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Abstract
Irrigation is critical to sustain agricultural productivity in dry or semi-dry environments, and
center pivots, due to their versatility and ruggedness, are the most widely used irrigation systems.
To effectively use center pivot irrigation systems, producers require tools to support their
decision-making on when and how much water to irrigate. However, currently producers make
these decisions primarily based on experience and/or limited information of weather. Ineffective
use of irrigation systems can lead to overuse of water resources, compromise crop productivity, and
directly reduce producers’ economic return as well as bring negative impacts on environmental
sustainability. In this paper, we surveyed existing precision irrigation research and tools from
peer-reviewed literature, land-grant university extension and industry products, and U.S. patents.
We focused on four challenge areas related to precision irrigation decision-support systems:
(a) data availability and scalability, (b) quantification of plant water stress, (c) model uncertainties
and constraints, and (d) producers’ participation and motivation. We then identified opportunities
to address the above four challenge areas: (a) increase the use of high spatial-temporal-resolution
satellite fusion products and inexpensive sensor networks to scale up the adoption of precision
irrigation decision-support systems; (b) use mechanistic quantification of ‘plant water stress’ as
triggers to improve irrigation decision, by explicitly considering the interaction between soil water
supply, atmospheric water demand, and plant physiological regulation; (c) constrain the
process-based and statistical/machine learning models at each individual field using data-model
fusion methods for scalable solutions; and (d) develop easy-to-use tools with flexibility, and
increase governments’ financial incentives and support. We conclude this review by laying out our
vision for precision irrigation decision-support systems for center pivots that can achieve scalable,
economical, reliable, and easy-to-use irrigation management for producers.
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1. Introduction

Irrigation is critical to sustain agricultural production
in dry or semi-dry climates and maintain the eco-
nomy of these regions (Stubbs 2016, US GAO 2019).
Irrigation systems include gravity, sprinkler, and
micro-irrigation systems (figure 1), and among these,
sprinkler irrigation systems, mainly center pivots, are
used in∼55% of the U.S. total irrigated lands (USDA
2017, US GAO 2019) (figure 1). For example, in 2015,
38% of corn and 25% of soybean production in the
U.S. was produced with center pivots irrigation sys-
tems (Smidt et al 2019). Center pivot irrigation sys-
tems were invented by a farmer Frank Zybach in 1940
and patented 12 years later (Zybach 1952). In general,
these systems havewater that is pumped from the cen-
ter of the field to overhead nozzles of different sizes
located along a long pipe that rotates in a circular pat-
tern and used to irrigate large fields. In the U.S., these
irrigation systems were quickly adopted and used to
irrigate row crops.

Efficient irrigation is essential to achieve sustain-
ability of food production and regional water secur-
ity (Lobell et al 2008, Griggs et al 2014, Grafton
et al 2018, Li et al 2020). However, currently, produ-
cers determine the irrigation timing and amount of
center pivots largely based on their personal exper-
ience and weather information. According to a sur-
vey, >75% of irrigation scheduling methods used by
U.S. producers are based on rule-of-thumb proced-
ures that include crop calendars, visual observation,
and ‘what the neighbors are doing?’ (USDA 2017).
Fewer than 25% of irrigation scheduling methods are
science- and technology-based. Decisions based on
rule-of-thumbmethods could lead to over- or under-
irrigation. Over-irrigation may raise concerns related
to water scarcity and environmental sustainability.
For example, the extensive irrigated areas in Kan-
sas, California, and Arkansas (figure 1) have resul-
ted in large groundwater level declines in the High
Plains, Central Valley, and Mississippi Embayment
aquifers, respectively (Marston et al 2015, McGuire
2017, US GAO 2019). Over-irrigation using ground-
water may further increase soil salinity and sodi-
city in areas with shallow groundwater tables and
excessive evaporation losses, which threatens soil
health of these regions (Hillel 2000, Tanji 2002).
Over-irrigation can also result in leaching and run-
off of nutrient-enriched water, causing contamin-
ation to ground water (Power and Schepers 1989,
Exner et al 2014). Conversely, under-irrigation does
not sufficiently alleviate crop water stress, which
usually leads to both yield and economic loss for
producers. Compared with rule-of-thumb methods,
science- and technology-based irrigation scheduling
methods may increase crop profits and reduce envir-
onmental impacts by minimizing crop water stress.

Precision irrigation usually requires real-time
information about soil water supply and crop water

demand to determine optimal irrigation timing and
varying amount in space, in order to reach predefined
objectives such as the maximization of crop yield,
resource use efficiency, or profitability (Sadler et al
2005, Smith 2011, US GAO 2019). Our study here
will focus on discussing irrigation decision making
tools for the majority of irrigation systems in the
U.S., i.e. ‘standard center pivots’, where irrigation
timing and amount are uniform across a field. In
recent decades, some studies have reviewed specific
aspects of precision irrigation decision-support sys-
tems, such as soil-based and/or plant-based irriga-
tion scheduling methods and applications of remote
sensing data and wireless technologies (Jones 2004,
Fernández and Cuevas 2010, Pardossi and Incrocci
2011, Zaks and Kucharik 2011, Ha et al 2013, Haule
and Michael 2014, Kansara et al 2015, Ihuoma and
Madramootoo 2017, Foster et al 2019, Lakhwani et al
2019, Pathak et al 2019, Evett et al 2020, Gu et al
2020). However, few studies have provided holistic
reviews and perspective of integrating different com-
ponents of precision irrigation decision-support sys-
tems. With extensive progresses made in precision
irrigation in both academia and industry, there is a
lack of comprehensive reviews on existing challenges
and opportunities.

This paper reviews recent advances and chal-
lenges, and envisions opportunities in precision irrig-
ation decision-support systems for standard cen-
ter pivots. We surveyed precision irrigation research
from peer-reviewed literature, land-grant university
extension and industry products, and U.S. patents.
We identified challenges in data, decision-making
approaches and criteria, and products used in current
precision irrigation decision-support systems in this
survey. We then proposed possible opportunities to
address the corresponding challenges and bridge the
gap between research and practice for precision irrig-
ation decision-support systems, which we envision
should be scalable, economical, reliable, and easy-to-
use for producers. Although the survey is focused on
the center pivot irrigation systems in the U.S, most of
our review can be generally applied to different other
types of irrigation systems at the global scale.

2. Recent advances in precision irrigation
decision-support systems

2.1. Methods
The survey was performed using Web of Science,
Google Scholar, Google, and Google patents with the
keywords: irrigation scheduling, decision-making,
decision-support, precision, and management. Based
on the results, >200 in peer-reviewed literature, 17
precision irrigation products from the U.S. land-
grant universities in table 1, 19 commercial precision
irrigation products from industries in table 2, and
more than 25 irrigation scheduling related patents
from the survey, we identified data, decision-making

2



Environ. Res. Lett. 16 (2021) 053003 J Zhang et al

Figure 1. (a) Spatial distribution of irrigated croplands at 30 m resolution of sprinkler, gravity, and micro-irrigation by state for
the Conterminous United States (CONUS) (USDA 2017, Xie et al 2019). The size of pie charts indicates the magnitude of
irrigated croplands area. (b) Spatial distribution of center pivot irrigation systems in Nebraska (http://snr.unl.edu/data/
geographygis/water.aspx). (c) Example of center pivots location in Nebraska.

approaches and criteria, and products used in current
precision irrigation decision-support systems in three
recent decades.

2.2. Data used in precision irrigation
Data represents the basis of any precision manage-
ment system. Multi-source data, including in-situ
measurements, remotely sensing data, and gridded
weather/climate/soil data (figure 2), are used for pre-
cision irrigation. in-situ sensors, e.g. soil/canopy tem-
perature/weather sensors, can provide data with high
accuracy but sometimes are expensive and labor-
intensive to deploy those sensors. Soil sensors provide
measurements of soil volumetric water content, water
potential, salinity, and/or soil temperature, such as
time-domain and frequency-domain reflectometer,
capacitance probe, resistance probe, tensiometers, or
cosmic-ray neutron sensor (Robinson et al 2003, Vaz
et al 2013). The temperature sensors mainly are the
infrared thermometer sensor, which can observe can-
opy or soil surface temperature. Weather sensors,
largely deployed as weather stations, measure mul-
tiple meteorological variables, such as air temper-
ature and humidity, solar radiation, wind speed

and direction, barometric pressure, and precipitation.
Producers have options to establish their ownweather
stations, but the cost is high and the current adop-
tion is very low. On the other hand, public weather
stations in the existing networks, such as National
Oceanic and Atmospheric Administration managed
by National Climate Data Center and state networks
(e.g. mesonets) are usually not dense enough, often
leading to tens of km or further away from a targeted
irrigated field (Sassenrath et al 2013, Mun et al 2015).

Remote sensing data from satellites, airborne
sensors, and unmanned aerial vehicles (UAVs)mainly
characterize canopy conditions, such as vegetation
indices, leaf area index (LAI), and canopy temper-
ature (Guan et al 2016, Urban et al 2018, Kimm
et al 2020b), and hydrological conditions, such as
evapotranspiration (ET), rainfall, and soil moisture
(Qiu et al 2016, Peng et al 2017, Guan et al 2018).
Unlike in-situ data, satellite data provide informa-
tion across space and time for large-scale applica-
tions. However, existing satellite technology has lim-
ited spatial and/or temporal resolutions for precision
irrigation. For example, MODIS is in low-medium
spatial (250 m–1 km) and daily temporal resolution;
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Figure 2. Summary of the recent advances, challenges, and opportunities of precision irrigation.

whereas, Landsat is in medium-high spatial resolu-
tion (30–60 m) but low temporal resolution (∼8 d).
By contrast, airborne sensors and UAVs can provide
data at higher spatial resolutions, e.g. ∼0.1 m, but
require geometric and radiometric calibration, cer-
tified operators, and complex data processing, and
thus they are usually cost-prohibitive. So far the most
relevant remote sensing data for irrigation is ET,
and there are various remote sensing-based ET mod-
els, e.g. atmosphere-land exchange inverse (ALEXI)
(Anderson et al 2004), backward-averaged iterative
two-source surface temperature and energy balance
solution (BAITSSS) (Dhungel et al 2016), breathing
earth system simulator (BESS) (Jiang and Ryu 2016),
mapping evapotranspiration with internalized calib-
ration (METRIC) (Allen et al 2007b), surface energy
balance algorithm for land (SEBAL) (Bastiaanssen
et al 1998), and their pros and cons have been
reviewed in recent work (Zhang et al 2016, Jiang et al
2020a).

Finally, gridded weather/climate/soil data, such
as NLDAS (Xia et al 2012), PUMET (Pan et al
2016), PRISM (Daly and Taylor 2001), DayMET
(Thornton et al 2018), and SSURGO (NRCS 2017),
are usually used as the forcing or parameters of
land surface models to analyze the impact of irriga-
tion (Devanand et al 2019, Xu et al 2019). Gridded
weather/climate data can provide large-scale inform-
ation, but usually have a coarse spatial resolution

(>250 m) and cannot meet the field-level resolution
and low latency requirements necessary for precision
irrigation decision-support systems.

2.3. Decision-making approaches and criteria used
in current precision irrigation decision-support
systems
Themajor decision-making approaches for irrigation
timing primarily depend on soil- and plant-based
metrics (Elwin 1997, Jones 2004). Soil-based met-
rics determine irrigation timing based on soil mois-
ture or soil moisture-derived metrics, such as max-
imum allowable depletion (MAD), which indicates
the percentage of the available water capacity towhich
crops should be subjected. MAD is the most widely
used precision irrigation decision-making method
(Panda et al 2004, Lehmann et al 2013). Plant-based
metrics mainly determine irrigation timing based
on plant conditions, such as plant water conditions
(e.g. leaf water potential) and/or canopy temperat-
ure, e.g. crop water stress index (CWSI) and integ-
rated CWSI (iCWSI) (Jones 2004, Girona et al 2006).
Leaf water potential, a direct measure of plant water
status in terms of plant hydraulics, has been used
by agronomists/consultants for the irrigation of high
value crops, but this approach can be over-costly
and unscalable for row crop (Jones 2004, Girona
et al 2006). The CWSI and iCWSI provide irrigation-
trigger information through the cooling effect due to

8
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plant transpiration, based on the normalized func-
tion of vapor pressure deficit (VPD) and temperature
difference between canopy and air (Idso et al 1981,
Jackson et al 1981, DeJonge et al 2015, O’Shaughnessy
et al 2015).

The most widely adopted approach to determ-
ine how much water to apply is based on root-zone
soil moisture. Given that soil moisture sensors are
not available in most cases, the irrigation amount can
be determined using soil water balance through two
types of methods: the process-based models and stat-
istical/machine learning models. Process-based mod-
els, including crop models, e.g. APSIM, AquaCrop,
DSSAT, EPIC, Hybrid-Maize (Hammer et al 2002,
Steduto et al 2009, Rosenzweig et al 2014, Peng et al
2020), hydrological models, e.g. SWAT (Chen et al
2018), and land surface models, e.g. Noah-MP, CLM,
JULES, PALMS (Best et al 2011, Niu et al 2011,
Yang et al 2011, Booker et al 2015, Peng et al 2018),
can be used to simulate water balance and surface
biophysical processes based on physical mechanisms
with inputs of weather, soil, and/or satellite-based
vegetation information. Statistical/machine learning
models usually use empirical approaches to calculate
soil water content and crop water use to determine
the irrigation amount, and these empirical models
require rich historical data to train and test themodels
to make them useful (Goldstein et al 2018). Further-
more, daily ET reports is also widely used for irriga-
tion scheduling based on the estimation of daily crop
water use (Lascano 2000, Lascano and van Bavel 2007,
USDA 2017).

2.4. Existing products developed for precision
irrigation decision support
Based on the multi-source data, decision-making
approaches and criteria used in precision irriga-
tion, many products have been developed to provide
precision irrigation decision support for producers.
We have listed some examples of precision irriga-
tion decision support products from the U.S. land-
grant universities and industries (tables 1 and 2).
The combination of reference ET (ETo), crop coef-
ficient (Kc), and soil water stress coefficient (Ks) is
the most widely used empirical method to estim-
ate crop water use, i.e. ET = ETo × Kc× Ks. There
are many approaches to calculate ETo, reference ET
for a short crop with a height of 0.12 m (similar
to grass), using meteorological data, such as FAO
Penman–Monteith method (Allen et al 1998, Wal-
ter et al 2000, Allen 2009). The majority of products
incorporate crop water use (i.e. ET) to soil water
balance to infer soil moisture for irrigation schedul-
ing, such as METRIC ET, WISE, and CropManage.
Besides, some products can also provide irrigation
scheduling with lead time of a few days with weather
forecasts, such asCornWater and SoyWater developed
by University of Nebraska–Lincoln.

3. Challenges and opportunities for
precision irrigation decision-support
systems

Based on current precision irrigation research, we
identified four critical challenge areas and corres-
ponding opportunities (figure 2) to improve pre-
cision irrigation decision-support systems for the
center pivots in the U.S.: (a) data availability and
scalability; (b) quantification of plant water stress; (c)
model uncertainties and constraints; and (d) produ-
cers’ participation and motivation. With these chal-
lenges and opportunities, our proposed precision
irrigation decision-support system for center pivots,
which includes three components: data acquisition,
modeling and analytics, and decision-making sup-
port (figure 3), should be scalable, economical, reli-
able, and easy-to-use for producers.

3.1. Data availability and scalability
One major challenge regarding data need for preci-
sion irrigation is the lack of field-level resolution and
high-accuracy data for scaled-up applications. Here
we first reviewed the challenges of different existing
approaches, and then discussed the opportunities to
obtain scalable and high-accuracy data that can be
acquired in every field at large regions for precision
irrigation.

3.1.1. Challenges
Here we identify three challenges from in-situ,
satellite-based vegetation, and satellite-based ET and
soil moisture data in data availability and scalability
(figure 2).

3.1.1.1. In-situ data
Existing in-situ sensors in the market are generally
expensive or at least not sufficiently cheap to enable
wide adoption. They also typically need to be installed
and removed before and after the growing season
for row-crops, resulting in extra labor costs. Though
in-situ sensors usually provide high-quality measure-
ments, these measurements are from a single point
and thus often have limitations in capturing spatial
heterogeneity of a whole field (Geesing et al 2004,
Dong et al 2013, Irmak et al 2014, Rudnick et al
2015, Vuran et al 2018). Large public in-situ networks
are available to provide long-term datasets from the
National Soil Moisture Network and state mesonets,
but these network stations are usually deployed in
natural landscapes, away from crop fields, thus they
have to rely on interpolation for precision irrigation
but with significant uncertainty (Mauget and Leiker
2010).

3.1.1.2. Satellite-based vegetation data
To enable precision irrigation decision, field-level res-
olution and high frequency are needed for remote
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Figure 3. Proposed systematic framework of precision irrigation decision-support system for center pivots.

sensing data. However, conventional satellite-based
datasets on vegetation conditions, e.g. LAI and land
surface temperature (LST), cannot fulfill high res-
olutions in space and time simultaneously; and
some satellite-derived products have inherent limit-
ations, such as insufficient accuracy and significant
time latency (table 3). These drawbacks limit their
applications to provide real-time and field-resolution
data to determine irrigation scheduling for precision
irrigation.

3.1.1.3. Satellite-based ET and soil moisture data
Continuous real-time estimation of ET and soil mois-
ture, which indicate crop water use and soil water
supply for crops in irrigation decision-making tools,
remains a major challenge at fine scales with high
accuracy for precision irrigation. Current operational
soil moisture products only have coarse resolutions
and could not fulfill the field-level irrigation needs;
to make them useful, they need to be downscaled
to high resolutions in both space and time, which
adds large uncertainties (table 3). Specifically, cur-
rent satellite-based soil moisture products based on
passive microwave remote sensing are still limited to
coarse resolutions (e.g. >10 kms in SMAP L3 and
SMOS L3 products) and are only sensitive to shal-
low soil depth (<0.05 m) (Entekhabi et al 2010, Chan
et al 2016); the above limitations make these data not
useful for field-scale precision irrigation. The existing
operational ET data either has coarse resolutions or
not effective under cloudy days. For example, ALEX-
I/DisALEXI and METRIC ET products are based on
energy balance approaches, which retrieve clear-sky
ET from satellite-observed LST and fill ET gaps for
cloudy-sky days, and thus are considerably affected
by atmospheric conditions, thus limiting its practical
uses (Allen et al 2007a, Cammalleri et al 2013, Li et al
2017, Anderson et al 2018, Ma et al 2018).

3.1.2. Opportunities
3.1.2.1. In-situ data
First, continuous development of soilmoisture sensor
is needed to reduce the cost while achieve the
robust performance (Montzka et al 2020). Second,
more in-situ measurements from low-cost sensors
can be combined to fill in the critical data gap
for essential plant and environmental conditions.
For example, in-situ LAI measurements, along with
some other environmental variables, such as air tem-
perature and humidity, now can be acquired from
low-cost sensors; these measurements can provide
significant constraints to improve ET estimations
for irrigation scheduling. Economic cameras, such
as PhenoCam, point-and-shoot cameras and smart-
phones, and spectral reflectance sensors, have been
deployed to track vegetation phenology, such as LAI,
and productivity (Ryu et al 2010, 2012, Francone et al
2014, Richardson et al 2018, Yan et al 2019). Further-
more, recent advances inmicrocomputers andmicro-
controllers have improved the ability to intelligently
integrate low-cost sensors and provide a comprehens-
ive solution for crop growth monitoring (Kim et al
2019). Third, some mobile sensors may also contrib-
ute to fill the gaps of spatial and temporal sampling,
such as putting the roving cosmic-ray neutron sensors
on trucks to sample soil moisture at a regional scale
(Franz et al 2015, Schrön et al 2018). Additionally,
new technologies, such as 5G networks, Internet of
Things (IoT), Long Range communication devices,
and edge computing, can further speed up the devel-
opment of wireless sensing networks (WSNs), which
can possibly make it less expensive and easier to
provide scalable in-situ data for precision irrigation.

3.1.2.2. Satellite-based vegetation data
For remote sensing data for vegetation conditions,
improved satellite technologies/algorithms and data
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Figure 4. Overview of the fusion method of STAIR (Reprinted from Luo et al 2018, Copyright (2018), with permission from
Elsevier).

fusion methods (figures 2 and 3) can help to provide
high spatial-temporal resolution products directly.
Notably, satellite datasets with high resolutions in
both space and time, e.g. daily, 3 m resolution
Planet Labs data, are emerging and becoming avail-
able; though whether these data can be commer-
cially viable for irrigation products is still unclear.
Alternatively, satellite fusion algorithms, such as the
SaTellite dAta IntegRation (STAIR) fusion method
(figure 4) (Luo et al 2018, 2020), have been developed
to fuse various satellite data together, e.g. Landsat,
MODIS, and Sentinel-2, to enable the operational
and real-time generation of a 10–30 m, daily and
cloud-/gap-free data product for surface reflectance,
which has significantly advanced the field-scale and
real-time monitoring of crop conditions (Jiang et al
2020a, Kimm et al 2020b).

3.1.2.3. Satellite-based ET and soil moisture data
High-resolution and operational ET and soil mois-
ture products, once become available, can enable pre-
cision irrigation scheduling at the field level and low
costs without in-situ sensors. Notable, the recently
developed BESS-STAIR ET product, generated by
a satellite-driven water-carbon-energy coupled bio-
physical model BESS combined with the STAIR
fusion data, not only has a high spatial-temporal
resolution (daily, 30 m) under all-sky conditions,
but also has demonstrated a high performance in
estimating field-level ET when benchmarked with
12 eddy-covariance flux sites across the U.S. Corn
Belt (figure 5) (Jiang et al 2020a). It indicates that
BESS-STAIR ET has potential for applications in
field-level precision irrigation, and also has scalability

to regional and global scales. Besides, high-resolution
LST products could also be incorporated into the
BESS model as constraints to improve BESS-STAIR
ET’s performance in near future. Some other exist-
ing programs, such as OpenET (Hall et al 2020), also
have plans to offer satellite-based ET data, but unless
real-time and field-level ET data can be provided,
the promise to resolve precision irrigation cannot be
fulfilled.

For field-scale soil moisture, leveraging recent
advances inmobile proximal sensing, high-resolution
satellite remote sensing and downscaling, model-
data fusion, ground sensing networks,machine learn-
ing and data mining techniques may provide prom-
ising solutions. Several proximal sensing techniques
(Babaeian et al 2019), such as cosmic ray neutron
sensing, can be powerful in mapping field-scale soil
moisture when mounted on mobile platforms (Franz
et al 2015, Schrön et al 2018). Higher resolution soil
moisture estimation can also be achieved through
synergic use of both active and passive microwave
remote sensing (Das et al 2019) or spatial down-
scaling (Peng et al 2017). Field-scale soil moisture
simulation can also be improved with model-data
fusion. Soil moisture is highly connected with some
other land surface state and flux variables, such as ET
and LST. The recently developed satellite-based 30 m
BESS-STAIR ET (Jiang et al 2020a), ECOSTRESS-
based ET (Anderson et al 2020) and LST (Hook and
Hulley 2019) can be used to constrain the hydro-
logical models through model-data fusion methods
and thus to better infer field-scale soil moisture. The
soil parameters in the hydrological models, which are
an important source of uncertainty in field-scale soil
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Figure 5. BESS-STAIR performance. Left: a daily ET map in eastern Nebraska. Right: time series comparison of ET, potential ET
(PET), calculated by the Priestley–Taylor equation to measure the atmospheric demand, and ET/PET between BESS-STAIR daily
estimations and flux tower measurements in 2012 (Jiang et al 2020a).

moisture simulation, can also be estimated through
model-data fusions methods when proper field-scale
measurements are available. With emerging techno-
logies like WSNs and IoTs (Kiani and Seyyedabbasi
2018),more ground-based soilmoisture observations
will become available (Quiring et al 2016), which
provides an opportunity for data-driven prediction
of soil moisture. State-of-the-art data mining tech-
niques based on a network of coevolving time series
(Cai et al 2015, Hairi et al 2019) can simultaneously
capture the structural topology and temporal dynam-
ics of multiple time series for the temporal and spa-
tial patterns of soil moisture and its correlation with
other variables. Meanwhile, the emerging physics-
guidedmachine learning approaches (de Bézenac et al
2019, Reichstein et al 2019, Yang et al 2019), which
can integrate hyper-resolution hydrologicalmodeling
with advancedmachine learning algorithms,may also
shed light on field-scale soil moisture estimation.

3.2. Quantification of plant water stress
A fundamental question about precision irrigation
is ‘what is plant water stress and how to quantify
it?’. Answering this question requires us to fully con-
sider the soil–plant–atmosphere continuum (SPAC).
Only after this question is answered, optimalmethods
could be developed around the correct concepts.

3.2.1. Challenges
‘Plant water stress’ is a critical concept to indicate the
water shortage status of plants, based onwhichwe can
create irrigation triggering rules. There are various
definitions of ‘plant water stress’, for example, based
on soil moisture and/or plant conditions, includ-
ing canopy temperature and/or leaf water poten-
tial (Jones 1990, 2004, 2007, Rodríguez-Iturbe and
Porporato 2005, Möller et al 2007).

3.2.1.1. Soil-based concepts
Soil-based metrics are the most widely used methods
for irrigation decision-making, such as MAD (see
tables 1 and 2, figures 6(d) and 8(e)). These metrics

are based on the available water in the root-zone for
root water uptake to indicate plant water stress. It
is worth noting that these soil-based metrics largely
only reflect water supply and they do not con-
sider atmospheric water demand. Since agricultural
drought in the U.S. Corn Belt is both driven by
soil water deficit and atmospheric dryness charac-
terized by high VPD (Lobell et al 2014, Zhou et al
2020, Kimm et al 2020a), it could be inappropri-
ate to quantify plant water stress solely based on soil
moisture.

3.2.1.2. Plant-based concepts
Canopy temperature and leafwater potential are often
used for irrigation management (figures 6(a), (e) and
8(a), (b)). Canopy temperature reflects plant water
stress indirectly through canopy energy balance, such
that a reduction of ET leads to reduced evaporative
cooling, and thus higher canopy temperature given
the same net energy (Idso et al 1981, Jackson et al
1981, DeJonge et al 2015, O’Shaughnessy et al 2015).
However, canopy temperature derived metrics, such
as CWSI and iCWSI, which can be measured from
proximal, airborne, or satellite thermal sensors at the
canopy scale, contain non-negligible uncertainty due
to the empirical calculation methods, and are also
prone toweather conditions, i.e. no observations dur-
ing cloudy days for satellite products. The empir-
ical calculation methods usually use the empirical
upper and lower limits of the temperature differ-
ence between canopy and air to estimate CWSI and
iCWSI based on the standardized temperature differ-
ence, resulting in irreducible uncertainty and error.

Leaf water potential, a more rigorous measure
of plant water stress based on plant hydraulics, can
indicate plant’s internal water stress directly, but it is
relatively cumbersome and labor-intensive to meas-
ure (Jones 2004, Girona et al 2006). The traditional
measurements of leaf water potential via pressure
chambers are reliable but require destructive leaf
sampling and could be time-consuming (Boyer 1967,
Ritchie and Hinckley 1975, Turner 1988), while the
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Figure 6. Conceptual scheme of five possible aspects to define plant water stress. (a) CWSI based on canopy temperature.
(b) Stomatal conductance considering stomatal response to water stress. (c) TSI or ESI based on transpiration or ET. (d) Soil
moisture-based metric: MAD. (e) Leaf water potential based on plant hydraulics. ET denotes the crop water use considering the
limitation from soil water supply; ETo denotes reference ET calculated by the Penman–Monteith equation for a short crop, grass
(0.12 m).

psychrometric methods (Richards and Ogata 1958,
Barrs 1964, Pérez et al 2011) are non-destructive but
expensive and require sophisticated equipment and
high level of technical skill. Thus, economically it is
not viable and scalable to use these methods for row
crops, which have much lower value than fruit and
vegetables.

3.2.2. Opportunities
We interpret ‘plant water stress’ as a joint contribu-
tion of soil water supply (i.e. root-zone soil moisture)
and atmospheric water demand (i.e. VPD), mediated
by plant physiological regulations (Rigden et al 2020,
Kimm et al 2020a) (figure 3). Both low soil mois-
ture and high VPD can lead to plant water stress,
and different plants may have different physiological
responses and water use strategies (Sinclair et al 1984,
Sinclair 2005, 2012, Katul et al 2012). Thus, plant
water stress should be defined and quantified holistic-
ally based on the interplay between soil water supply,
atmospheric water demand, and plant physiological
regulations, i.e. SPAC concept, for irrigation schedul-
ing. We propose three definitions based on transpir-
ation, plant hydraulics, and stomatal conductance
(figures 2 and 6).

3.2.2.1. Transpiration
We can define ‘plant water stress’ from the perspect-
ive of transpiration (figure 6(c)). As transpiration can
be limited by soil water deficit and/or downregulated
stomatal conductance due to atmospheric aridity,

actual transpiration (Tr) is achieved as the minimum
of atmospheric water demand and soil water supply
(Sinclair et al 1984, Sinclair 2012), with the former
defined as transpiration when soil moisture is non-
limiting with the same vegetation conditions, i.e. ref-
erence transpiration, Tr_ref, and the latter defined
as root water uptake given limited soil moisture.
Thus, the ratio of Tr (with plant water stress) and
Tr_ref (without plant water stress) can be used to
indicate plant water stress, here we define it as tran-
spiration stress index (TSI) (figure 6(c)). However,
in practice it is difficult to obtain direct measure-
ments of Tr and Tr_ref. Though there are multiple
ET partitioning approaches that can separate evap-
oration and Tr, such as process-based models (Stoy
et al 2019), energy balance (Kool et al 2016), remote
sensing products (Talsma et al 2018), or geochem-
ical signatures (Al-Oqaili et al 2020), these meth-
ods contain relatively large uncertainties, which limits
the accurate calculation of TSI in real-world applica-
tions. Alternatively, we could use the ratio of actual
ET and reference ET (ETo), i.e. evaporative stress
index (ESI) (Anderson et al 2011), as an approxima-
tion of TSI to indicate plant water stress for precision
irrigation (figure 6(c)). ESI, which has been extens-
ively used to quantify agricultural drought in long-
term baseline conditions (Anderson et al 2011, 2016),
can be derived from remote sensing, e.g. ECO-
STRESS ESI_PT-JPL (Fisher et al 2020) and BESS-
STAIR ET (Jiang et al 2020a), and/or process-based
models.
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3.2.2.2. Leaf/stem water potential
We also can define ‘plant water stress’ using
leaf/stem water potential based on plant hydraul-
ics (figure 6(e)). Plant hydraulics is the fundamental
theory that connects soil water supply and atmo-
spheric water demand (Dixon and Joly 1895, Tyree
1997, 2003, Taiz and Zeiger 2006, Stroock et al 2014),
and can realistically represent the path of water flow
from the soil through the plant substrate to the atmo-
sphere driven by the potential gradient (Anderegg
2015). When plant water stress is caused by soil water
deficit and atmospheric aridity, either independ-
ently or collectively, a substantial drop in leaf/stem
water potential can be observed, and consequently
with a reduction in sap flow. Thus, leaf and stem
water potentials can be used as metrics to quantify
plant water stress (figure 6(e)). However, measure-
ments of leaf and stem water potentials are labor-
intensive and expensive to use for precision irrigation.
Thus, accurately modeling plant hydraulic control
and water transport in the SPAC to estimate plant
hydraulic traits, e.g. leaf/stem/root water potential
and hydraulic conductance, becomes the key to the
quantification of plant water stress in practice. To
manage the complexities of plant hydraulic mod-
els, some highly uncertain parameters can poten-
tially be constrained using various measurements
through data-model fusion approaches (referred to
section 3.3), and some processes can also be sim-
plified for crops, e.g. neglecting plant water storage
(Salomón et al 2017), to enable efficient and scalable
adoption of this method.

3.2.2.3. Stomatal conductance (Gs)
We can also define ‘plant water stress’ in terms of Gs

(figures 6(b), 7 and 8), which reflects the physiolo-
gical regulation of the uptake of atmospheric CO2 for
photosynthesis and water loss through transpiration
(Ball et al 1987, Medlyn et al 2011). Stomatal regu-
lations are co-regulated by water supply (soil mois-
ture) and demand (VPD) (figure 6(b) and the co-
regulation pattern in figure 7) (Lin et al 2018, Kimm
et al 2020a).Gs decreaseswithVPDgiven a certain soil
moisture, and increases with soilmoisture given a cer-
tain VPD (figure 7). Besides, the strong relationship
between CWP, CWSI, ESI, TSI, MAD and Gs indic-
ates that different plant water stress metrics (CWP,
CWSI, ESI, TSI, MAD) all reflect the information of
Gs (figure 8). Thus, stomatal conductance is the most
effective indicator of plant water stress based on the
co-regulation from soil moisture and VPD. However,
quantifying ‘plant water stress’ in terms of Gs is diffi-
cult, since we do not have a direct measure of actual
Gs in practice at the canopy level—we can only do it
at the leaf level. Thus, the above approach may have
to rely on either process-based models or observation
derived proxies, such as inversed Penman–Monteith
equation and semi-empirical Gs models (Ball et al
1987, Allen et al 1998, Leinonen et al 2006, Damour

et al 2010,Medlyn et al 2011, Gago et al 2016, Buckley
2017, Kimm et al 2020a). The effectiveness of the
above modeling or proxy approaches remains to be
investigated, but the promise lies in leveraging scal-
able field-level measurements (e.g. from novel satel-
lite products, see section 3.1.2) with models through
data-model fusion approaches to estimate Gs and
then make irrigation decision guidance.

3.3. Model uncertainties and constraints
With the data availability and ‘plant water stress’
definitions clarified, process-based models and/or
statistical/machine learning models can be used to
simulate the SPAC system for irrigation scheduling.
Both two types of models can involve significant
uncertainties if not properly used, thus data-model
fusionmethods should be used to constrainmodels at
each individual field, using field-scale measurements
(figure 2).

3.3.1. Challenges
3.3.1.1. Process-based models
Uncertainties of the process-based models (referred
to section 2.3) can come from model inputs, para-
meters, and structures. Beven and Freer (2001) and
Liu and Gupta (2007) have provided some detailed
discussions on these aspects. Here we only discuss
our unique perspective related to two major chal-
lenges. The first challenge is that scalable precision
irrigation through process-based models requires us
to have accurate simulations at each individual field
in large regions. Process-based models usually can be
calibrated at fields with rich data. Many practitioners
assume that a model that has been calibrated at one
or a few locations can be applied directly to other ran-
dom sites. However, this approach in general does not
work. The reasons are two-folds: first, when applying
a model to a new site, many site-specific input data
is not available, such as management practices and
soil characteristics, which can lead to large errors in
the simulations. Second, there are some site-specific
model parameters remaining unknown and using
predefined values may lead to large uncertainties. To
possibly resolve this issue, we need to calibrate the
process-based models at each individual field. The
challenge thus is how to get the required field-level
measurements for the calibration at each individual
field. Computation burden also exists when we want
to constrain each individual field using the process-
based models.

The second challenge is the under-represented or
missed critical processes in the current models. One
typical example is the linear/nonlinear response func-
tions ofGs to soil moisture used inmany current land
surface models, such as in NOAH-MP model (Niu
et al 2011), JULESmodel (Best et al 2011), and CTES-
SEL model (Boussetta et al 2013). These linear/non-
linear soil moisture-based water stress functions only
consider soil water supply but ignore atmospheric
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Figure 7. Soil moisture and VPD’s co-regulation on Gs of maize at one site (North Platte Linear, NPL: 41.09◦ N; 100.78◦ W) in
central Nebraska. (a) Scatter plots of daily soil moisture, VPD, and Gs during peak growing season (July and August) from 2001 to
2019 based on the simulation from an advanced process-based model (ecosys). (b) Contour of Gs as a function of soil moisture
and VPD using equation (4) in Kimm et al (2020a). (c), (d) Two box plots show the variation of Gs with soil moisture and VPD.

Figure 8. The performance of five metrics (CWP, CWSI, ESI, TSI, and MAD) interpreting Gs of maize during peak growing
season (July and August) from 2001 to 2019 at one site (NPL: 41.09◦ N; 100.78◦ W) in central Nebraska based on the simulation
from an advanced process-based model (ecosys). (a) CWP: canopy water potential; (b) CWSI: crop water stress index; (c) ESI:
evaporative stress index; (d) TSI: transpiration stress index; and (e) MAD: maximum allowable depletion.

water demand, thus these models have been found
to overestimate soil moisture impacts on Gs, thus
overestimated loss of ET with decreasing soil mois-
ture (Ukkola et al 2016, Lei et al 2018). Few mod-
els consider the complicated interaction between sur-
face water and groundwater, which is critical for
the conjunctive use of these two sources for optimal
irrigation in regions with active surface water and
groundwater interactions (Singh et al 2016). Besides,
ignoring these active interactions may also lead to

large uncertainties of the subsurface hydrological
conditions.

3.3.1.2. Statistical/machine learning models
The first challenge is that statistical/machine learn-
ing models are usually seen as ‘black boxes’, which
lack the physical mechanisms related to water cycle
and irrigation (Torres et al 2011, Goumopoulos et al
2014, Navarro-Hellín et al 2016, Romero et al 2018).
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It is difficult to trace the highly variable hydrolo-
gical and vegetation conditions using ‘black boxes’
machine learning algorithms. Another challenge is
the data scarcity for the training of statistical/machine
learning models at every individual field. The statist-
ical/machine learning models can be trained at data-
rich fields, while they cannot be extrapolated to other
fields due to the lack of generality (Goldstein et al
2018, Romero et al 2018).

3.3.2. Opportunities
3.3.2.1. Process-based models
Regarding the first challenge, process-based models
should be constrained at each individual field by
integrating the field-level measurements into data-
model fusion methods for scalability. From the per-
spective of data, field-level measurements can be
acquired by economic sensors and/or satellite remote
sensing (see section 3.1.2). Advanced satellite remote
sensing technologies nowadays can accurately estim-
ate crop conditions (e.g. LAI andGPP) (Wu et al 2020,
Jiang et al 2020b, Kimm et al 2020b) and hydrolo-
gical conditions (e.g. ET) (Jiang et al 2020a), mak-
ing field-level information available. From the per-
spective ofmodel, sensitive analysis should be applied
first to screen out the most sensitive model para-
meters. Then, the most sensitive parameters need to
be constrained for each individual field using field-
level measurements (Yang et al 2020). There aremany
data-model fusionmethods that can be used to integ-
rate data and model for model constrains at each
individual field, including calibration (e.g. Bayesian
inference) and/or data assimilation. Detailed applic-
ations of these methods are referred to Houska et al
(2014) andLiu andGupta (2007). Regarding the com-
putational cost, surrogate models, based on machine
learning methods, can be applied to improve the
calibration efficiency (Wang et al 2014, Zhang et al
2017).

Regarding the second challenge of the under-
represented or missed critical processes, we envi-
sion the following opportunities formodel. Improved
quantification of plant water stress following the
supply-demand concept and hydraulic functions
(referred to section 3.2.2) should be incorporated
into the process-based models to replace the ori-
ginal soil moisture-based water stress functions. The
interactions between surface water and groundwa-
ter should also be incorporated into the process-
based models at regions where the groundwater level
is shallow and consequently active interactions hap-
pen. It can not only improve the simulation of sub-
surface hydrological conditions for precision irrig-
ation with possible subsurface measurements from
low-cost subsurface sensors, but also can contrib-
ute to the sustainable irrigation with the conjunct-
ive use of surface water and groundwater (Wu et al
2016).

3.3.2.2. Statistical/machine learning models
The nature of ‘black boxes’ can be potentially resolved
by the emerging physics-guided statistical/machine
learning models. Physics-guided statistical/machine
learning models mainly incorporate some physical
laws, such as water and energy balance, into original
‘black boxes’ to improve the traceability and predic-
tion performance (de Bézenac et al 2019, Reichstein
et al 2019, Yang et al 2019) (figure 3). For the limita-
tion of data scarcity for model training, the growth
of rich data from in-situ sensors and remote sens-
ing (e.g. satellites, airborne sensors, and UAVs) can
effectively enhance the training of statistical/machine
learning models (see section 3.1.2). Besides, integ-
rating process-based models with statistical/machine
learning models will also help alleviate the limitation
of data scarcity (Shen 2018, Shen et al 2018).

3.4. Producers’ participation andmotivation
Now following the discussion of data, mechan-
isms, and modeling in precision irrigation, we
focus on the producers’ participation and motiva-
tion that is needed to promote precision irrigation
decision-support systems. According to USDA in
2017, producers’ adoption rate of precision irriga-
tion decision-support systems was less than 25%,
and their adoption decision is largely depended on
whether the expected benefits outweighed the adop-
tion costs (USDA 2017, US GAO 2019).

3.4.1. Challenges
Producers have low confidence in precision irrigation
decision-support systems, and also have concerns in
data privacy (Cox 1996). It is generally recognized
that there are three challenges to the producers’ par-
ticipation and motivation (figure 2).

3.4.1.1. Impractical and unreliable tools
Many of the existing precision irrigation tools lack
the proper user interface and are difficult to use,
leading to poor user experience (Mir and Quadri
2009). Furthermore, the accuracy underlying these
tools are in general low, and thus producers are reluct-
ant to use them (Cox 1996, Mir and Quadri 2009, US
GAO 2019). Besides, most current precision irriga-
tion decision-support systems assume that producers
follow the recommended irrigation decisions strictly
for each recommended irrigation event, and give pro-
ducers no flexibility on the recommended irrigation
timing (US GAO 2019).

3.4.1.2. Limited access to information
Producers in general have limited access to informa-
tion on the development of new precision irrigation
decision-support systems. The tools developed by
land-grant university extensions are mainly applied
in experimental fields for research, rather than for
practical applications; while those from industries are
promoted to large-scale producers, rather than those
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with medium to small-sized farms. Besides, there is
limited expertise to help producers to set up and
maintain the precision irrigation decision-support
systems (Mir and Quadri 2009, US GAO 2019).

3.4.1.3. Limited market-based incentives for water
conservation
There is limited reliance on economic instruments,
such as water pricing, water trading, and caps on
water use, for managing water scarcity (Moore 1991,
Olmstead and Stavins 2009). Additionally, sustained
investments have not been made in governance and
adequate institutional capacity to manage conflicts
and adapt to changing conditions. The establishment
of water markets could encourage water conserva-
tion, increase the value of water and induce pub-
lic and private investments in irrigation efficiency
(Rosegrant et al 1995, Johansson et al 2002).

3.4.2. Opportunities
Regarding the low confidence from producers on
precision irrigation decision-support systems, three
types of measures could be used to increase the pro-
ducers’ adoption rate (figure 2).

3.4.2.1. Easy-to-use tools with flexibility
Accuracy and easy-to-use are the basic features affect-
ing the adoption rate of precision irrigation tools
(Keil et al 1995, Mir and Quadri 2009). Use of these
tools can be validated using some historical extreme
weather events (such as drought), and the perform-
ance can be shown to producers (figure 3). Besides,
tools should be provided with easy-to-use interfaces.
Additionally, dynamic decision-making in precision
irrigation tools can provide some flexibility for pro-
ducers. For example, multiple solutions of irrigation
timing (the gray region in figure 3) can be recommen-
ded together, and producers can select the favored
one or decide not to irrigate. If producers decide not
to irrigate, the new and updated irrigation schedul-
ing should be provided rapidly based on updated
soil and plant conditions. The frequent interactions
between producers and these tools can give producers
more flexibility and improve the accuracy of irriga-
tion scheduling.

3.4.2.2. Farm policies for promotion
The government can develop farm policies to pro-
mote precision irrigation decision-support systems.
For example, the government can provide more edu-
cation and training about these systems and their
impact on water sustainability through extension and
partnerships with private companies. Incentives can
also be provided to the tool developers to encour-
age them to deliver technologies and/or perform as
consultants to provide the support for the tool users
(producers). Subsidies can also be provided for early

adopters, i.e. higher risk tolerance, to encourage pro-
ducers to adopt precision irrigation decision-support
systems.

3.4.2.3. Market-based water institutions
Additionally,market-basedwater institutions, such as
water markets with caps on water withdrawals and
the ability to trade water across users, will provide
incentives for adopting technologies that increase
resource use efficiency (Garrick et al 2020). Subsidies
to reduce the upfront costs of precision technolo-
gies can also promote adoption, particularly if produ-
cers have high discount rates. Enhanced resource use
efficiency can however create financial incentives to
increase economic return; thus, market-based solu-
tions in favor of precision irrigation systems should be
promised as a joint effort of governments, industry,
and producers.

3.4.2.4. Extension to the existing center pivots
Except for the above three types of measures, produ-
cers can also add telemetry to allow remote control or
automatic control of the center pivots (figure 3). Pro-
ducers can receive alerts by e-mail and/or text mes-
sages about decision-making information and any
potential problems online. With the above suggested
opportunities, precision irrigation decision-support
systems can be promoted to producers with the exist-
ing standard center pivots.

4. Concluding remarks

This systematic review focuses on precision irriga-
tion research, identifies critical challenges and oppor-
tunities in four areas, which can be treated as the
research directions of precision irrigation decision-
support systems in the future, thus bridging the gap
between research and practice. With more efforts
in these research directions, our envisioned preci-
sion irrigation decision-support system (figure 3) can
be applied universally and cost-effectively using the
recent advanced technologies at each individual field
in large regions.

(a) Data availability and scalability. High spatial-
temporal-resolution satellite fusion products and
low-cost sensor networks are emerging and
should be used to scale up the adoption of pre-
cision irrigation decision-support systems.

(b) Quantification of plant water stress. Mechan-
istic quantification of ‘plant water stress’ is sug-
gested as triggers to improve irrigation decision,
by explicitly considering the interaction between
soil water supply, atmospheric water demand,
and plant physiological regulation.

(c) Model uncertainties and constraints. The
process-based and statistical/machine learning
models should be constrained at each individual
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field using field-scale measurements and data-
model fusion methods to investigate plant water
relations for scalable precision irrigation.

(d) Producers’ participation andmotivation: Easy-
to-use tools should be developed with flexibility,
and governments’ financial incentives and sup-
port should also be increased to improve adop-
tion rates of new irrigation technologies.
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