CAT(0) geometry, robots, and society.

Federico Ardila—Mantilla*
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1 Moving objects optimally

There are many situations in which an object can be
moved using certain prescribed rules, and many reasons
— pure and applied — to solve the following problem.

Problem 1. Move an object optimally from one given
position to another.

Without a good idea, this is usually very hard to do.

When we are in a city we do not know well, trying to
get from one location to another quickly, most of us will
consult a map of the city to plan our route. This sim-
ple, powerful idea is the root of a very useful approach to
Problem 1: We build and understand the “map of pos-
sibilities”, which keeps track of all possible positions of
the object; we call it the configuration space. This idea is
pervasive in many fields of mathematics, which call such
maps moduli spaces, parameter spaces, or state complexes.

This article seeks to explain that, for many objects
that move discretely, the resulting “map of possibilities”
isa CAT(0) cubical complex: a space of non-positive cur-
vature made of unit cubes. When this is the case, we can
use ideas from geometric group theory and combinatorics
to solve Problem 1.

This approach is applicable to many different settings;
but to keep the discussion concrete, we focus on the fol-
lowing specific example. For precise statements, see Sec-
tion 3 and Theorems 5 and 9.

Figure 1: A pinned down robotic arm of length 6 in a
tunnel of height 2. The figure above shows its configura-
tion space.

Theorem 2. [?, ?] The configuration space of a 2-D
pinned down robotic arm in a rectangular tunnel is a
CAT(0) cubical complex. Therefore there is an explicit
algorithm to mowve this robotic arm optimally from one
given position to another.

2 Black Lives Matter

On July 4, 2016 we finished the implementation of our
algorithm to move a discrete robotic arm. Three days
later, seemingly for the first time in history, US police
used a robot to kill an American citizen. Now, whenever
I present this research, I also discuss this action.
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The day started with several peaceful Black Lives
Matter protests across the US, condemning the violence
disproportionately inflicted on Black communities by the
American state. These particular protests were prompted
by the shootings of Alton Sterling and Philando Castile
by police officers in Minnesota and Louisiana.

In Dallas, TX, as the protest was coming to an end,
a sniper opened fire on the crowd, killing five police offi-
cers. Dallas Police initially misidentified a Black man —
the brother of one of the protest organizers — as a suspect.
They posted a photo of him on the internet and asked for
help finding him. Fearing for his life, he turned himself
in, and was quickly found innocent.

A few hours later, police identified US Army veteran
Micah Johnson as the main suspect. After a chase, a
standoff, and failed negotiations, they used a robot to kill
him, without due process of law.

The organizers of the protest condemned the sniper’s
actions, and police officials believe he acted alone. The
robot that killed Johnson cost about $150,000; police
said that the arm of the robot was damaged, but still
functional after the blast [?]. The innocent man who
was misidentified by the police continued to receive death
threats for months afterwards.

Different people will have different opinions about the
actions of the Dallas Police in this tragic event. What is
certainly unhealthy is that the large majority of people 1
have spoken to have never heard of this incident.

Our mathematical model of a robotic arm is very sim-
plified, and probably far from direct applications, but
the techniques developed here have the potential to make
robotic operations cheaper and more efficient. We tell
ourselves that mathematics and robotics are neutral tools,
but our research is not independent from how it is ap-
plied. We arrive to mathematics and science searching
for beauty, understanding, or applicability. When we dis-
cover the power that they carry, how do we proceed?

Axiom. [?] Mathematics is a powerful, malleable tool
that can be shaped and used differently by various com-
munities to serve their needs.

Who currently holds that power? How do we use it?
Who funds it and for what ends? With whom do we share
that power? Which communities benefit from it? Which
are disproportionately harmed by it?

For me these are the hardest questions about this
work, and the most important. The second goal in writ-
ing this article — a central one for me — is to invite myself,
and its readers, to continue to look for answers that make
sense to us.

3 Moving robots

We consider a discrete 2-D robotic arm R,, ,, of length n

moving in a rectangular tunnel of height m. The robot

consists of n links of unit length, attached sequentially,

facing up, down, or right. Its base is affixed to the lower

left corner of the tunnel, as shown in Figure 1 for Ry .
The robotic arm may move freely, as long as it doesn’t

collide with itself, using two kinds of local moves:

e Flipping a corner: Two consecutive links facing differ-

ent directions interchange directions.

e Rotating the end: The last link of the robot rotates 90°

without intersecting itself.

This is an example of a metamorphic robot [?].
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Figure 2: The local moves of the robotic arm.

How can we get the robot to navigate this tunnel effi-
ciently?

Figure 3 shows two positions of the robot; suppose we
want to move it from one position to the other. By trial
and error, one will not have too much difficulty in doing
it. It is not at all clear, however, how one might do this
in the most efficient way possible.

Figure 3: Two positions of the robot Ry 6.

4 Maps

To answer this question, let us build the “map of possibil-
ities” of the robot. We begin with a configuration graph,
which has a node for each position of the arm, and an
edge for each local move between two positions. A small
piece of this graph is shown below.

Figure 4: A part of the graph of possibilities of Ry .

As we see in the figure of page 1, the resulting graph
looks a bit like the map of downtown San Francisco or
Bogotd, with many square blocks lined up neatly. Such a



cycle of length 4 arises whenever the robot is in a given
position, and there are two moves A and B that do not
interfere with each other: if we perform move A and then
move B, the result is the same as if we perform move B
and then move A; see for example the 4-cycle of Figure 4.
More generally, if the robot has k£ moves that can be per-
formed independently of each other, these moves result in
(the skeleton of) a k-dimensional cube in the graph.

This brings up an important point: If we wish to
move the robot efficiently, we should let it perform vari-
ous moves simultaneously. In the map, this corresponds
to walking across the diagonal of the corresponding cube.
Thus we construct the configuration space of the robot,
by filling in the k-cube corresponding to any k moves that
can be performed simultaneously, as illustrated in Figure
5; compare with Figure 4. The result is a cubical compler,
a space made of cubes that are glued face-to-face.
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Figure 5: A part of the configuration space of R .

Definition 3. The configuration space C(R) of the
robotic arm R is the cubical complex with:

e a vertex for each position of the robot,

e an edge for each local move between two positions,

e a k-dimensional cube for each k-tuple of local moves
that may be performed simultaneously.

This definition applies much more generally to dis-
crete situations that change according to local moves; see
Section 9 and [?, 7].

In our specific example, Figure 6 shows the configu-
ration space of the robot R3¢ of length 6 in a tunnel of
height 2. It is now clear how to move between two po-
sitions efficiently: just follow the shortest path between
them in the map!

Figure 6: The configuration space of the robotic arm Rs ¢.

5 What are we optimizing?

Is it so clear, just looking at a map, what the optimal
path will be? It depends on what we are trying to op-
timize. In San Francisco, with its beautifully steep hills,
the best route between two points can be very different
depending on whether one is driving, biking, walking, or
taking public transportation. The same is true for the
motion of a robot.

For the configuration spaces we are studying, there
are at least three reasonable metrics: £, /5, and 5. In
these metrics, the distance between points « and y in the
same d-cube, say [0, 1]¢, is

> (i — i), > i —wil,

1<i<d 1<i<d
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respectively. Figure 7 shows the two positions of the robot
of Figure 3 in the configuration space, and shortest paths
or geodesics between them according to these metrics.

HHH

Figure 7: Some paths between two points in the configu-
ration space C(Rg26). The black path is geodesic in the ¢4
metric, the magenta path is geodesic in ¢; and /., and
the cyan path is geodesic in £1, f5, and £.

If each individual move has a “cost” of 1, then per-
forming d simultaneous moves — which corresponds to
crossing a d-cube — costs V/d, d, and 1 in the metrics /s,
£y, and .. Although the Euclidean metric is the most fa-
miliar, it seems unrealistic in this application; why should
two simultaneous moves cost /27 For the applications we
have in mind, the ¢; and ¢, metrics are reasonable mod-
els for the cost and the time of motion:

Cost (¢1): We perform one move at a time; there is no
cost benefit to making moves simultaneously.

Time ({~): We may perform several moves at a time,
causing no extra delay.

These two metrics, studied in [?, ?], will be the ones
that concern us in this paper. The Euclidean metric,
which is useful in other contexts and significantly harder
to analyze, is studied in [?, ?].



6 Morning routine

I write this while on sabbatical in a foreign city. Being the
coffee enthusiast that I am, I carefully study a map sev-
eral mornings in a row, struggling to find the best cafe on
my way from home to my office. One morning, amused,
my partner May-Li stops me on the way out:

— Fede, you know you don’t always have to take a
geodesic, right?

Perhaps, instead of the most efficient paths, we should
be looking for the most pleasant, or the greenest, or the
most surprising, or the most beautiful.

7 CAT(0) cubical complexes

Our two most relevant algorithmic results are the explicit
construction of cheapest (¢1) and fastest ({o) paths in
the configuration space of the robot arm R,, . Still, the
Euclidean metric (¢3) turns out to play a very impor-
tant role as well. Most configuration spaces that interest
us exhibit non-positive curvature with respect to the Eu-
clidean metric, and this fact is central in our construction
of shortest paths in the cost and time metrics.

Let us consider a geodesic metric space (X,d), where
any two points x and y can be joined by a unique shortest
path of length d(z,y); such a path is known as a geodesic.
Let T be a triangle in X whose sides are geodesics of
lengths a, b, ¢, and let T' be the triangle with the same
sidelengths in the plane. For any geodesic chord of length
d connecting two points on the boundary of T', there is a
comparison chord between the corresponding two points
on the boundary of T, say of length d’. If d < d’ for any
such chord in T', we say that triangle T is at least as thin
as a Fuclidean triangle.

X R?
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Figure 8: A chord in a triangle in X, and the correspond-
ing chord in the comparison triangle in R%. The triangle
in X is at least as thin as a Euclidean triangle if d < d’
for all such chords.

Definition 4. A metric space X is CAT(0) if:
e between any two points there is a unique geodesic, and
e cvery triangle is at least as thin as a Fuclidean triangle.

A (finite) cubical complex is a connected space ob-
tained by gluing finitely many cubes of various dimen-
sions along their faces. We regard it as a metric space
with the Euclidean metric on each cube; all cubes neces-
sarily have the same side length. Cubical complexes are

flat inside each cube, but they can have curvature where
cubes are glued together, for example, by attaching three
or five squares around a common vertex (obtaining pos-
itive and negative curvature, respectively), as shown in
Figure 9. We invite the reader to check that the triangles
in the left and right panel of Figure 9 are thinner and not
thinner than a Euclidean triangle, respectively.

Figure 9: A CAT(0) and a non-CAT(0) cubical complex.
We have the following general theorem.

Theorem 5. [?, 7, 7, 7, 7] Given two points x and y in
a CAT(0) cubical complex, there are algorithms to find a
geodesic from x to y in the Fuclidean (fs2), cost (¢1), and
time (Lo ) metrics.

Thus a robot with a CAT(0) configuration space is
easier to control: we have a procedure that automatically
moves it optimally. We will see that this is the case for
the robotic arm R, .

8 How do we proceed?

Once I began to feel that this work, which started out
in “pure” mathematics, could actually have real-life ap-
plications, I started getting anxious and selective about
who I discussed it with. It is a strange feeling, to dis-
cover something you really like, and yet to hope that not
too many people find out about it. When I was invited
to write this article, I felt conflicted. I knew I did not
want to only discuss the mathematics, but I am much
less comfortable writing outside of the shared imaginary
world of mathematicians, where we believe we know right
from wrong. Still, I know it is important to listen, learn,
discuss, and even write from this place of discomfort.

How should I tell this story? Should I do it at all? I
have turned to many friends, colleagues, and students for
their wisdom and advice.

Mario Sanchez, who thinks deeply and critically about
the culture of mathematics and philosophy in our society,
is wary of mathematical fashions: What if it becomes
trendy for mathematicians to start working on optimizing
robots, but not to think about what is being optimized,
or whom that optimization benefits? He tells me, with
his quiet intensity: “If you're worried that your paper
might have this effect, you should probably emphasize
the human question pretty strongly.”



Laura Escobar just returned from a yoga retreat in
Champaign-Urbana where a scholar of Indian literature
taught them the story of Arjuna, a young warrior about
to enter a rightful battle against members of his own fam-
ily. Deeply conflicted about the great violence that will
ensue, he turns to Krishna for advice. Oversimplifying
his reply, Krishna says: “One should not abandon duties
born of one?s nature, even if one sees defects in them.
It is your duty as a warrior to uphold the Dharma, take
action, and fight.” With her usual thoughtful laugh, she
tells me about the distressed reactions of her peace-loving
yoga classmates. Laura and I grew up in the middle of
Colombia’s 60-year old civil war, which has killed more
than 215,000 civilians and 45,000 combatants and has dis-
placed more than 15% of the country’s population [?, ?];
it is hard for us to understand Krishna’s advice as well.!
So we go to the bookstore and buy matching copies of the
Bhagavad Gita.

Many of my friends who do not work in science are
surprised by the lack of structural and institutional re-
sources. They ask me: If a mathematician or a scientist
is trying to understand or have some control over the so-
cietal impact of their knowledge and their expertise, what
organizations they can turn to for support? I have been
asking this question to many people. I have not found
one, but I am collecting resources. Interdisciplinary or-
ganizations like the Union of Concerned Scientists, Sci-
ence for the People, Data for Black Lives, and sections
of the American Association for the Advancement of Sci-
ence seek to use science to improve people’s lives and
advance social justice. Our colleagues in departments of
Science, Technology, and Society, Public Policy, History,
Philosophy, and Ethnic Studies have been studying these
issues for decades, even centuries. This has often taken
place too far from science departments, and it must be
said that my generation of scientists largely looked down
on these disciplines as unrigorous, uninteresting, or unim-
portant. Governments, companies, and professional orga-
nizations assemble Ethics Committees, usually separate
from their main operations, and give them little to no
decision-making power.

How do we make these considerations an integral part
of the practice and application of science? I am encour-
aged to see that the new generation of scientists under-
stands their urgent role in society much more clearly than
we do.

May-Li Khoe, whom I can always trust to be wise and
direct, asks me: If you tell me that this model of mapping
possibilities could be applicable in many areas, and you
don’t trust the organizations that build the most power-
ful robots, why don’t you find other applications? She’s
right. I'm looking.

9 Examples.

Just like any other cultural practice, mathematics re-
spects none of the artificial boundaries that we sometimes
draw, in an attempt to understand it and control it. This
is evident for CAT(0) cubical complexes, a family of ob-
jects which appears in many seemingly disparate parts
of (mathematical) nature. Let us discuss three sources
of examples; each one raises different kinds of questions
and offers valuable tools that have directly shaped this
investigation.

Geometric group theory. This project was born in geo-
metric group theory, which studies groups by analyzing
how they act on geometric spaces. Gromov’s pioneering
work in this field [?] led to the systematic study of CAT(0)
cubical complexes. A concrete source of examples is due
to Davis [?].

A right-angled Cozeter group X (G) is given by gener-
ators of order 2 and some commuting relations between
them; we encode the generators and commuting pairs
in a graph G. For example, the graph of Figure 10.a
encodes the group generated by a,b,c,d with relations
a?=b=c2=d?=1, ab=ba,ac = ca,bc = cb, cd = dc.

The Cayley graph has a vertex for each element of
X (@) and an edge between g and gs for each group el-
ement g and generator s. This graph is the skeleton of
a CAT(0) cube complex that G acts on, called the Davis
compler S(G). Tt is illustrated in Figure 10.b. One can
then use the geometry of S(G) to derive algebraic proper-
ties of X (G). For example, one can easily solve the word
problem for this group: given a word in the generators,
determine whether it equals the identity. This problem is
undecidable for general groups.

a bc c cd £da
c d abcﬂg
b b 1 d da™~ldad
ab a~ad

Figure 10: a. A graph G determining a right-angled Cox-
eter group X (G), and b. part of its Davis complex S(G).

Phylogenetic trees. A central problem in phylogenetics
is the following: given n species, determine the most likely
evolutionary tree that led to them. There are many ways
of measuring how different two species are?; but if we are
given the (7) pairwise distances between the species, how
do we construct the tree that most closely fits that data?

1We later learn that Robert Oppenheimer quoted Krishna when he and his team detonated the first nuclear bomb.
2We should approach them thoughtfully and critically; see Section 10.
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Figure 11: Ernst Haeckel’s tree of life (1866).

Billera, Holmes, and Vogtmann [?] approached this
problem by constructing the space of all possibilities: the
space of trees T,,. Remarkably, they proved that the space
of trees Ty, is a CAT(0) cube complex. In particular, since
it has unique geodesics, we can measure the distance be-
tween two trees, or find the average tree between them.
This can be very helpful in applications: if 10 different
algorithms propose 10 different phylogenetic trees, we can
detect which proposed trees are close to each other, detect
outlier proposals that seem unlikely, or find the average
between different proposals. Owen and Provan showed
how to do this in polynomial time [?].
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Figure 12: Five of the 15 squares in the space of trees 7y.

These results made us wonder whether one can simi-
larly construct ¢3-optimal paths in any CAT(0) cube com-
plex. New complications arise, but it is possible. [?, ?].
Discrete systems: reconfiguration. Abrams, Ghrist,
and Peterson introduced reconfigurable systems in [?, ?].
This very general framework models discrete objects
that change according to local moves, keeping track of

which pairs of moves can be carried out simultaneously.
Examples include discrete metamorphic robots moving
around a space, particles moving around a graph with-
out colliding, domino tilings of a region changing by flips
H— D], and reduced words in the symmetric group
changing by commutation moves s;s; <+ s;s; for [i—j| > 2
and braid moves s;8;115; > Si+15iSi+1-

Definition 3 associates a configuration space to any re-
configurable system. Such a configuration space is always
locally CAT(0). It is often globally CAT(0), and when
that happens Theorem 5 applies, allowing us to move our
objects optimally.

10 Why do we map?

Math historian Michael Barany points out to me that,
struck by the aesthetic beauty of the tree of life shown
in Figure 11, I failed to notice another map that Haeckel
drew: a hierarchical tree of nine human groups — which
he regarded as different species — showing their supposed
evolutionary distance from the ape-man. Modern biology
shows this has no scientific validity, and furthermore, that
there is no genetic basis for the concept of race. Haeckel’s
work is just one sample of the deep historical ties be-
tween phylogenetics and scientific racism, and between
mapmaking and domination.

If we map from a different — an other — point
of view [...] then mapping becomes a process
of getting to know, connect, bring closer to-
gether in relation, remember, and interpret.

— Sandra Alvarez [?]

11 Characterizations

How does one determine whether a given space is
CAT(0)? We surely do not want to follow Definition 4 and
check whether every triangle is at least as thin as a Eu-
clidean triangle; this is not easy to do, even for an exam-
ple as small as Figure 9. Fortunately, this becomes much
easier when the space in question is a cubical complex.
In this case, Gromov showed that the CAT(0) property
— a subtle metric condition — can be rephrased entirely
in terms of topology and combinatorics; no measuring is
necessary!

To state this, we recall two definitions. A space X
is simply connected if there is a path between any two
points, and every loop can be contracted to a point. If v
is a vertex of a cubical complex X, then the link of v in
X is the simplicial complex one obtains by intersecting X
with a small sphere centered at v. A simplicial complex
A is flag if it has no empty simplices: if A is a set of
vertices and every pair of vertices in A is connected by an
edge in A, then A is a simplex in A.



Theorem 6. [?] A cubical complex X is CAT(0) if and
only if:

e X is simply connected, and

e the link of every vertex in X is flag.

In fact, one can also do without the topology: there
is an entirely combinatorial characterization of CAT(0)
cubical complexes. This is originally due to Sageev and
Roller, and we rediscovered it in [?] in a different for-
mulation that is more convenient for our purposes. Let
a pointed cubical complex be a cubical complex with a
distinguished vertex.

Definition 7. [?, ?] A poset with inconsistent pairs
(PIP) (P, <,<») is a poset (P, <) together with a collec-
tion of inconsistent pairs, denoted p <» q for p # q € P,
that is closed under <; that is,

ifpesqandp <p', q< ¢, thenp « ¢'.

PIPs are also known as prime event structures in the com-
puter science literature [?]. The Hasse diagram of a PIP
(P, <,+») shows graphically the minimal relations that
define it. It has a dot for each element of P, a solid line
from p upward to ¢ whenever p < ¢ and there is no r with
p < q <r, and a dotted line between p and g whenever
p <~ q and there are no r < p and s < g such that r < s.

Figure 13: The Hasse diagram of a PIP: solid lines repre-
sent the poset, and dotted lines represent the (minimal)
inconsistent pairs. Notice that C < F implies F «<» F.

Theorem 8. [?, 7, ?] Pointed CAT(0) cube complezes
are in bijection with posets with inconsistent pairs (PIPs).

This rediscovery was motivated by the observation
that CAT(0) cubical complexes look very much like dis-
tributive lattices. In fact, Theorem 8 is an analog of
Birkhoff’s representation theorem, which gives a bijec-
tion between distributive lattices and posets. The proof
is subtle and relies heavily on Sageev’s work [?], but the
bijection is easy and useful to describe:

Pointed CAT(0) cubical complex — PIP: Let (X,v) be a
CAT(0) cubical complex X rooted at vertex v. Every d-
cube in X has d hyperplanes that bisect its edges. When-
ever two cubes share an edge, let us glue the two hyper-
planes bisecting it. The result is a system of hyperplanes
associated to X [?]. Figure 14 shows an example.

The PIP corresponding to (X, v) keeps track of how
one can navigate X starting from v. The elements of

the corresponding PIP are the hyperplanes. We declare
H < I if, starting from v, one must cross H before cross-
ing I. We declare H « [ if, starting from v, one cannot
cross both H and I without backtracking. Remarkably,
the simple combinatorial information stored in this PIP
is enough to recover the space (X, v).

/[

v B D
F

Figure 14: A rooted CAT(0) cubical complex with six
hyperplanes. Its PIP is shown in Figure 13.

PIP — rooted CAT(0) cubical complex: Let P be a PIP.
An order ideal of P is a subset I closed under <; that is,
ifx <yandy € I then x € I. We say that I is consistent
if it contains no inconsistent pair.

The vertices of the corresponding CAT(0) cubical
complex X (P) correspond to the consistent order ideals
of P. Two vertices are connected if their ideals differ by
a single element. Then we fill in all cubes whose edges
are in this graph. The root is the vertex corresponding
to the empty order ideal.

We invite the reader to verify that the PIP of Figure
13 corresponds to the rooted complex of Figure 14.

Theorem 8 provides a completely combinatorial way
of proving that a cubical complex is CAT(0): one simply
needs to identify the corresponding PIP!

12 Remote controls and geodesics

Intuitively, we think of the PIP P as a “remote control”
to help an imaginary particle navigate the corresponding
CAT(0) cubical complex X. If the particle is at a vertex
of X, there is a corresponding consistent order ideal I of
P. The hyperplanes that the particle can cross are the
maximal elements of I and the minimal elements of P — 1T
consistent with I. We can then press the ith “button” of
P if we want the point to cross hyperplane 1.

This point of view is powerful because in practical
applications, the configuration space X is usually very
large, high dimensional, and combinatorially complicated,
whereas the remote control P is much smaller and can be
constructed in some cases of interest.

Theorem 5 provides algorithms to move optimally be-
tween any two points in a CAT(0) cubical complex in the
l1,45, and £, metrics. We sketch the proof in the cases



that are relevant here: in the ¢; and f., metrics, where
the two points v and w are vertices.

Sketch of Proof of Theorem 5. To move from v to w, let
us root the cube complex X at v, and let P be the corre-
sponding PIP. Then w corresponds to an order ideal I of
P; these are the hyperplanes we need to cross.

Cost (¢1) Metric: We simply cross the hyperplanes from
v to w in non-decreasing order, with respect to the poset
I C P: we first cross a minimal element m, € I, then a
minimal element my € I — my, and so on.

Time ({s) Metric: We first cross all minimal hyperplanes
M in I simultaneously, then we cross all the minimal hy-
perplanes Ms in I — M; simultaneously, and so on. This
corresponds to Niblo and Reeves’s normal cube path [?],
where we cross the best available cube at each stage. [

These algorithms show how to move a CAT(0) robot
optimally and automatically.

13 Automation

Driving in San Francisco, I get stuck behind a terrible
driver. They are going extremely slowly, hesitating at ev-
ery corner, stalling at every speed bump. When I finally
lose patience and decide to pass them, they swerve wildly
towards me; I react quickly to avoid being hit. I turn to
give the driver a nasty look, but I find there isn’t one.
What happens if you are injured by an automated,
self-driving vehicle or robot designed by well-meaning sci-
entists and technologists? When you live this close to
Silicon Valley, the question is not just philosophical.

14 Prototype: A robotic arm in a tunnel

If we wish to apply Theorem 5 to move an object op-
timally, our first hope is that the corresponding map of
possibilities is a CAT(0) cubical complex. If this is true,
we can prove it by choosing a convenient root and identi-
fying the corresponding PIP. Tia Baker and Rika Yatchak
pioneered this approach in their Master’s theses [?].

For concreteness, let us consider our robotic arm of
length n in a rectangular tunnel of height 1. Baker and
Yatchak found that the number of states of the configu-
ration space is the term Fj,;; of the Fibonacci sequence.
This seemed like good news, until we realized that these
numbers grow exponentially! The dimension of the map
is n/3, and its combinatorial structure is enormous and
intricate. We cannot navigate this map by brute force.

Fortunately, by running the bijection of Theorem 8
on enough examples, Baker and Yatchak discovered that
this robot has a very nice PIP: a triangular wedge T,
of a square grid with no inconsistent pairs, as shown in
Figure 15. It is much simpler and only has about n?/4

vertices. Indeed they proved that the map of possibilities
of the robot R;, is isomorphic to the cubical complex
X(T,,) corresponding to T},. This implies that the map is
CAT(0), and it allows us to use T}, as a remote control
to move the robot optimally.

Figure 15: The map of the robot R; 7 and its PIP T%.
More generally, we have the following.

Theorem 9. [?, ?] The configuration space of the robotic
arm Ry, of length n in a tunnel of height m is a CAT(0)
cubical complex. Therefore, we have an algorithm to move
the arm optimally from any position to any other.

Naturally, as the height grows, the map becomes in-
creasingly complex. After staring at many examples, get-
ting stuck, and finally receiving a conclusive hint from the
Pacific Ocean — a piece of coral with a fractal-like struc-
ture — we were able to describe the PIP of the robot R, ,,
for any m and n. It is made of triangular flaps like the
one in Figure 15 recursively branching out in numerous
directions.

This coral PIP serves as a witness that the map of
possibilities of the robotic arm R,, ,, is a CAT(0) cubical
complex. It can also be programmed to serve as a remote
control, to help the arm explore the tunnel.

Figure 16: The coral PIPs of the robot Ra g, which con-
tains the PIPs of Ry 1,..., Ra g, shown in different colors.



15 Implementation

The algorithms to navigate a CAT(0) space optimally —
and hence move a CAT(0) robot, are described in [?].
We have implemented them in Python for the robotic
arm in a tunnel [?]. Given two states, the program out-
puts the distance between the two states in terms of
cost (¢1) and time ({), and an animation moving the
robot optimally between the two states. The download-
able code, instructions, and a sample animation are at
http://math.sfsu.edu/federico/robots.html.

With the goal to broaden access to these tools, I
joined my collaborator César Ceballos, who led a week-
long workshop for young robotics enthusiasts, as part of
the Clubes de Ciencia de Colombia. This program in-
vites Colombian researchers to design scientific activities
for groups of students from public high schools and uni-
versities across the country.

We proposed some discrete models of robotic arms,
and our students successfully built their maps of possi-
bilities. Extremely politely, they also pointed out that
César and I really didn’t know much about the mechanics
of robots, and cleverly proposed several possible mecha-
nisms. After the workshop, Arlys Asprilla implemented
the design on CAD and built an initial prototype.

Figure 17: a. César Ceballos and students discuss config-
uration spaces during the Clubes de Ciencia de Colombia.
b. Arlys Asprilla and one of his robotic arms.

16 Escuela de Robética del Chocé

Arlys, his classmate Wolsey Rubio (on the right in Fig-
ure 17.a.), my partner May-Li Khoe, our friend Akil King,
and I designed a similar workshop in Arlys and Wolsey’s
native Choco. This region of the Colombian Pacific Coast
is one of the most biodiverse in the world, and also one
of the most neglected historically by our government. We
partnered with the Escuela de Robdética del Chocé, led
by Jimmy Garcia, which seeks to empower local youth to
developg their scientific and technological skills, in order
to address the problems faced by their communities.

Figure 18: a. At the Escuela de Robdtica del Chocé. b.
Deison Rivas and Juan David Cuenta.

At the end of the workshop, we asked the students:
What robot do you really want to design? Deison Rivas
wants to build a firefighter robot; it will quickly and safely
go in and out of houses — traditionally made of wood —
and put out the fires that have razed entire city blocks in
Quibdé in the past. Juan David Cuenta wants to design
an agile rescue robot; it will help people stuck under the
frequent landslides caused by illegal mining operations
and by heavy rainfalls on the roads.

This theoretical exercise on robotic optimization im-
mediately took on new meaning, thanks to the wisdom of
these young people.



17 Our role as educators

As T put the finishing touches on this paper, I remember
a book I inherited from my mom when she passed away
ten years ago. Browsing through it I find this passage,
highlighted by her:

The saddest achievement of our educational
system is to produce [...] the most disastrous
person of our society: the creative scientist
who is at the same time enslaved to the mil-
itary or industrial apparatus; someone who
makes contributions, but has no interest in
the way they will be used.

— Estanislao Zuleta [?]

18 What does it mean to do math ethically?

Six years ago, my student Brian Cruz asked me whether
mathematicians have an ethical code, similar to the Hip-
pocratic Oaths adopted by physicians. More than two
decades into my mathematical career, I had never thought
or heard of this specific suggestion.

Thanks to Brian, I did some research, gathered some
resources with the help of my students®, and I now de-
vote one day of each semester to discuss this question
with them. Posing the question to them is surely more
important than proposing an answer:

Writing assignment. What does “doing mathematics
ethically” mean to you? This question is an invitation to
recognize the power you carry as a mathematician, and
the privilege and responsibility that comes with it. When
you enter a scientific career, you do not leave yourself at
the door. You can choose how to use that power. My

hope is that you will always continue to think about this
in your work.
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