
Environmental Research Letters

LETTER • OPEN ACCESS

Radiance-based NIRv as a proxy for GPP of corn and soybean

To cite this article: Genghong Wu et al 2020 Environ. Res. Lett. 15 034009

 

View the article online for updates and enhancements.

This content was downloaded from IP address 130.126.143.50 on 21/03/2020 at 23:48

https://doi.org/10.1088/1748-9326/ab65cc


Environ. Res. Lett. 15 (2020) 034009 https://doi.org/10.1088/1748-9326/ab65cc

LETTER

Radiance-based NIRv as a proxy for GPP of corn and soybean

GenghongWu1,2 , KaiyuGuan1,2,3,11 , Chongya Jiang1,2,11 , Bin Peng1,3 , HyungsukKimm1 ,
MinChen4, Xi Yang5, ShengWang1,2, AndrewE Suyker6, Carl J Bernacchi2,7,8 , Caitlin EMoore2,8 ,
Yelu Zeng9, JosephABerry9 andMPilar Cendrero-Mateo10

1 College of Agricultural, Consumer and Environmental Sciences, University of Illinois at UrbanaChampaign, Urbana, Illinois, United
States of America

2 Center for Advanced Bioenergy andBioproducts Innovation, University of Illinois at UrbanaChampaign, Urbana, Illinois, United States
of America

3 National Center of Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
4 Joint Global Change Research Institute, PacificNorthwest National Laboratory, College Park,Maryland, United States of America
5 Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, United States of America
6 School of Natural Resources, University ofNebraska-Lincoln, Lincoln, Nebraska, United States of America
7 Global Change and Photosynthesis ResearchUnit, USDA-ARS,Urbana, Illinois, United States of America
8 Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
9 Department ofGlobal Ecology, Carnegie Institution for Science, Stanford, California, United States of America
10 Laboratory for EarthObservation, Image Processing Laboratory, University of Valencia, Spain
11 Authors towhomany correspondence should be addressed.

E-mail: kaiyug@illinois.edu and chongya@illinois.edu

Keywords: photosynthesis, gross primary production, NIRv, near-infrared radiance of vegetation

Supplementarymaterial for this article is available online

Abstract
Substantial uncertainty exists in daily and sub-daily gross primary production (GPP) estimation,
which dampens accuratemonitoring of the global carbon cycle.Here wefind that near-infrared
radiance of vegetation (NIRv,Rad), defined as the product of observedNIR radiance and normalized
difference vegetation index, can accurately estimate corn and soybeanGPP at daily and half-hourly
time scales, benchmarkedwithmulti-year tower-basedGPP at three sites with different environ-
mental and irrigation conditions. Overall, NIRv,Rad explains 84%and 78%variations of half-hourly
GPP for corn and soybean, respectively, outperformingNIR reflectance of vegetation (NIRv,Ref),
enhanced vegetation index (EVI), and far-red solar-induced fluorescence (SIF760). The strong linear
relationship betweenNIRv,Rad and absorbed photosynthetically active radiation by green leaves
(APARgreen), and that betweenAPARgreen andGPP, explain the goodNIRv,Rad-GPP relationship. The
NIRv,Rad-GPP relationship is robust and consistent across sites. The scalability and simplicity of
NIRv,Rad indicate a great potential to estimate daily or sub-daily GPP fromhigh-resolution and/or
long-term satellite remote sensing data.

1. Introduction

Monitoring and quantifying terrestrial photosynthesis
from satellite remote sensing is crucial for under-
standing the global carbon cycle. Either process-based
models (Jiang and Ryu 2016, Chen et al 2019) or more
empirical models (Running et al 2004, Jung et al 2011)
have been widely used for regional or global gross
primary production (GPP) estimations. Process-based
models employ complex model structure, while exist-
ing empirical models rely on various imposed

functions. Uncertainties in climate forcing and model
parametrization lead to largely diverged GPP estima-
tion regarding the total amount and spatio-temporal
patterns (Anav et al 2015, Ryu et al 2019). Particularly,
GPP estimation at short time scales (e.g. sub-daily and
daily) is still challenging (Bodesheim et al 2018, Wang
et al 2019). Effective and parsimonious ways to
estimate GPP with low dependence on climate forcing
andmodel parameterization are highly required.

Recent advances in satellite-based solar-induced
fluorescence (SIF) monitoring capabilities may
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provide a new opportunity for GPP estimation.
Although SIF has been reported as a better proxy for
photosynthesis at leaf (Baker 2008), landscape (Li et al
2018), and global (Guanter et al 2014) scales than tra-
ditional GPP proxies such as enhanced vegetation
index (EVI) (Sims et al 2006), divergent SIF-GPP rela-
tionships have been obtained from ground-based
observations (Damm et al 2015, Yang et al 2015, Miao
et al 2018). Such divergent SIF-GPP relationships may
stem from complex links between fluorescence emis-
sion efficiency and photosynthetic efficiency (Porcar-
Castell et al 2014) as well as impacts of canopy struc-
ture related to reabsorption and scattering processes
(Yang et al 2018b, van der Tol et al 2019). The coarse
resolution (Frankenberg et al 2011, Joiner et al 2013)
or short temporal coverage (Sun et al 2017, Köhler et al
2018, Li and Xiao 2019) of SIF datasets further restrict
the application of SIF forGPP estimation.

A new vegetation index, near-infrared reflectance
of vegetation (NIRv,Ref), could open up a new opportu-
nity to quantify GPP. NIRv,Ref, defined as the product
of normalized difference vegetation index (NDVI) and
NIR reflectance (NIRRef), is found accounting for
canopy structure well and photosynthetic capacity to
some extent (Badgley et al 2017). Without any other
auxiliary information, NIRv,Ref has been reported to
explain 68% of FLUXNET GPP variation at monthly
to annual time scales (Badgley et al 2019). However,
the relationship between NIRv,Ref and GPP at shorter
time scales (sub-daily to daily) has not been investi-
gated yet, and that relationship is expected to be
poorer than at monthly scale, as NIRv,Ref has much
smaller variations at short time scales. Considering
that radiances can be used in studies with variable light
(Badgley et al 2017), observed NIRRef in NIRv can be
replaced with observed NIR radiance (NIRRad) to
derive a new proxy NIRv,Rad , which takes the incom-
ing radiation into account (Zeng et al 2019) and has
the potential to be a better proxy for GPP at short time
scales. However, the relationship between NIRv,Rad

and GPP has not been investigated and its potential
awaits to be evaluated.

The objective of this study is to evaluate whether
NIRv,Rad is a better proxy of GPP thanNIRv,Ref and SIF
for corn and soybean, twomajor crops in the US Corn
Belt. For a comprehensive assessment of the relation-
ships between GPP and those proxies, we integrated a
range of field observations including hyperspectral

radiance and reflectance, far-red SIF, GPP flux, and
canopy light absorption at half-hourly interval over
seven site-years. The overachieving questions that we
aim to address are: How is NIRv,Rad’s ability to esti-
mate GPP compared with other widely used recog-
nized proxies (NIRv,Ref, EVI and SIF) for corn and
soybean, and what factors may lead to a better perfor-
mance of NIRv,Rad?We propose the following three
hypotheses. First, we hypothesize that the relationship
between NIRv,Rad and GPP is the strongest compared
to three other widely recognized proxies (NIRv,Ref, EVI
and SIF), especially at short time scales. Second, we
hypothesize that the strong relationship between
NIRv,Rad and GPP can be explained by the fact that
NIRv,Rad better accounts for photosynthetically active
radiation (PAR) absorbed by green leaves (APARgreen).
Third, we hypothesize that the relationship between
NIRv,Rad and GPP for soybean (C3 crop) or corn (C4
crop) is site-independent. We suggest these features
might make NIRv,Rad a better proxy for estimating
GPP in theUSCorn Belt thanNIRv,Ref, EVI and SIF.

2.Materials andmethods

2.1. Study site
This study was conducted at three agricultural sites in
the US Corn Belt. One rainfed site was located at the
Energy Farm of University of Illinois at Urbana-
Champaign (UIUC, 40.0628 °N, 88.1959 °W).
Another two sites were located at the EasternNebraska
Research and Extension Center of University of
Nebraska-Lincoln, with one irrigated (UNL irrigated,
41.1649 °N, 96.4701 °W) and one rainfed (UNL
rainfed, 41.1797 °N, 96.4397 °W) site. The mean
annual temperature and precipitation over the period
of 1990–2018 were (11.5 °C, 1036 mm) and (10.1 °C,
770 mm) at UIUC (Willard Airport weather station)
and two UNL sites (National Climate Data Center,
Nebraska,Mead 6 S weather station), respectively. The
UIUC site had a corn-corn-soybean rotation, whereas
the two UNL sites were corn-soybean rotation. The
growing season (from planting to harvesting) was
generally May–October for both crops across all the
three sites. During 2016–2018, a total of four and three
site-year observations were made for corn and soy-
bean, respectively. Detailed site and observation infor-
mation are summarized in table 1.

Table 1. Site and observation information. GPPobservations are available year-round for all site-years.

Site Year Crop Growing season Hyperspectral SIF APARgreen

UIUC (rainfed) 2016 Soybean May 17–Oct 17 Aug 7–Sep 25 Aug 7–Sep 25 NA

2017 Corn May 16–Oct 30 Jun 6–Oct 2 Jun 6–Oct 2 NA

2018 Corn May 8–Oct 8 Jun 28–Oct 8 Jun 28–Oct 8 NA

UNL2 (irrigated) 2017 Corn May 8–Oct 30 Jul 15–Oct 15 Jul 15–Oct 15 Jun 2–Oct 15

2018 Soybean May 14–Oct 19 Jun 19–Oct 14 Jul 19–Oct 14 Jun 7–Oct 14

UNL3 (rainfed) 2017 Corn May 8–Oct 30 Jul 15–Sep 17 Jul 15–Oct 15 Jun 2–Oct 15

2018 Soybean May 14–Oct 19 Jul 8–Oct 14 Jul 8–Oct 14 Jun 7–Oct 14
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2.2. Fluospec2 system and derivation of vegetation
indices and SIF
Fluospec2 systems (Yang et al 2018a, Miao et al 2018)
were installed to acquire vegetation indices and SIF.
Each Fluospec2 system included two subsystems for SIF
and hyperspectral data collection separately. The SIF
subsystem employed a QE Pro spectrometer (Ocean
Optics Inc., USA) covering 730–780 nm with a spectral
resolution of 0.15 nm. The hyperspectral subsystem
employed a HR2000+spectrometer (Ocean Optics
Inc., USA) covering 400–1100 nm with a spectral
resolution of 1.1 nm. Each subsystem had two fibers
collecting downwelling irradiance and upwelling radi-
ance. Details of Fluospec2 system and data acquisition
can be found in supplementary methods which is
available online at stacks.iop.org/ERL/15/034009/
mmedia.

NIRv,Ref, NIRv,Rad and EVI were calculated from
the Fluospec2 system:

=
-

+
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1

Ref Ref
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where the average of 770–780 nm, 650–660 nm, and
460–470 nm were used for NIR, Red and Blue band,
respectively. SIF at 760 nm (SIF760)was retrieved from
the SIF subsystemusing the improved Fraunhofer Line
Depth method (Alonso et al 2008, Cendrero-mateo
et al 2019), which used the whole downwelling
irradiance (E) and upwelling radiance (L) spectrum
information from 745 to 780 nm to extract the SIF
signal.
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where aR and aF are correction factors to account for
the non-linear variation of reflectance (R) and fluores-
cence (F) inside (λin) and outside (λout) the O2-A
absorption band at wavelength λ, respectively.
Detailed SIF data processing can be found in supple-
mentarymethods.

2.3. Eddy covariance (EC) system andderivation
ofGPP
EC systems were installed to acquire net ecosystem
exchange (NEE), and GPP was estimated based on
standard night-time partitioning algorithms (Reich-
stein et al 2005). Each EC system consisted of a sonic
anemometer (81000VRE, R.M. Young Inc., USA for
the UIUC site; R3, Gill Instruments Inc., UK for the
two UNL sites) and a CO2/H2O infrared gas analyzer
(LI-7500 andLI-7200, LI-COR Inc., USA for theUIUC
site and the two UNL sites, respectively). Raw 10 Hz

Carbon fluxes data collected from EC systems were
processed to derive half-hourly NEE. Detailed infor-
mation on site instrumentation can be found in (Zeri
et al 2011) for UIUC site, and in (Suyker and
Verma 2012) for UNL sites. Detailed EC data proces-
sing can be found in supplementarymethods.

2.4. Ancillary data
Downwelling and upwelling PAR were measured
above and below canopy by multiple point or line
quantum sensors (LI-COR Inc., USA), fromwhich the
fraction of absorbed PAR (FPAR)were derived at half-
hourly interval. Leaf area index (LAI) were measured
from destructive samples at an interval of 10–14 d, and
green leaves were separated from yellow leaves to
provide green area index (GAI) measurements. The
ratio of GAI to LAI were linearly interpolated and half-
hourly APARgreen, light use efficiency of green leaves
(LUEgreen) (Gitelson and Gamon 2015) and fluores-
cence yield (LUEf)were then calculated as:

= ´ ´APAR PAR FPAR
GAI

LAI
6green ( )

=LUE
GPP

APAR
7green

green

( )

=LUE
SIF

APAR
. 8f

green

760 ( )

These data were only acquired at the two UNL
sites.

2.5.Data analysis
To test the first hypothesis, the relationships between
GPP and its four proxies, NIRv,Ref, EVI, NIRv,Rad, and
SIF760 were investigated. All site-year data for each
species were combined in this analysis. Investigations
were conducted at three time scales (half-hourly, daily,
and monthly). Because of uncertainties under low light
conditions in the early morning and late afternoon, only
data from 8:00 am to 6:00 pm (local standard time)were
used. Therefore, daily data averaged from half-hourly
data were daytime means in the strict sense. Only days
with data gaps less than 25% were used. Monthly mean
data were calculated for months with at least 10 days of
available data. Linear regression of GPP-NIRv,Rad and
GPP-SIF760 were established with zero intercepts, con-
sidering the fact that there is no photosynthesis when
radiation is zero. For linear regression of GPP-NIRv,Ref

and GPP-EVI, the intercept term was employed because
these twoproxies donot reach zero.

To test the second hypothesis, the relationships
between the four proxies and APARgreen were also
evaluated at the three time scales at the two UNL sites,
where APARgreen data were available. Similar to
LUEgreen and LUEf, we divided NIRv,Rad by APARgreen

and then examined the relationship between LUEgreen
and NIRv,Ref, EVI, LUEf, NIRv,Rad/APARgreen at half-
hourly, daily and monthly scales. Coefficient of deter-
mination (R2)was used to quantify their relationships.
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To test the third hypothesis, site-specific
GPP-NIRv,Rad relationship was investigated separately
for corn and soybean. Half-hourly data were used for
this analysis. For each crop type and each site, the lin-
ear relationship between GPP and NIRv,Rad was estab-
lished, and the slopes across sites were compared.
Subsequently, linear models calibrated from one site
were applied to the remaining two sites to predict
GPP, i.e. NIRv,Rad-derived GPP. The NIRv,Rad-derived
GPP was compared with EC-derived GPP. Root mean
square error (RMSE) was used to evaluate the perfor-
mance of theGPP prediction.

3. Results

3.1. Relationship betweenGPP and its proxies
Overall, GPP, NIRv,Ref, EVI, NIRv,Rad and SIF760
followed similar seasonal trajectories (figure 1). Peak

GPP was higher for corn than for soybean. NIRv,Ref,
EVI, and APARgreen were similar between corn and
soybean, but SIF760 and NIRv,Rad were lower for corn
than soybean. LUEgreen, LUEf andNIRv,Rad/APARgreen

displayed weak seasonal variation, especially after
excluding the senescence period (e.g. from late Sep-
tember to October)when the derivations of FPARgreen

and subsequently LUEgreen were prone to uncertainties
(Gitelson et al 2018).

NIRv,Ref-GPP relationship varied with time scales
for both corn and soybean, and it tended to be stronger
scaled with temporal aggregation (figure 2). From
half-hourly to monthly, R2 of NIRv,Ref-GPP increased
from 0.37 to 0.80 for corn and from 0.48 to 0.83 for
soybean. The EVI-GPP relationship also showed a
similar time scale-dependent pattern. In contrast,
both NIRv,Rad and SIF760 showedmore consistent per-
formance at different time scales. R2 differences of
NIRv,Rad-GPP relationship betweenmonthly scale and

Figure 1.Example of time series of GPP (μmolm−2 s−1), NIRv,Ref, EVI, NIRv,Rad (mWm−2 nm−1 sr−1), SIF760 (mWm−2 nm−1 sr−1),
APARgreen (μmolm−2 s−1), LUEgreen (μmolCO2μmol absorbed photon−1), NIRv,Rad/APARgreen (mWsnm−1 sr−1μmol−1) and
LUEf (mWsnm−1 sr−1μmol−1) at 2017UNL irrigated corn site (left column) and 2018UNL irrigated soybean site (right column). All
data are at half-hourly intervals from8:00 am to 6:00 pm.
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half-hourly scale were only 0.06 and 0.08 for corn and
soybean, respectively.

Among the four GPP proxies, NIRv,Rad exhibited
the strongest relationship with GPP at short time
scales (half-hourly and daily) for both corn and soy-
bean (figure 2), which confirmed our first hypothesis.
Overall, NIRv,Rad explained 84%, 86% and 89% of the
variation of corn GPP at half-hourly, daily and
monthly scales, respectively. Slightly lower values were
achieved for soybean GPP, with 78%, 79% and 86% of
the variation explained at half-hourly, daily and
monthly scales, respectively. In particular, at daily
scale which is of concern for crop growth monitoring,
NIRv,Rad better explained the variation of GPP com-
pared to other three proxies. For corn, the portion of
GPP variation explained by NIRv,Rad was 19%, 16%

and 10% higher than NIRv,Ref, EVI and SIF760, respec-
tively. For soybean, this portion was 10%, 9% and 9%
higher thanNIRv,Ref, EVI and SIF760, respectively.

3.2. Relationship betweenAPARgreen, LUEgreen and
GPPproxies
Strong correlations were observed between APARgreen

and NIRv,Rad (figures 3(a) and (b)). The relationship
between APARgreen and GPP proxies (figure 3) fol-
lowed similar time scale patterns as the relationship
between GPP and GPP proxies (figure 2). NIRv,Rad

showed the strongest correlation with APARgreen at all
time scales for both corn and soybean. Specifically, for
corn, R2 values of APARgreen-NIRv,Rad were 0.94, 0.96
and 0.98 at half-hourly, daily and monthly scale,
respectively (figure 3(a)), and for soybean, they were

Figure 2.R2 between ECbased towerGPP and its proxies (NIRv,Ref, EVI,NIRv,Rad and SIF760) for corn (a) and soybean (b). All half-
hourly data at the three sites were used.

Figure 3.R2 betweenAPARgreen andGPPproxies (NIRv,Ref, EVI,NIRv,Rad and SIF760) (a) and (b), andR
2 between LUEgreen andNIRv,

Ref, EVI,NIRv,Rad/APARgreen and LUEf (c) and (d) for corn (a) and (c) and soybean (b) and (d), respectively. All half-hourly data at the
twoUNL sites were used.NoAPARgreen and LUEgreen data was available at theUIUC site.R2 between LUEgreen andNIRv,Ref, EVI, and
LUEf were almost zero at half-hourly and daily scale for corn (c).
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0.85, 0.83 and 0.91, respectively (figure 3(b)). SIF760
also showed similar correlation with APARgreen across
the three time scales. In contrast, such relationship
between APARgreen and the two proxies without
radiation information (NIRv,Ref and EVI) varied sub-
stantially with time scales, following the order of half-
hourly<daily<monthly.

We further investigated the relationship between
LUEgreen and NIRv,Ref, EVI, LUEf, NIRv,Rad/APARgreen

and LUEf . For corn,NIRv,Rad/APARgreen hadweak cor-
relation with LUEgreen at half-hourly and daily scales,
whereas NIRv,Ref, EVI, LUEf showed no correlation
(figure 3(c)). This was probably due to the small seaso-
nal variability of corn LUEgreen in most of the growing
season (figure 1). R2 values of proxies-LUEgreen at half-
hourly and daily scales were much higher for soybean
than for corn (figure 3(d)), and they all increased with
time scales, i.e. half-hourly<daily<monthly.

The relationship between GPP and GPP proxies at
two UNL sites showed similar time scale patterns
(figure S1) as the pattern observed in figures 2(a) and
(b)when all site data were used. The above results suf-
ficiently proved that our second hypothesis is correct.

3.3. Relationship betweenNIRv,Rad andGPP at
different sites
The slopes of NIRv,Rad-GPP relationship were signifi-
cantly different between corn and soybean (figure S2).
The overall slope was 0.582 (μmol s−1 mW−1 nm sr) for
corn, almost two times of 0.312 (μmol s−1mW−1 nm sr)
for soybean. There was little variation in slopes of
NIRv,Rad-GPP relationship for the same crop type across
different sites. The cross-site standard deviations of
slopes were 0.039 for corn and 0.041 for soybean, with
coefficients of variation of 6.6% and 12.9% for corn and
soybean, respectively.

The prediction performance of the NIRv,Rad-GPP
linearmodel was relatively stable (table 2), largely con-
firming our third hypothesis. When the model was
calibrated at one site and validated at each of the three
sites, the RMSE values were in general within a rela-
tively small range: 6.14<RMSE<10.96 for corn,
and 4.40<RMSE<10.85 for soybean, respectively.
Similar small rangeswere also observed forR2 (figure S3)
and bias (figure S4), with 0.78<R2<0.91and
−5.32<bias<4.32 for corn, and 0.69<R2<0.88

and −6.10<bias<5.97 for soybean, respectively.
Furthermore, when models calibrated at different sites
were applied to a specific site, the performance of those
models were similar. This was indicated by small RMSE
differences (~1 for corn and~2 for soybean) between
differentmodelswithin each column.

4.Discussion

Our results support all three hypotheses on theNIRv,Rad

as a proxy for GPP of corn and soybean. At half-hourly
and daily time scales, NIRv,Rad shows considerably
higher correlations with GPP than NIRv,Refand EVI,
but they have similar performance at monthly scale
(figure 2). Atmonthly scale, plants adjust their structure
and functions to acclimate to environmental changes
(Hikosaka and Hirose 1997, Yamori et al 2010). As a
result, structure and function co-vary with environ-
mental variables, and the reflectance itself is able to
capture long-term variability of GPP. In contrast, day-
to-day and diurnal variations are strongly affected by
high-frequency changes of PAR due to varying solar
angle and sky conditions (Peng and Gitelson 2011),
which does not cause much changes in bi-directional
reflectance (Kim et al 2019). Therefore, NIRv,Rad

containing the information of PAR in addition to
biophysical and biochemical information contained in
reflectance-based vegetation indices better captures
short-term variability of GPP. SIF760 containing con-
siderable PAR information (Miao et al 2018) also shows
stronger relationship with GPP compared to NIRv,Ref

and EVI at half-hourly scale for both species. Though
there is a strong link between SIF and GPP at
photosystem scale (Porcar-Castell et al 2014), SIF760
does not show better correlation with GPP than
NIRv,Rad. A possible reason is the larger uncertainty in
SIF observations than reflectance (Meroni et al 2009),
but more studies are needed to better understand the
potential of SIF for estimatingGPP.

The strong relationship betweenNIRv,Rad and GPP is
mainly attributed to their strong links with APARgreen
(figures 3 and S5). A previous study has reported the lin-
ear relationship between daily GPP and APARgreen for
corn and soybean from 2001 through 2008 at the UNL
sites (Gitelson et al 2015), and we further demonstrate

Table 2.RMSE (μmolm2 s−1) between tower-basedGPP andGPPpredicted byNIRv,Rad-GPP linearmodels. Each row refers to amodel
calibrated at a specific site, and each column refers to differentmodels applied to a specific site.

Calibration sites
Evaluation sites

UIUC

(rainfed)
UNL

(irrigated)
UNL

(rainfed) All sites

UIUC

(rainfed)
UNL

(irrigated)
UNL

(rainfed) All sites

Corn Soybean

UIUC (rainfed) 9.45 5.94 6.56 8.50 7.20 8.53 4.40 7.29

UNL (irrigated) 10.96 6.89 7.60 9.86 6.90 8.17 4.21 6.98

UNL (rainfed) 9.78 6.14 6.78 8.80 9.16 10.85 5.59 9.27

All sites 9.84 6.18 6.83 8.85 7.70 9.12 4.70 7.79
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that such linearity is strong at all time scales (figure3). The
dominant role of APARgreen in determining GPP varia-
tions lies in the fact that LUEgreen displays small variations
during the growth season for both corn and soybean
(figure 1). Similar stable LUE values have also been repor-
ted at other corn (Campbell et al 2019), rice (Yang et al
2018a), and wheat sites (Wienforth et al 2018). Gitelson
et al (2018) suggested that crops tend to respond to stress
through changes in leaf inclination/leaf rolling which
result in decrease of APARgreen instead of LUEgreen.
Consequently, NIRv,Rad which captures a majority of
APARgreen variations serves as a strongproxy forGPP. It is
worth mentioning that NIRv,Radalso captures a portion
of LUEgreen variations, whereas SIF does not at half-
hourly and daily scales (figure 3). This is due to a negative
correlation between LUEf and LUEgreen at the early-
middle growing season (figure S6). The difference
between NIRv,Rad/APARgreen-LUEgreen and LUEf-LUEgreen
explains higher correlation of NIRv,Rad-GPP than
SIF760-GPP even though NIRv,Rad and SIF760 have similar
correlationwithAPARgreen (figure3).

The strong relationship of NIRv,Rad-GPP may be
further explained by the dominant role of canopy
structure. Although LUE is usually considered as a
function of leaf physiology which relates to heat and
water stress (Running et al 2000, Xiao et al 2005), its
concept is originally based on the functional conv-
ergence theory (Monteith 1972, 1977, Field 1991)
hypothesizing that plants scale canopy leaf area and
light harvesting by the availability of resources as a
result of evolutionary processes in order to optimize
their carbon fixation (Goetz et al 1999). Simulations by
sophisticated radiative transfer model also indicate
that LUE is a function of canopy structure
(Medlyn 1998). A recent ground observation study has
provided direct evidence that LUE has a significantly
positive correlation with escape ratio of SIF (Dechant
et al 2019), which captures the effects of canopy struc-
ture on observed SIF and can be quantified as the ratio
of NIRv,Ref to FPAR (Zeng et al 2019). Therefore, it is

reasonable that NIRv,Ref accounts for variations of
both FPAR and LUE, and NIRv,Rad agrees well with
GPP, given that GPP can be expressed as PAR×F-
PAR×LUE and NIRv,Rad can be reformed as NIR
incoming irradiance×NIRv,Ref under the assump-
tion of Lambertian surface (Schaepman-Strub et al
2006)which is similar to PAR×NIRv,Ref.

The NIRv,Rad-GPP relationship for corn and soy-
bean is site-independent in the US Corn Belt, and the
slope of NIRv,Rad-GPP is significantly higher for corn
than for soybean. The site-independence of
NIRv,Rad-GPP relationship is revealed from the fol-
lowing two aspects: (1) the slopes between NIRv,Rad

and GPP are similar among different sites, though
some variations are observed (figure 4); (2) the linear
model built at one site can be applied to other sites
without significantly losing accuracy (table 2). This is
also consistent with a recent study which found a gen-
eral NIRv,Ref-GPP relationship for a wide range of crop
sites around the world (Badgley et al 2019). The higher
slope of NIRv,Rad-GPP for corn over soybean is similar
as the results from SIF-GPP relationship (Liu et al
2017a, Li et al 2018) and NIRv,Ref-GPP relationship
(Badgley et al 2019). This is reasonable, as C4 plants
tend to have much higher GPP than C3 plants even
though they have similar density/greenness. It is
worth mentioning that observational factors could
influence the generality of the NIRv,Rad-GPP relation-
ship. The first one is that the hyperspectral data of this
study cover different time periods across sites (table 1).
It has been reported that even for a strong proxy-GPP
relationship, slope can differ between vegetative and
reproductive stages to some degree (Gitelson et al
2014). The second one is that Fluospec2 footprint cov-
ers less than 2% of EC footprint (Liu et al 2017b). Such
mismatch between sensor footprints varies across sites
and the spatial heterogeneity of underlying surface can
further contribute to uncertainties of GPP prediction
(Wang et al 2019). Further comprehensive studies are

Figure 4.Density scatter plot of theNIRv,Rad-GPP relationship at the half-hourly scale at different sites for corn and soybean,
respectively. The red color indicatesmore data points.
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needed to address whether the NIRv,Rad-GPP relation-
ship is robust.

The strong and robust NIRv,Rad-GPP relationship
has a great implication as we can easily apply this rela-
tionship at satellite observations to scale up to globe
for long-term record or at high resolution. NIRv,Rad is
the product of field observed NIRRad and NDVI.
NIRv,Rad can be reformed as:

p= ´ ´ ´NIR NIR NDVI NIR1 ,

9
v Rad Irra Ref,

( )
/

where NIRirra is incoming radiation in NIR region and
can be derived as the difference between incoming
shortwave radiation and PAR, both of which are
available from high-resolution satellite data (Ryu et al
2018, Hao et al 2019) and long-term (>35 year)
satellite data (Stackhouse et al 2000, Karlsson et al
2017). Further, considering bothNDVI andNIRRef are
the most fundamental products provided by a large
range of satellite platforms (Franch et al 2017, Claverie
et al 2018, Houborg and McCabe 2018), we highlight
that the NIRv,Rad-GPP relationship has a great poten-
tial to be applied to global croplands at a daily interval
with spatial resolution up to 3 m (e.g. commercial
Planet Labs data) and temporal coverage as far back as
1982 (by the Advanced Very High Resolution Radio-
meter, AVHRR) with minimum computational cost.
Given the understanding of ecosystem’s ability to
sequestrate carbon becomesmore urgent (Keenan et al
2016, Ciais et al 2019), such scalability opens up huge
potentials for real-world applications too (National
Academies of Sciences andMedicine E 2019).

5. Conclusion

We investigated the performance of radiance-based
NIRv (NIRv,Rad) in estimating GPP of corn and
soybean based on field observations across multiple
site-years. NIRv,Rad outperformed NIRv,Ref, EVI and
SIF760 for GPP estimation at short timescales (half-
hourly and daily), mainly because NIRv,Rad strongly
correlated with APARgreen which determined GPP
variation for both corn and soybean. TheNIRv,Rad-GPP
relationship showed robust performance across sites,
indicating that the NIRv,Rad-based simple models have
a great potential to estimate crop GPP at short time-
scales with high-resolution or long-term satellite
remote sensingdata.
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