UT}, or

2¢1 ( tm )4d+

4. veV; w1th]V|>74d+1&ndu€X uTj.

(tm;)

Since each part in P has at most 2n/(tm;) vertices, the number of edges of type 1 is at most

t ( P ) /2 = n?/(tm;). The number of edges of type 2 is at most

2

n n
— X | K -n< .
<201 (tm¢)4d+1) ~ tm;

Since |Xj|,|T;| < n/(tm;), the number of edges of types 3 and 4 is at most

2n
z:|V‘tm - tm

Hence, |B| < %. Therefore, either we have found a monochromatic copy of K, in color k for
some k € [m], or we have found m;1 and x;41 with the desired properties. ]

Let w be the minimum integer such that m, < (8cidtp)?’. Then either we have found a
monochromatic copy of K, in color k for some k € [m], or we have obtained m,, and x,, with the
desired properties. Since there are at most 4n?/(tm,,_1) < n?/8 bad edges, there is a vertex v € V
incident to at least n/2 good edges. Moreover, since |y, (v)| < my, < (8cidtp)?, at least W of
these edges incident to v have color &’ for some color k' € y,,(v). Let S C V be the set of endpoints
of these edges. If S contains a monochromatic copy of K, , 1 in color &', then we are done. On
the other hand, if S does not contain a monochromatic copy of K, , 1 in color k', and using the

lower bound

‘S’ S n B 2C$
= 2(8cydtp)?  2(8cydtp)?

for ¢ = ¢(d, t, p) sufficiently large, we conclude by induction that S contains a monochromatic copy
of K, for some k # k’. This completes the proof of Theorem 3.1. O

QC(qu&k’ Pet+ (P _1))7

4 Multicolor semi-algebraic regularity lemma
—Proof of Theorem 1.2

First, we prove the following variant of Theorem 1.2, which easily implies Theorem 1.2.

Theorem 4.1. For any ¢ > 0, every n-element point set V. C R% equipped with semi-algebraic
binary relations Fn, ..., Ey, C (V) such that (V) FiU---UFE, and each Ey has complezity at

most t, can be partztwned into K < ca( Y% parts V.= ViU---UVk, where ¢y = ca(d,t), such that



Z |Vi||2Vj| <e
n
where the sum is taken over all pairs (i,j) such that (V;,V;) is not complete with respect to Ey, for
allk=1,...,m.

Proof. For each relation Ej, let gi1,...,0kt € R[z1,...,224] be polynomials of degree at most ¢,
and let ®; be a boolean formula such that

we B, &  Pr(gra1(u,v) >0;5.. .59k (u,v) >0) =1

For each point z € R, k € {1,...,m}, and £ € {1,...,t}, we define the surface

ore(x) ={y € R?: g o(z,y) = 0}.

Let ¥ be the family of tmn surfaces in R? defined by

Y={ope(u) :ueV,1<k<m,1<l<t}

We apply Lemma 2.1 to ¥ with parameter r = ¢tm/e to obtain a (1/r)-cutting ¥, where
V| =s<c (%”)Qd, such that each semi-algebraic set A; € ¥ has complexity at most ¢1, where ¢y
is defined in Lemma 2.1. Hence, at most tmn/r = en surfaces from ¥ cross A; for every i. This
implies that at most en points in V' give rise to at least one surface in 3 that crosses A;.

Let U; = VN A; for each ¢ < s. We now partition A; as follows. For k € {1,...,m} and
je{l,...,s}, define A; ;1 C R? by

Aijr={x€A;:opi(x)U---Uoys(x) crosses Aj}.

That is, A; ;1 will correspond to the vertices in A; that may not be homogeneous to the set of
vertices in A; with respect to color k.

Observation 4.2. For any i, j, and k, the semi-algebraic set A; ;1 has complexity at most c3 =
Cg(d, t) .

Proof. Set oi(x) = op1(x) U--- Uog(x), which is a semi-algebraic set with complexity at most
¢y = c4(d,t). Then

- Iy €RY st yy € op(z) N A, and

Al’]’k_ {.Z‘EAz. 3y2€Rd s.t. Yo EAj\Uk(l'). '

We can apply quantifier elimination (see Theorem 2.74 in [2]) to make A; ;i quantifier-free,
with description complexity at most c3 = c3(d, t). O

Set F; = {A;jr:1<k<m,1<j<s}. We partition the points in U; into equivalence classes,
where two points u,v € U; are equivalent if and only if u belongs to the same members of F; as v
does. Since F; gives rise to at most c3|F;| polynomials of degree at most ¢z, by the Milnor-Thom
theorem (see [18] Chapter 6), the number of distinct sign patterns of these c3|F;| polynomials is
at most (50¢s(c3|Fi|))?. Hence, there is a constant ¢s = ¢5(d, t) such that U; is partitioned into at
most c5(ms)? equivalence classes. After repeating this procedure to each U;, we obtain a partition
of our point set V =V, U---U Vi with



m bd? m 5d?
K< 505(ms)d = cymfsdtt < C5t2d(d+1)ccll+l (*) =cCo (*) )
€ €

where we define ¢y = c5t2HdH1) 4F1

For fixed 7, consider the part V;. Then there is a semi-algebraic set A,,, obtained from Lemma 2.1
such that U,,, = VNA,, and V; C Uy, C Ay,. Now consider all other parts V; such that not all of
their elements are related to every element of V; with respect to any relation Ej where 1 < k < m.
Then each point u € V; gives rise to a surface in X that crosses A,,. By Lemma 2.1, the total

number of such points in V' is at most en. Therefore, we have
D WVillViL = Vil Y V| < [Vilen,
J J

where the sum is over all j such that V; x V; is not contained in the relation £}, for any k. Summing
over all ¢, we have

D Villvjl < en?,

.3
where the sum is taken over all pairs 4, j such that (V;, V) is not complete with respect to Ej, for
all k. 0

Proof of Theorem 1.2. Apply Theorem 4.1 with approximation parameter £/2. Hence, there is a
partition @ : V = UjU---UUg into K’ < (m/e)¢ parts with ¢ = ¢(d, t) and > |U;||U;| < (¢/2)|V|?,
where the sum is taken over all pairs (7, j) such that (U;, U;) is not complete with respect to Ej, for
all k.

Let K = 8~ 'K’. Partition each part U; into parts of size |V|/K and possibly one additional
part of size less than |V'|/K. Collect these additional parts and divide them into parts of size |V|/K
to obtain an equitable partition P : V. = V3 U---U Vg into K parts. The number of vertices of
V' which are in parts V; that are not contained in a part of Q is at most K'|V|/K. Hence, the
fraction of pairs V; x V; with not all V;, V; are subsets of parts of Q is at most 2K'/K = ¢/4. As
€/2 +¢e/4 < e, we obtain that less than an e-fraction of the pairs of parts of P are not complete
with respect to any relation Eq,..., Ep,. ]

5 Generalized Ramsey numbers for semi-algebraic colorings
—Proof of Theorem 1.3

Due to the lack of understanding of the classical Ramsey number R(p;m), Erdés and Shelah (see
[6]) introduced the following generalization, which was studied by Erdds and Gyarfas in [7].

Definition 5.1. For integers p and ¢ with 2 < ¢ < (’2’), a (p,q)-coloring is an edge-coloring of a
complete graph in which every p vertices induce at least ¢ distinct colors.

Let f(n,p,q) be the minimum integer m such that there is a (p, g)-coloring of K, with at most
m colors. Here, both p and ¢ are considered fixed integers, where p > 3, 2 < ¢ < (g), and n
tends to infinity. Trivially, we have f(n,p, (5)) = (3), and at the other end, estimating f(n, p,2) is

equivalent to estimating R(p;m) since f(n,p,2) is the inverse of R(p;m). In particular,



1
0 (&;) < f(1,3,2) < O(logn). (1)

Erdés and Gyérfas [7] determined certain ranges for q € {2,3,...,(’2’)} for which f(n,p,q) is
quadratic, linear, and subpolynomial in n. In particular, they showed that

Q (np%ﬂ < f(n,p,p) <O (np%l) ,
which implies that f(n,p,q) is polynomial in n for ¢ > p. Surprisingly, estimating f(n,p,p — 1) is
much more difficult. They [7] asked for p fixed if f(n,p,p — 1) = n°(M) . The trivial lower bound is

fn,p,p—1) > f(n,p,2) > Q <log)§)gn), which was improved by several authors [17, 13], and it is

now known [4] that f(n,p,p —1) > Q(logn). In the other direction, Mubayi [19] found an elegant
construction which implies f(n,4,3) < eOWlogn) and later, Conlon et al. [4] gave another example
which implies f(n,p,p —1) < ellogn)!—1/(p=2tet)
not grow as a power in n.

Here, we study the variant of the function f(n,p,q) for point sets V' C R? equipped with semi-
algebraic relations. Let fj.(n,p,q) be the minimum m such that there is a (p, ¢)-coloring of K,
with m colors, whose vertices can be chosen as points in R?, and each color class can defined by a
semi-algebraic relation on the point set with complexity at most . We note that here we require
that each edge receives ezactly one color. Clearly, we have f(n,p,q) < fa:(n,p,q). Theorem 1.3
stated in the Introduction shows the exact value of ¢ for which fg:(n,p,q) changes from logn to a
power of n.

. Hence, it is now known that f(n,p,p — 1) does

In the rest of this section, we prove Theorem 1.3. Let V' be a set of points in R? equipped with
semi-algebraic relations Ff, ..., E,, such that each Fj has complexity at most , (‘2/) = FU---UE,,
and E, N Ey = () for all k # £. Let S1,S2 C V be g-element subsets of V. We say that S; and
Sy are isomorphic, denoted by S7 ~ S, if there is a bijective function A : S; — S5 such that for
u,v € S; we have uv € Ej, if and only if h(u)h(v) € E.

Let S C V be such that |S| = 2° for some positive integer s. We say that S is s-layered if s =1
or if there is a partition S = S; U S such that |S1| = |S2| = 2571, S1 and Sy are (s — 1)-layered,
S1 ~ S5, and for all u € S; and v € Sy we have uv € Ej, for some fixed k. Notice that given an
s-layered set S, there are at most s relations Ej,, ..., Ej, such that (g) C E;, U---UE}),. Hence,
the lower bound in Theorem 1.3 is a direct consequence of the following result.

Theorem 5.2. Let s > 1 and let V be an n-element point set in RY equipped with semi-algebraic
relations En, . .., Ey, such that each Ey has complexity at most t, Eq1U- - -UE,, = (‘2/), and BExyNE, =

0 for allk # L. If m < ncs%, then there is a subset S C 'V such that |S| = 2° and S is s-layered,
where ¢ = c(d,t).

Proof. We proceed by induction on s. The base case s = 1 is trivial. For the inductive step,
assume that the statement holds for s < s. We will specify ¢ = ¢(d, t) later. We start by applying
Theorem 1.2 with parameter ¢ = n}bs to the point set V', which is equipped with semi-algebraic

relations F1, ..., E,,, and obtain an equitable partition P : V =V, U---U Vg, where

m 5d? 2
K <c (*) < comt0s
€
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and co = co(d,t). Since all but an ¢ fraction of the pairs of parts in P are complete with respect
to E, for some k, by Turdn’s theorem, there are m*~! + 1 parts V! € P such that each pair
V7, V]’) € P x P is complete with respect to some relation Fy. Since P is an equitable partition,
we have |V/| > % By picking ¢ = ¢(d, t) sufficiently large, we have

om10d2s

1 2 2

1 n c(s—1)2 cs®—10cod”s

Vi| =07 > (w) >m D7 >
com

By the induction hypothesis, each V; contains an (s — 1)-layered set S; for i € {1,...,m*" 1 + 1}.
By the pigeonhole principle, there are two (s — 1)-layered sets S;, S; such that S; ~ S;. Since

S; x S;j C By, for some k, the set S = S; U S; is an s-layered set. This completes the proof. O
To prove the upper bound for fq¢(n,p, [logp]), when d > 1 and t > 100, it is sufficient to con-
struct a 2™-element point set V' C R equipped with m distinct semi-algebraic relations F1, ..., E,,
that is m-layered. More precisely, for each integer m > 1, we construct a set V,,, of 2™ points in R
equipped with semi-algebraic relations Fj, ..., E,;, such that
1. V,,, with respect to relations E1, ..., E,, is m-layered,

2. LHU---UE, = (‘/2’”) is a partition,
3. each FE; has complexity at most four, and

4. each E; is shift invariant, that is uv € E; if and only if (u 4 ¢,v 4 ¢) € E; for ¢ € R.

We start by setting V4 = {1,2} and defining F; = {u,v € V} : |[u —v| = 1}. Having defined
the point set V; and relations Ei,..., F;, we define V;;; and F;1; as follows. Let C = C(i) be a
sufficiently large integer such that C' > 10 maxyey, u. Then we have Vii1 = V; U (V; + C), where
Vi 4+ C is a translated copy of V;. We now define the relation F;;; by

we by & COR2<|lu—v <2C

Hence, V;y1 with respect to relations Fi, ..., E;y1 satisfies the properties stated above and is
clearly (i + 1)-layered. One can easily check that any set of p points in V;,, induces at least [logp]
distinct relations (colors).

Let us remark that the arguments above hold for semi-algebraic relations E, ..., E,, that are
not necessarily disjoint if one defines a (p, ¢)-coloring as follows. Given a coloring x : (V%{")) — 2[m]
on the edges of K,,, where each edge receives at least one color among [m], x is a (p, q)-coloring if
for every set S C V of size p, no matter how you choose one color in y(uv) for each edge uv € (g),
S will induce at least ¢ distinct colors.

6 Concluding remarks

In [22], it was shown that Ry (3;m) > (1681)™/7 for ¢ > 5, thus implying that the upper bound in
Theorem 1.1 is tight up to a constant factor in the exponent. This can be improved as follows. Let
C(p) = limy, 00 R(p; m)/™. Note that this limit exists by considering product colorings, but may
be finite or infinite. Then for each C' < C(p), there is a t = t(C, p), such that for all m sufficiently
large we have

11



Ry t(p;m) > C™.

Indeed, take a fixed coloring of the edges of Ky which realizes R(p;mgp) > C™°, and recursively
blow up this graph by introducing mg new colors at each stage. Then this coloring can be realized
semi-algebraically in R with ¢ = O(m3) linear constraints for each color class based on distances.
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