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A B S T R A C T   

High-resolution simulation of water budgets across the agricultural landscape is critically important to a variety 
of applications, such as precision agriculture, water resources management, and environmental quality assess
ment. Model-data integration has been shown to be an effective approach to reduce model uncertainties and 
there is a growing opportunity to improve land surface modeling through spatially explicit calibration with 
satellite data in recent decades. Recently, a satellite-based daily 30-m resolution evapotranspiration (ET) product 
BESS-STAIR has been developed, achieving a high performance and well capturing the spatial and temporal 
dynamics of ET across the U.S. Corn Belt. To explore the potential of high-resolution spatially explicit calibration 
for advancing land surface modeling at fine scales, we carried out calibration experiments for the Noah-MP land 
surface model (LSM) over cropland using this newly developed BESS-STAIR ET. We first used Sobol sensitivity 
analysis to identify the most sensitive parameters for the Noah-MP’s ET simulation. The most sensitive vegetation 
(minimum stomatal resistance) and soil parameters (saturated hydraulic conductivity, saturated matric potential, 
and a soil pore size distribution parameter) were calibrated using BESS-STAIR ET to improve model simulation of 
surface water balance. We conducted calibration experiments at 8 eddy covariance flux tower sites that grew 
maize and soybean across the U.S. Corn Belt, as well as a regional calibration study on the Spoon River watershed 
in Champaign, Illinois. When benchmarked with flux tower measurements, the BESS-STAIR ET–calibrated model 
(driven by flux tower forcing) on average reduced the RMSE of hourly ET from 61 W/m2 to 47 W/m2 for maize, 
and from 66 W/m2 to 53 W/m2 for soybean, and matched the performance of directly calibrating using flux 
tower measured ET. The regional study found that calibration using BESS-STAIR ET also improved the simulation 
of long-term regional water budgets and achieved better performance of ET than traditionally lumped calibration 
using streamflow. Further analysis revealed that the high-resolution calibration can resolve the spatial variations 
of ET to a certain extent, and the accuracy of the calibration can be largely attributed to the low bias and 
excellent long-term correlation of the BESS-STAIR ET data itself. Our study thus demonstrates the effectiveness of 
high-resolution model calibration and provides important implications in field-scale hydrological modeling and 
precision agricultural applications.   

1. Introduction 

High-resolution simulation of surface energy and water budgets can 
benefit a variety of purposes (Wood and Coauthors, 2011). Field scale 
modeling across the agricultural landscape in particular is of great in
terest for precision agricultural applications (Karthikeyan et al., 2020; 
Lobell et al., 2015; Wood and Coauthors, 2011). For instance, 

simulations that resolve water and energy budgets in individual crop 
fields can be used to study crops’ response to various environmental 
factors and guide producers’ management practices like irrigation. 
Furthermore, resolving water-energy budgets is a prerequisite to simu
late nutrient dynamics (Austin et al., 2004; Ciais et al., 2013), which 
may provide implications for fertilization management. 

A major source of uncertainty within land surface modeling lies in 
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the parameters related with surface energy partitioning, canopy dy
namics and hydrological processes (Crow et al., 2003; Xia et al., 2002). 
This is particularly true at high resolution due to the spatial heteroge
neity of parameters. Certain parameters, like those related with plant 
responses to abiotic stresses (Jarvis, 1976), are inherently empirical and 
hard to measure directly. Other parameters, like soil hydraulic proper
ties, are physically based and can be measured, albeit at small support 
volumes from soil cores (~250 cm3). However, they are highly hetero
geneous in space and still have high uncertainties due to limited sam
pling coverage. As a result, the successful application of land surface 
models, to a large extent, is contingent upon how well the parameters 
are calibrated. 

Traditionally, calibration of hydrological models is conducted only 
at basin scales using streamflow observations pending on the availability 
of a stream gauge (Immerzeel and Droogers, 2008; Rajib et al., 2018; 
Sutanudjaja et al., 2014). This kind of calibration work usually results in 
an apparently accurate model, giving acceptable stream simulation 
while unrealistically representing internal hydrological processes in 
individual model grids. In addition, the equifinality issue (Beven, 2006) 
further complicates the model calibration problem as the degree of 
equifinality will significantly increase when observational constraints 
are limited. While calibration using stream gauges at multiple locations 
can slightly mitigate the equifinality problem and improve the overall 
performance (Niraula et al., 2012), the internal hydrological processes 
still cannot be fully represented. Parameter regionalization techniques 
can be used to estimate hydrologic parameters in ungauged areas even 
across scales (Beck et al., 2016), but transferring parameters to finer 
resolutions is challenging and the modeling performance with region
alized parameters cannot match direct calibration (Beck et al., 2016; 
Samaniego et al., 2010). Moreover, many hydrological variables (e.g., 
evapotranspiration) and parameters (vegetation and soil parameters) 
have large spatial heterogeneities at fine scales that traditional lumped 
calibration is unable to capture. Therefore, it is still appealing to conduct 
spatially explicit calibration using distributed observations especially at 
high resolutions (Yang et al., 2019). 

The advancement in satellite remote sensing has enabled hydrolo
gists and environmental modelers to use remotely sensed measurements 
of water and energy balance components to constrain land surface 
models in a spatially explicit way. Remotely sensed soil moisture from 
passive microwave satellite is widely used to calibrate soil hydraulic 
parameters and improve model simulations (Houser et al., 1998; Kerr 
et al., 2001; Wanders et al., 2014). However, due to coarse resolutions 
(tens of kilometers), shallow penetration depths (Jackson et al., 1997; 
Peng et al., 2017), and high uncertainties of microwave-based satellite 
soil moisture products, it is still challenging to calibrate a field-scale 
model with satellite-based soil moisture estimations over an extensive 
area. Satellite remote sensing can also provide estimation for evapo
transpiration (ET), a critical flux that connects surface energy and water 
budgets. Compared with soil moisture products, ET estimations from 
satellite can have a much higher spatial resolution and better accuracy 
(Anderson et al., 2011; Li et al., 2009; Liou and Kar, 2014; Su, 2002). 
Previous studies have explored the potential of using satellite-based ET 
products for hydrological model calibration (Immerzeel and Droogers, 
2008; Rajib et al., 2018), but they mainly focused on using MODIS ET 
product, which has been demonstrated to bear large uncertainties 
(Velpuri et al., 2013). Further, very few of those studies focused on 
agricultural landscapes, where field-scale water management is crucial 
for crop growth and yield. Recently, a satellite-based daily, cloud-/gap- 
free, 30-m resolution ET product BESS-STAIR has been developed (Jiang 
et al., 2019). Validations showed that the carefully gap-filled satellite 
data and physically based retrieval approach, which considers multiple 
constraints (energy, water, and carbon) in the ET process (Jiang et al., 
2019), provide an extremely powerful and reliable way to reconstruct 
ET. This is evidenced by BESS-STAIR’s good accuracy with an overall R2 

of 0.75 and root mean squared error (RMSE) of 24.3 W/m2 when 
benchmarked with daily eddy-covariance measurements at 12 flux 

tower sites across the U.S. Corn Belt. It also well captured the spatial and 
temporal patterns of ET. BESS-STAIR ET provides a great opportunity to 
test whether and how satellite products could improve the performance 
of land surface models at fine scales. 

The primary objective of this paper is to investigate the effectiveness 
of high-resolution spatially explicit land surface model calibration using 
BESS-STAIR ET product and the Noah-MP land surface model (LSM). We 
aim to answer the following three science questions in this study: (1) To 
what extent can calibration using the high-resolution ET data improve 
Noah-MP’s simulation of surface water budgets? (2) What are the ben
efits of spatially explicit model calibration at fine scales compared to 
traditional lumped calibration? (3) What factors determine the effec
tiveness of the high-resolution model calibration experiment (and their 
implications)? To answer these questions, we conducted model cali
bration experiments to constrain the most sensitive vegetation and soil 
parameters in Noah-MP using BESS-STAIR ET at 8 Ameriflux sites as 
well as a regional calibration study in the Spoon River Watershed in 
Champaign, Illinois. We evaluated the accuracy of the ET simulation 
from calibrated models using flux tower measurements at the site level, 
and its spatial patterns and comparison with traditional lumped cali
bration in the regional study. Simulations of other surface water budget 
components (soil water content and runoff) were also evaluated. Finally, 
the effectiveness of the high-resolution land surface model calibration 
and its implications were discussed. 

2. Materials and methods 

2.1. Noah-MP LSM and related parameters 

In this study, we chose the widely used Noah-MP LSM for its rela
tively complete and parsimonious representation of surface water and 
energy budgets as well as its high computational efficiency. Noah-MP is 
an improved version of the original Noah model (Niu et al., 2011; Yang 
et al., 2011) that enhances the representation of physics and adds multi- 
parameterization options. In this study, we ran Noah-MP in offline mode 
without coupling to atmospheric models. We used default parameteri
zation options except for stomatal resistance, for which we used the 
Javis scheme (Jarvis, 1976). As the primary goal of this study is to 
investigate the effectiveness of high-resolution calibration using BESS- 
STAIR ET to improve Noah-MP’s simulation of water and energy bal
ances, we reduced the model complexity by turning off carbon cycling of 
Noah-MP; thus, Javis stomatal resistance scheme is deemed adequate 
and can be better constrained for this study. 

In Noah-MP, ET is resolved as the sum of the three components: 
canopy evaporation, bare ground evaporation, and transpiration. During 
the growing season, transpiration dominates ET, so we focused on 
parameterization schemes and parameters that control the transpiration 
process. In Noah-MP, the transpiration heat flux TRv (W/m2) is calcu
lated as: 

TRv = fveg∙ρair∙Cp,air∙CtW∙(esat,tv − ea,H)/γ (1)  

where fveg is the fraction of the ground covered by vegetation, ρair is the 
density of air (g cm−1), Cp,air is the heat capacity (J kg−1 K−1) of dry air at 
constant pressure, esat,v is the saturation vapor pressure (Pa) inside the 
leaf at leaf temperature tv (K), ea,H is the canopy air vapor pressure (Pa) 
and γ is the psychrometric constant (Pa K−1). CtW is the transpiration 
conductance (m s−1) from leaf to canopy air which represents the plant 
physiological and environmental controls on canopy transpiration CtW is 
given as: 

CtW = (1 − fwet)∙(LAIsun/
ʀ
rb + rs,sun

)
+ LAIsha/

ʀ
rb + rs,sha

)
) (2)  

where fwet is the wetted fraction of canopy, LAI is the leaf area index, rb is 
the bulk leaf boundary layer resistance (s m−1), rs is the leaf stomatal 
resistance (s m−1), and subscripts sun and sha denote the fraction of 
sunlit and shaded leaves, respectively. 
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In Jarvis scheme, stomatal resistance rs is the minimum stomatal 
resistance (s m−1) scaled by the effects of radiation, air temperature, 
vapor pressure deficit and soil water stress: 

rs = rs,min/(rc,s∙rc,T∙rc,Q∙rc,soil) (3)  

where rs,min is the minimum stomatal resistance which corresponds to 
the highest possible transpiration rate. The four variables rc,s, rc,T, rc,Q 

and rc,soil are scalers of solar radiation, air temperature, vapor pressure 
deficit and soil water stress, respectively, reflecting the environmental 
controls on plant stomatal dynamics. These scalers are given as: 

rc,s =
(2PAR

RGL +
rs,min
rs,max

)

1 + 2PAR
RGL

(4)  

rc,T = 1 − 0.0016
ʀ
Topt − Tsfc

)
(5)  

rc,Q =
1

1 + HS + max(q2,sat − q2, 0)
(6)  

rc,soil =
∑nroot

i=1

(θi − θw)dzi

(θref − θw)
∑nroot

j=1 dzi

(7)  

where RGL is the radiation stress parameter, Topt is the optimal tem
perature for transpiration (K), HS is the VPD stress parameter, rs,max is 
the maximum stomatal resistance (s m−1), θi represents the volumetric 
soil water content (SWC; m3 m−3) in the ith layer, θref , and θw are the 
reference soil water content (m3 m−3) and soil water content at wilting 
point (m3 m−3), and dzi is the ith soil layer depth (m). 

In Noah-MP, soil moisture exerts its control on ET through the soil 
water stress term. Aside from the two soil parameters θref and θw that are 
directly involved in soil water stress calculation in Eq. (7), the soil water 
content in each layer also determines the term. Noah-MP has four soil 
layers with thicknesses of 0.1 m, 0.3 m, 0.6 m, and 1 m from top to 
bottom. It solves the 1-dimensional Richards equation to calculate the 
soil water content of each layer and the flux between them: 

∂θ
∂t

=
∂
∂z

[

K
(

∂ψ
∂θ

)
∂θ
∂x

]

+
∂K
∂z

+ Fθ (8)  

where θ is the volumetric soil water content (m3 m−3), t is time (s), z is 
depth (m), Fθ is the source term (s−1). K and ψ are the unsaturated soil 
hydraulic conductivity (m s−1) and matric potential (mH2O), which can 
be calculated using the corresponding saturated values and θ using the 
Campbell model: 

ψ = ψsat(
θ

θmax
)

−B (9)  

K = Ksat(
θ

θmax
)

2B+3 (10) 

The parameters involved in (9) and (10) are: saturated soil hydraulic 
conductivity Ksat (m s−1), saturated soil matric potential ψ sat (mH2O), 
porosity θmax (m3 m−3) and the B parameter, which reflects the pore size 
distribution of soil particles. Additionally, Noah-MP uses the four pa
rameters above to derive reference soil water content θref and soil water 
content at wilting point θw: 

θref 1 = θmax∙(
5.79e − 9

Ksat
)

1
2∙B+3 (11)  

θref = θref 1 +
θmax − θref 1

3
(12)  

θwilt = 0.5∙θmax∙(
200
ψsat

)
−1
B (13) 

Noah-MP makes no distinction of soil properties between different 

layers, so the six soil parameters are the same at different depths. 
A total of nine relevant parameters to ET calculation are summarized 

in Table 1. Default parameter values are needed to provide a prior dis
tribution for calibration and a performance baseline. In this study, the 
default values for the five vegetation parameters (rs,min, rs,max, RGL, HS, 
and Topt) were acquired from the cropland category in the default model 
parameter lookup table. Three soil parameters (Ksat, θmax, B) were ac
quired from the Probabilistic Remapping of SSURGO (POLARIS) dataset 
(Chaney et al., 2016). We calculated the weighted average from the six 
layers in POLARIS (with thicknesses of 0.05 m, 0.1 m, 0.15 m, 0.3 m, 
0.4 m, 1 m) to match the four layers defined in Noah-MP. The saturated 
soil matric potential ψsat was acquired from Noah-MP’s lookup table 
according to the dominant soil type provided by the SSURGO soil texture 
database. Runoff in the Noah-MP model is calculated as the sum of 
surface runoff and subsurface runoff (runoff and groundwater parame
terization option 3). Surface runoff is a combination of saturation excess 
and infiltration excess runoff. In the regional calibration study with 
runoff as one of the constraints, we additionally calibrated two param
eters: slope parameter controlling subsurface runoff and surface runoff 
parameter (REFKDT; (Schaake et al., 1996)) controlling surface runoff. 
Since we focused on evaluating the effectiveness of calibration using 
satellite-based ET data, we used site-measured or satellite-derived leaf 
area index (LAI) as model input instead of using lookup table-based 
default LAI to reduce uncertainties and simplify the problem. 

2.2. Data 

2.2.1. Site data 
We chose eight AmeriFlux sites (Table 2) across the U.S. Corn Belt for 

this study. Either maize or soybean was grown at these sites, repre
senting major crops in the U.S. Corn Belt. US-Ne1 and US-Ne2 are irri
gated, while others are rainfed. Eddy covariance systems were installed 
at each site to observe energy, water and carbon fluxes. 

Six meteorological forcings are required to drive Noah-MP, including 
surface air temperature (K), relative humidity, downward shortwave 
radiation (W/m2), downward longwave radiation (W/m2), precipitation 
(kg m−2 s−1) and wind speed (m s−1). We acquired data from the 
FLUXNET2015 database for US-Ne1, US-Ne2 and US-Ne3, and from the 
AmeriFlux database for other sites. The data from FLUXNET2015 was 
gap-filled. We used ERA-interim data to fill data gaps at other AmeriFlux 
sites following a similar approach used for FLUXNET2015 (Vuichard and 
Papale, 2015). All data were aggregated to hourly interval for consis
tency. We refer to these forcing as site forcing (SF) in the remainder of 
this paper. 

LAI is the key vegetational forcing to drive Noah-MP. We used lin
early interpolated field-measured LAI from the Carbon Sequestration 
Program at UNL ARDC (http://csp.unl.edu/Public/sites.htm) for US- 
Ne1, US-Ne2 and US-Ne3, and satellite-derived LAI for other sites. Sat
ellite LAI was derived from daily 30-m resolution surface reflectance 
data fused from MODIS and Landsat satellites (Luo et al., 2018). A sta
tistical model calibrated using field-measured LAI was employed for 
satellite LAI estimation (Jiang et al., 2019). 

Site measured latent heat flux (LE; W/m2) was used as the bench
mark for Noah-MP simulation. Similar to meteorological forcings, we 
acquired LE data from the FLUXNET2015 database for US-Ne1, US-Ne2 
and US-Ne3, and from the AmeriFlux database for other sites. We did not 
apply gap-filling and only available observation data were used. All data 
were aggregated to hourly interval for consistency. 

2.2.2. BESS-STAIR ET data 
We investigated the effectiveness of using BESS-STAIR ET in 

improving Noah-MP. BESS is a satellite-driven biophysical model to 
monitor water and carbon fluxes (Jiang and Ryu, 2016; Ryu et al., 
2011). It considers multiple physical constraints of ET process with 
respect to energy, water, and carbon, and uses environmental and 
vegetation information derived from multi-satellite data as inputs to 
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estimate ET (Jiang and Ryu, 2016). STAIR is an algorithm fusing high 
spatial resolution Landsat data and high temporal resolution MODIS 
data to generate daily 30 m resolution surface spectral reflectance (Luo 
et al., 2018), which was used as inputs of BESS (Jiang et al., 2019). By 
integrating BESS ET model and STAIR fusion data, the BESS-STAIR 
framework provides accurate cropland ET estimations at 30-m resolu
tion and daily interval. 

2.2.3. Data for regional calibration 
Aside from calibration experiments at site level using flux tower 

forcing, we did additional experiments using regionally available forc
ing both at site level and in a region to further assess the benefits of 
BESS-STAIR ET for calibration. Princeton University Meteorological 
Forcing Dataset (PUMET) provides all the meteorological variables 
required to run Noah-MP LSM at 4-km spatial resolution and hourly time 
scale (Beck et al., 2019; Pan et al., 2016). PUMET integrates reanalysis 
data with observations and uses downscaling to achieve higher spatial 
and temporal resolution. In addition to estimating ET, BESS has also 
been used to estimate downward shortwave radiation at 5 km resolution 
using MODIS atmospheric and land products (Ryu et al., 2018), which 
achieved better performance than downward shortwave radiation in 
PUMET meteorological forcing dataset (See Fig. S1). In this study, we 
thus used downward shortwave radiation from this BESS-derived 
product and other forcing variables from PUMET as the regional forc
ing (RF). Since US-Ne1 and US-Ne2 are irrigated sites, and the irrigation 
amounts have been added to precipitation in FLUXNET2015 dataset, 
precipitation of these two sites was still from site forcing. In the regional 
study, the precipitation in the PUMET forcing was bias-corrected using 
the observed precipitation data from the NOAA US1ILCP0031 weather 

station located in the study region. Crop types in each individual field 
were obtained from USDA Cropland Data Layer (CDL). The streamflow 
data at the watershed outlet for lumped calibration and evaluation was 
from the USGS 03,336,890 SPOON RIVER station. 

2.3. Model simulations, sensitivity analysis and calibration experiment 

The following experiments were conducted in this study: default 
model simulations, sensitivity analysis, model calibration using flux 
tower ET or BESS-STAIR ET and a regional calibration study in the 
Spoon River watershed (Fig. 1 (a)). 

2.3.1. Default model simulation 
To provide a performance baseline before calibration, we ran Noah- 

MP with default model parameters, i.e., cropland category in the lookup 
table for vegetation parameters, POLARIS combined with SSURGO for 
soil parameters. Before each simulation, one-year spin-up was con
ducted, which is sufficient for simulating soil water dynamics in Noah- 
MP (Gutmann and Small, 2010). We ran default Noah-MP simulation 
with site forcing, the original PUMET and PUMET + BESS-derived 
downward shortwave radiation (regional forcing). The RMSE, bias and 
coefficient of determination (R2) were calculated between the simulated 
hourly ET and flux tower measurements from the peak growing season 
(Jun 15 – Sep 14). When comparing the performance of model simula
tions driven by different forcings, we omitted US-Ne1 and US-Ne2 
because the precipitation directly from PUMET is unrealistic in the 
two irrigated sites. The performance of default model simulations using 
different forcings are provided in the supplementary materials. 

Table 1 
Parameters related with ET calculation in the Noah-MP land surface model. Subscript 0 denotes the default value of the corresponding parameter.  

Parameter Units Range Default Description Range in calibration 

rs,min  sm−1  10–1000 40 minimum stomatal resistance 10–1000 

rs,max  sm−1  2000–10000 5000 maximum stomatal resistance – 

RGL  – 30–100 100 radiation stress parameter – 

HS  – 36–47 36.25 vapor pressure deficit stress parameter – 
Topt  K  293–303 298 optimum temperature for transpiration – 
θref  – 0.171–0.37 – reference soil water content – 
θwilt  – 0.01–0.17 – soil water content at wilting point – 

B  – 2–13 – the B parameter 0.8B0 −1.35B0  

Ksat  ms−1  9.55 × 10−7 −5.01 × 10−5  – saturated soil hydraulic conductivity max(Ksat0
1.15,10−4.4) −min(Ksat0

0.85, 10−6.2)

θmax   0.371–0.48 – maximum soil water content  
ψsat  m  0.03–0.76 – saturated soil matric potential max(0.65ψsat0,0.2) −min(1.35ψsat0 ,0.85)

Table 2 
Information of AmeriFlux sites used in this study.  

Site Year Longitude Latitude Elevation Mean precipitation/ 
mm 

Mean 
temperature/◦C 

Rainfed/ 
Irrigated 

Crop type 

US- 
Bo1 

2000–2008  40.0062 −88.2904 219  792.10  11.40 rainfed Maize in odd years soybean in even years 

US- 
Br1 

2005–2011  41.9749 −93.6906 313  933.61  9.13 rainfed odd maize, even soybean 

US- 
IB1 

2005–2011  41.8593 −88.2227 227  966.76  9.52 rainfed even maize, odd soybean 

US- 
Ro1 

2004–2012  44.7143 −93.0898 260  762.45  7.71 rainfed odd maize, even soybean 

US- 
Ne1 

2003–2012  41.1651 −96.4766 361  840.40  10.60 irrigated continuous maize 

US- 
Ne2 

2003–2012  41.1649 −96.4701 362  871.80  10.32 irrigated odd maize even soybean before 2009, maize 
beginning 2009 

US- 
Ne3 

2003–2012  41.1797 −96.4397 363  712.15  10.42 rainfed odd maize, even soybean 

US- 
Br3 

2005–2011  41.9747 −93.6936 313  836.91  9.22 rainfed even maize, odd soybean  

Y. Yang et al.                                                                                                                                                                                                                                    



Journal of Hydrology 596 (2021) 125730

5

2.3.2. Parameter sensitivity analysis 
To identify the most sensitive parameters for calibration experi

ments, we conducted Sobo sensitivity analysis (Saltelli et al., 2010; 
Sobol, 2001) to determine the sensitivities of the 9 parameters related to 
ET calculation in Noah-MP (Table 1). Sobol’s method is a variance based 
global sensitivity analysis method that can determine the contributions 
from both the individual parameters and the interactions between them. 
To calculate the first-order and total-order sensitivity indices, we needed 
to sample N×(d +2) parameter sets, where N is the number of samples 
generated each time, d is the parameter space dimension. The parameter 
sets were sampled from the Sobol quasi-random sequence following the 
Monte Carlo scheme with two ensembles of size N first sampled and then 
cross sampling performed by holding one parameter fixed at a time. In 
our case, d = 9 and we set N = 300 resulting in 3300 parameter sets in 
total. The ranges of the parameters were shown in Table 1. Log space 
sampling was used for parameters covering 2 or more orders of 
magnitude. We then ran the Noah-MP model continuously through all 
the available data at each site on all parameter sets. The first-order and 
total-order Sobol sensitivity indices were calculated based on the RMSEs 
between Noah-MP simulated hourly ET and flux tower measurements. 

2.3.3. Site-level calibration experiments 
With the most sensitive parameters identified, we first calibrated the 

model directly using flux tower measured ET to test different calibration 
schemes. We calibrated the chosen parameters by minimizing the RMSE 
between model simulated hourly ET and flux tower measurements. We 
used the University of Arizona shuffled complex evolution (SCE-UA) 
algorithm to search the parameter space with 200–400 iterations. SCE- 
UA is a powerful and robust global optimization algorithm (Duan 
et al., 1993) and has been widely used for parameter calibration in 
hydrological modeling (Duan et al., 1992; Sorooshian et al., 1993). The 
default parameter values were used as the initial guess in the SCE-UA 

algorithm. All metrics for both calibration and evaluation were calcu
lated using the data from the peak growing season. 

We first tested two calibration schemes using site ET to assess the 
calibration and validation performance: (1) year-by-year calibration, 
and (2) multi-year calibration. Year-by-year calibration used ET obser
vations in each growing season to constrain the parameters for any 
specific year and gives the “calibration” performance separately for each 
year. Multi-year calibration used leave-one-year-out validation method, 
i.e. reserving one year for validation, while using all other years with 
available data when the same crop was planted for parameter calibra
tion. Multi-year calibration provides the “validation” performance. We 
compared the performance of multi-year calibration and year-by-year 
calibration to evaluate the “validation” performance and “calibration” 
performance. Both multi-year and year-by-year calibration experiments 
were implemented using a two-step approach. In the first step, soil and 
vegetation parameters were calibrated simultaneously. The median 
values of the calibrated soil parameters in the first step were directly 
used in the second step experiments, in which we only calibrated sen
sitive vegetation parameters. This two-step approach was reasonable as 
we would not expect significant interannual variations in soil hydraulic 
properties, or we just could not capture these variations through model 
parameter calibration if there is any. Final calibration performance was 
reported using the second step results in both the multi-year and year- 
by-year calibration experiments. 

At each site, BESS-STAIR ET data was then used to calibrate Noah- 
MP following the same procedures as using site ET. Since BESS-STAIR 
only provides daily ET instead of hourly ET, the objective function 
was changed to the RMSE of daily ET between Noah-MP simulation and 
BESS-SATIR estimation. There was little difference between calibration 
using hourly ET or daily ET (the RMSE on average was 2.5 W/m2 lower 
for calibration using hourly site ET than using daily site ET at Ne1, Ne2 
and Ne3 when the performance was evaluated using hourly site ET), so 

Fig. 1. (a) Calibration experiment workflow; and (b) study sites and region. The Midwest map shows the county-level planted acreage of maize and soybean (data 
from USDA). The background layer of the study region map is CDL data in 2014. 
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the time scale difference between daily and hourly for calibration should 
not be a major source of difference. We evaluated the performance of 
default and calibrated models in simulating surface energy budgets for 
maize and soybean separately using three statistical metrics: RMSE, R2 

and bias. We also analyzed the results of calibrated parameters and 
compared the difference between calibration using site ET and BESS- 
STAIR ET. The simulated first layer SWC before and after calibration 
at Ne1, Ne2 and Ne3 was evaluated using in-situ Time Domain Reflec
tometry (TDR) sensor measurements (Ledieu et al., 1986). In addition to 
RMSE, R2 and bias, unbiased RMSE (ubRMSE) was also calculated for 
SWC evaluation. 

2.3.4. Regional calibration 
We then conducted a regional calibration study on the Spoon river 

watershed, located east of Champaign county, Illinois (Fig. 1 (b)) The 
regional calibration study was intended to (1) evaluate the performance 
of the high-resolution calibration in terms of spatial patterns; (2) eval
uate the performance of the simulation of regional water budgets 
(runoff); and (3) provide a concrete example of applying the high- 
resolution calibration using BESS-STAIR ET data at regional scales. In 
the watershed, field boundaries were extracted by combining the 
Common Land Unit (CLU) and multi-year CDL data, both from USDA, 
resulting in a total of 1215 fields. The calibration was done at each in
dividual field instead of individual pixels to reduce the computational 
cost. The regional forcing data described in 2.2.3 was used to drive the 
model and the BESS-STAIR ET data was aggregated to field level as the 
reference. After the calibration, each field has its own calibrated soil 
parameters and two sets of vegetation parameters for maize and soybean 
respectively. We calibrated the model from 2004 to 2007 and the 
evaluation was done from 2014 to 2017 from two aspects: first, the 
model simulated ET was evaluated again using BESS-STAIR ET across 
the region and the performance metrics were calculated, which allows 
us to examine the spatial patterns of the simulation performance; sec
ond, we evaluated the model simulated regional water budget using the 
streamflow data at the watershed outlet. To evaluate the benefits of the 
spatially explicit calibration using high-resolution ET, we further 
compared the performance of (1) traditional lumped calibration using 
streamflow only and (2) joint streamflow and ET calibration with ET 
calibrated in a spatially explicit manner. In the lumped calibration, the 
initial parameter values were different in different fields (POLARIS for 
soil parameters) but they moved in the same direction and the same 
relative magnitude during calibration. The calibration and validation 
configurations are the same as before. 

3. Results 

3.1. Parameter sensitivity analysis 

The first and total order sensitivity indices for related parameters are 
shown in Fig. 2. Minimum stomatal resistance had the highest sensitivity 
in general while the other 4 vegetation parameters showed marginal 
effects. Three soil parameters, i.e., Ksat, Band ψ sat also showed significant 
sensitivities, while other soil parameters had non-significant effects. 
Therefore, we identified the 4 most sensitive parameters as rs,min, Ksat, B, 
and ψ sat . We only chose the most sensitive 4 parameters because the 
sensitivities of the remaining parameters were significantly smaller 
(Fig. 2). We only calibrated those 4 parameters in the calibration 
experiments. 

3.2. Site level calibration using flux tower and BESS-STAIR ET 

3.2.1. Comparison of calibration and validation performance using flux 
tower ET 

With site forcing, both multi-year and year-by-year calibration 
significantly improved the performance of simulated ET. The perfor
mance differences between these two calibration schemes were mar
ginal, which means the calibration and validation performances are 
similar (Fig. 3). Overall, multi-year and year-by-year calibrations 
improved the model performance in simulating ET. For maize, RMSEs of 
ET simulation decreased from 62 W/m2 in default simulation to 46 and 
45 W/m2 in multi-year and year-by-year calibrations, respectively, and 
for soybean, RMSEs of ET simulation decreased from 66 W/m2 in default 
simulation to 52 and 48 W/m2 in multi-year and year-by-year calibra
tions, respectively. Results for bias and R2 of ET simulation are presented 
in Fig. S2 and S3. As the calibration and validation performances were 
similar and validation performance is more relevant to practical appli
cations, we will only show and analyze the validation performance in 
calibration using BESS-STAIR ET. 

3.2.2. Site-level calibration using BESS-STAIR ET product 
Calibration using BESS-STAIR ET achieved similar performance with 

calibration using site ET (Fig. 4). With site forcing, RMSEs of ET simu
lation on average were reduced from 61 W/m2 in default model simu
lation to 46 and 47 W/m2 in multi-year calibration using site and BESS- 
STAIR ET, respectively, for maize, and from 66 W/m2 in default model 
simulation to 53 and 53 W/m2 for soybean. With regional forcing, 
RMSEs of ET simulation were reduced from 92 W/m2 in default model 

Fig. 2. Sobol sensitivity indices of 9 parameters across 8 sites.  
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simulation to 63 and 64 W/m2 in multi-year calibration using site and 
BESS-STAIR ET, respectively, for maize, and from 93 W/m2 to 65 and 
66 W/m2 for soybean. The performance improvement was larger in 
calibration using BESS-STAIR ET with regional forcing (30% and 29% 
reduction of RMSEs of ET for maize and soybean, respectively) than with 
site forcing (23% and 20% reduction of RMSEs of ET for maize and 
soybean, respectively). The KGE performance is shown in Fig. S4. 
Comparison between simulated and observed ET time series show that 
calibration did not change much the short-term variations of ET; how
ever, calibration was able to correct the bias of ET as well as improve its 
long-term dynamics (Fig. 5). In US-Ne3 2012, the simulated ET by 
default Noah-MP is higher in early growing season and lower in late 
growing season than observations, which was partially corrected by 
calibration. 

At Ne1, Ne2 and Ne3, the performance of the simulated first layer 
SWC was respectable with little change after calibration (Table S1). 
With site forcing, there was barely any difference of ubRMSE before and 
after calibration; with regional forcing, the ubRMSE did improve from 
0.43 to 0.36 or 0.37 after calibration using site ET or BESS-STAIR ET, 
respectively. However, the SWC performance improvement with 
regional forcing could be simply due to the transfer of uncertainties from 
forcing to calibrated parameters. Overall, the calibration had little effect 
on SWC simulations. 

To further compare the difference of calibration using site ET and 
using BESS-STAIR ET, the calibrated parameters from the two 

calibrations are shown in Fig. 6. The three soil parameters were similar 
between the two calibrations; both the absolute values and the de
viations from default values were mostly in line. For the vegetation 
parameter rs,min, although the results showed some differences between 
calibration using site ET and BESS-STAIR ET across 8 sites, at Ne1, Ne2 
and Ne3 sites where the forcing quality is high and there are relatively 
more data to get robust results, the calibrated rs,min were similar between 
the two calibrations for both maize and soybean. This indicated that 
calibrations using site ET and BESS-STAIR ET not only led to similar 
performance but also mostly similar parameters. 

The performances of BESS-STAIR ET, simulated ET by calibrated 
Noah-MP models using BESS-STAIR and site ET, and the default Noah- 
MP model at Ne1, Ne2 and Ne3 were compared in Fig. 7. The perfor
mances were assessed using flux tower ET observations as the bench
mark. All metrics were calculated using daily ET to match BESS-STAIR 
ET’s temporal resolution, so the RMSE and R2 are not comparable to 
those calculated using hourly ET in previous sections. We only did this 
comparison at Ne1, Ne2 and Ne3 because those sites have gap-free ET 
data so that they could be aggregated to daily scale. These results 
showed that (1) calibration using BESS-STAIR ET could match the per
formance of calibration directly using flux tower ET in terms of RMSE; 
(2) calibration improved the performance of model simulated ET mainly 
through the reduction of bias with less significant change in R2. This 
comparison also revealed one major reason that BESS-STAIR ET could 
improve the model performance as much as site ET could is the low bias 

Fig. 3. The performance of ET simulation in 
different calibration strategies using flux tower 
measured ET. The three boxes for each site from left 
to right are: default model simulation with site 
forcing (brown; SF-DFT), multi-year calibration 
using site ET and with site forcing (pink; SF-MYC- 
ET-site; validation performance), year-by-year cali
bration using site ET and with site forcing (red; SF- 
YYC-ET-site; calibration performance). The results 
are shown separately for maize and soybean. Note 
that multi-year calibration gave validation perfor
mance, while year-by-year calibration gave calibra
tion performance.   
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itself. 

3.3. Regional calibration study 

The performance of the simulated ET was significantly improved 
after the calibration across the region (Fig. 8 (a) and (c)). The average 
RMSE between simulated daily growing season (April 1 to October 31) 
ET and BESS-STAIR ET from 2014 to 2017 was reduced from 43 w/m2 to 
25 w/m2. The performance improvement was primarily from the 
reduction of bias with moderate increase in R2, which is in line with site- 
level studies. The water budget analysis shows that the calibration 
improved the regional water balance over the four years (Fig. 8 (b)). The 
model simulated total runoff can better match the observed data. This is 
because there was a positive bias of the simulated ET with default pa
rameters, and calibration reduced the bias of ET, thus correcting the bias 
of simulated total runoff as well. We note that the runoff dynamics did 
not change much after calibration (Fig. S6), with little difference in 
terms of NSE coefficient. The comparison between the default model 
simulation, lumped and spatially explicit calibration shows that both 
lumped and spatially explicit calibration improved the performance of 
ET simulation and the distributed calibration provided better perfor
mance (Fig. S7). However, the distributed calibration did not show 
significant advantage over lumped calibration in terms of runoff per
formance (Fig. S8). 

4. Discussions 

4.1. Effectiveness of high-resolution model calibration using BESS-STAIR 
ET 

The results of the calibration experiments addressed several ques
tions regarding the effectiveness of high-resolution spatially explicit 
calibration using BESS-STAIR ET to improve the performance of Noah- 
MP LSM: (1) the calibration using BESS-STAIR ET can significantly 
improve Noah-MP’s simulation of ET and mostly match the performance 
of calibrating directly using flux tower ET; (2) the field-scale ET per
formance can be significantly improved with the spatially explicit 
regional calibration; and (3) the regional calibration can also improve 
the long-term regional water budget simulation. 

The site-level calibration experiments showed that calibrating the 
most sensitive parameters (rs,min, Ksat, B, ψ sat) using BESS-STAIR ET 
could significantly improve the ET performance of Noah-MP (Fig. 4). At 
the same time, the performance of the calibrated model using BESS- 
STAIR ET can match that of calibration directly using site ET in every 
aspect (Figs. 4, 6, 7). The minimal difference between multi-year and 
year-by-year calibration indicated similar performance between cali
bration and validation, suggesting that the calibrated parameters can be 
well applied to other years when no ET observations (either from site or 
satellite) are available. 

The regional calibration study on the Spoon River watershed 

Fig. 4. Performance of multi-year calibration using 
BESS-STAIR ET compared to using site ET. The six 
boxes for each site from left to right are: default 
Noah-MP simulations with site forcing (SF-DFT), 
multi-year calibration using site ET with site forcing 
(SF-MYC-ET-site), multi-year calibration using 
BESS-STAIR ET with site forcing (SF-MYC-ET-BESS), 
default model simulation with regional forcing (RF- 
DFT), multi-year calibration using site ET with 
regional forcing (RF-MYC-ET-site), multi-year cali
bration using BESS-STAIR ET with regional forcing 
(RF-MYC-ET-BESS).   
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demonstrated that field-scale ET simulation can be improved through 
spatially explicit calibration using high-resolution data, and better 
performance can be achieved than traditional lumped calibration only 
using streamflow. ET, like many surface fluxes, has large spatial het
erogeneities, especially in agricultural fields. In land surface models, the 
heterogeneities are primarily controlled by heterogeneous vegetation 
and soil parameters. The high-resolution spatially explicit calibration 
could be an effective way to capture and constrain the spatial hetero
geneities of those parameters and improve land surface modeling at fine 
scales. Improved long-term regional water budget simulation was also 
observed after the calibration, which further validated the effectiveness 
of the regional calibration experiment. 

4.2. Implications for hyper-resolution modeling and model-data 
integration 

The regional calibration study demonstrated the effectiveness of 
high-resolution calibration using BESS-STAIR ET in improving the 
simulation of Noah-MP and provided a concrete example of applying the 
calibration framework to agricultural fields. Theoretically, calibration 
can be done at the same 30 m resolution as BESS-STAIR ET itself; 
however, for agricultural applications, this regional calibration study 
was done at individual field level using extracted field boundaries to 
reduce computational cost. Field boundary extraction is an important 
technique that can help better organize the heterogeneity in land surface 
models over agricultural areas (Yan and Roy, 2016, 2014). In addition, 
USDA CDL data was used to distinguish different crop types at field 
scale, which is largely absent in previous hydrological model simulation 
and calibration studies. Beyond the current regional study, other 

spatially distributed hydrological/land surface variables can be poten
tially combined with ET for multi-objective calibration to better 
constrain the model. Furthermore, a dynamic crop model has been 
incorporated into Noah-MP recently (Liu et al., 2016), so future work 
could investigate if the simulation of crop photosynthesis and yield 
(Guan et al., 2017) could be improved with the constraint of BESS-STAIR 
ET. 

Compared with previous studies, the advantage of this study lies first 
and foremost in the high resolution of the satellite-based data. Previous 
spatially explicit calibration studies were done at coarser resolutions like 
36 km with SMOS soil moisture data (Shellito et al., 2016) or even sub- 
basin scale with MODIS ET (Rajib et al., 2018). The 30-m resolution 
BESS-STAIR ET product is currently available primarily across the U.S. 
Corn Belt, and can be applied to constrain models in those agricultural 
landscapes. Being able to resolve individual fields at this resolution, the 
framework could be especially useful for precision agricultural appli
cations. Another important advantage of this study is the efficacy of the 
remote sensing data in calibration. As we have demonstrated, the low 
bias feature of BESS-STAIR ET (Fig. 7) makes it a viable substitute for the 
ground truth data (e.g. eddy covariance flux data) in calibration at large 
scales. This is in contrast with previous studies which either did not 
compare with calibration using ground truth data or found the satellite- 
based data like SMOS soil moisture need to be bias corrected for it to be 
useful in improving model simulations through calibration (Shellito 
et al., 2016). 

That the efficacy of BESS-STAIR ET in calibration lied to a large 
extent in its low bias could be due to two possible reasons. Firstly, three 
of the calibrated parameters were soil hydraulic properties. Soil mois
ture dynamics in the root zone is a relatively slowly varying process 

Fig. 5. Time series of simulated daily ET before and after calibration using BESS-STAIR ET (multi-year calibration, which reflects validation performance). Top: 
simulation in Br3, 2007; bottom: simulation in Ne3, 2012. 
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compared to other meteorological processes driving ET; thus, the soil 
moisture control is likely to play a bigger role in seasonal variations than 
diurnal or day-to-day variations of ET. As the model performance was 
calibrated and evaluated at either hourly or daily scale in our study, the 
correlation performance was dominated by diurnal or day-to-day vari
ations. Therefore, calibration of soil parameters leads to more im
provements to the RMSE or bias performance, instead of correlation 

performance. Another possible reason is that the calibrated vegetation 
parameter rs,min only changed the magnitude of stomatal resistance 
without changing its dynamics (Eq. (3)), so calibrating rs,min would 
barely respond to the correlation performance either. Accordingly, we 
can reasonably infer that as long as the satellite-based data performs 
sufficiently good at longer time scales and can bring the model bias 
down to the same level as ground truth data does through calibration 

Fig. 6. Calibrated parameter values from multi-year calibration experiments using both site ET and BESS-STAIR ET.  

Fig. 7. Performance inter-comparison of daily ET from BESS-STAIR, calibrated and default Noah-MP model simulations with site forcing at US-Ne1, US-Ne2 and US- 
Ne3. The four boxes from left to right represent: BESS-STAIR ET, simulated ET by calibrated Noah-MP models using BESS-STAIR and site ET, and default Noah- 
MP model. 
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without hurting the correlation performance, the satellite-based data 
can match the performance of ground truth data in calibration. BESS- 
STAIR ET satisfies the conditions because of its low bias and excellent 
seasonal performance (Jiang et al., 2019). 

Encouragingly, large sources of uncertainties in ET simulation in 
land surface models are from stomatal and soil moisture controls on ET 
(Egea et al., 2011; Keenan et al., 2010), which are partially reflected in 
the 4 parameters in this study. As demonstrated in the calibration ex
periments, the uncertainties in these parameters could be well con
strained by using satellite-based BESS-STAIR ET estimation even if the 
satellite-based ET estimation could not fully match the temporal dy
namics of flux tower observed ET at short time scales. This provides an 
insight into model-data integration that combining the strengths of 
model simulations and satellite-based data at different time scales could 
potentially provide better estimations. For instance, as shown in this 
study, when driven by good quality surface forcing, default Noah-MP 
simulated ET could already achieve good correlation with flux tower 
measurements, and calibration using BESS-STAIR ET further improved 
the performance by reducing the bias (Fig. 7). As a result, the calibrated 
model could have a superior performance than both BESS-STAIR ET and 
default Noah-MP in terms of RMSE performance (Fig. 7). 

4.3. Limitations and potential improvement 

Several ways exist to potentially improve the current study. We used 
the Jarvis type stomatal resistance scheme for simplicity, but it is 
insufficient to simulate many important processes, such as canopy-scale 
photosynthesis (we turned it off in this study). Ball-Berry type (Ball 
et al., 1987) or even more advanced stomatal resistance schemes 
(Manzoni et al., 2011; Medlyn et al., 2011) could be more suitable for 
simulating canopy carbon uptake, which would enable using ET to 
constrain parameters related with canopy carbon assimilation. Another 
missing part in the Noah-MP model was the artificial tile drainage 
prevalent in some parts of the U.S. Midwest, which can modify 

hydrological and biogeochemical processes significantly across the 
agricultural landscape (Gentry et al., 2007; Green et al., 2006). Thus, the 
calibrated soil hydraulic parameters in this study were essentially 
“effective” parameters, not fully representing the soil physical proper
ties. Although our model calibration scheme could lead to improved ET 
simulation, we admit that the processes related with tile drainage need 
to be explicitly represented in the model for realistic simulation of the 
agricultural ecosystems in the U.S. Midwest (Boles et al., 2015; Guo 
et al., 2018; Li et al., 2010). The relationship between ET and soil 
moisture is another source of model uncertainty that could compromise 
the results of the calibration study. Noah-MP uses an empirical linear 
soil water stress function to attenuate ET when soil moisture is low. 
Studies have shown that this type of approaches tend to overestimate ET 
sensitivity to insufficient soil moisture. As shown in Table S1, soil 
moisture dynamics has little improvement after calibration. If the soil 
moisture–ET relationship is improved, the high-resolution ET data could 
be potentially better utilized to improve the dynamics of other water 
cycle components including soil moisture. Therefore, despite the 
increasing availability of high-resolution and high-accuracy remote 
sensing data, land surface models still need to be continuously 
improved. We also note that the calibration conducted in this study 
hardly improved model dynamics, as demonstrated by the unchanged R2 

performance even after calibration using flux tower measured ET, nor 
did it improve the simulation of SWC and other energy balance terms 
except ET. In the regional calibration experiments, although the long- 
term water budget simulation was improved under the constraint of 
the high-resolution ET, it is still difficult to improve runoff dynamics 
through the distributed calibration. The NSE coefficient of simulated 
streamflow evaluated with in-situ measurements is relatively low 
regardless of calibration. We also note that those fields that have higher 
RMSE before calibration still have relatively higher RMSE after cali
bration, which means even the spatially explicit calibration cannot fully 
resolve the field scale dynamics. Aside from model physics improve
ment, more advanced model-data integration techniques, such as multi- 

Fig. 8. Performance of regional simulation from 2014 to 2017 before and after calibration. Performance metrics of ET simulation were calculated against BESS- 
STAIR ET. In water budget analysis, changes of soil water and groundwater were negligible so they are not reflected in the chart, and the observed ET was 
calculated by subtracting observed runoff from precipitation. 
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objective calibration (Engeland et al., 2006; Yapo et al., 1998) and 
constraining emergent relationships (Hall et al., 2019; Peng et al., 2020) 
could be beneficial for reducing uncertainties of land surface models. In 
sum, field scale hydrological modeling remains a challenge and signif
icant work needs to be done to resolve field scale dynamics of water and 
energy cycles. 

5. Conclusion 

In this study, we investigated the effectiveness of high-resolution 
spatially explicit parameter calibration using BESS-STAIR ET and the 
Noah-MP land surface model. Site-level calibration experiments at eight 
flux tower sites in the U.S. Corn Belt and a regional study in the Soon 
River watershed were conducted. We demonstrated that the high- 
resolution calibration using BESS-STAIR ET can improve the ET simu
lation of Noah-MP and found that calibration using BESS-STAIR ET 
could match the results of calibration directly using flux tower mea
surements. The performance of field-scale ET and long-term regional 
water budget simulation was also observed in regional calibration ex
periments. The high-resolution distributed calibration offered superior 
performance than traditional lumped calibration using streamflow only. 
Further analysis revealed that BESS-STAIR ET’s low bias and excellent 
long-term correlation performance could be the main contributors to its 
efficacy in constraining the model, and the low bias performance of 
satellite-based data and good correlation performance of model simu
lation can be potentially combined through model-data integration. 
Overall, our study provided a concrete example of improving field-scale 
land surface modeling through spatially explicit calibration using high- 
resolution satellite data in agricultural landscapes. 
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González-Dugo, M.P., Cammalleri, C., D’Urso, G., Pimstein, A., Gao, F., 2011. 
Mapping daily evapotranspiration at field to continental scales using geostationary 
and polar orbiting satellite imagery. Hydrol. Earth Syst. Sci. 15, 223–239. https:// 
doi.org/10.5194/hess-15-223-2011. 

Austin, A.T., Yahdjian, L., Stark, J.M., Belnap, J., Porporato, A., Norton, U., Ravetta, D. 
A., Schaeffer, S.M., 2004. Water pulses and biogeochemical cycles in arid and 
semiarid ecosystems. Oecologia 141, 221–235. https://doi.org/10.1007/s00442- 
004-1519-1. 

Ball, J.T., Woodrow, I.E., Berry, J.A., 1987. A Model Predicting Stomatal Conductance 
and its Contribution to the Control of Photosynthesis under Different Environmental 
Conditions. In: Progress in Photosynthesis Research. Springer, Netherlands, 
Dordrecht, pp. 221–224. https://doi.org/10.1007/978-94-017-0519-6_48. 

Beck, H.E., Pan, M., Roy, T., Weedon, G.P., Pappenberger, F., Van Dijk, A.I.J.M., 
Huffman, G.J., Adler, R.F., Wood, E.F., 2019. Daily evaluation of 26 precipitation 
datasets using Stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci. 23, 
207–224. https://doi.org/10.5194/hess-23-207-2019. 

Beck, H.E., van Dijk, A.I.J.M., de Roo, A., Miralles, D.G., McVicar, T.R., Schellekens, J., 
Bruijnzeel, L.A., 2016. Global-scale regionalization of hydrologic model parameters. 
Water Resour. Res. 52, 3599–3622. https://doi.org/10.1002/2015WR018247. 

Beven, K., 2006. A manifesto for the equifinality thesis. J. Hydrol. 320, 18–36. https:// 
doi.org/10.1016/j.jhydrol.2005.07.007. 

Boles, C.M.W., Frankenberger, J.R., Moriasi, D.N., 2015. Tile drainage simulation in 
SWAT2012: parameterization and evaluation in an indiana watershed. Trans. ASABE 
58, 1201–1213. https://doi.org/10.13031/trans.58.10589. 

Chaney, N.W., Herman, J.D., Ek, M.B., Wood, E.F., 2016. Deriving global parameter 
estimates for the Noah land surface model using FLUXNET and machine learning. 
J. Geophys. Res. 121, 13218–13235. https://doi.org/10.1002/2016JD024821. 

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., 
Galloway, J., Heimann, M., 2013. Carbon and other biogeochemical cycles, in: 
Climate Change 2013 the Physical Science Basis: Working Group I Contribution to 
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 
Cambridge University Press, pp. 465–570. https://doi.org/10.1017/ 
CBO9781107415324.015. 

Crow, W.T., Wood, E.F., Pan, M., 2003. Multiobjective calibration of land surface model 
evapotranspiration predictions using streamflow observations and spaceborne 
surface radiometric temperature retrievals. J. Geophys. Res. D Atmos. 108, 1–12. 
https://doi.org/10.1029/2002jd003292. 

Duan, Q., Sorooshian, S., Gupta, V., 1992. Effective and efficient global optimization for 
conceptual rainfall-runoff models. Water Resour. Res. 28, 1015–1031. https://doi. 
org/10.1029/91WR02985. 

Duan, Q.Y., Gupta, V.K., Sorooshian, S., 1993. Shuffled complex evolution approach for 
effective and efficient global minimization. J. Optim. Theory Appl. 76, 501–521. 
https://doi.org/10.1007/BF00939380. 

Egea, G., Verhoef, A., Vidale, P.L., 2011. Towards an improved and more flexible 
representation of water stress in coupled photosynthesis-stomatal conductance 
models. Agric. For. Meteorol. 151, 1370–1384. https://doi.org/10.1016/j. 
agrformet.2011.05.019. 

Engeland, K., Braud, I., Gottschalk, L., Leblois, E., 2006. Multi-objective regional 
modelling. J. Hydrol. 327, 339–351. https://doi.org/10.1016/j. 
jhydrol.2005.11.022. 

Gentry, L.E., David, M.B., Royer, T.V., Mitchell, C.A., Starks, K.M., 2007. Phosphorus 
transport pathways to streams in tile-drained agricultural watersheds. J. Environ. 
Qual. 36, 408–415. https://doi.org/10.2134/jeq2006.0098. 

Green, C.H., Tomer, M.D., Di Luzio, M., Arnold, J.G., 2006. Hydrologic evaluation of the 
soil and water assessment tool for a large tile-drained watershed in Iowa. Trans. 
ASABE 49, 413–422. 

Guan, K., Wu, J., Kimball, J.S., Anderson, M.C., Frolking, S., Li, B., Hain, C.R., Lobell, D. 
B., 2017. The shared and unique values of optical, fluorescence, thermal and 
microwave satellite data for estimating large-scale crop yields. Remote Sens. 
Environ. 199, 333–349. https://doi.org/10.1016/j.rse.2017.06.043. 

Guo, T., Gitau, M., Merwade, V., Arnold, J., Srinivasan, R., Hirschi, M., Engel, B., 2018. 
Comparison of performance of tile drainage routines in SWAT 2009 and 2012 in an 
extensively tile-drained watershed in the Midwest. Hydrol. Earth Syst. Sci. 22, 
89–110. https://doi.org/10.5194/hess-22-89-2018. 

Gutmann, E.D., Small, E.E., 2010. A method for the determination of the hydraulic 
properties of soil from MODIS surface temperature for use in land-surface models. 
Water Resour. Res. 46, 1–16. https://doi.org/10.1029/2009WR008203. 

Hall, A., Cox, P., Huntingford, C., Klein, S., 2019. Progressing emergent constraints on 
future climate change. Nat. Clim. Change. 9, 269–278. https://doi.org/10.1038/ 
s41558-019-0436-6. 

Houser, P.R., Shuttleworth, W.J., Famiglietti, J.S., Gupta, H.V., Syed, K.H., Goodrich, D. 
C., 1998. Integration of soil moisture remote sensing and hydrologic modeling using 
data assimilation. Water Resour. Res. 34, 3405–3420. https://doi.org/10.1029/ 
1998WR900001. 

Immerzeel, W.W., Droogers, P., 2008. Calibration of a distributed hydrological model 
based on satellite evapotranspiration. J. Hydrol. 349, 411–424. https://doi.org/ 
10.1016/j.jhydrol.2007.11.017. 

Jackson, T.J., O’Neill, P.E., Swift, C.T., 1997. Passive microwave observation of diurnal 
surface soil moisture. IEEE Trans. Geosci. Remote Sens. 35, 1210–1222. https://doi. 
org/10.1109/36.628788. 

Jarvis, P.G., 1976. The interpretation of the variations in leaf water potential and 
stomatal conductance found in canopies in the field. Philos. Trans. R. Soc. London. B 
Biol. Sci. 273, 593–610. https://doi.org/10.1098/rstb.1976.0035. 

Y. Yang et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/j.jhydrol.2020.125730
https://doi.org/10.1016/j.jhydrol.2020.125730
https://doi.org/10.5194/hess-15-223-2011
https://doi.org/10.5194/hess-15-223-2011
https://doi.org/10.1007/s00442-004-1519-1
https://doi.org/10.1007/s00442-004-1519-1
https://doi.org/10.1007/978-94-017-0519-6_48
https://doi.org/10.5194/hess-23-207-2019
https://doi.org/10.1002/2015WR018247
https://doi.org/10.1016/j.jhydrol.2005.07.007
https://doi.org/10.1016/j.jhydrol.2005.07.007
https://doi.org/10.13031/trans.58.10589
https://doi.org/10.1002/2016JD024821
https://doi.org/10.1029/2002jd003292
https://doi.org/10.1029/91WR02985
https://doi.org/10.1029/91WR02985
https://doi.org/10.1007/BF00939380
https://doi.org/10.1016/j.agrformet.2011.05.019
https://doi.org/10.1016/j.agrformet.2011.05.019
https://doi.org/10.1016/j.jhydrol.2005.11.022
https://doi.org/10.1016/j.jhydrol.2005.11.022
https://doi.org/10.2134/jeq2006.0098
http://refhub.elsevier.com/S0022-1694(20)31191-4/h0080
http://refhub.elsevier.com/S0022-1694(20)31191-4/h0080
http://refhub.elsevier.com/S0022-1694(20)31191-4/h0080
https://doi.org/10.1016/j.rse.2017.06.043
https://doi.org/10.5194/hess-22-89-2018
https://doi.org/10.1029/2009WR008203
https://doi.org/10.1038/s41558-019-0436-6
https://doi.org/10.1038/s41558-019-0436-6
https://doi.org/10.1029/1998WR900001
https://doi.org/10.1029/1998WR900001
https://doi.org/10.1016/j.jhydrol.2007.11.017
https://doi.org/10.1016/j.jhydrol.2007.11.017
https://doi.org/10.1109/36.628788
https://doi.org/10.1109/36.628788
https://doi.org/10.1098/rstb.1976.0035


Journal of Hydrology 596 (2021) 125730

13

Jiang, C., Guan, K., Pan, M., Ryu, Y., Peng, B., Wang, S., 2019. BESS-STAIR: a framework 
to estimate daily, 30-meter, and allweather crop evapotranspiration using multi- 
source satellite data for the U.S. Corn Belt. Hydrol. Earth Syst. Sci. Discuss. 1–36 
https://doi.org/10.5194/hess-2019-376. 

Jiang, C., Ryu, Y., 2016. Multi-scale evaluation of global gross primary productivity and 
evapotranspiration products derived from Breathing Earth System Simulator (BESS). 
Remote Sens. Environ. 186, 528–547. https://doi.org/10.1016/j.rse.2016.08.030. 

Karthikeyan, L., Chawla, I., Mishra, A.K., 2020. A review of remote sensing applications 
in agriculture for food security: crop growth and yield, irrigation, and crop losses. 
J. Hydrol. 586, 124905 https://doi.org/10.1016/j.jhydrol.2020.124905. 

Keenan, T., Sabate, S., Gracia, C., 2010. Soil water stress and coupled photosynthesis- 
conductance models: bridging the gap between conflicting reports on the relative 
roles of stomatal, mesophyll conductance and biochemical limitations to 
photosynthesis. Agric. For. Meteorol. 150, 443–453. https://doi.org/10.1016/j. 
agrformet.2010.01.008. 

Kerr, Y.H., Waldteufel, P., Wigneron, J.P., Martinuzzi, J.M., Font, J., Berger, M., 2001. 
Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) 
mission. IEEE Trans. Geosci. Remote Sens. 39, 1729–1735. https://doi.org/10.1109/ 
36.942551. 

Ledieu, J., De Ridder, P., De Clerck, P., Dautrebande, S., 1986. A method of measuring 
soil moisture by time-domain reflectometry. J. Hydrol. 88, 319–328. https://doi. 
org/10.1016/0022-1694(86)90097-1. 

Li, H., Sivapalan, M., Tian, F., Liu, D., 2010. Water and nutrient balances in a large tile- 
drained agricultural catchment: a distributed modeling study. Hydrol. Earth Syst. 
Sci. 14, 2259–2275. https://doi.org/10.5194/hess-14-2259-2010. 

Li, Z.L., Tang, R., Wan, Z., Bi, Y., Zhou, C., Tang, B., Yan, G., Zhang, X., 2009. A review of 
current methodologies for regional Evapotranspiration estimation from remotely 
sensed data. Sensors 9, 3801–3853. https://doi.org/10.3390/s90503801. 

Liou, Y.A., Kar, S.K., 2014. Evapotranspiration estimation with remote sensing and 
various surface energy balance algorithms-a review. Energies 7, 2821–2849. https:// 
doi.org/10.3390/en7052821. 

Liu, X., Chen, F., Barlage, M., Zhou, G., Niyogi, D., 2016. Noah-MP-Crop: introducing 
dynamic crop growth in the Noah-MP land surface model. J. Geophys. Res. 121, 
13953–13972. https://doi.org/10.1002/2016JD025597. 

Lobell, D.B., Thau, D., Seifert, C., Engle, E., Little, B., 2015. A scalable satellite-based 
crop yield mapper. Remote Sens. Environ. 164, 324–333. https://doi.org/10.1016/j. 
rse.2015.04.021. 

Luo, Y., Guan, K., Peng, J., 2018. STAIR: A generic and fully-automated method to fuse 
multiple sources of optical satellite data to generate a high-resolution, daily and 
cloud-/gap-free surface reflectance product. Remote Sens. Environ. 214, 87–99. 
https://doi.org/10.1016/j.rse.2018.04.042. 

Manzoni, S., Vico, G., Katul, G., Fay, P.A., Polley, W., Palmroth, S., Porporato, A., 2011. 
Optimizing stomatal conductance for maximum carbon gain under water stress: a 
meta-analysis across plant functional types and climates. Funct. Ecol. 25, 456–467. 
https://doi.org/10.1111/j.1365-2435.2010.01822.x. 

Medlyn, B.E., Duursma, R.A., Eamus, D., Ellsworth, D.S., Prentice, I.C., Barton, C.V.M., 
Crous, K.Y., De Angelis, P., Freeman, M., Wingate, L., 2011. Reconciling the optimal 
and empirical approaches to modelling stomatal conductance. Glob. Chang. Biol. 17, 
2134–2144. https://doi.org/10.1111/j.1365-2486.2010.02375.x. 

Niraula, R., Norman, L.M., Meixner, T., Callegary, J.B., 2012. Multi-gauge calibration for 
modeling the semi-arid santa cruz watershed in Arizona-Mexico border area using 
SWAT. Air, Soil Water Res. 5, 41–57. https://doi.org/10.4137/ASWR.S9410. 

Niu, G.Y., Yang, Z.L., Mitchell, K.E., Chen, F., Ek, M.B., Barlage, M., Kumar, A., 
Manning, K., Niyogi, D., Rosero, E., Tewari, M., Xia, Y., 2011. The community Noah 
land surface model with multiparameterization options (Noah-MP): 1. Model 
description and evaluation with local-scale measurements. J. Geophys. Res. Atmos. 
116, 1–19. https://doi.org/10.1029/2010JD015139. 

Pan, M., Cai, X., Chaney, N.W., Entekhabi, D., Wood, E.F., 2016. An initial assessment of 
SMAP soil moisture retrievals using high-resolution model simulations and in situ 
observations. Geophys. Res. Lett. 43, 9662–9668. https://doi.org/10.1002/ 
2016GL069964. 

Peng, B., Guan, K., Tang, J., Ainsworth, E.A., Asseng, S., Bernacchi, C.J., Cooper, M., 
Delucia, E.H., Elliott, J.W., Ewert, F., Grant, R.F., Gustafson, D.I., Hammer, G.L., 
Jin, Z., Jones, J.W., Kimm, H., Lawrence, D.M., Li, Y., Lombardozzi, D.L., Marshall- 
Colon, A., Messina, C.D., Ort, D.R., Schnable, J.C., Vallejos, C.E., Wu, A., Yin, X., 
Zhou, W., 2020. Towards a multiscale crop modelling framework for climate change 
adaptation assessment. Nat. Plants 6, 338–348. https://doi.org/10.1038/s41477- 
020-0625-3. 

Peng, B., Zhao, T., Shi, J., Lu, H., Mialon, A., Kerr, Y.H., Liang, X., Guan, K., 2017. 
Reappraisal of the roughness effect parameterization schemes for L-band radiometry 
over bare soil. Remote Sens. Environ. 199, 63–77. https://doi.org/10.1016/j. 
rse.2017.07.006. 

Rajib, A., Evenson, G.R., Golden, H.E., Lane, C.R., 2018. Hydrologic model predictability 
improves with spatially explicit calibration using remotely sensed 
evapotranspiration and biophysical parameters. J. Hydrol. 567, 668–683. https:// 
doi.org/10.1016/j.jhydrol.2018.10.024. 

Ryu, Y., Baldocchi, D.D., Kobayashi, H., Van Ingen, C., Li, J., Black, T.A., Beringer, J., 
Van Gorsel, E., Knohl, A., Law, B.E., Roupsard, O., 2011. Integration of MODIS land 
and atmosphere products with a coupled-process model to estimate gross primary 
productivity and evapotranspiration from 1 km to global scales. Global Biogeochem. 
Cycles 25, 1–24. https://doi.org/10.1029/2011GB004053. 

Ryu, Y., Jiang, C., Kobayashi, H., Detto, M., 2018. MODIS-derived global land products 
of shortwave radiation and diffuse and total photosynthetically active radiation at 5 
km resolution from 2000. Remote Sens. Environ. 204, 812–825. https://doi.org/ 
10.1016/j.rse.2017.09.021. 

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S., 2010. 
Variance based sensitivity analysis of model output. Design and estimator for the 
total sensitivity index. Comput. Phys. Commun. 181, 259–270. https://doi.org/ 
10.1016/j.cpc.2009.09.018. 

Samaniego, L., Kumar, R., Attinger, S., 2010. Multiscale parameter regionalization of a 
grid-based hydrologic model at the mesoscale. Water Resour. Res. 46, 1–25. https:// 
doi.org/10.1029/2008WR007327. 

Schaake, J.C., Koren, V.I., Duan, Q.Y., Mitchell, K., Chen, F., 1996. Simple water balance 
model for estimating runoff at different spatial and temporal scales. J. Geophys. Res. 
Atmos. 101, 7461–7475. https://doi.org/10.1029/95JD02892. 

Shellito, P.J., Small, E.E., Cosh, M.H., 2016. Calibration of Noah soil hydraulic property 
parameters using surface soil moisture from SMOS and basinwide in situ 
observations. J. Hydrometeorol. 17, 2275–2292. https://doi.org/10.1175/JHM-D- 
15-0153.1. 

Sobol, I.M., 2001. Global sensitivity indices for nonlinear mathematical models and their 
Monte Carlo estimates. Math. Comput. Simul. 55, 271–280. https://doi.org/ 
10.1016/S0378-4754(00)00270-6. 

Sorooshian, S., Duan, Q., Gupta, V.K., 1993. Calibration of rainfall-runoff models: 
Application of global optimization to the Sacramento Soil Moisture Accounting 
Model. Water Resour. Res. 29, 1185–1194. https://doi.org/10.1029/92WR02617. 

Su, Z., 2002. The Surface Energy Balance System (SEBS) for estimation of turbulent heat 
fluxes. Hydrol. Earth Syst. Sci. 6, 85–99. https://doi.org/10.5194/hess-6-85-2002. 

Sutanudjaja, E.H., Van Beek, L.P.H., De Jong, S.M., Van Geer, F.C., Bierkens, M.F.P., 
2014. Calibrating a large-extent high-resolution coupled groundwater-land surface 
model using soil moisture and discharge data. Water Resour. Res. 50, 687–705. 
https://doi.org/10.1002/2013WR013807. 

Velpuri, N.M., Senay, G.B., Singh, R.K., Bohms, S., Verdin, J.P., 2013. A comprehensive 
evaluation of two MODIS evapotranspiration products over the conterminous United 
States: using point and gridded FLUXNET and water balance ET. Remote Sens. 
Environ. 139, 35–49. https://doi.org/10.1016/j.rse.2013.07.013. 

Vuichard, N., Papale, D., 2015. Filling the gaps in meteorological continuous data 
measured at FLUXNET sites with ERA-Interim reanalysis. Earth Syst. Sci. Data 7, 
157–171. https://doi.org/10.5194/essd-7-157-2015. 

Wanders, N., Bierkens, M.F.P., de Jong, S.M., de Roo, A., Karssenberg, D., 2014. The 
benefits of using remotely sensed soil moisture in parameter identification of large- 
scale hydrological modelss. Water Resour. Res. 50, 6874–6891. https://doi.org/ 
10.1002/2013WR014639. 

Wood, E.F., Coauthors, 2011. Hyperresolution global land surface modeling: Meeting a 
grand challenge for monitoring Earth’s terrestrial water. Water Resour. Res 47. 

Xia, Y., Pitman, A.J., Gupta, H.V., Leplastrier, M., Henderson-Sellers, A., Bastidas, L.A., 
2002. Calibrating a land surface model of varying complexity using multicriteria 
methods and the Cabauw dataset. J. Hydrometeorol. 3, 181–194. 

Yan, L., Roy, D.P., 2016. Conterminous United States crop field size quantification from 
multi-temporal Landsat data. Remote Sens. Environ. 172, 67–86. https://doi.org/ 
10.1016/j.rse.2015.10.034. 

Yan, L., Roy, D.P., 2014. Automated crop field extraction from multi-temporal Web 
Enabled Landsat Data. Remote Sens. Environ. 144, 42–64. https://doi.org/10.1016/ 
j.rse.2014.01.006. 

Yang, Y., Pan, M., Beck, H.E., Fisher, C.K., Beighley, R.E., Kao, S.C., Hong, Y., Wood, E.F., 
2019. In quest of calibration density and consistency in hydrologic modeling: 
distributed parameter calibration against streamflow characteristics. Water Resour. 
Res. 55, 7784–7803. https://doi.org/10.1029/2018wr024178. 

Yang, Z.L., Niu, G.Y., Mitchell, K.E., Chen, F., Ek, M.B., Barlage, M., Longuevergne, L., 
Manning, K., Niyogi, D., Tewari, M., Xia, Y., 2011. The community Noah land 
surface model with multiparameterization options (Noah-MP): 2. Evaluation over 
global river basins. J. Geophys. Res. Atmos. 116, 1–16. https://doi.org/10.1029/ 
2010JD015140. 

Yapo, P.O., Gupta, H.V., Sorooshian, S., 1998. Multi-objective global optimization for 
hydrologic models. J. Hydrol. 204, 83–97. https://doi.org/10.1016/S0022-1694(97) 
00107-8. 

Y. Yang et al.                                                                                                                                                                                                                                    

https://doi.org/10.5194/hess-2019-376
https://doi.org/10.1016/j.rse.2016.08.030
https://doi.org/10.1016/j.jhydrol.2020.124905
https://doi.org/10.1016/j.agrformet.2010.01.008
https://doi.org/10.1016/j.agrformet.2010.01.008
https://doi.org/10.1109/36.942551
https://doi.org/10.1109/36.942551
https://doi.org/10.1016/0022-1694(86)90097-1
https://doi.org/10.1016/0022-1694(86)90097-1
https://doi.org/10.5194/hess-14-2259-2010
https://doi.org/10.3390/s90503801
https://doi.org/10.3390/en7052821
https://doi.org/10.3390/en7052821
https://doi.org/10.1002/2016JD025597
https://doi.org/10.1016/j.rse.2015.04.021
https://doi.org/10.1016/j.rse.2015.04.021
https://doi.org/10.1016/j.rse.2018.04.042
https://doi.org/10.1111/j.1365-2435.2010.01822.x
https://doi.org/10.1111/j.1365-2486.2010.02375.x
https://doi.org/10.4137/ASWR.S9410
https://doi.org/10.1029/2010JD015139
https://doi.org/10.1002/2016GL069964
https://doi.org/10.1002/2016GL069964
https://doi.org/10.1038/s41477-020-0625-3
https://doi.org/10.1038/s41477-020-0625-3
https://doi.org/10.1016/j.rse.2017.07.006
https://doi.org/10.1016/j.rse.2017.07.006
https://doi.org/10.1016/j.jhydrol.2018.10.024
https://doi.org/10.1016/j.jhydrol.2018.10.024
https://doi.org/10.1029/2011GB004053
https://doi.org/10.1016/j.rse.2017.09.021
https://doi.org/10.1016/j.rse.2017.09.021
https://doi.org/10.1016/j.cpc.2009.09.018
https://doi.org/10.1016/j.cpc.2009.09.018
https://doi.org/10.1029/2008WR007327
https://doi.org/10.1029/2008WR007327
https://doi.org/10.1029/95JD02892
https://doi.org/10.1175/JHM-D-15-0153.1
https://doi.org/10.1175/JHM-D-15-0153.1
https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/10.1029/92WR02617
https://doi.org/10.5194/hess-6-85-2002
https://doi.org/10.1002/2013WR013807
https://doi.org/10.1016/j.rse.2013.07.013
https://doi.org/10.5194/essd-7-157-2015
https://doi.org/10.1002/2013WR014639
https://doi.org/10.1002/2013WR014639
http://refhub.elsevier.com/S0022-1694(20)31191-4/h0295
http://refhub.elsevier.com/S0022-1694(20)31191-4/h0295
http://refhub.elsevier.com/S0022-1694(20)31191-4/h0295
https://doi.org/10.1016/j.rse.2015.10.034
https://doi.org/10.1016/j.rse.2015.10.034
https://doi.org/10.1016/j.rse.2014.01.006
https://doi.org/10.1016/j.rse.2014.01.006
https://doi.org/10.1029/2018wr024178
https://doi.org/10.1029/2010JD015140
https://doi.org/10.1029/2010JD015140
https://doi.org/10.1016/S0022-1694(97)00107-8
https://doi.org/10.1016/S0022-1694(97)00107-8

	High-resolution spatially explicit land surface model calibration using field-scale satellite-based daily evapotranspiratio ...
	1 Introduction
	2 Materials and methods
	2.1 Noah-MP LSM and related parameters
	2.2 Data
	2.2.1 Site data
	2.2.2 BESS-STAIR ET data
	2.2.3 Data for regional calibration

	2.3 Model simulations, sensitivity analysis and calibration experiment
	2.3.1 Default model simulation
	2.3.2 Parameter sensitivity analysis
	2.3.3 Site-level calibration experiments
	2.3.4 Regional calibration


	3 Results
	3.1 Parameter sensitivity analysis
	3.2 Site level calibration using flux tower and BESS-STAIR ET
	3.2.1 Comparison of calibration and validation performance using flux tower ET
	3.2.2 Site-level calibration using BESS-STAIR ET product

	3.3 Regional calibration study

	4 Discussions
	4.1 Effectiveness of high-resolution model calibration using BESS-STAIR ET
	4.2 Implications for hyper-resolution modeling and model-data integration
	4.3 Limitations and potential improvement

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	Appendix A Supplementary data
	References


