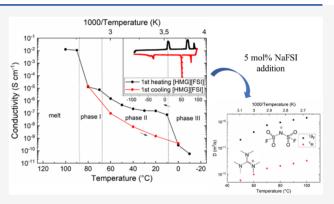


pubs.acs.org/JPCC Article

Investigation of Unusual Conductivity Behavior and Ion Dynamics in Hexamethylguanidinium Bis(fluorosulfonyl)imide-Based Electrolytes for Sodium Batteries

- ⁴ Published as part of The Journal of Physical Chemistry virtual special issue "Advanced Characterization by ⁵ Solid-State NMR and In Situ Technology".
- 6 Karolina Biernacka, Faezeh Makhlooghiazad, Ivan Popov, Haijin Zhu, Jean-Noël Chotard,
- 7 Craig M. Forsyth, Ruhamah Yunis, Luke A. O'Dell, Alexei P. Sokolov, Jennifer M. Pringle,
- 8 and Maria Forsyth*

Cite This: https://doi.org/10.1021/acs.jpcc.1c01777


ACCESS I

Metrics & More

Article Recommendations

Supporting Information

9 **ABSTRACT:** The development of nonflammable, chemically and 10 thermally stable electrolytes that can replace current organic 11 electrolytes will support improved and safer energy storage 12 technologies. Organic ionic plastic crystals (OIPCs) and their salt 13 mixtures are promising solid-state candidates for battery applications. In this work, the hexamethylguanidinium bis(fluorosulfonyl)-15 imide ([HMG][FSI]) OIPC is investigated in the context of sodium 16 batteries, where sodium bis(fluorosulfonyl)imide (NaFSI) salt is 17 mixed with the OIPC to enhance the ionic conductivity. The 18 thermal behavior of the neat OIPC and the effect of sodium salt 19 addition were investigated by differential scanning calorimetry 20 (DSC). Broadband dielectric spectroscopy (BDS) experiments, 21 along with electrochemical impedance spectroscopy (EIS) used to

study ion conductivity, showed this system to have unusual temperature-dependent conductivity behavior in comparison to other OIPC systems. The conductivity measured in phase II was higher during the heating cycle compared to that measured upon cooling. Solid-state nuclear magnetic resonance (NMR) spectroscopy combined with XRD and modeling was used to investigate the molecular origin of this behavior. This behavior was also observed in the OIPC containing 5 mol % NaFSI. Pulsed field gradient nuclear magnetic resonance spectroscopy (PFG-NMR) combined with line width analysis was used to examine the ion dynamics. The [HMG]⁺ cation has almost a 2 orders of magnitude lower diffusion coefficient relative to the [FSI]⁻ anion, and combined with the very narrow ²³Na line width, it appears that the dynamics of the two latter ions are decoupled from the larger [HMG]⁺ cation, suggesting the possibility of high Na⁺ transport in this electrolyte. Our study contributes to the fundamental understanding of dynamics in OIPC-based solid electrolytes for sodium batteries and highlights the complexity and importance of external parameters such as the thermal history of the material properties.

2 INTRODUCTION

33 OIPCs are a unique class of solid-state electrolyte materials 34 that are increasingly drawing attention due to their negligible 35 volatility and increased safety in contrast to that of electrolytes 36 based on organic flammable solvents that are typically used in 37 electrochemical cells. ¹⁻³ Moreover, many OIPCs are charac-38 terized by high thermal and electrochemical stability that 39 makes them good candidates for electrochemical device 40 applications. ^{4,5} The term plastic arises from their ability to 41 deform under stress without fracture, and this property 42 typically coincides with a high degree of ionic mobility/43 diffusivity linked with the intrinsic structural disorder and 4 dynamics and enhanced mechanical stability. ⁶

Because of a large number of potential cation/anion 45 combinations, it is possible to adjust not only the chemical 46 and thermal properties of OIPCs but also their electrolyte 47 performance. Ion conduction in these materials can occur 48 through either vacancies in the lattice or extended defects such 49 as dislocations or grain boundaries.^{7,8} Unfortunately, the 50

Received: February 26, 2021 Revised: April 21, 2021

51 complex relationships between the structures of the constituent 52 ions and important material properties such as ionic 53 conductivity and phase behavior are still not fully understood; 54 therefore, more research on new OIPCs needs to be conducted 55 to further develop electrolyte materials with the thermal, 56 electrochemical, and transport properties required to support 57 efficient sodium battery performance. Encouragingly, it was 58 observed that introducing new species (e.g., doping the OIPC 59 with Li or Na salt as needed for battery operation) can increase 60 the ionic conductivity. 9-11 Another phenomenon which has a 61 significant influence on the conductivity values is the 62 occurrence of solid-solid phase transitions. With increasing 63 temperature, OIPCs typically undergo solid-solid phase 64 transitions, resulting in increased local disorder as a result of 65 the onset of rotational and/or translational ion dynamics. 66 These changes typically facilitate increased ion transport. 67 Phase I, which is the most "plastic" and conductive phase, by 68 definition occurs just below the melting point.

So far, most of the reported studies on the effects of doping 70 OIPCs with salts have focused on the use of Li salts for 71 applications in Li batteries. 11,13,14 The use of OIPCs for Na 72 devices is still in its infancy. The first study of OIPCs with 73 sodium salt mixtures was reported by Forsyth et al., who 74 investigated the phase behavior of the OIPC N-methyl-N-75 ethyl-pyrrolidinium bis(trifluoromethanesulfonyl)amide 76 ([C₂mpyr][TFSI]), upon mixing with sodium salt NaTFSI. 15 77 Unfortunately, the ion conduction in these materials was 78 relatively low, reaching $3 \times 10^{-4} \text{ S cm}^{-1}$ for 40 mol % NaTFSI 79 at 60 °C. Moreover, an increase in conductivity was not 80 observed upon further sodium salt addition, as was previously 81 reported for lithium systems, showing the difference in material 82 properties depending on the target ions incorporated into the 83 electrolyte system. Subsequently, the same research group 84 investigated N,N-dimethyl-pyrrolidinium dicyanamide 85 ($[C_1 \text{mpyr}][N(CN)_2]$) mixed with Na $[N(CN)_2]$ at concen-86 trations from 5 to 50 mol %. Again, no significant conductivity 87 increase upon Na salt addition was observed, and phase 88 separation occurred. 16 To improve the ionic conductivity, 89 higher sodium salt compositions were studied using trimethyl-90 (isobutyl)phosphonium bis(trifluoromethanesulfonyl)amide 91 ([P_{111i4}][TFSI]) organic ionic plastic, and sodium metal 92 electrochemistry was demonstrated. ¹⁷ Recently, an OIPC 93 based on another small phosphonium cation, triisobutyl-94 (methyl)phosphonium ($[P_{1i444}]$), combined with the bis-95 (fluorosulfonyl)imide (FSI) anion, was mixed with various 96 sodium salts (NaFSI, NaTFSI, and NaPF₆) to investigate 97 mixed anion effects. However, all of the reported 98 electrolyte mixtures were characterized by low melting 99 temperatures, preventing them from solid-state sodium battery 100 applications at ambient temperature. Recently, [C₂mpyr][FSI] 101 was studied for sodium-based battery applications, but the 102 addition of various amounts of NaFSI resulted in liquid 103 electrolytes.²⁰

The effect of the anion and cation on the physicochemical properties of various phosphonium-based OIPCs ([P_{1i444}] [TFSI], [P_{1i444}][TFSI], and [P_{111i4}][TFSI]) mixed with the sodium salt of the same anion has been investigated. The properties of these electrolytes varied significantly depending on the sizes of the anion and cation, which demonstrated the general idea of possible correlations between the chemistry and size of the ionic species in the OIPCs and the resulting phase behavior and transport in these materials. However, there is still a long way to go to develop strategies to design such

OIPC-based electrolytes with optimum behavior in terms of 114 mechanical stability, high conductivity, and high Na⁺ transport 115 number, so more research on OIPC-based electrolytes needs 116 to be conducted.

New OIPC materials have recently been prepared on the 118 basis of novel organic cations, with the aim of further 119 controlling the melting points and plastic phase behavior 120 over a wide temperature range and enhancing the conductivity 121 and electrochemical stability. 22-25 Previous work on lithium 122 electrolyte systems based on the new OIPC, hexamethyl- 123 guanidinium bis(fluorosulfonyl)imide ([HMG][FSI]), showed 124 promising properties (good transport properties and reversible 125 deposition and stripping of lithium).²⁶ However, the effect on 126 this OIPC of adding sodium salt is yet to be investigated. In 127 this work, we focus on understanding the molecular-level 128 behavior of pure [HMG][FSI] and the effects of adding a low 129 concentration of sodium salt (NaFSI) on the material 130 properties. The thermal phase behavior, structural changes, 131 ion conductivity, and dynamics of 5 mol % NaFSI and the neat 132 OIPC were studied by utilizing differential scanning calorim- 133 etry (DSC), synchrotron X-ray diffraction (SXRD), electro- 134 chemical impedance spectroscopy (EIS), broadband dielectric 135 spectroscopy (BDS), and solid-state nuclear magnetic 136 resonance (NMR) spectroscopy.

METHODS

Synthesis of Electrolyte Materials. Acetonitrile 139 (≥99.9%, Merck Milipore Australia) and sodium bis(fluoro- 140 sulfonyl)imide (NaFSI) (>99.9%, Coors tek US) were 141 purchased commercially and used as received. Neat OIPC 142 hexamethylguanidinium bis(fluoromethanesulfonyl)imide, 143 [((CH₃)₂N)₃C][FSI], was synthesized following our previ- 144 ously reported procedure. Electrolytes in this work were 145 prepared in an argon-filled glovebox by directly mixing 146 appropriate amounts of sodium salt and neat [HMG][FSI] 147 in various molar ratios. The mixtures were dissolved in dry 148 acetonitrile, which was removed by 48 h of high-vacuum 149 drying on a Schlenk line (24 h at room temperature followed 150 by 24 h at 50 °C). As a result, electrolytes were prepared: x 151 mol % NaFSI (100 − x) mol % [HMG][FSI].

Differential Scanning Calorimetry (DSC). In this work, 153 the Mettler Toledo differential scanning calorimeter system 154 was used. All samples were prepared in a glovebox under an 155 argon atmosphere. Vacuum-dried samples of 5-15 mg mass 156 were weighed and hermetically sealed in an aluminum pan. An 157 empty aluminum pan was used as a reference. All samples were 158 first cooled to -95 °C before heating to 100 or 200 °C 159 (various temperatures were used due to the concentration 160 effects on thermal decomposition) and kept at the highest 161 temperature for 30 min. The cooling and heating rate was 10 162 °C/min. The onsets of the endothermic peaks were used to 163 determine the solid—solid phase-transition temperature (T_{s-s}) 164 and the melting temperatures $(T_{\rm m})$.

Synchrotron XRD. Variable-temperature synchrotron X- 166 ray powder diffraction (XRD) on neat [HMG][FSI] was 167 performed at the Australian Synchrotron, powder diffraction 168 beamline. The material was packed and sealed in 0.3 mm 169 borosilicate glass capillaries (product of Charles Super 170 Company, Natick, MA, USA) in an Ar-filled glovebox. The 171 samples were then cooled using an Oxford Cryosystems 172 cryostream, which can be heated with a Cyberstar hot-air 173 blower to up to 80 K. For this experiment, the wavelength was 174 set at 0.827 Å with a zero shift of ±0.006° using a Si(111) 175

176 double-crystal monochromator before data acquisition. The 177 ramp rate and equilibration time used for the experiment were 178 2 °C/min and 5 min, respectively. An array of 16 MYTHEN 179 ID microstrip silicon detectors with each module spanning 180 about 5° in 2θ covered data collection over the angular range 181 from 2 to 76°. The data were collected at temperatures chosen 182 according to different phases of the plastic crystal for 20 s at 183 two detector settings. The data collected from both detectors 184 were merged for each measurement using the Pdviper software, 185 and the results were plotted and analyzed. The observed 186 reflections were indexed using DICVOL, 29 and full pattern 187 matching was performed using the Fullprof Suite Program. 30,31 188 A total of 14 parameters were refined, including the cell 189 parameters, the sample shift, and the profile function (pseudo-190 Voigt).

Single-Crystal XRD. Single-crystal X-ray diffraction data 192 were obtained from a colorless prismatic crystal with 193 approximate dimensions of $0.261 \times 0.165 \times 0.085 \text{ mm}^3$ at 194 10 $^{\circ}$ C using a Rigaku Synergy S diffractometer with Cu Klpha195 radiation ($\alpha = 1.54184$). Clear, well-defined diffraction 196 intensities were observed and were integrated and corrected 197 for Lorentz polarization and absorption effects using 198 CrysAlisPro 1.171.40.53.³² The crystal structure was solved 199 and refined by standard methods using the SHELX-2018 200 software suite.³³ The [HMG][FSI] ion pair was modeled with 201 both the cation and anion disordered over crystallographic 202 inversion centers, thus ASU comprised a half-occupancy 203 [HMG]+ cation and [FSI]- anion. Because of the extensive 204 disorder in both the HMG cation and the FSI anion, least-205 squares restraints were applied to the final refinement cycles 206 such that equivalent S-N, S-O, and S-F distances were 207 restrained to be similar (command in refinement program 208 SHELXL - SADI). Overall, the anisotropic displacement 209 parameters of all atoms were relatively large, and for some of 210 the F and O atoms, these parameters were restrained to 211 approximate isotropic behavior (command ISOR). After the 212 completion of the data collection, the above crystal specimen 213 was slowly cooled (at ca. 1 K/min) to -50 °C. However, the 214 resulting diffraction images showed very poor diffraction peaks 215 only at low angles, and the observed pattern could not be 216 indexed.

Conductivity Measurements. The ionic conductivity was 218 measured for the neat OIPC and its mixtures with sodium salt 219 using by two complementary techniques: electrochemical 220 impedance spectroscopy (EIS) and broadband dielectric 221 spectroscopy (BDS). EIS experiments were performed by 222 applying an AC potential to the electrochemical cell and then 223 measuring the impedance as a function of frequency. All of the 224 EIS measurements were performed on a MTZ-35 impedance 225 analyzer (Bio-Logic Science Instruments, France) equipped 226 with a Eurotherm 2204 temperature controller. Samples were 227 packed in a glovebox under an argon atmosphere into a home-228 designed conductivity cell (a dip cell), which consists of two 229 platinum electrodes. The dip cell was put into a specially 230 designed brass block, which was heated using a cartridge heater 231 connected to a Eurotherm 2204e temperature controller. 232 Cooling of the dip cell was achieved with liquid nitrogen and vermiculite insulation. The conductivity measurements were 234 repeated on duplicate samples. A temperature range of 30-100 235 °C with 10 °C intervals was used for all experiments. The 236 samples were equilibrated for 30 min at each temperature. The 237 frequency range applied was from 1 MHz to 50 mHz.

Broadband dielectric spectroscopy (BDS) is an alternative 238 form of impedance spectroscopy. An external electric field of 239 fixed or changing frequency is applied to polarize dipoles inside 240 the material, and the response of the system is measured. BDS, 241 in contrast to standard EIS, operates with the frequency- 242 dependent complex parameters characterizing the properties of 243 the studied material, such as complex dielectric permittivity or 244 complex conductivity. Conductivity measurements were 245 performed using an Alpha-A analyzer from Novocontrol in 246 the frequency range of 10^{-1} to 10^6 Hz. Upper and bottom 247 electrodes in the cell were separated by a cap assuring a fixed 248 electrode distance of 0.4 mm and a diameter of 10.2 mm 249 during the measurements. The samples were placed between 250 the electrodes and measured with a voltage amplitude of 0.1 V. 251 A Quatro temperature controller (Novocontrol) was used for 252 variable-temperature measurements. The samples were stabi- 253 lized for 20 min at each temperature to an accuracy of within 254 ±0.2 °C. The temperature protocol used was as follows: two 255 scans from -40 to 100 °C conducted twice, followed by two 256 scans from 30-100 °C, with 10 °C intervals for heating cycles 257 and 20 °C intervals for cooling.

Solid-State Nuclear Magnetic Resonance (Solid-State 259 NMR). Static ¹H, ²³Na, and ¹⁹F NMR spectra were recorded ₂₆₀ on a Bruker Avance III 11.7 T wide-bore solid-state 261 spectrometer (500 MHz) with either a magic angle spinning 262 (MAS) 4 mm probe or a static 5 mm HX extended 263 temperature range probe. Samples were packed into either 4 264 mm MAS rotors or 5 mm glass tubes in an argon atmosphere 265 glovebox. The spectra were recorded and analyzed using 266 Topspin software. Single-pulse excitation was used for ¹H and ₂₆₇ ²³Na while a Hahn echo pulse sequence was used for ¹⁹F. ₂₆₈ Gaussian/Lorentzian functions (or a CSA line shape in the 269 case of ¹⁹F) were used to fit the curves and to calculate the ²⁷⁰ peak widths (full width at half-maximum, fwhm) to study the 271 mobility of ions. To investigate in more detail the local 272 structures and dynamics within the materials at different 273 phases, measurements were performed at temperatures ranging 274 from -60 to 100 °C, with a minimum waiting period of 10 min 275 for the sample to reach a stable temperature.

Pulsed-Field Gradient Nuclear Magnetic Resonance 277 (PFG-NMR). The diffusivities of the [HMG]⁺ cation and 278 [FSI]⁻ anion were determined by ¹H and ¹⁹F pulse-field 279 gradient stimulated echo (PFG-STE) NMR for 5 mol % NaFSI 280 in [HMG][FSI]. The measurement was performed on a 281 Bruker Avance III 300 MHz spectrometer equipped with a 282 diff50 probe. The data was recorded every 10 °C over the 20 to 283 100 °C temperature range and analyzed with Topspin. All 284 samples were prepared according to the preparation method in 285 the previous section.

¹⁹F NMR Parameter Calculations. ¹⁹F chemical shielding ²⁸⁷ anisotropy (CSA) parameters were calculated from the crystal ²⁸⁸ structure using the CASTEP software³⁴ running in the ²⁸⁹ Materials Studio environment. A fully ordered crystal structure ²⁹⁰ was first specified by arbitrarily selecting one cation ²⁹¹ conformation. The positions of the hydrogen atoms were ²⁹² optimized with the lattice parameters, and other atomic ²⁹³ coordinates were fixed. NMR parameters were then calculated ²⁹⁴ from this structure using revised Perdew, Burke, and Ernzerhof ²⁹⁵ functionals, a plane wave basis set cutoff of 550 eV, eight k-²⁹⁶ space points sampled, and ultrasoft pseudopotentials.

298 RESULTS

Neat [HMG][FSI]. Thermal Phase Behavior. The thermal phase behavior of the neat [HMG][FSI] was evaluated by differential scanning calorimetry (DSC). The measured melting temperature of the neat OIPC was 87 °C, which is in agreement with the literature.

As can be seen from Figure 1, three endothermic transitions were observed: peaks at 8 and 67 °C in the heating scan are

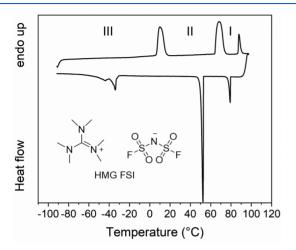
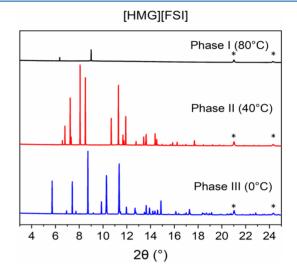


Figure 1. DSC heating traces for neat [HMG][FSI] recorded on second heating (top) and cooling (bottom) scans.


306 assigned to the solid-solid phase transition from phase III to 307 phase II and the subsequent transition to phase I, respectively. 308 The third peak at the highest temperature (87 °C) 309 corresponds to the melting transition. This melting transition 310 is characterized by the lowest entropy of fusion equal to 7 J 311 mol⁻¹ K⁻¹, demonstrating the existence of significant motional 312 degrees of freedom in phase I. This entropy of fusion is lower 313 than, for example, that of [Pyr5][TFSI] (N,N'-trimethylene 314 pyrazolium bis(trifluoromethanesulfonyl)imide) or [C₂epyr]-315 [FSI] (N,N-diethylpyrrolidinium bis(fluorosulfonyl)imide), for 316 which entropies of melting are equal to 15.8 and 9 J mol⁻¹ K⁻¹ 317 respectively. 28,35 Moreover, this low value means that the 318 material meets Timmerman's criterion of $<20 \text{ J K}^{-1} \text{ mol}^{-1}$ for 319 plastic crystal behavior.³⁶ Small entropies of fusion arise from 320 the rotational disorder of the species inside the long-range-321 ordered structure. 14 The thermal behavior of OIPCs depends 322 on the nature and size of their cations and anions and their 323 interaction. In general, FSI-based OIPCs exhibit lower 324 entropy of melting due to higher disorder structure compared 325 to that of other types of anions such as TFSI- and also $[C_2 \text{epyr}][\text{FSI}] (9 \text{ J mol}^{-1} \text{ K}^{-1}), [C_2 \text{mpyr}][\text{FSI}] (10 \text{ J mol}^{-1})$ 327 K⁻¹), and [N₁₂₂₂][FSI] (8 J mol⁻¹ K⁻¹). Similarly, [HMG]-328 [FSI] consisting of a bulky cation with extensive charge 329 delocalization together with the FSI anion, resulting in lower 330 Coulombic interactions presenting a lower entropy of fusion (7 331 J mol⁻¹ K⁻¹).

After melting, the sample was cooled, and on the cooling 333 DSC curve (Figure 1, bottom trace), three crystallization peaks 334 were observed. Each of the crystallization peaks corresponds to 335 a solid—solid phase transition, from phase I to II, II to III, and 336 the structural transition of the sample from phase III. The peak 337 recorded at the lowest temperature of \sim 25 °C indicates 338 multiple events that may indicate the complex and sluggish 339 nature of the solid—solid phase transition (phase II to III). It

suggests difficulty in forming the most thermodynamically 340 stable crystal structure, which might be explained by a possible 341 supercooling effect before crystallization. To investigate this 342 behavior in more detail, the experiments described in the 343 following sections were performed.

Synchrotron XRD. Synchrotron X-ray diffraction (SXRD) 345 and single-crystal diffraction were used to investigate the 346 crystal structures and acquire further information on the phase 347 transitions observed by DSC.

Figure 2 shows synchrotron diffraction patterns between 4 349 f2 and 25° in 2θ recorded at various temperatures for the neat 350

Figure 2. Synchrotron XRD patterns for neat [HMG][FSI] in phase III at 0 °C, phase II at 40 °C, and phase I at 80 °C.

[HMG][FSI]. The temperatures at which the experiments 351 were performed were chosen on the basis of the DSC results, 352 with SXRD patterns recorded before and after each solid—solid 353 phase transition. A secondary cubic face-centered phase was 354 detected in all of the powder patterns measured. The 355 corresponding peaks are highlighted with an asterisk in Figure 356 2. The powder patterns are typical of plastic crystal materials 357 with intense diffracted peaks at low 2θ but less intense peaks at 358 higher 2θ . Very weak peaks are observed above 25° (2θ) due 359 to the high mobility of the ionic species.

The temperature-dependence study revealed three distinct 361 crystal structures consistent with the DSC measurement and 362 previous studies. The As can be seen in Figure 2, the high- 363 temperature phase (phase I at 80 °C) shows only two peaks at 364 low 2θ angles (6.36 and 9.00°, respectively), demonstrating a 365 reduction in long-range periodicity due to the mobility of the 366 HMG cations and FSI anions. On the other hand, phases II 367 and III show a much higher crystallinity, and attempts to solve 368 the crystal structure could thus be performed.

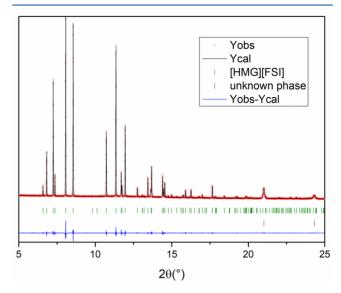
Regarding phase II, single-crystal diffraction data was first 370 obtained at 10 °C (i.e., just above the phase transition from 371 phase III to II). Phase II crystallizes in a triclinic unit cell. It is 372 worth mentioning that due to the mobility of the ions it can be 373 very challenging to solve the complete crystal structure of 374 OIPCs. Two different models can be used to describe this 375 structure. In model 1, both the [HMG] and the [FSI] anions 376 are fully disordered (occupancy = 50 %) around the inversion 377 symmetry ($^{-1}$) of this crystal structure. In model 2, the 378 inversion symmetry is removed (space group P1) and each 379 atom is fully occupied, but the displacement parameters are 380

t1t2

 $_{381}$ abnormally high to account for the huge mobility. We choose $_{382}$ to use model 1 in this report. (See Tables 1 and 2 for complete $_{383}$ crystal structure data.)

Table 1. Single-Crystal XRD Refinements for [HMG][FSI] Phase II

empirical formula	$C_7H_{18}F_2N_4O_4S_2$
formula weight	324.37
temperature	283(2) K
wavelength	1.54184 Å
crystal system, space group	triclinic, $P\overline{1}$
unit cell dimensions	$a = 7.3042(5) \text{ Å}, \alpha = 114.849(7)^{\circ}$
	$b = 7.3316(5) \text{ Å}, \beta = 100.295(6)^{\circ}$
	$c = 8.2612(7) \text{ Å}, \gamma = 99.836(5)^{\circ}$
volume	379.70(5) Å ³
Z, calculated density	1, 1.419 g/cm ³
absorption coefficient	3.552 mm ⁻¹
F(000)	170
crystal size	$0.261 \times 0.165 \times 0.085 \text{ mm}$
heta range for data collection	6.150 to 77.464°
limiting indices	$-8 \le h \le 9, -9 \le k \le 7, -10 \le l \le 10$
reflections collected/unique	7615/1561 [R(int) = 0.0641]
completeness to $\theta = 67.684$	99.4%
absorption correction	Semiempirical from equivalents
max. and min. transmissions	1.00000 and 0.72656
refinement method	full-matrix least-squares on F^2
data/restraints/parameters	1561/33/173
goodness of fit on F2	1.160
final R indices $[I > 2\theta(I)]$	R1 = 0.0907, wR2 = 0.2701
R indices (all data)	R1 = 0.1019, wR2 = 0.2968
extinction coefficient	0.035(13)
largest diff. peak and hole	$0.342 \text{ and } -0.220 \text{ e Å}^3$


Table 2. Atomic Coordinates (\times 10⁴) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for [HMG][FSI] Measured at 10 °C^a

atom	\boldsymbol{x}	у	z	U(eq)
F(1)	9853(9)	493(17)	3555(13)	114(1)
O(2)	9070(30)	2344(18)	4535(17)	242(6)
O(1)	11 774(13)	1240(40)	3960(30)	283(9)
N(1)	8940(30)	-360(20)	1756(17)	265(7)
N(2)	5503(10)	4957(14)	8554(9)	129(2)
N(3)	5715(11)	4085(11)	10 879(11)	121(2)
N(4)	3774(9)	6175(10)	10 661(9)	122(2)
C(1)	9241(17)	-1001(17)	4326(15)	193(5)
C(2)	5040(50)	4860(40)	10 150(30)	85(3)
C(3)	5940(40)	6600(50)	8080(40)	168(8)
C(4)	5830(50)	3140(50)	7160(40)	145(7)
C(5)	7760(40)	3760(50)	11 090(50)	163(9)
C(6)	4660(40)	3030(50)	11 720(40)	153(6)
C(7)	3960(50)	7430(50)	12 540(40)	158(8)
F(2)	2230(30)	6150(50)	9350(40)	150(7)
O(4)	10 570(20)	1290(20)	7784(17)	256(6)
O(3)	12 095(12)	-950(20)	6460(20)	188(4)
S(2)	9050(20)	-2410(20)	6210(20)	243(6)

"U(eq) is defined as one-third of the trace of the orthogonalized U_{ij} Tensor.

Model 1 was then used as a starting point for refining the 385 SXRD pattern of phase II at 25 and 40 °C using the Fullprof 386 software. ³¹ The resulting profile matching at 25 °C is shown in

Figure 3. Cell parameters and reliability factors are given in 387 f3 Table 3. As can be seen in Figure S2, the evolution of the cell 388 t3

Figure 3. Profile matching of [HMG][FSI] phase II measured at 25 °C. The red dots correspond to experimental data, the black line is the calculated fit, and the blue line is the difference between calculated and observed patterns. The vertical green and purple sticks represent the expected positions of Bragg peaks for [HMG][FSI] and the unknown phase, respectively.

volume over temperature follows Vegard's law.³⁷ Work is still ³⁸⁹ in progress to find the best crystallographic description of ³⁹⁰ phase II of this OIPC.

Finally, low-temperature phase III has also been investigated 392 by SXRD. Here again, solving the crystal structure is 393 challenging, and the indexing of the unit cell did not lead to 394 fully satisfactory results. Further temperature-controlled single- 395 crystal diffraction experiments are planned to solve this issue. 396 Nevertheless, our preliminary results show that phase III could 397 be indexed in a 4 times larger unit cell (ca. 1428 ų), leading to 398 a V/Z of 357 ų, consistent with V/Z = 380 ų in phase II at 399 10 °C (where Z = 1). This increase in Z (from 1 to 4) reflects 400 a reduction in the orientational and/or rotational disorder in 401 the OIPC upon decreasing temperature that has been 402 previously observed for other OIPCs. 13,16,38

Conductivity Behavior. The temperature-dependent ionic 404 conductivity exhibits a general trend in which all conductivity 405 values increase steadily with increasing temperature, as seen in 406 Figure 4. Moreover, passing through certain solid-solid phase 407 f4 transitions results in a conductivity "jump" which is attributed 408 to the onset of rotational, orientational, and translational 409 motions of molecules and results in higher disorder and faster 410 ion dynamics. This is typical conductivity behavior for OIPCs 411 and has already been observed in several systems. 21,39 The 412 most significant conductivity increases appear during the 413 transition from phase III to II and during the melting 414 transition, as would be expected. This observation is consistent 415 with the SXRD patterns and XRD data which show that the 416 crystal structure and ion orientations significantly change 417 during the phase III to II transition. Moreover, in phase II the 418 conductivity dependence looks like a polynomial function, 419 which was reported previously by Abu-Lebdeh et al. for a 420 pyrazolium-based organic plastic crystal.³⁹

Table 3. Summary of the Crystallographic Data for [HMG][FSI] Measured at 25 and 40 °C as Deduced from Profile Matching of SXRD

[HMG][FSI] – phase II – 25 °C								
space group P1	$\chi^2 = 2.75$	$R_{\rm p} = 12.7\%$			$V = 382.771(3) \text{ Å}^3$			
a = 7.33079(3) Å $\alpha = 114.7920(2)^{\circ}$		b = 7.36912(3) Å $\beta = 100.0742(2)^{\circ}$		c = 8.24663(3) Å $\gamma = 99.9658(2)^{\circ}$				
$\mu = 114.7920(2)$ $\mu = 100.0742(2)$ $\mu = 100.07$								
space group P1	$\chi^2 = 2.91$		$R_{\rm p} = 12.7\%$		$V = 385.450(3) \text{ Å}^3$			
a = 7.35084(3) Å $\alpha = 114.7193(2)^{\circ}$		b = 7.40582(3) Å $\beta = 99.8597(2)^{\circ}$		c = 8.22892(3) Å $\gamma = 100.0487(2)^{\circ}$				

F

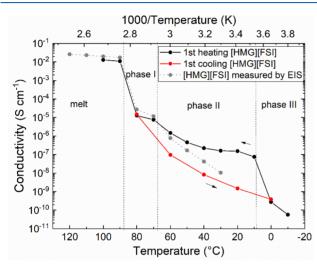


Figure 4. Ionic conductivities of neat [HMG][FSI] recorded during the first heating and cooling cycle measured by BDS (solid lines) and second heating measured by EIS (dotted lines). The dashed lines indicate solid—solid and melting transitions determined by DSC. Each solid phase is labeled with Roman numerals.

Solid-State NMR Spectroscopy. The structural behavior and the dynamic behavior of [HMG][FSI] in the different phases were studied by variable-temperature static solid-state NMR. Measurements were performed for ¹H and ¹⁹F nuclei at various temperatures (in the range of -40 to 100 °C), which doorrespond to different thermal phases of the material. Moreover, to investigate metastability and to help understand the thermal behavior and ion conductivity results, spectra were recorded on both cooling and heating cycles. Each of the nuclei was used to probe a different ion in the OIPC: ¹H NMR was used to study the [HMG]⁺ cation, and ¹⁹F was used to study the [FSI]⁻ anion.

Figure 5 shows spin-echo ¹⁹F NMR spectra recorded for [HMG][FSI] at different temperatures during heating (Figure

Sa) followed by cooling (Figure 5b). Significant changes in the 449 chemical shielding anisotropy (CSA) powder pattern line 450 shapes can be observed as the material undergoes solid—solid 451 phase transitions. Upon the transition from phase III to II, the 452 19 F line changed dramatically from a CSA pattern with large 453 isotropy ($\delta_{\rm iso}$) and small asymmetry (η) to a CSA with reduced 454 isotropy ($\delta_{\rm iso}$) but increased asymmetry (η). The reduced $\delta_{\rm iso}$ 455 suggests increased anion dynamics, while the increased η 456 suggests a major structural rearrangement upon the phase 457 transition. It is found that rotating the sample in the magnetic 458 field resulted in a significant change in the 19 F NMR line 459 shapes, as shown in Figure 5c. This confirms the fact that bulky 460 crystals have formed during the cooling process, leading to 461 insufficient power averaging and consequently angular depend-462 ency of the CSA pattern.

Furthermore, as the material undergoes solid—solid phase 464 transitions with increasing temperature, a significant increase in 465 anion dynamics can be seen from the ¹⁹F NMR spectrum 466 recorded in phase I (at 80 °C, just before the melt) which 467 appears as a single narrow peak, confirming the isotropic 468 rotational dynamics (and potentially also translational 469 mobility) of the anions in phase I.

The crystal structure of phase II was modified to remove the 471 inherent structural disorder by choosing a single anion 472 conformation, and then the ^{19}F CSA parameters were 473 calculated using DFT. The resulting predicted ^{19}F CSA pattern 474 is shown in Figure 5d. Interestingly, this pattern very closely 475 matches the experimentally measured ^{19}F spectrum obtained 476 from phase III at $-60~^{\circ}C$ rather than that of phase II. This 477 suggests that the anions in phase II are undergoing a dynamic 478 mode that partially averages their ^{19}F CSA pattern while the 479 anions in phase III are static.

Addition of Na Salt. Thermal Phase Behavior after 481 Sodium Salt Addition to [HMG][FSI]. Figure 6a presents a 482 f6 comparison of DSC thermograms of neat [HMG][FSI] with 2, 483 5, and 10 mol % NaFSI in [HMG][FSI] and pure NaFSI. 484 Sodium salt addition to [HMG][FSI] significantly changes the 485 thermal behavior. The mixtures are characterized by a lower 486 temperature and a broader and asymmetric melting peak, 487 which overlaps with a solid-solid phase-transition peak. 488 Sodium salt addition depressed the OIPC melting sufficiently 489 that original phase I disappears as the melt transition merges 490 with the II-I transition peak. Moreover, a new endothermic 491 peak appears at 44 °C and grows with increasing Na salt 492 concentration, which may be assigned to the eutectic transition 493 as has been observed before for other OIPCs with sodium 494 and/or lithium salt mixtures. The broadening of the 495 melting peak and its shift toward lower temperatures relative to 496 the neat OIPC and NaFSI can be explained by the fact that 497 each substance acts as an impurity within the other (sodium 498

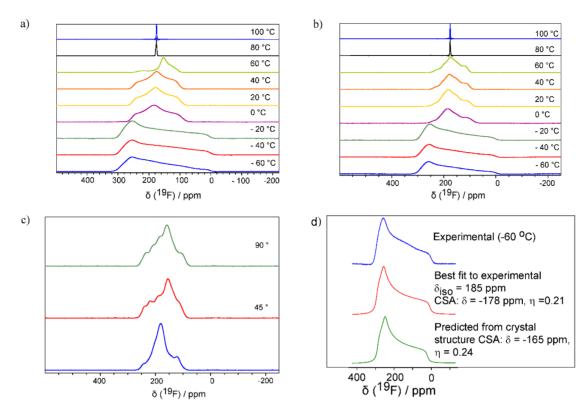


Figure 5. (a) Comparison of spin–echo ¹⁹F NMR spectra recorded for [HMG][FSI] at different temperatures during heating followed by (b) cooling. (c) Spin–echo ¹⁹F NMR after sample rotation inside the NMR probe by approximately 45 and 90° relative to the applied magnetic field at 20 °C. (d) ¹⁹F CSA spectra and parameters predicted from the crystal structure against the experimental data recorded in phase III at –60 °C.

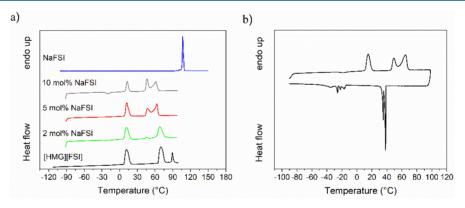


Figure 6. (a) DSC thermal traces of neat [HMG][FSI], 2, 5, and 10 mol % NaFSI in [HMG][FSI], and pure NaFSI. (b) Thermal phase behavior of a 5 mol % NaFSI mixture with OIPC recorded during the second heating and cooling cycle.

499 salt in OIPC), which promotes disorder and reduces the 500 energy required to melt the sample.

Interestingly, for the 5 mol % NaFSI system, a complex soz series of solid—solid phase transitions that occur over a broader range of temperatures and consist of multiple peaks were also observed during the cooling process in the DSC experiment sos (Figures 6b and S1).

506 Ionic Conductivity. The temperature-dependent ionic 507 conductivities of the neat [HMG][FSI] and binary mixture 508 with 5 mol % NaFSI can be seen in Figure 7. Conductivity 509 increasing with increasing temperature was observed for all of 510 the values. Moreover, sodium salt addition to the neat 511 [HMG][FSI] resulted in conductivities approximately an 512 order of magnitude higher than for neat, as would be expected 513 on the basis of some of the previously reported OIPC

electrolyte systems. 38,40 The conductivity of neat [HMG][FSI] $_{514}$ is 4.2×10^{-8} S cm $^{-1}$ at 40 °C, whereas after the addition of 5 $_{515}$ mol % NaFSI the conductivity increased by nearly 4 orders of $_{516}$ magnitude to $_{2.1} \times 10^{-4}$ S cm $^{-1}$. Conductivity values were $_{517}$ reproducible, as confirmed after performing multiple heating $_{518}$ and cooling scans on the samples.

Solid-State NMR Spectroscopy. The structural and dynamic 520 behavior of the ions after sodium salt addition was investigated 521 with solid-state NMR, where ¹H NMR was used to study the 522 [HMG]⁺ cation, ¹⁹F was used to study the [FSI]⁻ anion, and 523 ²³Na was used to study the Na⁺ ions. Two different 524 temperature programs were used to investigate the meta-525 stability and effects of solid—solid phase transitions (in 526 particular, phase III to II) on the mobility and dynamics of 527 the ions. Before each experiment, the sample cell was packed 528

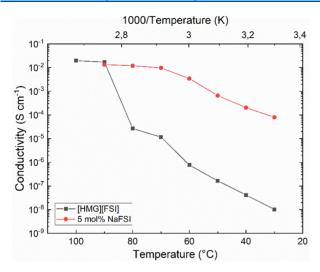


Figure 7. Ionic conductivity of neat [HMG][FSI] with 5 mol % NaFSI, measured using the same protocol where the sample was melted and cooled down to room temperature before measurement (EIS).

s29 with a freshly prepared sample of electrolyte material inside an s30 Ar-filled glovebox to ensure a consistent thermal history before s31 each measurement. During the first experiment (experiment s32 1), the sample was heated from 30 to 80 °C, cooled, and then s33 heated again, whereas in the second experiment (experiment s34 2), the sample was cooled to -40 °C and then heated to 80 °C. The thermal procedure applied in the second experiment s36 allows the material to undergo the transition from phase III to s37 II, which is not the case for the first experiment as the samples s38 taken directly from the glovebox had been made by solvent s39 casting at room temperature and had not been previously s40 cooled to below room temperature.

The static NMR peak full width at half-maximum (fwhm) 542 values for ²³Na and the spectra of ¹H and ¹⁹F nuclei recorded 543 during both experiments are presented in Figure 8a–d. 544 Generally, narrower peaks are observed with increasing 545 temperature, reflecting the increasing dynamics of the various 546 ionic species. Moreover, a significant decrease in line widths as 547 well as the appearance and growth of narrow components can 548 be observed as material passes through solid—solid phase 549 transitions.

The diffusivities of [FSI]⁻ and [HMG]⁺ in 5 mol % NaFSI in [HMG][FSI] samples were measured by pulsed field s52 gradient nuclear magnetic resonance spectroscopy (PFG-553 NMR) and are presented in Figure 9. Unfortunately, the ¹⁹F s54 and ¹H spectra for the pure OIPC gave very weak signals due s55 to fast T_2 relaxation, and thus their diffusion coefficients were not measurable. Rapid ²³Na relaxation also prevented the measurement of the Na $^+$ diffusivities. The temperature s58 dependencies of diffusivity, shown in Figure 9, are characs59 terized by the same trends for both ions, where increasing the temperature resulted in an increase in diffusivity. Interestingly, s61 the anion diffusion coefficients are significantly higher (by nearly 2 orders of magnitude) than for the [HMG] $^+$ cation s63 across the entire temperature range studied.

54 DISCUSSION

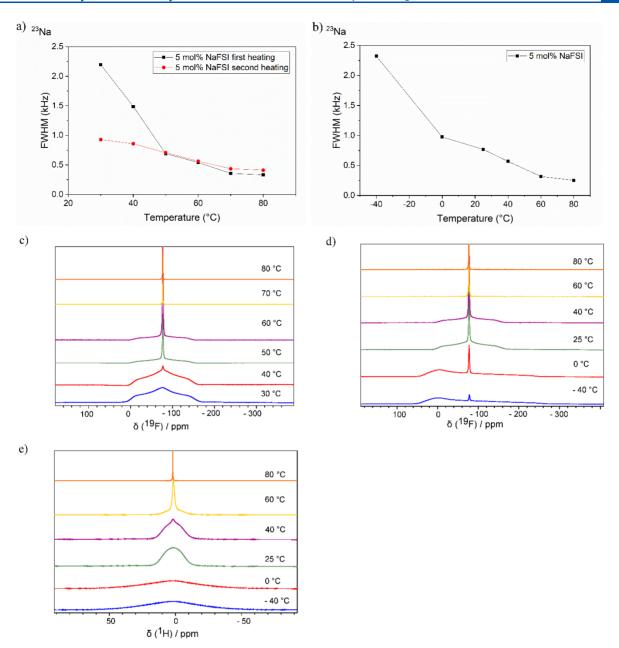
565 Detailed investigations using a combination of various 566 analytical techniques, applied over different temperature 567 programs, have shown a significant influence of thermal history and the formation of phase III on the material 568 properties and ion dynamics for both the neat [HMG][FSI] 569 and the 5 mol % NaFSI mixture. In the following text, we 570 propose a model that can explain all of the experimental 571 observations.

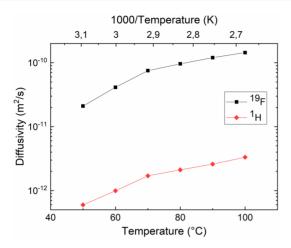
From the ionic conductivity of [HMG][FSI] measured by 573 BDS, hysteresis was observed between cooling and heating 574 through phase II. Moreover, a conductivity plateau was 575 observed in phase II, which was also previously observed for 576 other OIPCs. 41,42 Conductivity within one phase usually 577 increases at a slower rate than the increase between different 578 phases. This trend can be attributed to the difference in ion 579 dynamics within a given phase and those initiated during a 580 phase transition. The plateau within increasing temperature in 581 phase II suggests an insignificant change in the number of 582 diffusing ion species, although the rotational dynamics may 583 increase. Interestingly, the observed conductivity was higher 584 during the heating scan than during cooling. A potential 585 explanation for this is that cooling down to -40 °C and 586 creating phase III results in a structural transition and the 587 creation of smaller crystal sizes and more grain boundaries, 588 which would be expected to feature increased local disorder, 589 dynamics, and free volume, thereby promoting ion transport. 590 Upon heating, during the solid-solid phase transition from 591 phase III to II some of these grain boundaries may remain in 592 phase II after the transition, thereby explaining the higher 593 conductivity in phase II on heating as opposed to cooling from 594 the melt state where no residual effects of phase III are present. 595

This behavior is also consistent with the thermal phase 596 behavior where the transition from phase III to II does not 597 appear to be fully reversible as the cooling curve shows 598 evidence of sluggish crystallization involving multiple over- 599 lapping peaks. This complex crystallization process may be 600 attributed to multiple freezing processes and the formation of 601 numerous small crystallites.

This model is also consistent with the trend observed in the 603 SXRD patterns where the number of diffraction peaks 604 decreased with increasing temperature, which is usually related 605 to an increase in the symmetry. A possible explanation is that 606 at a higher temperature, the degree of disorder in the crystal 607 structure increases. This is very likely caused by an increase in 608 the degree of rotational motion of the molecules through the 609 phase transition and the drastic increase in molecular mobility. 610 Moreover, SXRD showed different crystal structures for each 611 of the [HMG][FSI] phases.

The effect of phase III creation on crystallite sizes and ion 613 dynamics was also observed during solid-state NMR experi- 614 ments, where different ¹⁹F powder pattern shapes were 615 recorded in phase II during heating compared to cooling 616 after melting. For the heating run, the sample was first cooled 617 to -60 °C, which resulted in phase III. As we can see from 618 Figure 5a, during the heating cycle classic CSA patterns were 619 observed in phase II, whereas on cooling (Figure 5b) the line 620 shapes depart from the "ideal" CSA pattern shape. To examine 621 the reproducibility of this behavior, this experiment was 622 performed multiple times. Interestingly, during heating the 623 classic CSA pattern was always observed, whereas on cooling 624 the ¹⁹F line shape was different each time. This behavior can be 625 attributed to larger crystallite sizes, resulting in some 626 preferential orientation, a phenomenon which was also 627 previously observed in other OIPCs. To confirm the 628 presence of preferential crystal orientations, the sample was 629 cooled from the melt and physically rotated inside the NMR 630




Figure 8. (a) Comparison of the full width at half maximum (fwhm) of the 23 Na NMR spectra as a function of the temperature of 5 mol % NaFSI in [HMG][FSI] during two heating cycles (30–80 °C) obtained from experiment 1 and (b) during heating from -40 to 80 °C from experiment 2. Evolution of spin–echo 19 F spectra versus the temperature of 5 mol % NaFSI recorded during (c) experiment 1 and (d) experiment 2. (e) 1 H spectral line widths: stack spectra of 5 mol % NaFSI in [HMG][FSI] recorded at various temperatures during the first heating scan.

I

631 probe by approximately 45 and 90° relative to the applied 632 magnetic field. Figure 5c shows ¹⁹F spin echo spectra recorded 633 before and after rotation, where differences in the pattern can 634 be observed. This would not be observed if the orientations of 635 the anions (or crystallites) were isotropically distributed and 636 therefore confirms that the crystallite orientations are 637 anisotropic, presumably dependent on the orientations of the 638 first crystals that nucleate during the cooling.

639 Such orientation effects are more likely to be observed for 640 larger crystallite sizes and therefore fewer grain boundaries. 641 These observations back up our proposed explanation for the 642 hysteresis seen in the conductivity measurements as discussed 643 above. It should also be noted that the conductivity 644 dependence on preferential orientation will be determined by the conductivity mechanism, which in this case is assumed to $_{645}$ occur via the grain boundaries and through vacancies in the $_{646}$ bulk crystals. In the case of [HMG][FSI], this preferential $_{647}$ orientation appears to decrease the ionic conductivity, likely $_{648}$ because of larger crystal sizes and fewer grain boundaries $_{649}$ present as a result. On the other hand, cooling the material to $_{650}$ crystallize phase III results in a return to a more homogeneous $_{651}$ sample with smaller crystallites. An analogous trend was $_{652}$ reported by Romanenko et al., who observed crystallization to $_{653}$ a new crystal structure and the disappearance of the $_{654}$ preferential alignment as $_{1711444}$ [FSI] passed through a $_{655}$ solid—solid phase transition.

Similar thermal phase behavior, where a sluggish and 657 complex solid—solid phase transition was recorded for the 658

Figure 9. Diffusivities (*D*) of [FSI]⁻ and [HMG]⁺ measured for 5 mol % NaFSI in [HMG][FSI] using PFG NMR as a function of temperature.

659 neat OIPC, was also observed on the cooling scan during DSC 660 analysis of the mixture with NaFSI (Figure 6b). Moreover, the 661 effect of the thermal history and phase III creation on the ion 662 mobility was also observed for the 5 mol % NaFSI in 663 [HMG][FSI].

From two different solid-state NMR experiments performed, 665 where during the first (experiment 1) the sample was heated 666 twice from 30 to 80 °C and in the second (experiment 2) the 667 material was cooled to -40 °C followed by heating to 80 °C, 668 the effect of phase III can be seen. Interestingly, during the 669 second temperature program (experiment 2, Figure 8b), where 670 the sample was first cooled to -40 °C (phase III) and then 671 heated, a significantly narrower fwhm was observed for ²³Na 672 (i.e., more mobile Na⁺) in phase II than the one observed 673 during the first heating cycle in experiment 1 (starting from 674 room temperature). These results together with the ionic 675 conductivity data of the pure OIPC confirm that cooling the 676 samples into phase III leads to a higher mobility of Na ions and 677 increased total ionic conductivity compared to the conductivity 678 obtained from the measurement which starts from 30 °C. The 679 improved ionic conductivity can be attributed to the phase III 680 restructuring and formation of smaller crystal sizes, resulting in 681 more grain boundaries in phase III that can provide fast ion 682 pathways through the material.

An analogous effect of the creation of phase III on the ion 684 mobility was also observed in the ¹⁹F and ¹H spectra (Figure 685 8c-e). Figure 8c shows the spin-echo ¹⁹F spectra evolution 686 with increasing temperature recorded during the first heating cycle, while the results of the prior cooling of the sample 688 during the second temperature program are presented in 689 Figure 8d. A comparison of spectra recorded at 25 or 30 and 690 40 °C presented in both figures leads to the consistent 691 conclusion that the creation of phase III has a strong impact on 692 the mobility of the ions. Moreover, the recorded spectra consist of two components: one narrow peak which 694 corresponds to an anion undergoing isotropic rotation (and 695 potentially also translational mobility), presumably in the 696 disordered grain boundary region, and the other a broad peak which corresponds to an immobile anion within the bulk 698 crystal structure. A significantly higher fraction of the mobile 699 component is presented at ambient temperature during the 700 second experiment, in which material was cooled to −40 °C, 701 than in the measurement performed at 25 °C. Moreover, the spectral line shape is remarkably different in phase III, 702 suggesting different [FSI]⁻ dynamics which change as the 703 material undergoes the transition from phase III to II.

Interestingly, whereas for 23 Na and 19 F a significant increase 705 in mobile Na⁺ and [FSI]⁻ species in phase III was observed as 706 the material was cooled to -40 °C (compared to phase II), 707 this is not the case for the 1 H spectra where no mobile fraction 708 can be seen in phase III and peak narrowing is observed only 709 after the material undergoes the transition to phase II. This 710 remarkable observation, where a different temperature depend- 711 ence is observed for the cation and anion, suggests decoupled 712 ion dynamics and is analogous to previously reported findings 713 for diethyl(methyl)(isobutyl)phosphonium hexafluoro- 714 phosphate ([$P_{1,2,2,4}$][PF_6]). 3,45

Additionally, the measured anion diffusion coefficients are 716 significantly higher than those of the cation. Usually, in the 717 majority of IL and OIPC systems studied, anions have a 718 relatively similar diffusion, at least within the same order of 719 magnitude. For example, similar diffusivities of both ¹H and 720 ¹⁹F were observed in 5 mol % [C₃mpyr][FSI]/NaFSI IL, ₇₂₁ reported as 10^{-11} m²/s (estimated graphically).⁴⁶ This unusual 722 behavior may be partially attributable to the smaller size of the 723 [FSI] ions versus the larger [HMG]. However, the almost 2 724 orders of magnitude difference is unlikely to be due to size 725 alone. Moreover, strong ion decoupling was not previously 726 observed for [HMG][FSI] with LiFSI/LiTFSI reported 727 systems. The proton diffusion coefficient in 10 mol % LiFSI 728 in [HMG]FSI] is 2.6×10^{-11} m²/s whereas ¹⁹F diffusivity is 729 3.4×10^{-11} m²/s at 50 °C. It is possible that the [HMG]⁺ 730 cations self-assemble through cation-cation interactions in a 731 way that causes a much lower diffusivity compared to the 732 [FSI] anions, and this is consistent with the decoupled ion 733 dynamics also observed from the solid-state NMR data. If the 734 Na⁺ cation is moving with [FSI]⁻, then one may expect it to be 735 quite diffusive. However, this hypothesis needs to be confirmed 736 by further experiments in the future.

Furthermore, during experiment 1 (a 5 mol % NaFSI sample 738 heated twice from 30 to 80 °C) the Na⁺ mobility is 739 significantly higher at 30 °C during the second heating scan, 740 which can be seen from the lower fwhm values in Figure 8a. 741 This suggests that the sample is not fully crystallized during 742 cooling to 30 °C, and there is some fraction of a metastable 743 phase remaining that results in higher ion mobility. This trend 744 was consistent for all nuclei recorded during experiment 1, 745 where the supercooling effect arising from sample metastability 746 has a significant effect. After melting the sample, the material 747 needs more energy to fully recrystallize than is available to 748 overcome the slow rearrangement of the ions which are 749 therefore trapped in a metastable (high-energy) state. This can 750 be seen here from the difference between the ¹H spectra 751 recorded during the first (SI Figure 3a) and second (SI Figure 752 3b) heating scans where a significantly larger amount of the 753 mobile component was observed during the second heating. 754 Metastable behavior is well known for OIPC-based electrolytes 755 and has previously been reported in the literature. 4,18,40 756

CONCLUSIONS

The thermal phase behavior and ion mobility in the neat OIPC 758 [HMG][FSI] and a binary mixture with NaFSI were studied 759 for the first time. Unusual conductivity behavior of [HMG]- 760 [FSI] was reported, where interestingly it was observed to be 761 higher during a heating cycle (from $-40~^{\circ}\text{C}$) than during a 762 cooling cycle, which is not typically observed for OIPCs. This 763

823

824

825

826

82.7

828

829

830

831

832

833

834

835

836

837

838

841

842

843

845

846

847

850

851

852

854

855

856

858

859

860

861

862

863

864

865

866

867

869

870

764 behavior can be attributed to the larger number of grain 765 boundaries created in phase III during a complex crystallization 766 process, as observed in the DSC analysis. We propose that 767 these disordered grain boundaries remain in phase II after the 768 solid-solid phase transition from phase III to II, leading to the 769 higher conductivity in phase II than is observed after cooling 770 from the melt. Furthermore, a similar trend was observed for 771 the 5 mol % NaFSI in the [HMG][FSI] electrolyte where the 772 sodium mobility recorded during the solid-state NMR experiment was higher after cooling the material sufficiently to create phase III vs conductivity measured during the experiment starting from 30 °C. Despite changes in the 776 thermal phase behavior when adding the sodium salt to the 777 neat [HMG][FSI], where a new peak appears and the solidsolid phase transition overlaps with the melting peak, a similarity in the dependence of ion dynamics on thermal 780 history was observed. Moreover, the new peak observed at 44 781 °C was recorded after 2 mol % sodium salt addition and was 782 observed to grow with increasing NaFSI concentration, which 783 may be attributed to a eutectic transition. However, to confirm 784 this hypothesis, more electrolyte concentrations need to be 785 prepared and examined.

The effect of the formation of phase III on the ion dynamics 787 was also seen from changes in the 19F solid-state NMR line shape, where the preferential crystallite orientation was 789 confirmed by sample rotation. Furthermore, the calculation 790 of ¹⁹F chemical shielding anisotropy (CSA) parameters from 791 the crystal structure showed good agreement with the 792 experimental data, which confirms the accuracy of the crystal 793 structure.

Finally, ion decoupling in the 5 mol % NaFSI sample 795 observed from PFG-NMR studies was consistent with solid-796 state NMR results where, despite changes in the ²³Na and ¹⁹F 797 spectra depending on the temperature program used, the ¹H 798 spectra remained unchanged. This is in contrast to the same 799 OIPC mixed with Li salts reported previously, where all ions 800 were found to diffuse at similar rates.²⁶

This work illustrates the potential complexity of phase 801 802 behavior in OIPCs and the importance of thermal history in determining the ion mobility and ionic conductivity. An 804 improved understanding of how material properties depend on 805 such external parameters will allow us to enhance the 806 electrolyte performance. In the case of [HMG][FSI], cooling 807 the material and creating phase III results in higher conductivity and also higher Na mobility for the 5 mol % 809 NaFSI electrolyte.

ASSOCIATED CONTENT

811 Supporting Information

814

815

816

817

818

819

820

821

822

812 The Supporting Information is available free of charge at 813 https://pubs.acs.org/doi/10.1021/acs.jpcc.1c01777.

> DSC thermal traces of 5 mol % NaFSI in [HMG][FSI] recorded during the first scan and second heating scan; the first scan was used to remove the thermal history and is not reported in the main text; details of SXRD refinement, showing the evolution of the cell volume over temperature which follows Vegard's law; and electrolyte metastability and a supercooling effect resulting in a difference between the ¹H spectra recorded during two heating cycles (PDF)

AUTHOR INFORMATION

Corresponding Author

Maria Forsyth - ARC Centre of Excellence for Electromaterials Science (ACES), Institute for Frontier Materials (IFM), Deakin University, Burwood, Victoria 3125, Australia; o orcid.org/0000-0002-4273-8105; Email: maria.forsyth@deakin.edu.au

Authors

Karolina Biernacka - ARC Centre of Excellence for Electromaterials Science (ACES), Institute for Frontier Materials (IFM), Deakin University, Burwood, Victoria 3125, Australia; o orcid.org/0000-0002-4124-1850

Faezeh Makhlooghiazad - ARC Centre of Excellence for Electromaterials Science (ACES), Institute for Frontier Materials (IFM), Deakin University, Burwood, Victoria 3125, Australia

Ivan Popov – Chemical Sciences Division, Oak Ridge National 839 Laboratory, Oak Ridge, Tennessee 37831, United States

Haijin Zhu – Institute for Frontier Materials and the ARC Centre of Excellence for Electromaterials Science, Deakin University, Geelong, Victoria 3216, Australia

Iean-Noël Chotard – Laboratoire de Réactivité et de Chimie 844 des Solides (LRCS), CNRS UMR 7314, Université de Picardie Jules Verne, 80039 Amiens Cedex, France; orcid.org/0000-0002-9867-7954

Craig M. Forsyth - School of Chemistry, Monash University, 848 Clayton, Victoria 3800, Australia

Ruhamah Yunis - Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000,

Luke A. O'Dell – Institute for Frontier Materials and the ARC 853 Centre of Excellence for Electromaterials Science, Deakin University, Geelong, Victoria 3216, Australia; o orcid.org/ 0000-0002-7760-5417

Alexei P. Sokolov - Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States; o orcid.org/ 0000-0002-8187-9445

Jennifer M. Pringle – ARC Centre of Excellence for Electromaterials Science (ACES), Institute for Frontier Materials (IFM), Deakin University, Burwood, Victoria 3125, Australia

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jpcc.1c01777

868

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by the Australian Research 871 Council through the ARC Centre of Excellence for Electro- 872 materials Science (grant no. CE140100012). The U.S. team 873 acknowledges NSF support (award CHE-1764409) for 874 dielectric measurements. 875

REFERENCES

(1) Mauger, A.; Julien, C. M.; Goodenough, J. B.; Zaghib, K. Tribute 877 to Michel Armand: From Rocking Chair - Li-Ion to Solid-State 878 Lithium Batteries. J. Electrochem. Soc. 2020, 167, 070507.

- 880 (2) Lebedeva, N. P.; Boon-Brett, L. Considerations on the Chemical 881 Toxicity of Contemporary Li-Ion Battery Electrolytes and Their 882 Components. *J. Electrochem. Soc.* **2016**, *163*, A821–A830.
- 883 (3) Zhu, H.; MacFarlane, D. R.; Pringle, J. M.; Forsyth, M. Organic 884 Ionic Plastic Crystals as Solid-State Electrolytes. *Trends Chem.* **2019**, 885 *1*, 126–140.
- 886 (4) Pringle, J. M. Recent Progress in the Development and Use of 887 Organic Ionic Plastic Crystal Electrolytes. *Phys. Chem. Chem. Phys.* 888 **2013**, *15*, 1339–1351.
- 889 (5) Armel, V.; Forsyth, M.; MacFarlane, D. R.; Pringle, J. M. Organic 890 Ionic Plastic Crystal Electrolytes; a New Class of Electrolyte for High 891 Efficiency Solid State Dye-Sensitized Solar Cells. *Energy Environ. Sci.* 892 **2011**, *4*, 2234.
- 893 (6) Jin, L.; Nairn, K. M.; Forsyth, C. M.; Seeber, A. J.; MacFarlane, 894 D. R.; Howlett, P. C.; Forsyth, M.; Pringle, J. M. Structure and 895 Transport Properties of a Plastic Crystal Ion Conductor: Diethyl-896 (Methyl)(Isobutyl)Phosphonium Hexafluorophosphate. *J. Am. Chem.* 897 Soc. 2012, 134, 9688–9697.
- 898 (7) Pringle, J. M.; Howlett, P. C.; MacFarlane, D. R.; Forsyth, M. 899 Organic Ionic Plastic Crystals: Recent Advances. *J. Mater. Chem.* 900 **2010**, 20, 2056.
- 901 (8) Huang, J.; Hill, A.; Forsyth, M.; MacFarlane, D.; Hollenkamp, A. 902 Conduction in Ionic Organic Plastic Crystals: The Role of Defects. 903 *Solid State Ionics* **2006**, *177*, 2569–2573.
- 904 (9) Zhou, Z.; Bin; Matsumoto, H. Lithium-Doped, Organic Ionic 905 Plastic Crystal Electrolytes Exhibiting High Ambient-Temperature 906 Conductivities. *Electrochem. Commun.* **2007**, *9*, 1017–1022.
- 907 (10) Jin, L.; Howlett, P.; Efthimiadis, J.; Kar, M.; MacFarlane, D.; 908 Forsyth, M. Lithium Doped N,N-Dimethyl Pyrrolidinium Tetrafluor-909 oborate Organic Ionic Plastic Crystal Electrolytes for Solid State 910 Lithium Batteries. *J. Mater. Chem.* **2011**, *21*, 10171–10178.
- 911 (11) Macfarlane, D. R.; Huang, J.; Forsyth, M. Lithium-Doped 912 Plastic Crystal Electrolytes Exhibiting Fast Ion Conduction for 913 Secondary Batteries. *Nature* **1999**, 402, 792–794.
- 914 (12) Jin, L.; Nairn, K. M.; Ling, C. D.; Zhu, H.; O'Dell, L. A.; Li, J.; 915 Chen, F.; Pavan, A. F.; Madsen, L. A.; Howlett, P. C.; Macfarlane, D.
- 916 R.; Forsyth, M.; Pringle, J. M. Conformational Dynamics in an
- 917 Organic Ionic Plastic Crystal. *J. Phys. Chem. B* **2017**, *121*, 5439–5446. 918 (13) Forsyth, M.; Chimdi, T.; Seeber, A.; Gunzelmann, D.; Howlett,
- 919 P. C. Structure and Dynamics in an Organic Ionic Plastic Crystal, N-920 Ethyl-N-Methyl Pyrrolidinium Bis(Trifluoromethanesulfonyl) Amide,
- 920 Ethyl-N-Methyl Pyrrolidinium Bis(Trifluoromethanesulfonyl) Amide, 921 Mixed with a Sodium Salt. *J. Mater. Chem. A* **2014**, 2, 3993–4003.
- 922 (14) Henderson, W. A.; Seo, D. M.; Zhou, Q.; Boyle, P. D.; Shin, J.
- 923 H.; De Long, H. C.; Trulove, P. C.; Passerini, S. An Alternative Ionic 924 Conductivity Mechanism for Plastic Crystalline Salt-Lithium Salt
- 925 Electrolyte Mixtures. Adv. Energy Mater. 2012, 2, 1343–1350.
- 926 (15) Forsyth, M.; Chimdi, T.; Seeber, A.; Gunzelmann, D.; Howlett, 927 P. C. Structure and Dynamics in an Organic Ionic Plastic Crystal, N-
- 928 Ethyl-N-Methyl Pyrrolidinium Bis(Trifluoromethanesulfonyl) Amide, 929 Mixed with a Sodium Salt. *J. Mater. Chem. A* **2014**, *2*, 3993–4003.
- 930 (16) Chimdi, T.; Gunzelmann, D.; Vongsvivut, J.; Forsyth, M. A
- 931 Study of Phase Behavior and Conductivity of Mixtures of the Organic 932 Ionic Plastic Crystal N-Methyl-N-Methyl-Pyrrolidinium Dicyanamide
- 933 with Sodium Dicyanamide. *Solid State Ionics* **2015**, 272, 74–83.
- 934 (17) Makhlooghiazad, F.; Gunzelmann, D.; Hilder, M.; MacFarlane,
- 935 D. R.; Armand, M.; Howlett, P. C.; Forsyth, M. Mixed Phase Solid-936 State Plastic Crystal Electrolytes Based on a Phosphonium Cation for 937 Sodium Devices. *Adv. Energy Mater.* **2017**, *7*, 1601272.
- 938 (18) Makhlooghiazad, F.; Howlett, P. C.; Wang, X.; Hilder, M.; 939 MacFarlane, D. R.; Armand, M.; Forsyth, M. Phosphonium Plastic
- 939 MacFarlane, D. R.; Armand, M.; Forsyth, M. Phosphonium Plastic 940 Crystal Salt Alloyed with a Sodium Salt as a Solid-State Electrolyte for
- 941 Sodium Devices: Phase Behaviour and Electrochemical Performance. 942 *J. Mater. Chem. A* **2017**, *5*, 5770–5780.
- 943 (19) Makhlooghiazad, F.; Yunis, R.; Mecerreyes, D.; Armand, M.; 944 Howlett, P. C.; Forsyth, M. Comparison of the Physicochemical and
- 945 Electrochemical Behaviour of Mixed Anion Phosphonium Based 946 OIPCs Electrolytes for Sodium Batteries. *Solid State Ionics* **2017**, 312, 947 44–52.

- (20) Yang, H.; Hwang, J.; Wang, Y.; Matsumoto, K.; Hagiwara, R. 948 N-Ethyl- N-Propylpyrrolidinium Bis(Fluorosulfonyl)Amide Ionic 949 Liquid Electrolytes for Sodium Secondary Batteries: Effects of Na 950 Ion Concentration. *J. Phys. Chem. C* 2019, 123, 22018–22026.
- (21) Makhlooghiazad, F.; Guazzagaloppa, J.; O'Dell, L. A.; Yunis, R.; 952 Basile, A.; Howlett, P. C.; Forsyth, M. The Influence of the Size and 953 Symmetry of Cations and Anions on the Physicochemical Behavior of 954 Organic Ionic Plastic Crystal Electrolytes Mixed with Sodium Salts. 955 Phys. Chem. Chem. Phys. 2018, 20, 4721–4731.
- (22) Al-Masri, D.; Yunis, R.; Hollenkamp, A. F.; Doherty, C. M.; 957 Pringle, J. M. The Influence of Alkyl Chain Branching on the 958 Properties of Pyrrolidinium-Based Ionic Electrolytes. *Phys. Chem.* 959 *Chem. Phys.* 2020, 22, 18102–18113.
- (23) Yunis, R.; Pringle, J. M.; Wang, X.; Girard, G. M. A.; Kerr, R.; 961 Zhu, H.; Howlett, P. C.; Macfarlane, D. R.; Forsyth, M. Solid 962 (Cyanomethyl)Trimethylammonium Salts for Electrochemically 963 Stable Electrolytes for Lithium Metal Batteries. *J. Mater. Chem. A* 964 **2020**, 8, 14721–14735.
- (24) Yunis, R.; Newbegin, T. W.; Hollenkamp, A. F.; Pringle, J. M. 966 Ionic Liquids and Plastic Crystals with a Symmetrical Pyrrolidinium 967 Cation. *Mater. Chem. Front.* **2018**, *2*, 1207–1214.
- (25) Yunis, R.; Al-Masri, D.; Hollenkamp, A. F.; Doherty, C. M.; 969 Zhu, H.; Pringle, J. M. Plastic Crystals Utilising Small Ammonium 970 Cations and Sulfonylimide Anions as Electrolytes for Lithium 971 Batteries. *J. Electrochem. Soc.* **2020**, *167*, 070529.
- (26) Biernacka, K.; Al-Masri, D.; Yunis, R.; Zhu, H.; Hollenkamp, A. 973 F.; Pringle, J. M. Development of New Solid-State Electrolytes Based 974 on a Hexamethylguanidinium Plastic Crystal and Lithium Salts. 975 Electrochim. Acta 2020, 357, 136863.
- (27) Yunis, R.; Hollenkamp, A. F.; Forsyth, C.; Doherty, C. M.; Al- 977 Masri, D.; Pringle, J. M. Organic Salts Utilising the Hexamethylgua- 978 nidinium Cation: The Influence of the Anion on the Structural, 979 Physical and Thermal Properties. *Phys. Chem. Chem. Phys.* **2019**, 21, 980 12288–12300.
- (28) Al-Masri, D.; Yunis, R.; Hollenkamp, A. F.; Pringle, J. M. A 982 Symmetrical Ionic Liquid/Li Salt System for Rapid Ion Transport and 983 Stable Lithium Electrochemistry. *Chem. Commun.* **2018**, *54*, 3660–984 3663.
- (29) Boultif, A.; Louer, D. Powder Pattern Indexing with the 986 Dichotomy Method. J. Appl. Crystallogr. 2004, 37, 724–731.
- (30) Rodríguez-Carvajal, J. Recent Developments of the Program 988 FULLPROF. Comm. Powder Diffr. 2001, 26, 12–19.
- (31) Rodríguez-Carvajal, J. Recent Advances in Magnetic Structure 990 Determination by Neutron Powder Diffraction. *Phys. B* **1993**, *192*, 991 55–69.
- (32) CrysAlis PRO. Rigaku Oxford Diffraction. Yarnton, England, 993 2019.
- (33) Sheldrick, G. M. Crystal Structure Refinement with SHELXL. 995 Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3–8.
- (34) Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, 997 M. I. J.; Refson, K.; Payne, M. C. First Principles Methods Using 998 CASTEP. Z. Kristallogr. Cryst. Mater. 2005, 220, 567–570.
- (35) Abu-Lebdeh, Y.; Alarco, P. J.; Abouimrane, A.; Ionescu-Vasii, 1000 L.; Hammami, A.; Armand, M. A Single-Phased Ringed Pyrazolium 1001 Imide and Its Potential Application for Plastic Crystal-Lithium 1002 Batteries. J. New Mater. Electrochem. Syst. 2005, 8, 197–201.
- (36) Timmermans, J. Plastic Crystals: A Historical Review. J. Phys. 1004 Chem. Solids 1961, 18, 1–8.
- (37) Denton, A. R.; Ashcroft, N. W. Vegard's "Law. *Phys. Rev. A: At.*, 1006 *Mol., Opt. Phys.* **1991**, 43, 3161–3164.
- (38) Jin, L.; Howlett, P. C.; Pringle, J. M.; Janikowski, J.; Armand, 1008 M.; MacFarlane, D. R.; Forsyth, M. An Organic Ionic Plastic Crystal 1009 Electrolyte for Rate Capability and Stability of Ambient Temperature 1010 Lithium Batteries. *Energy Environ. Sci.* **2014**, *7*, 3352–3361.
- (39) Abu-Lebdeh, Y.; Alarco, P. J.; Armand, M. Conductive Organic 1012 Plastic Crystals Based on Pyrazolium Imides. *Angew. Chem., Int. Ed.* 1013 **2003**, 42, 4499–4501.
- (40) Iranipour, N.; Gunzelmann, D. J.; Seeber, A. J.; Vongsvivut, J.; 1015 Hollenkamp, A. F.; Forsyth, M.; Howlett, P. C. Effect of Secondary 1016

- 1017 Phase on Thermal Behaviour and Solid-State Ion Conduction in 1018 Lithium Doped N-Ethyl-N-Methylpyrrolidinium Tetrafluoroborate 1019 Organic Ionic Plastic Crystal. *J. Mater. Chem. A* **2017**, *5*, 24909—1020 24919.
- 1021 (41) Armel, V.; Velayutham, D.; Sun, J.; Howlett, P. C.; Forsyth, M.; 1022 MacFarlane, D. R.; Pringle, J. M. Ionic Liquids and Organic Ionic 1023 Plastic Crystals Utilizing Small Phosphonium Cations. *J. Mater. Chem.* 1024 **2011**, 21, 7640–7650.
- 1025 (42) Yunis, R.; Al-Masri, D.; Hollenkamp, A. F.; Doherty, C. M.; 1026 Zhu, H.; Pringle, J. M. Plastic Crystals Utilising Small Ammonium 1027 Cations and Sulfonylimide Anions as Electrolytes for Lithium 1028 Batteries. *J. Electrochem. Soc.* **2020**, *167*, 070529.
- 1029 (43) Romanenko, K.; Jin, L.; Madsen, L. A.; Pringle, J. M.; Odell, L. 1030 A.; Forsyth, M. Anisotropic MRI Contrast Reveals Enhanced Ionic 1031 Transport in Plastic Crystals. *J. Am. Chem. Soc.* **2014**, *136*, 15638–1032 15645.
- 1033 (44) Romanenko, K.; Pringle, J. M.; O'Dell, L. A.; Forsyth, M. New 1034 Insights into the Thermal Behaviour of Organic Ionic Plastic Crystals: 1035 Magnetic Resonance Imaging of Polycrystalline Morphology Alter-1036 ations Induced by Solid-Solid Phase Transitions. *Phys. Chem. Chem.* 1037 *Phys.* 2015, 17, 18991–19000.
- 1038 (45) Chen, F.; Jin, L.; De Leeuw, S. W.; Pringle, J. M.; Forsyth, M. 1039 Atomistic Simulation of Structure and Dynamics of the Plastic Crystal 1040 Diethyl(Methyl)(Isobutyl)Phosphonium Hexafluorophosphate. *J.* 1041 *Chem. Phys.* **2013**, *138*, 244503.
- 1042 (46) Forsyth, M.; Yoon, H.; Chen, F.; Zhu, H.; MacFarlane, D. R.; 1043 Armand, M.; Howlett, P. C. Novel Na+Ion Diffusion Mechanism in 1044 Mixed Organic-Inorganic Ionic Liquid Electrolyte Leading to High 1045 Na+Transference Number and Stable, High Rate Electrochemical 1046 Cycling of Sodium Cells. *J. Phys. Chem. C* 2016, 120, 4276–4286.