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A B S T R A C T

Water stress is one of the major abiotic stresses and directly affects crop growth and influences crop yields. To
better quantify the responses of crop yield to hydrological variability in the rainfed Corn Belt of the United States
(U.S.), we analyzed the relationships between corn/soybean yield and hydrological cycle metrics, as well as their
spatio-temporal dynamic at the agricultural district and interannual scale between 2003 and 2014. We used
Partial Least Square Regression (PLSR) to optimally integrate different hydrological metrics and drought indices
to define a crop-specific new drought index that uses crop yield as the target, and investigated the contributions
of those hydrological cycle components to the new drought index. We used both observed and modeled hy-
drological cycle metrics, as well as several drought indices in this study, including evapotranspiration (ET) and
potential ET (PET), terrestrial water storage change (ΔS), surface soil moisture (SSM), river discharge (Q),
Standardized Precipitation-Evapotranspiration Index (SPEI), Palmer Drought Severity Index (PDSI), fET (the
ratio of ET to PET), and vapor pressure deficit (VPD). Our results revealed that: (1) VPD, SSM, and fET showed
the strongest correlations with crop yield, among the observation-based hydrological cycle metrics and drought
indices considered here. Most of the hydrological cycle metrics and drought indices showed similar seasonal
correlation patterns with crop yield, and this pattern revealed that the sensitivity of crop growth to water stress
peaked in July for corn and in August for soybean in the rainfed U.S. Corn Belt. (2) The drought in 2012 started
with higher water demand (reflected in abnormally high ET, PET, and VPD) and lower water supply (reflected in
abnormally low P), followed by soil water depletion (as revealed in SSM and ΔS), leading to massive crop yield
losses due to increased constraints on both water supply and demand. (3) The R2 of the PLSR-based crop yield
model reached 0.76 and 0.70 for corn and soybean, respectively. For both corn and soybean, the first PLSR
component was mainly composed of information from VPD, fET, ΔS and SSM, indicating atmospheric water
deficit and soil water storage both play critical roles in quantifying corn and soybean yield loss due to water
stress.

1. Introduction

The hydrological cycle is expected to accelerate under a warming
climate (Huntington, 2006; Oki and Kanae, 2006), with more frequent
drought and flooding (Huntington, 2006; Cook et al., 2020) posing
significant challenges for agricultural production and food security

(Anyamba et al., 2014; Brown and Funk, 2008; Iizumi et al., 2014;
Rosenzweig et al., 2001). Rainfed agriculture accounts for ~80% of
global croplands (Biradar et al., 2009), which are prone to more fre-
quent stresses from drought and flooding (Nocco et al., 2019). For ex-
ample, the Midwestern United States (U.S.) alone produces one third of
the global corn and soybean production, and>90% of the farmland is
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rainfed. Understanding the impacts of climatic stresses on agricultural
production, especially the influence of hydrological stress on crop yield
loss in rainfed regions, is becoming urgently needed (Lobell et al., 2014;
Mishra and Cherkauer, 2010; Peng et al., 2020a).

A first gap in the existing studies on agricultural drought is the
overemphasis on soil moisture conditions compared to other hydro-
logical stressors. In reality, droughts are multifaceted and have been
conventionally classified into four categories: meteorological droughts,
hydrological droughts, agricultural droughts, and socio-economic
droughts (Mishra and Singh, 2010). In particular, “agricultural
droughts” are usually defined primarily based on soil moisture condi-
tions (i.e. plant soil water availability is insufficient for crop growth,
affecting end-of-season crop yield) (Bolten et al., 2006, 2010; Crow,
2014; Han et al., 2014). This may lead to an oversimplification that
neglects other important environmental factors (Lobell et al., 2014; Ort
and Long, 2014). Soil moisture only accounts for the available water in
a rainfed system for crop growth, but it does not include the effects of
water demands from the atmosphere. An increasing number of studies
emphasize that atmospheric water demand plays a critical role in in-
ducing plant water stress and suppressing crop yield (Lobell et al.,
2014; Novick et al., 2016; Sulman et al., 2016). Indicators for atmo-
spheric water demand include Vapor Pressure Deficit (VPD), and/or
potential evapotranspiration (PET) (Seager et al., 2015; Milly and
Dunne, 2016), which integrates the influences from several meteor-
ological factors like air temperature, humidity, radiation, and wind
(Luo et al., 2017). To holistically characterize “agricultural drought”,
both water supply (from soil) and water demand (from atmosphere)
should be considered, as plant plays a central role in regulating the flow
of moisture across the soil–plant-atmosphere continuum (SPAC) in
order to maintain an adequate internal water status (Bonan et al., 2014;
Ouyang, 2002). SPAC processes include plant hydraulics and plant
physiology (Williams et al., 1996), which have been actively discussed
in the literature (Martínez-Vilalta et al., 2014; Sperry et al., 2002; Tyree
and Ewers, 1991). Plants hydraulics are starting to be implemented in
land surface models (Bonan et al., 2014; Kennedy et al., 2019; Xu et al.,
2016).

From an empirical perspective, water supply can be approximated
using different indices: (1) precipitation, and/or precipitation-related
indices, such as Standardized Precipitation Index (SPI) (Hunt et al.,
2014; McKee et al., 1993); (2) plant available water content (i.e., the
difference between soil water content and wilting point), and/or soil-
moisture-related indices, such as Soil Moisture Percentiles (SMP)
(Andreadis et al., 2005; Mishra and Cherkauer, 2010); (3) groundwater
dynamics, for regions with deep-rooted plants or non-negligible surfa-
ce–groundwater interactions (Orellana et al., 2012). Atmospheric water
demand during crop growth is commonly characterized by VPD and/or
PET (Novick et al., 2016). High atmospheric water demand, indicated
by a high VPD, can reduce plant stomatal opening and thus reduce the
rate of plant photosynthesis (Muller et al., 2011). To take both water
supply and water demand into account, some drought indices have
been developed, such as fET (=ET/PET) (Anderson et al., 2016b,
2007a, 2007b; Yang et al., 2018), Standardized Precipitation-Evapo-
transpiration Index (SPEI) (Masud et al., 2015; Vicente-Serrano et al.,
2010), and Palmer Drought Severity Index (PDSI) (Palmer, 1965; Dai
et al., 2004; Ge et al., 2016; Tian et al., 2018). These drought indices
follow similar ideas, but with different mathematical formulations.

Given the various existing drought metrics, another gap lies in terms
of lack of benchmarks for these drought metrics. Many studies on
agricultural drought use the Drought Severity Measure from the U.S.
Drought Monitor (USDM) (Anderson et al., 2013; Otkin et al., 2014,
2013). However, the USDM metrics for drought are complicated be-
cause they represent both short- and long-term drought conditions as-
sociated with agricultural and hydrologic droughts respectively, and
are based on a broad array of observations (e.g., precipitation, tem-
perature, soil moisture, stream, ET and groundwater) and guidance
from drought experts throughout the United States (Svoboda et al.,

2002). Thus for “agricultural drought”, the USDM metrics may not be
the most accurate measures available because of the broad range of
drought types and conditions represented that may or may not pertain
to crop stress. Crop yield, the ultimate measure for agricultural pro-
ductivity, is an obvious metric for evaluating drought impacts on
agriculture. However, few studies use crop yield to benchmark different
drought measures for agricultural drought monitoring.

Another gap in current agricultural drought assessments is the lack
of consideration of the variable sensitivity to water stress at different
growth stages of the crops. Droughts with the same severity (e.g.
measured by different drought indices or hydrological components) but
occurring at different growth stages can lead to significantly different
impacts (Guan et al., 2015, 2014; Mladenova et al., 2017; Peng et al.,
2018a). Water stress that occurs during the critical growth stages
usually has a much larger negative impact on the end-of-season yield
(Mishra and Cherkauer, 2010; Peng et al., 2018a). The silking and
grain-filling stages are the most critical stages for corn grain formation
(Hunt et al., 2014; Meyer et al., 1993), which occur 70–90 days after
planting for corn in the U.S. (i.e. late July and August in the U.S. Corn
Belt, where corn is usually planted in early-mid May). As for soybean,
the most critical stages for production are the blooming and podding
stages (Mishra and Cherkauer, 2010), which occur 65–105 days after
planting (i.e. August and early September in the U.S. Corn Belt, where
soybean is usually planted in middle May to early June). Water stress
during these periods may result in irreversible damage on the end-of-
season crop yield. So, it is also necessary to diagnose the influence of
water stress on crop yield at different growth stages.

In this study, we investigate the connections between the hydro-
logical cycle metrics and crop yield variability (for both corn and soy-
bean) across the rainfed area of the U.S. Corn Belt, one of the world’s
largest crop production areas (Grassini et al., 2015). The majority of the
U.S. Corn Belt is rainfed, and it has experienced various levels of
drought in the past, including particularly severe droughts in 1988 and
2012 (Rippey, 2015). Understanding how the hydrological cycle affects
food production and increasing our ability to predict drought related
impacts on crop yield would greatly benefit scientific and practical
needs. Specifically, we analyze the relationship between anomalies of
hydrological variables and end-of-season crop yields at the agricultural
district scale between 2003 and 2014. Both observation-based and
model-based hydrological variables (including both hydrological cycle
components and some drought indices, see Table 1) are used in this
study. We then use advanced statistical modeling to explore optimal
ways to define an integral drought index for agricultural drought
monitoring, in which stresses from both water supply and demand are
considered. Through the analysis, we aim to answer the following
questions: (1) What are the best indicators to assess the influence of
crop water stress among the hydrological cycle components and com-
monly used drought indices in the rainfed U.S. Corn Belt, when
benchmarked with crop yield? (2) What is the performance of those
hydrological cycle components and drought indices as indicators for
crop yield losses during the extreme drought year of 2012? (3) How can
we optimally integrate those hydrological cycle components and
drought indices to assess agricultural drought and what are the con-
tributions of those hydrological cycle components to the new drought
index?

2. Materials and method

2.1. Study area

This study focuses on the rainfed part of the U.S. Corn Belt (Fig. 1),
where the influence of irrigation on crop yield is minimized. Our study
domain is located in the central and eastern parts of the U.S. Midwest.
We conducted our analysis at the U.S. Department of Agriculture
(USDA)-designated agricultural district level (blue boundaries shown in
Fig. 1), and used monthly hydrological cycle metrics, drought indices
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and USDA reported end-of-season crop yield data between 2003 and
2014. Our study area is a typical landscape planting corn and soybean
(Fig. 1), representing approximately 60% and 56% of the U.S. total corn
and soybean production, respectively.

2.2. Crop yield dataset

The agricultural district level crop yield for corn and soybean in the
study area during 2003–2014 was collected from the USDA National
Agricultural Statistics Service (NASS). In this study, NASS reported crop
yields not designated as irrigated or non-irrigated conditions were
treated as non-irrigated. The annual anomalies of crop yield were cal-
culated for each agricultural district by subtracting a linear yield trend
fitted for each district from the actual yield (Li et al., 2019; Lu et al.,
2017; Zipper et al., 2016).

2.3. Observation-based hydrological cycle components

We used a set of observations of the individual hydrological cycle
components to assess their relationship with crop yield:

= + +P ET SΔ Q (1)

The observation-based hydrological cycle components used in this
study were obtained from the following sources.

Precipitation (P): Since the station-based precipitation (i.e.,

Precipitation Regression on Independent Slopes Model (PRISM)) is
highly consistent with the precipitation of the North American Land
Data Assimilation System (NLDAS) at the agricultural district scale
in the study area, the NLDAS precipitation was used as the ob-
servation-based precipitation to simplify the analysis process.
Evapotranspiration (ET): Breathing Earth System Simulator (BESS
ET).
Subsurface water storage change (ΔS): Total terrestrial water
storage (TWS) retrieved by the Gravity Recovery and Climate
Experiment (GRACE).
Soil moisture: European Space Agency (ESA) climate change in-
itiative (CCI) surface soil moisture (CCI SSM).
Streamflow (Q): Discharge data from the United States Geological
Survey (USGS Q).

Detailed information about these data are given in the following
sections.

2.3.1. Evapotranspiration from the Breathing Earth System Simulator
(BESS)

BESS is a satellite-driven water-carbon-energy coupled biophysical
model (Jiang and Ryu, 2016; Ryu et al., 2011). By using MODIS aerosol,
cloud and atmospheric profile products, BESS calculates solar radiation
(Ryu et al., 2011), air temperature and humidity to drive the land
surface process modules. Using MODIS LAI, albedo and clumping pro-
ducts, BESS quantifies the solar radiation absorption by the sunlit/

Table 1
Description of the datasets used in this study.

Categories Dataset Original dataset time
period

Spatial resolution Reference

Observation-based hydrological cycle
components

BESS ET and PET 2002–2017 5 km (Jiang and Ryu, 2016)
GRACE ΔS 2002–2017 1° (Landerer and Swenson, 2012)
CCI SSM 1978–2016 25 km (Dorigo et al., 2017)
USGS Q 1900–2016 HUC level 8 (Jian et al., 2008)

Model-simulated hydrological cycle
components

NLDAS-Noah’s P, ET, PET, SMC_10cm,
SMC_200cm, and Q

1979–2019 0.125° (Mitchell, 2004; Xia et al.,
2012b,a)

Commonly used drought indices PRISM VPD 1895–2019 5 km (Daly et al., 2008)
BESS fET 2002–2017 5 km (Jiang and Ryu, 2016)
SPEI 1901–2015 0.5° (Vicente-Serrano, 2015)
PDSI 1850–2014 2.5° (Dai, 2019)

Fig. 1. Study area outlined by the blue boundary, with the background showing the average proportion of corn and soybean planting area in the total area based on
United States Department of Agriculture (USDA) survey data in 1997, 2002, 2007 and 2012.
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shaded canopy through the explicit computation of direct/diffuse ra-
diation in the atmosphere and canopy (Ryu et al., 2011). With these
environmental and vegetation inputs, BESS computes ET from the
sunlit/shade canopy by solving a quadratic Penman-Monteith equation
through an iterative procedure, in which ET estimates are constrained
by both energy absorption and carbon uptake (Jiang and Ryu, 2016;
Ryu et al., 2011). PET is further calculated using the Priestley-Taylor
equation. The global BESS ET product was evaluated against a global
network of eddy-covariance tower observations and against global
coarse-resolution maps upscaled using machine learning (Jiang and
Ryu, 2016; Jiang et al., 2020). BESS monthly ET and PET between 2003
and 2014 were used in this study.

2.3.2. Total terrestrial water storage (TWS) from GRACE
The GRACE-derived TWS anomaly captures bulk land water storage

changes, including contributions from surface water, soil moisture, and
deeper groundwater storages. TWS is retrieved from the gravimetric
sensor derived water mass variations (Landerer and Swenson, 2012).
The GRACE TWS product used here is the Monthly Mass Grids – Land
product with 1° spatial resolution, where each grid value represents the
surface mass deviation from the baseline averaged from January 2004
to December 2009. There are three available GRACE TWS products,
which are developed by the Center for Space Research at the University
of Texas, Austin (CSR), NASA Jet Propulsion Laboratory (JPL) and
GeoforschungsZentrum Potsdam (GFZ), respectively. To reduce the
noise from different gravity field solutions (Sakumura et al., 2014), the
average value of these three products was used in our analysis.

2.3.3. Surface soil moisture (SSM) from ESA CCI
The ESA CCI soil moisture project is part of the ESA Programme on

Global Monitoring of Essential Climate Variables (ECV), which pro-
duces surface soil moisture products by combining observations from
multiple active and passive microwave satellite sensors launched after
1979 (Gruber et al., 2019, 2017; Dorigo et al., 2017). Microwave re-
mote sensing has been proven effective to estimate surface soil moisture
content, as there is a significant difference in the dielectric properties
between soil and liquid water (Njoku and Entekhabi, 1996). However,
depending on the sensor configurations (i.e. wavelength, incident angle
etc.) and surface condition (i.e. vegetation cover, soil moisture content,
roughness etc.), the effective penetration depth of the microwave signal
usually ranges from 0 to 5 cm (Peng et al, 2017). Therefore, the mi-
crowave-based soil moisture observations predominantly reflect surface
soil conditions rather than deeper root zone soil moisture which is more
directly accessible to plants (Njoku et al., 2003; Wigneron et al., 2017).
We use the CCI surface soil moisture (CCI SSM) product between 2003
and 2014, which is daily and has a 25 km spatial resolution. For this
period, the Advanced Microwave Scanning Radiometer on the Earth
Observing System Aqua satellite (AMSR-E) (Njoku et al., 2003) and the
Advanced Scatterometer (ASCAT) on the Meteorological Operational
satellite A (MetOp-A) (Hollmann et al., 2013) are the major passive and
active sensors used for soil moisture retrievals. The monthly CCI SSM
was obtained by aggregating the daily product.

2.3.4. Discharge data from USGS
The observed (2003–2014) monthly runoff data for all the hydro-

logic unit code level 8 (HUC-8) catchments within the study domain
were obtained from the USGS WaterWatch system (Jian et al., 2008).
This dataset provides computed runoff for individual HUCs, which were
generated by combining historical flow data collected at streamgages,
the drainage basins of the streamgages, and the boundaries of the
HUCs. The HUC-8 level runoff was rasterized and aggregated to the
agricultural district scale for our analysis.

2.4. Model-simulated hydrological cycle components

We used the simulated monthly hydrological cycle components

from the NLDAS-Noah model outputs as the model-simulated hydro-
logical cycle components. NLDAS Phase 1 (NLDAS-1) (Mitchell, 2004)
was initiated in 1999, sponsored by the Global Energy and Water Cycle
Experiment (GEWEX) Continental-Scale International Project (GCIP)
covering the continental United States, southern Canada, and northern
Mexico. Four land-surface models (LSMs) including Noah, Variable
Infiltration Capacity (VIC), Sacramento Soil Moisture Accounting (SAC-
SMA), and Mosaic are executed in parallel and uncoupled in NLDAS in
both real time and retrospective modes. By assimilating the meteor-
ological forcing, and soil and vegetation parameters, NLDAS produces
quality-controlled long-term and near real-time products to support
national operational drought monitoring and prediction, and to provide
water resource information needed by various government agencies,
academia, and other enterprises. As an update of NLDAS-1, the NLDAS
Phase 2 (NLDAS-2, Xia et al., 2012a,b) extended the study time window
from 3 years (1997–1999) to 30 years (1979–2008), using more accu-
rate and consistent surface forcing data (including both station gauged
meteorological data and North American Regional Reanalysis (NARR)
atmospheric forcing data), and upgrading the land-surface model code
and parameters. The spatial resolution of NLDAS output is 0.125° with
hourly intervals. In this study, NLDAS2-Noah monthly outputs (ag-
gregated from hourly outputs) between 2003 and 2014 were used. The
following NLDAS2-Noah model-simulated hydrological cycle compo-
nents were used in our analysis:

P (NLDAS P): Summing the liquid precipitation (ARAIN) and frozen
precipitation (ASNOW) components;
ET (NLDAS ET): Total evapotranspiration;
ΔS (NLDAS ΔS): Change of model subsurface (0–200 cm depth) soil
moisture content;
SMC_10cm (NLDAS SMC_10cm): Model subsurface (0–10 cm
depth) soil moisture content;
SMC_200cm (NLDAS SMC_200cm): Model subsurface (0–200 cm
depth) soil moisture content;
Q (NLDAS Q): Sum of the subsurface runoff (BGRUN) and surface
runoff (SSRUN) components.

2.5. Drought indices

Besides the hydrological cycle components, several commonly used
drought indices were also adopted to analyze the relationship between
drought indices and crop yield. Here we chose four widely used drought
indices, including VPD, fET, SPEI, and PDSI. A summary of the drought
indices and their sources is provided below.

2.5.1. PRISM vapor pressure deficit product
The VPD is the difference between the water vapor pressure in the

air and the saturated water vapor pressure at the same air temperature.
VPD indicates the atmospheric dryness and has been found to affect
crop yield of corn and soybean by limiting stomatal opening and also
depleting soil moisture (Lobell et al., 2014). Here, we use VPD as a
measure of atmospheric drought or dryness (Anderson, 1936). The VPD
product used here is the gridded monthly maximum VPD from the
PRISM with time period between 2003 and 2014. PRISM provides a
suite of gridded high accuracy climate variables across the continental
U.S. (Daly et al., 2008). It is based on the quality-controlled measure-
ments from the U.S. weather station network, and generates gridded
product by conducting a climate–elevation regression for each digital
elevation model (DEM) grid cell considering the location, elevation,
coastal proximity, aspect, vertical atmospheric layer, topographic po-
sition, and orographic effectiveness of the terrain (Daly et al., 2008).

2.5.2. fET
fET is the ratio of actual ET to PET, which describes the difference

between the crop water demand and water supply. The anomaly of fET
has been widely used for drought monitoring (Anderson et al., 2016b;
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Otkin et al., 2013) and crop yield estimation (Anderson et al., 2016a;
Yang et al., 2018). The fET used here was calculated based on the BESS
monthly ET and PET products between 2003 and 2014.

2.5.3. SPEI
The SPEI is a variate of the SPI, taking both precipitation and eva-

potranspiration into account (Beguería et al., 2014; Vicente-Serrano
et al., 2010). The SPEI used here was acquired from the National Center
for Atmospheric Research (NCAR) (Vicente-Serrano, 2015), which uses
the FAO-56 Penman-Monteith method to estimate potential evapo-
transpiration. This dataset covers the period between 1901 and 2015
with 0.5° spatial resolution and monthly fidelity. The SPEI record used
here spans the period between 2003 and 2014.

2.5.4. PDSI
The PDSI quantifies the relative dryness by incorporating ante-

cedent and current moisture supply (P) and demand (PET) into a hy-
drological accounting system, and using a 2-layer bucket-type model to
calculate the soil moisture (Dai et al., 2004; Wayne, 1965; Wells et al.,

2004). The PDSI is the most commonly used drought index (Vicente-
Serrano et al., 2010), although there have been several criticisms on its
limitations (Alley, 1984; Dai, 2011; Sheffield et al., 2012). The monthly
self-calibrating PDSI during 2003 and 2014 was also downloaded from
NCAR (Dai, 2019) with a spatial resolution of 2.5°.

2.6. Methods

We conducted three major analyses. The first analysis was to un-
derstand the relationship and its spatio-temporal dynamics between
crop yield and the hydrological cycle components and drought indices.
Specifically, anomaly correlation (Pearson’s correlation) coefficients
between crop yield and hydrological cycle components and drought
indices were calculated for each month during the growing season
(April to October), to assess the impact of different hydrological vari-
ables on crop yield and how the relationships vary in time and space.
The second analysis was a case study to understand how the different
hydrological variables evolved during the intense 2012 drought.
Specifically, we analyzed the temporal evolutions of both monthly

Fig. 2. The anomaly correlation between hydrological cycle components or drought indices and corn or soybean yield.
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normalized (using maximum-minimum normalization method based on
the data from 2003 to 2014) hydrological cycle components and
drought indices in 2012, and used the corresponding percentile values
of 2012 for the analysis based on all data from 2003 to 2014. By doing
so, we were able to study the potential mechanisms leading to crop
stress and yield loss. The third analysis was to integrate the hydro-
logical variables together to assess the capability for predicting crop
yield purely based on hydrological variables. Specifically, we used an
advanced regression method, Partial Least Square Regression (PLSR), to
explore the seasonal crop yield predictability by combining the dif-
ferent hydrological cycle components and associated drought indices,
and to further interpret the shared and unique values of the different

hydrological variables in terms of their contributions to predict crop
yield and quantify the impact of agricultural drought.

2.6.1. Relationship between hydrological cycle components and crop yield
All observation-based and model-simulated hydrological cycle

components and drought indices were aggregated to the agricultural
district scale using the mean value of the pixels contained in each
agricultural district. The anomalies of hydrological cycle components
and drought indices were calculated by subtracting the monthly multi-
year mean value of each agricultural district. The anomaly correlation
coefficients (r) between the crop yield and different hydrological vari-
ables were calculated to qualify the relationship between crop yield and

Fig. 3. Correlation patterns between monthly hydrological components and crop yield for rainfed corn and soybean crop types.
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hydrological cycle components or drought indices. The overall corre-
lation coefficients were calculated for each month using all available
data for all agricultural districts. The correlation coefficients for each
month and each agriculture district were also calculated to understand
the spatial and temporal evolution of the relationship between crop
yield and hydrological cycle components or drought indices.

2.6.2. Evaluation of the extreme drought year 2012
We used the 2012 drought as a case study to further understand how

different hydrological variables evolved in an extreme drought year.
The monthly normalized hydrological cycle components and drought
indices in 2012 were analyzed in terms of their percentile value based
on the whole study period (i.e. 2003–2014), instead of their absolute
values. Analyzing the monthly data can reveal time lags of the different
hydrological variables, and potentially provide insights on the under-
lying mechanisms of the 2012 drought affecting crop growth.

2.6.3. PLSR and seasonal prediction of crop yield
We used PLSR to integrate the different hydrological cycle compo-

nents and drought indices for crop yield prediction, and to inform the
potential development of a new drought index. PLSR is a regression
method similar to principal components regression (PCR), which pro-
jects both independent and dependent variables into the variable space
(i.e. latent variables) through the linear combination of the original
variables (Guan et al., 2017). The latent variables are obtained to
maximize the covariance between the latent variables that are derived
from the dependent variables and the latent variables that are derived
from the independent variables. Compared to PCR and multiple linear
regression, the performance of PLSR is more robust (Geladi and
Kowalski, 1986).

The observation-based hydrological cycle components (NLDAS P,
USGS Q, CCI SSM, GRACE ΔS, BESS ET), fET and VPD were used as
independent variables in the PLSR. We used the observation-based
hydrological cycle components, instead of the model-simulated ones, as
they show similar performance in capturing the yield variabilities (i.e.
Fig. 2) and the observation-based ones may have less uncertainties. fET

and VPD were chosen to be independent variables in the PLSR as they
show better performance relative to the other drought indices in de-
picting yield variabilities (i.e. Fig. 2). PLSR models were developed
separately for corn and soybean because these crop types show different
yield responses to variations in the hydrological variables (i.e. Fig. 2).
The hydrological cycle components and drought indices for each month
and all months prior since May of each calendar year of the study
period were used to test the seasonal predictability of the first com-
ponent and optimal (model with the minimum cross-validation root-
mean-square error (RMSE) during model training) PLSR models. We
conducted a 100-fold bootstrap process for the crop yield predictions
using the combination of the hydrological cycle components and
drought indices; and for each bootstrap, 80% of the data were selected
randomly for model training, and the remaining 20% for model vali-
dation. The mean value and standard deviation of RMSE and R2

(coefficient of determination) of each combination were calculated
based on the bootstrap results.

3. Results

3.1. Correlations between hydrological cycle components and crop yield

Our results show that crop growth and yield are sensitive to the
variability of the hydrological cycle, and that water stress during dif-
ferent growth stages can lead to distinctive impacts on the end-of-
season crop yield (Çakir, 2004; Mladenova et al., 2017). The anomaly
correlation between crop yield and different hydrological variables (i.e.
observation-based and model-simulated hydrological cycle compo-
nents, and drought indices) for the different months are shown in Fig. 2.
Specifically, we find that almost all anomaly correlation coefficients
have similar seasonal patterns, i.e. the maximum absolute value of r
(|r|) between the hydrological variables and crop yield appears in July
or August for corn, and in August or September for soybean. This sea-
sonal pattern is consistent with the key growth stages of corn and
soybean in the rainfed part of the U.S. Corn Belt, where July and August
coincide with the flowering and major grain-filling stages for corn;

Fig. 4. Detrended crop yields for corn and soybean, normalized hydrological cycle components, and normalized drought indices from 2003 to 2014. The normalized
hydrological cycle components and drought indices were calculated using the min–max normalization method based on the growing season (from April to
September) averaged data from 2003 to 2014.
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soybean, in contrast, is usually planted after corn and has later critical
flowering and pod filling stages (i.e. in August and September) (Guan
et al., 2017).

Corn yield, in general, has a higher correlation with different hy-
drological variables and drought indices than soybean yield, and both
observation-based and model-simulated hydrological cycle components
show such a pattern (Fig. 2). This result indicates higher sensitivity of
corn yield to water stress than soybean, consistent with prior work
(Lobell et al., 2014). The apparent lower soybean yield sensitivity to
water stress may be because soybean has a better ability to regulate
growth rates during unfavorable environmental conditions compared to
corn (Boyer, 1970; Huck et al., 1983; Turner and Begg, 1981). Among
all the observation-based hydrological variables (Fig. 2a, d), CCI SSM
shows the highest correlation magnitude (i.e. |r|) with crop yield for
both corn and soybean, though the peak correlations happen at dif-
ferent times (July for corn and August for soybean). Besides CCI SSM,
GRACE ΔS also shows a high correlation with corn yield, although
much less so for soybean. This is reasonable as SSM and ΔS are corre-
lated with each other in the rainfed region of the U.S. Corn Belt due to
limited groundwater pumping in this region. For corn, BESS ET also has
a comparable yield sensitivity in August and September, as well as BESS
PET in June and July. As for soybean, BESS ET in June, and NLDAS P
and CCI SSM in August has higher correspondence to crop yield com-
pared with other observation-based hydrological cycle components.

Regarding the correlation |r| between anomalies of different
drought indices and crop yield, VPD and fET show the highest |r| for
both corn and soybean, although the peak times are different for each
crop type. For corn, the correlation of VPD with yield peaks in July,
which is one month earlier than fET (peak in August), although the
peak |r| of VPD with yield is slightly lower than that of fET. A reversed
pattern is found for soybean, i.e. |r| of fET peaks in June, which is two
months earlier than |r| of VPD, though the peak |r| of fET is slightly
lower than that of VPD. In addition, for corn, VPD has a larger |r| than
other drought indices for the months following May, and the peak |r| of
VPD is one month earlier than other drought indices except for the
SPEI. While for soybean, |r| of fET is significantly larger than the other
indices in June and July, while the peak |r| for fET occurs two months
ahead of the other drought indices. The above results suggest that VPD
and fET may provide effective early warning indicators for corn and
soybean yield loss, respectively.

3.2. Spatio-temporal evolution of the relationship between hydrological
variables and crop yield

Anomaly correlation between the hydrological variables and crop
yields vary in both space and time over the rainfed part of the U.S. Corn
Belt (Fig. 3). For Fig. 3, we selected five hydrological variables (NLDAS
P, CCI SSM, BESS ET, fET, and VPD) based on their |r| rankings in

Fig. 5. Comparison of the normalized water components in 2012 with observation-based percentiles calculated using all of the data from 2003 to 2014. The monthly
normalized observation-based hydrological cycle components were calculated using the max–min normalization method based on monthly data from 2003 to 2014.
The black line indicates the seasonal cycle of the normalized observation-based hydrological cycle components in 2012. The dark green curve indicates the 50%
percentiles, the blue shade indicates the upper and lower 10% ranges, and the light green shade indicates the upper and lower 25% ranges of monthly normalized
observation-based hydrological cycle components, respectively.
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Fig. 2; the patterns of the other hydrological variables are shown in
Figs. S1–S3. Specifically, most hydrological variables showed a similar
spatio-temporal evolution, i.e. their r reaches a (spatially homo-
geneous) maximum (i.e. for CCI SSM, BESS ET, and fET) or minimum
(i.e. for VPD) during June to August. For corn, during June to August,
the r of VPD is negative homogeneously in space, while the r values for
fET and CCI SSM are positive homogeneously in space. The r pattern for
soybean shows a similar spatio-temporal evolution as corn, but with
larger spatial heterogeneity. For soybean, r values for BESS ET and fET
in June, and CCI SSM in August are positive homogeneously in space,
while r values for VPD in August are negative homogeneously in space.
Before June, r values for all of the hydrological variables show large
spatial heterogeneity for both corn and soybean.

Considering the absolute value (|r|) and spatial distribution (e.g.
degree of spatial homogeneity) of r, some hydrological variables show
potential value as early warning indicators of crop yield loss. For corn,
VPD and CCI SSM in May start to show spatially homogeneous corre-
lation patterns with annual yield, while the pattern strengthens over
subsequent months and reaches a peak in August, especially over the
southern rainfed portion of the Corn Belt (Fig. 3). The corn yield pre-
dictability of VPD and CCI SSM in May is explained by the temporal
evolution of their correlation with crop yield (Fig. 3), which both show
relatively stronger but similar correlation patterns with crop yield in
the following critical summer months (i.e. June, July, and August).

While for soybean, BESS ET and fET in June start to show a more
homogeneous correlation pattern in space, but with increasing het-
erogeneity in the correlation pattern beginning in July. These earlier
warning indicators are consistent with the overall correlation pattern
between anomalies in crop yield and hydrological variables (Fig. 2).

3.3. Evaluation of the extreme drought year 2012

The 2012 drought was one of the most severe droughts occurred in
the U.S. Midwest and Central Great Plains over the past century,
causing large crop yield losses for both corn and soybean (Mallya et al.,
2013). Our results confirm that the 2012 drought led to severe yield loss
in the rainfed Corn Belt, and the associated drought signal was clearly
evident in the growing season averaged selected hydrological variables
from 2003 to 2014 (Fig. 4). Fig. 4 shows that the detrended corn yield
in 2012 was at its lowest value for the study period. The detrended
soybean yield was also anomalously low in 2012 and second only to
2003, which had the lowest recorded soybean yield for the study period
due to crop disease (Wrather and Koenning, 2006). In 2012, some hy-
drological cycle components and all of the drought indices showed
extremely low values compared to the other years between 2003 and
2014. Specifically, both observation-based and model-simulated P, Q,
SM, ΔS in 2012 reached their historical minimums during the study
period, but not for ET and PET. PET had its maximum value in 2012,

Fig. 6. Comparison of the normalized water components in 2012 with the normalized model-simulated percentiles calculated using all of the data from 2003 to 2014.
The monthly normalized model-simulated hydrological cycle components were calculated using the max–min normalization method based on monthly NLDAS-Noah
data from 2003 to 2014. The black line indicates the seasonal cycle of normalized model-simulated hydrological cycle components in 2012. The dark green curve
indicates the 50% percentiles, the blue shade indicates the upper and lower 10% ranges, and light green shade indicates the upper and lower 25% ranges of monthly
normalized model-simulated hydrological cycle components, respectively.
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consistent with an exacerbated moisture deficit during the drought
year. The observation-based ET reached its lowest value in 2012, con-
sistent with minimal moisture levels available for evaporation. In
contrast, the NLDAS model simulated ET was actually normal in 2012,
which may be due to model uncertainties in simulating ET in such an
extreme year.

The seasonal patterns of the different hydrological variables in 2012
are shown in Fig. 5, and benchmarked with percentile values calculated
from all of the years between 2003 and 2014. P in 2012 was near
normal in the beginning of this year, but became abnormally low in
June and July as drier conditions emerged. ET and PET were both very
high from January to May in 2012, primarily due to the high VPD (i.e.
high atmospheric water demands) and sufficient soil moisture (i.e.
sufficient water supply); but then ET started to significantly decline
after May and reached its lowest value in August and September, while
PET only had a slight decrease in the following months. This ET de-
crease was primarily due to the dramatic depletion of soil moisture by
the high ET rates that occurred from January to May, and the lack of
precipitation during summer. This drawdown of soil moisture in early
2012 is confirmed by both CCI SSM (showing a sharp decrease from
March to April and remaining historically low until September) and
GRACE ΔS (showing a more gradual decrease, but continuing at low
levels from June to December). Notably, Q also reached its lowest level
in April, which continued afterwards until December in 2012. After the
crop growth season, ET and CCI SSM increased after September due to
the recovery of precipitation, while GRACE ΔS and USGS Q remained
near minimum levels, indicating the time latency to recover severe
groundwater depletion. A similar result is also found from the evolution
of the model-simulated water components (Fig. 6).

We further investigate how well the drought indices captured the
seasonal evolution of the 2012 drought (Fig. 7). Generally, the drought
indices detect different duration and peak time for the 2012 drought.
However, all of the drought indices indicate the historically severe
drought event in June and July. In 2012, VPD was historically the
highest before September (except for April) during the study period.

The SPEI shows a similar seasonal cycle as NLDAS P in 2012, and
reaches its lowest value in June and July, within the critical growing
stages of corn and soybean. The PDSI reaches its lowest value in May
and remains low until December in 2012, while fET reaches its lowest
value from March to September (except for April) in 2012.

3.4. Predicting crop yield based on monthly hydrological cycle components
and drought indices

Accurate seasonal forecasts of end-of-season crop yield are im-
portant for early warning of food insecurity, supply chain planning for
the agriculture industry, and market prediction (Peng et al., 2018b;
Peng et al., 2020b). The effective use of combined information from
multiple hydrological variables has the potential to improve crop yield
prediction. Here we use PLSR to explore the value of integrating dif-
ferent hydrological variables and their seasonal information for corn
and soybean yield prediction. Overall, corn yield can be predicted
better than soybean yield based on the combination of hydrological
variables for both the PLSR optimal model and PLSR first-component
model (Fig. 8). For corn, R2 of the two models are 0.76 and 0.47 when
benchmarked with the NASS yield statistics, and the normalized RMSEs
of the two models are 6.0% and 9.0% at the end of growing season,
respectively. For soybean, R2 of the two models are 0.70 and 0.31, and
the normalized RMSEs are 6.0% and 8.9% at the end of the growing
season, respectively. The PLSR performance is improved when more
seasonal hydrological information is ingested into the model, and this
improvement in model performance can be largely explained by the
observed relationships between crop yield and the seasonal hydro-
logical variables (i.e. Fig. 2). For corn, adding hydrological information
of June and July most significantly improves the crop yield prediction
accuracy (R2 improved from 0.16 to 0.47 for June, and from 0.47 to
0.65 for July). For soybean, adding hydrological information of June
and August can most significantly improve soybean yield prediction
accuracy (R2 improved from 0.05 to 0.33 for June, and R2 from 0.40 to
0.67 for August).

Fig. 7. Comparison of the normalized drought indices in 2012 with the percentiles calculated using all of the data from 2003 to 2014. The monthly normalized
drought indices were calculated using the max–min normalization method based on monthly data from 2003 to 2014. The black line indicates the seasonal cycle of
normalized drought indices in 2012. The dark green curve indicates the 50% percentiles, the blue shade indicates the upper and lower 10% ranges, and the light
green shade indicates the upper and lower 25% ranges of monthly normalized drought indices, respectively.
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In the PLSR model, the first two components could explain 70% and
56% of the annual yield variabilities for corn and soybean, respectively.
For corn, the first and second components explain 51% and 19% of
yield variability, respectively. For soybean, the first and second com-
ponents explain 33% and 23% of yield variability, respectively. The
loading of the first component of the PLSR model (i.e. Fig. 9) for both
corn and soybean yields can be largely explained by the seasonal cor-
relation between the anomalies in crop yield and hydrological variables
(Fig. 2). For both corn and soybean, the first PLSR component mainly
contains the hydrological information in July and August. The sea-
sonally integrated loading of the different hydrological variables in the
first and second PLSR components is presented in Fig. 10. For both corn
and soybean, the first component of the PLSR model mainly consisted of
VPD, fET, GRACE ΔS and CCI SSM, which predominantly represents
water deficit information pertaining to atmospheric demand and soil
water storage; while the second component mainly consists of USGS Q
and GRACE ΔS, as an indicator of long term groundwater availability
for crop growth.

4. Discussion

In this study, we (1) used multi-source (i.e. observation-based and
model-simulated) hydrological cycle components and commonly-used
drought indices to assess the best performing plant water stress in-
dicators with the crop yield as a benchmark in the rainfed part of the

U.S. Corn Belt; (2) revealed the hydrological causes of huge crop yield
losses during the historic 2012 drought by analyzing the progression of
water supply and water demand during the drought cycle; (3) and in-
tegrated the different hydrological cycle components to establish a new
crop-yield-based drought index using the PLSR method. In the fol-
lowing discussion, we synthesize our results to answer the questions
raised in the introduction section of the paper.

(1) What is the best indicator to assess the influence of crop water
stress among the hydrological cycle components and com-
monly used drought indices in the rainfed U.S. Corn Belt with
crop yield as a benchmark?

Previously, “agricultural drought” has generally been defined based
on soil moisture conditions. Our results show that besides soil moisture,
VPD and fET also show high correlation with crop yield for both corn
and soybean. This finding reveals that both water supply and water
demand play vital roles in quantifying plant water stress. Average
precipitation is relatively high in the rainfed portions of the U.S. Corn
Belt (i.e. 500–1300 mm/year) which usually ensures adequate soil
water to support crop growth during normal years; however, atmo-
spheric water demand still plays a dominant role in determining crop
photosynthesis through the leaf stomatal regulation of CO2 exchange
(Ort and Long, 2014). Therefore, VPD or fET may be a better indicator
to quantify the severity of agricultural drought in the rainfed U.S. Corn

Fig. 8. The performance of crop yield predictability using the PLSR optimal model and the PLSR first-component model. The performance in each month represents
the model prediction skill when ingesting data from May until the end of each given month. The filled and error bars represent the respective means and standard
deviations based on 100-time bootstrapping. In each bootstrap, 80% of the data (hydrological information of current month and before) was used for model training,
and the remaining 20% of the data for model validation. The percentages listed above the bars of the RMSE subplots are the normalized RMSE values (RMSE divided
by multi-year averaged crop yield).
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Belt, which is consistent with previous studies (Lobell et al., 2014).
Although different hydrological cycle components show different

abilities in quantifying the influence of water stress, most components
show a generally similar seasonal pattern in terms of their correlations
with crop yield losses, and associated moisture deficits occurring during
critical corn and soybean growth stages in the U.S. Corn Belt. The
highest correlations between the selected drought metrics and annual
crop yield anomalies occurred during the peak growing season (i.e. July
for corn and August for soybean). These results indicate that a more
accurate definition of “agricultural drought” should emphasize hydro-
logical cycle restrictions occurring during critical crop growth stages.

Although both soil moisture and VPD were able to capture agri-
cultural drought and its evolution in the U.S. Corn Belt, the soil
moisture products (both satellite and model-based) had larger un-
certainties compared with the VPD data. However, when benchmarked
with crop yield, we found that VPD, soil moisture, and fET had gen-
erally consistent performance in quantifying drought stress (Fig. 11).
For example, the crop yield correspondence (|r|) with CCI SSM and VPD
increased from April to July for corn and from May to August for
soybean, but was lower from July to October for corn and from August
to October for soybean as shown in Fig. 11b. These findings indicate
that VPD may be a better indicator of agricultural drought when con-
sidering data availability and uncertainty, and overall performance in

quantifying drought stress.

(2) What is the performance of the hydrological cycle components
and drought indices in indicating crop yield loss in the extreme
drought year of 2012?

As one of the most severe drought events in U.S. history, the 2012
drought caused large crop yield losses in the U.S. Corn Belt. As shown in
Fig. 12, the |r| between crop yield and the hydrological cycle compo-
nents and drought indices in 2012 showed similar seasonal patterns as
in other years (i.e. Fig. 2), but with higher correlation coefficients.
Among the observation-based hydrological cycle components, P
showed a higher correlation with crop yield in May and June for corn
and in July for soybean. Among the drought indices, VPD showed a
higher correlation with crop yield, and provided earlier warning of
drought-induced declines in annual corn and soybean production.

By investigating the seasonal cycle and propagation of the hydro-
logical variables in 2012, we find that this drought began with abnor-
mally higher atmospheric water demand (i.e. VPD and PET) and water
depletion (due to the high ET) in the spring of 2012, and aggravated by
lower water supply (i.e. P) in the early summer. These combined effects
significantly lowered soil moisture, leading to abnormally low levels of
both surface soil moisture (i.e. CCI SSM) and deeper groundwater (i.e.

Fig. 9. The loading of the first three components of the optimal PLSR crop yield model in September (i.e. using all of the monthly data from May to September).
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GRACE ΔS), which exacerbated the drought and contributed to ex-
tensive annual crop yield losses. Among the drought indices examined,
VPD provided therefore an earlier warning and continued to be an
anomaly throughout the growing season compared to other more tra-
ditional drought indices (i.e. SPEI and PDSI). Our findings indicate that
in the U.S. Corn Belt, the 2012 drought was characterized by excessive
atmospheric water demand (i.e. VPD and PET) exacerbated by anom-
alously low water supply levels (i.e. P and soil moisture).

(3) How can we optimally integrate the hydrological cycle com-
ponents and drought indices to assess agricultural drought?
What are the contributions of the hydrological cycle compo-
nents to the new drought index and crop yield predictions?

We further used multiple hydrological cycle components to build a
new drought index, defined as the Z-score of seasonal optimal PLSR-
based yield prediction, in which the mean and standard deviation were
calculated using monthly predicted crop yield from 2003 to 2014. The
Z-score is a commonly used metric in drought monitoring (Du et al.,
2019; Mu et al., 2013; Zhao et al., 2017). As shown in Fig. 8, the per-
formance of the new drought index in crop yield prediction increases
with more hydrological information ingested in later months, and the

R2 reached 0.76 and 0.70 in September for corn and soybean, respec-
tively. The proposed drought index can provide more information about
the impact of drought on crop yield compared with other existing in-
dices (Fig. 2). In the new proposed index, crop water supply, water
demand, crop growth stages, and their influence on crop yield loss all
were considered compared to traditional drought indices (i.e. SPEI,
PDSI). For most months, VPD and fET showed larger contributions to
the new drought index indicating the vital role of water demand in
quantifying agricultural drought in the rainfed U.S. Corn Belt (Fig. 9).

We used annual crop yields for corn and soybean as benchmarks to
assess the agricultural drought indices in this study. However, the
drought indices may have different impacts on other crop species due to
their different physiological characteristics and growth stages. As
shown in Fig. 13, the newly defined drought index showed different
severity of 2012 drought in both magnitude and seasonal evolution for
corn and soybean. For corn, the drought signal was present since the
planting month (i.e. May), and became exacerbated during the critical
growth stages in June and July. For soybean, the new drought index
showed relatively normal conditions in the spring but evolved to be
anomalously severe in the following months. The PLSR-based drought
index developed in this study contained cumulative hydrological cycle
information during the growth season, and provided better forecasts of

Fig. 10. PLSR loadings of different predictor variables for the 1st component (x-axis) and the 2nd component (y-axis) of the PLSR models for (a) corn and (b)
soybean.

Fig. 11. The coevolution of the correlation coefficients between crop yield and VPD, between crop yield and fET, and between crop yield and CCI SSM for both corn
and soybean.
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Fig. 12. The correlation between hydrological cycle components or drought indices anomalies and yield anomalies for corn and soybean in the 2012 drought year.

Fig. 13. Seasonal evolution of PLSR-based drought index in 2012 with percentiles calculated using all of the data from 2003 to 2014. The black line indicates the
seasonal cycle of the normalized drought index in 2012. The dark green curve indicates the 50% percentiles, the blue shade indicates the upper and lower 10%
ranges, and the light green shade indicates the upper and lower quartiles of monthly normalized drought index, respectively.
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drought-induced annual crop yield losses than any single hydrological
cycle component (Fig. 5). In addition, this new drought index uses crop
yield as a benchmark, and may provide more crop-specific agricultural
drought assessments and yield forecasts than traditional drought in-
dices. As shown in Fig. 14, the PLSR-based crop-specific drought index
(Fig. 14(b) and (e)) is more similar to the anomaly of the crop yield for
both corn (Fig. 14(a)) and soybean (Fig. 14(d)) compared to VPD in
July (Fig. 14(c)) and August (Fig. 14(f)), which shows the highest
correlation with the crop yield in July and August for corn and soybean,
respectively. These results indicate that the proposed PLSR-based
drought index has strong potential for agricultural drought monitoring
applications.

5. Conclusion

In summary, we quantified the response of corn and soybean crop
yields to hydrological variability over the rainfed part of the U.S. Corn
Belt at the agricultural district scale from 2003 to 2014. Our analysis
investigated the anomaly relationships between corn/soybean yield and
monthly hydrological cycle components, and selected commonly used
drought indices, as well as the spatio-temporal dynamics of such re-
lationships. We analyzed the impacts on crop yield and the underlying
hydrological cycle drivers of the 2012 drought in relation to the recent

period (2003–2014). We also integrated the hydrological cycle com-
ponents and drought index metrics within an empirical modeling fra-
mework (i.e. PLSR) as a means for improving annual crop yield fore-
casts and drought related impacts assessment.

We concluded our study as following: (1) Overall, the relationship
between crop yield and the hydrological cycle components and drought
indices, and its spatio-temporal dynamics is consistent with the evolu-
tion of crop growth stages in the Corn Belt. The CCI SSM and VPD/fET
showed the strongest anomaly correlation with crop yield among all
other observation-based hydrological cycle components and drought
indices examined in this study. In the rainfed Corn Belt, although soil
moisture plays a vital role in quantifying agricultural drought effects,
VPD may be the dominant water stress indicator of crop growth and
end-of-season yield. (2) By analyzing the evolution of the hydrological
cycle components and drought indices in 2012, we found that this se-
vere drought in the rainfed U.S. Corn Belt started with higher water
demand (i.e. PET, VPD), water consumption (i.e. ET), and lower water
supply (i.e. P), followed by excessive soil water depletion (i.e. CCI CCM,
GRACE ΔS), which ultimately led to large crop yield losses in 2012.
Among all of the hydrological cycle components and drought indices
examined, VPD gives the earliest warning of potential crop yield losses
and its anomaly continued throughout the growing season. (3) The
validated R2 of the PLSR-based crop yield model reached favorable

Fig. 14. Comparison among the normalized detrended corn and soybean yield (a and d); PLSR-based agricultural drought index in September for corn and soybean (b
and e); and the normalized VPD in July and August (c and f).
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levels of 0.76 and 0.70 for corn and soybean, respectively. The rela-
tively strong PLSR performance benefitted from complementary value-
added information provided from multiple hydrological cycle input
variables. The first PLSR component explained 51% and 33% of crop
yield variability for corn and soybean, respectively. For both corn and
soybean, the first model component primarily included information
about the atmospheric water deficit (i.e. VPD, fET) and soil water sto-
rage (i.e. CCI SSM and GRACE ΔS). These results provide enhanced
information on water supply and demand constraints affecting agri-
cultural drought, and effective early warning of drought related impacts
on annual yields for the two dominant crop types in the U.S. Corn belt.
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