The arithmetic of Coxeter permutahedra

La aritmética de los permutaedros de Coxeter
Federico Ardila'?, Matthias Beck'-?, and Jodi McWhirter!*

'San Francisco State University, San Francisco, California, USA
2Universidad de Los Andes, Bogotd, Colombia

3Freie Universitit, Berlin, Germany

4Washington University in St. Louis, Missouri, USA

Abstract

Ehrhart theory measures a polytope P discretely by counting the lattice points inside its
dilates P,2P,3P,.... We compute the Ehrhart theory of four families of polytopes of great
importance in several areas of mathematics: the standard Coxeter permutahedra for the clas-
sical Coxeter groups A,,B,,C,,D,. A central tool, of independent interest, is a description
of the Ehrhart theory of a rational translate of an integer projection of a cube.

Keywords: Polytope, Ehrhart theory, Coxeter group, permutahedron, tree, Lambert func-
tion.

Resumen

La teoria de Ehrhart mide un politopo P discretamente, contando los puntos enteros dentro
de sus dilataciones P,2P,3P,.... En este articulo calculamos la teoria de Ehrhart de cuatro
familias de politopos de gran importancia en varias dreas de la matemadtica: los permutae-
dros de Coxeter de los grupos cldsicos de Coxeter A, B,,,C,, D,. Una herramienta central,
de interés independiente, es la descripcion de la teoria de Ehrhart de una traslacién racional
de una proyeccioén entera de un cubo.

Palabras clave: Politopo, teoria de Ehrhart, grupo de Coxeter, permutaedro, drbol, funcién
de Lambert.

1 Introduction
1.1 Measuring combinatorial polytopes

Measuring is one of the central questions in mathematics: How do we quantify the size or
complexity of a mathematical object? In the theory of polytopes, it is natural to measure
a shape by means of its volume or its surface area. Computing these quantities for a high-
dimensional polytope P is a difficult task ( ); ( ),
and one approach has been to discretize the question. One places the polytope P on a grid
and asks: How many grid points does P contain? How many grid points do its dilates
2P,3P,4P,... contain? This approach is illustrated in Figure 1 for four polygons.

Ehrhart ( ) showed that when the polytope P has integer (or rational) vertices,
then there is a polynomial (or quasipolynomial) ehrp(x) such that the dilate P contains
exactly ehrp(t) grid points for any positive integer . He also showed that the leading co-
efficient of ehrp(x) equals the (suitably normalized) volume of P, and the second leading
coefficient equals half of the (suitably normalized) surface area. Therefore the Ehrhart
(quasi)polynomial (which we will define in detail in Section 2.1 below) is a more precise
measure of size than these two quantities. Ehrhart theory is devoted to measuring polytopes



Figura 1. The first three dilates of the standard Coxeter permutahedra IT(A; ), I1(B,),
T1(C3), and TI(D,). Their tth dilates contain 1+ 3¢ + 3¢2, (1 +4¢ + 7t for ¢ even and
21+ 712 for ¢ odd), 1+ 61+ 1472, and 1+ 2¢ + 2¢2 lattice points, respectively.

in this way, computing continuous quantities discretely (see, e.g., (

))-

Combinatorics studies the possibilities of a discrete situation; for example, the possible
ways of reordering, or permuting the numbers 1,...,n. In most situations of interest, the
number of possibilities of a discrete problem is tremendously large, so one needs to find
intelligent ways of organizing them. Geometric combinatorics offers an approach: model
the (discrete) possibilities of a problem with a (continuous) polytope. A classic example is
the permutahedron IT,, a polytope whose vertices are the n! permutations of {1,2,...,n}.
(Figure 2 shows the permutahedron Il4.) One can answer many questions about permuta-
tions using the geometry of this polytope. In this way, the general strategy of geometric
combinatorics is to model discrete problems continuously.
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Figura 2. The permutahedron 14 organizes the 24 permutations of {1,2,3,4}.

Combining these two forms of interplay between the discrete and the continuous, it is nat-
ural to begin with a discrete problem, model it in terms of a continuous polytope, and then
measure that polytope discretely. Stanley ( ) pioneered this line of inquiry, with
the following beautiful theorem.

Theorem 1.1 (Stanley ( )). The Ehrhart polynomial of the permutahedron 11,
is
ehryy, (1) = ap 11" ap ot" P+ +art +ap,

where a; is the number of graphs with i edges on the vertices {1,...,n} that contain no
cycles. In particular, the normalized volume of the permutahedron 11, is the number of
trees on {1,...,n}, which equals n" 2.



1.2 Our results: measuring classical Coxeter permutahedra

The permutahedron IT,, is one of an important family of highly symmetric polytopes: the
reduced, crystallographic standard Coxeter permutahedra; see Section 2.3 for a precise
definition and some Lie theoretic context. These polytopes come in four infinite families
An—1,B4,Cy, Dy, (n > 1) called the classical types, and five exceptions Eg, E7,Eg, Fy, and
G». The standard Coxeter permutahedra of the classical types are the following polytopes
in R":

II(A,—1) := conv{permutationsof J(—n+1,-n+3,....n—3,n—1)},
I1(B,) := conv{signed permutations of %(1 ,3,...,2n—1)},
I1(C,) := conv{signed permutations of (1,2,...,n)},
II(D,) := -conv{evenly signed permutations of (0,1,...,n—1)}.

Here a signed permutation of a sequence S is obtained from a permutation of S by in-
troducing signs to the entries arbitrarily; the evenly signed permutations are those that
introduce an even number of minus signs. Figure 1 shows the standard Coxeter permuta-
hedra I1(A;),II(B,),I1(C,), and I1(D,), as well as their second and third dilates. Note that
the evenly signed permutations of {0, 1} are (+0,+1), (+1,+0),(—=0,—1),(—1,-0).

The goal of this paper is to understand the Ehrhart theory of these four families of polytopes.
Our main results are the following. Theorem 4.3 generalizes Stanley’s Theorem 1.1, offer-
ing combinatorial formulas for the Ehrhart quasipolynomials of the Coxeter permutahedra
I(A,-1),I1(B,),I1(C,), and II(D,) in terms of the combinatorics of forests. Theorems 5.2
and 5.3 then give explicit formulas: they compute the exponential generating functions of
those Ehrhart quasipolynomials, in terms of the Lambert W function. Proposition 3.1 is an
intermediate step that may be of independent interest: it describes the Ehrhart theory of a
rational translate of an integral zonotope. This result was used in ( )
to compute the equivariant Ehrhart theory of the permutahedron.

We remark that each of these zonotopes can be translated to become an integral polytope,
and the Ehrhart polynomials of these integral translates were computed in
( ); see also ( ); ( ) for related work.

2 Preliminaries
2.1 Ehrhart theory

A rational polytope P C R is the convex hull of finitely many points in Q¢. We define

ehrp(t) := ‘tPﬂZd

)

for positive integers t. Ehrhart ( ) famously proved that this lattice-point count-
ing function evaluates to a quasipolynomial in 7, that is,

ehrp(r) = cq(t)t! 4 cqa1 (1)1 o)

where co(t),...,cq(t) : Z — Q are periodic functions in #; their minimal common period
is the period of ehrp(¢). Ehrhart also proved that the period of ehrp(¢) divides the least
common multiple of the denominators of the vertex coordinates of P. In particular, if P is
an integral polytope, then ehrp(¢) is a polynomial.

All the polytopes we will consider in this paper are half integral. Therefore the periods of
their Ehrhart quasipolynomials will be either 1 or 2. For more on Ehrhart quasipolynomials,
see, e.g., ( ).



2.2 Zonotopes

A zonotope is the Minkowski sum Z(A) of a finite set A = {[a;,by],...,[a,,b,]} of line
segments in R, that is,

g(A) = Z[aj,bj]
J=1
= {icj‘ZCjG[ﬁﬁbj]fOI’lSjSl’l}.
j=1

Equivalently, zonotopes are precisely the projections of cubes. For a finite set of vectors
U C RY we define

Z(U) = Z [0,u].
uclU
Shephard ( ) showed that the zonotope % (A) may be decomposed as a dis-
joint union of translates of the half-open parallelepipeds
31 := ) [0,u)
uel

spanned by the linearly independent subsets I of {b; —a; : 1 < j < n}. This decomposition
contains exactly one parallelepiped for each independent subset. Figure 3 displays such a
zonotopal decomposition of a hexagon.

e0————

Figura 3. A decomposition of a hexagon into half-open parallelepipeds.

A useful feature of this decomposition is that lattice half-open parallelepipeds are arithmeti-

space spanned by the parallelepiped. This implies the following result.

Proposition 2.1. (Stanley, ( )) Let U C Z¢ be a finite set of vectors. Then the
Ehrhart polynomial of the integral zonotope % (U) is

ehry(t) = Y vol(W)r™

Wcu
lin. indep.

where |W| denotes the number of vectors in W and vol(W) is the relative volume of the
parallelepiped generated by W.

2.3 Lie combinatorics

Assuming familiarity with the combinatorics of Lie theory ( ) (for this sec-
tion only), we briefly explain the geometric origin of the polytopes that are our main objects



of study. Finite root systems are highly symmetric configurations of vectors that play a
central role in many areas of mathematics and physics, such as the classification of regu-
lar polytopes ( ) and of semisimple Lie groups and Lie algebras

( ). The finite crystallographic root systems can be completely classified; they come in
four infinite families:

Anfl = {:l:

D, = {i € —¢€j),

and five exceptions: Eg, E7, Eg, F4, and G». For each of the four infinite families A, , B,,, C,, Dy,
of root systems @, we can let the positive roots @ be those obtained by choosing the plus
sign in each + above.

Let @ be a finite root system of rank d and W be its Weyl group. Let @ C @ be a choice
of positive roots. The standard Coxeter permutahedron of @ is the zonotope

ne = Yy [-5.9]

oedt
= conv{w-p:weW}

IR

where p := %(Zaeqfr o). These polytopes, and their deformations, are fundamental objects
in the representation theory of semisimple Lie algebras ( ), in many prob-
lems in optimization ( ), and in the combinatorics of (signed) permutations,
among other areas.

For the classical root systems A,_1, By, Cy,D,, the standard Coxeter permutahedra are pre-
cisely the polytopes I1(A,_;),I1(B,),I1(C,),II(D,) introduced in Section 1.2.

3 Almost integral zonotopes and their Ehrhart theory

The arithmetic of zonotopes described in Section 2.2 becomes much more subtle when the
zonotope is not integral. However, we can still describe it for almost integral zonotopes
v+ Z(U) , which are obtained by translating an integral zonotope 2 (U) by a rational
vector v. They satisfy the following analog of Stanley’s Proposition 2.1.

Proposition 3.1. Let U € Z¢ be a finite set of integer vectors and v € Q¢ be a rational
vector. Then the Ehrhart quasipolynomial of the almost integral zonotope v+ % (U) equals

ehry, 7)(t) = Y. xw(t) vol(W) V!

WcuU
lin. indep.

where
1 if (tv+span(W))NZ? # @,
xw(t) = .
0 otherwise.

Proof. The zonotope t(v+ 2°(U)) can be subdivided into lattice translates of the half-open

2. If tv + span(W) contains a lattice point u € Z¢, then it also contains the lattice points
u+w for all w € W, so A := (tv+ span(W)) NZ¢ is a |W|-dimensional lattice. Since



and the desired result follows. 0O

In ( ), Proposition 3.1 is used to describe the equivariant Ehrhart
theory of the permutahedron and prove a series of conjectures due to Stapledon
( ) in this special case.

4 Classical root systems, signed graphs and Ehrhart functions

We will express the Ehrhart quasipolynomials of the classical Coxeter permutahedra in
terms of the combinatorics of signed graphs. These objects originated in the social sciences
and have found applications also in biology, physics, computer science, and economics;
they are a very useful combinatorial model for the classical root systems. See

( ) for a comprehensive bibliography.

4.1 Signed graphs as a model for classical root systems

A signed graph G = (T, 6) consists of a graph I = (V, E) and a signature ¢ € {+}%. The
underlying graph I" may have multiple edges, loops, halfedges (with only one endpoint),
and loose edges (with no endpoints); the latter two have no signs. For the applications we
have in mind, we may assume that G has no loose edges and no repeated signed edges; we
do allow G to have two parallel edges with opposite signs.

A signed graph G = (T, 0) is balanced if each cycle has an even number of negative edges.
An unsigned graph can be realized by a signed graph all of whose edges are labelled with
+; it is automatically balanced.

Continuing a well-established dictionary ( ), we encode a subset S C T of
positive roots of one of the classical root systems ® € {A,_|,B,,Cy,Dy : n > 1} in the
signed graph Gg on n nodes with

e a positive edge ij for each e; —€; € S, e a halfedge at j foreach e; € S, and
e a negative edge ij for each ; +€; €S, e a negative loop at j for each 2e; € S.

The ®-graphs are the signed graphs encoding the subsets of ®*. More explicitly, a signed
graph is an A,_1-graph (or simply a graph) if it contains only positive edges, a B,-graph
if it contains no loops, a C,-graph if it contains no halfedges, and a D,-graph if it contains
neither halfedges nor loops. For a ®-graph G, we let @ C ®™ be the corresponding set of
positive roots of ®.

It will be important to understand which subsets of ®* are linearly independent; to this end
we make the following definitions.

o A (signed) tree is a connected (signed) graph with no cycles, loops, or halfedges.

o A (signed) halfedge-tree is a connected (signed) graph with no cycles or loops, and
a single halfedge.

o A (signed) loop-tree is a connected (signed) graph with no cycles or halfedges, and a
single loop.



o A (signed) pseudotree is a connected (signed) graph with no loops or halfedges that
contains a single cycle (which is unbalanced).

e A signed pseudoforest is a signed graph whose connected components are signed
trees, signed halfedge-trees, signed loop-trees, or signed pseudotrees.

o A ®-forest is a signed pseudoforest that is also ®-graph for each of the root systems
Dc {An—thCmDn nz 1}

e A ®-tree is a connected P-forest for ® € {A,_1,B,,Cy,Dy: n > 1}.

In particular the A,_i-pseudoforests are the forests on [n] := {1,2,...,n}. For a signed
pseudoforest G, we let tc(G), he(G), 1c(G), and pc(G) be the number of tree components,
halfedge-tree components, loop-tree components, and pseudotree components, respectively.

In this language, we recall and expand on results by Zaslavsky ( ) and Ardila—
Castillo-Henley ( ) on the arithmetic matroids of the classical root systems.
Recall that for a linearly independent set W C Z", we write vol(W) for the relative volume
of the parallelepiped 2 (W) generated by W.

Proposition 4.1. ( ); ( ) Let ® € {Ay,—1,B,,Cy, Dy} be a
root system. The independent subsets of ®* are the sets ¢ for the ®-forests G on [n). For
each such G,

|®g|=n—1tc(G)  and  vol(dg) = 2P(O)+1e(G)

4.2 Ehrhart quasipolynomials of standard Coxeter permutahedron of classical type

We also define the integral Coxeter permutahedron

@) := Y [0,al.

aedt

This is a translate of the standard Coxeter permutahedron IT(®) which is an integral poly-
tope for all ®. Its Ehrhart theory was computed in ( ). This is sometimes,
but not always, the same as the Ehrhart theory of IT1(®), as we will see in this section,
particularly in Theorem 4.3.

It follows from the description in Section 1.2 that the standard Coxeter permutahedron IT(<P)
is an integral polytope precisely for ® € {4, : n>10dd}U{C,: n > 1}U{D,: n>1}.
It is shifted %1 = %(el +---+e,) away from being integral for ® € {A,_; : n > 2 even} U
{B,:n>1}.

Proposition 4.2. Let ® € {A,_;: n>2even} U{B, : n > 1}. For a ®-forest G, the affine
subspace %1 + span(®g) contains lattice points if and only if every (signed or unsigned)
tree component of G has an even number of vertices.

Proof. Let Gy,...,Gy be the connected components of G, on vertex sets Vy, ..., V;, respec-
tively. Along the decomposition R” = RV1 @ --- @ R%, we have

k
31+span(®g) = Y 31, +span(Pg,)

i=1

where 1y := Y,y €; for V C [n]. Therefore 11+ span(®g) contains a lattice point in Z"
if and only if %lv,- + span(®g,) contains a lattice point in Z"i for every 1 < i < k. For this
reason, it suffices to prove the proposition for ®-trees.



For every labeling A € RE(Y) of the edges of G with scalars, we will write

vo(A) = 31+ Y As. 4.1

s€E(G)

We need to show that for a ®-tree G, there exists A € RE(9) with vg(4) € Z” if and only if
G is not a (signed or unsigned) tree with an odd number of vertices. We proceed by cases.

(i) Trees: Let G = ([n],E) be a tree. If

VG(A) = %14— Z lij(ei—ej) 4.2)

ij€E(G)

is a lattice point for some choice of scalars A = (4;;)ijck, then the sum of the coordinates
of vg(A)—which ought to be an integer—equals %n Therefore n is even.

Conversely, suppose 7 is even. For each edge ¢ = ij of G, let

1

A 0 if G — e consists of two subgraphs with an even number of vertices each, and
Y 5 if G —e consists of two subgraphs with an odd number of vertices each.

We claim that vg(4), as defined in (4.2), is an integer vector. To see this, consider any
vertex 1 < m < n and suppose that when we remove m and its adjacent edges, we are left
with subtrees with vertex sets Vi,...,V;. Then

vG(A)m = 1+ 1(number of 1 <i <k such that |V;| is odd) (mod 1),

and this is an integer since YX_, |V;| = n— 1 is odd.

We conclude that for a tree G, the affine subspace %1 + span(®g) contains lattice points if
and only if G has an even number of vertices, as desired.

(ii) Signed trees: Given a subset S C B, = {fe;xe; : 1 <i<j<n}U{zxe; : 1 <i<n},
we define the vertex switching S,, of S at a vertex 1 < m < n to be obtained by changing the
sign of each occurrence of €,, in an element of S. Notice that the effect of this transformation

on the expression
1+) Ass
seS

is simply to change the mth coordinate from % +ato % — a; this does not affect integrality.

Similarly, define the edge switching Sy, of S atb € S to be obtained by changing the sign of
b in S. Notice that
%I—I—Zﬂss =11+ Y As

seS SESH
where A’ is obtained from A by switching the sign of As.

We conclude that vertex and edge switching a subset S C B,, does not affect whether %1 +
span(S) intersects the lattice Z". Now, it is known ( ) that for any balanced
signed graph G there is an ordinary graph H such that ®; can be obtained from ®y by
vertex and edge switching. In particular—as can also be checked directly—any signed tree
G can be turned into an unsigned tree H in this way. Invoking case (i) for the tree H, we
conclude that for a signed tree G, %1 + span(®g) contains lattice points if and only if G has
an even number of vertices.

(iii) Signed halfedge-trees: Let G be a signed halfedge tree. We need to show that %1 +
span(Pg) contains a lattice point. Let % be the halfedge. There are two cases:



a. If n is even, we can label the edges s of G~ := G — h with scalars Ag in such a way
that vg- (A|g-) € Z", in view of (ii). Setting the weight of the halfedge A, = 0 we obtain
vg(Alg) = vg-(Alg-) € Z", as desired.

b. If n is odd, let G* be the signed tree obtained by turning the halfedge 4 into a full edge
h™, going to a new vertex n -+ 1. Using (ii), we can label the edges s of G+ with scalars Ag
such that v+ (A]g+) € Z"™!. Setting the weight of the halfedge / in G to be A;, = A;,+, we
obtain that vg(4|¢) is obtained from v+ (4|g+) by dropping the last coordinate; therefore
vg(Alg) € Z" as desired.

(iv) Signed pseudotrees: Let G be a signed pseudotree. We need to find scalars Ag such that
vi(A) is a lattice vector. Assume, without loss of generality, that its unique (unbalanced)
cycle C is formed by the vertices 1,...,m in that order. Let T1,...,T; be the subtrees of G
hanging from cycle C; say T; is rooted at the vertex a;, where 1 < a; < m, and let s; be the
edge of T; connected to a;. We find the scalars A in three steps.

1. Thanks to (ii), for each tree 7; with an even number of vertices, we can label its edges s
with scalars Ag such that
vi,(Alr) € 2%,

2. For each tree 7; with an odd number of vertices, we can label the edges s of 7; —s; with
scalars Ag such that vz, (A|7,—s,) = 31y, + Yoer(T)—s; AsS € ZVi74. Setting A, = 0, we
obtain

vi(Al5) € (384 +2").

3. It remains to choose the scalars A7, ..,A, corresponding to the edges of the cycle C.
Since E(G) is the disjoint union of E(C) and the E(T;)s, we have

vg(A) =ve(A|e) ZVTl (Alr) + where (1 1) — ZIV)ER'"

is supported on the vertices [m] = {1,...,m} of the cycle C. Therefore, vg(A) € Z" if and
only if we have v¢(A|c) +t € Z™, where t:=u+; Zl Vi even €q;- We rewrite this condition
as

Aa(€1 —0182) +A23(€2 — 02€3) + -+ + Ap1 (€ — Op€1) +t € Z", 4.3)

where o; is the sign of edge connecting i and i 4 1 in C; this is equivalent to the following
system of equations modulo 1:

M2=AniOn—t1, A3=A1201—12, ..., Al = A1 mOm—1—1tm (mod 1). (4.4)

Solving for A1, gives A3 = 0y - - - G, A12 +a for a scalar a. Since the cycle C is unbalanced,
01+ 0, = —1, so this equation has the solution A1, = a/2 (mod 1)'. Using (4.4), we can
then successively compute the values of A»3, ..., A1, guaranteeing that (4.3) holds. In turn,
this produces a lattice point vg(A) € 11+ span(®g), as desired. O

Theorem 4.3. Let .7 (P) be the set of ®-forests, and & (P) C .F (®P) be the set of D-forests
such that every (signed) tree component has an even number of vertices.

1. The Ehrhart polynomials of the integral Coxeter permutahedra TT*(®) are

ehrHZ((D) (t) = 2PC(G>+1C(G)tn—tc(G) )

GeF (D)

UIn fact it has exactly two solutions A1 = a/2 (mod 1) and A5 = (1 +a)/2 (mod 1), explaining why we
have vol(®¢) = 2 in this case.



2. For ® € {Ay—1 : n>2even} U{By : n > 1}, the Ehrhart quasipolynomials of the
standard Coxeter permutahedra I1(®) are

Y 2xl@telO it s even,
) GeF (@)

ehrpyg) (t) = Z 2pe(G) yn—1c(G) ift is odd.
Ge& (D)

For ® € {A,—1:n>10dd}U{Cy:n>1}U{Dy,: n> 1}, we have ehrpyq(t) =
ChI'HZ (@) (t)

Proof. This is the result of applying Proposition 3.1 to these zonotopes, taking into ac-
count Propositions 4.1 and 4.2, and the fact that ®-forests of type A and B contain no loop
components. O

5 Explicit formulas: the generating functions

In this section, we compute the generating functions for the Ehrhart (quasi)polynomials of
the Coxeter permutahedra of the classical root systems. We will express them in terms of
the Lambert W function

n—1 )Ln

n!

Wi = X (-n)
n>1
As a function of a complex variable x, this is the principal branch of the inverse function of
xe*. It satisfies
W(x)e"® = x.

Combinatorially, —W (—x) is the exponential generating function for r,, = n"~!, the number
of rooted trees (7,r) on [n], where T is a tree on [n] and r is a special vertex called the
root ( , , Proposition 5.3.2).

To compute the generating functions of the Ehrhart (quasi)polynomials that interest us, we
first need some enumerative results on trees.

5.1 Tree enumeration
Proposition 5.1. The enumeration of (signed) trees, (signed) pseudotrees, signed halfedge-
trees, and signed loop-trees is given by the following formulas.

1. The number of trees on [n] is t, = n"~2. The exponential generating function for this
sequence is

X" 1
T(x) := Zn" ZH = —W(—x)—EW(—x)z.
n>1
2. The number of pseudotrees on [n] is p,, where
P(x) = Z ¥ 1W(—)c)—lW(—)c)z—llo (1+W(—x))
Py T3 4 2 % '

n>1

3. The number of signed trees on [n] is st, = 2" 'n"~2. The exponential generating
function for this sequence is
ST (x) := ZZ"iln’%zx—n = —lW(—Zx)—lW(—Zx)2
' n! 2 4 '

n>1

10



4. The number of signed pseudotrees on [n] is sp,, where

SP(x) := Zspnz—r; = %W(—2x)—log(1+W(—2x)).

n>1

5. The number of signed half-edge trees on [n| and of signed loop-trees is sh, = sl, =
(2n)"~1. The exponential generating function for this sequence is

SH(x) = SL(x) = ;(Zn)"lf:; = ().

Proof. We begin by remarking that most of these formulas were obtained by Vladeta Jovovic
and posted without proof in entries A000272, A057500, A097629, A320064, and A052746
of the Online Encyclopedia of Integer Sequences (n.d.). For completeness, we pro-
vide proofs.

1. The formula for #, is well known and due to Cayley; see for example ( , ,
Proposition 5.3.2). Now, by the multiplicative formula for exponential generating functions
( , , Proposition 5.1.1), W(—x)?/2 is the generating function for pairs of rooted
trees (T1,71) and (T3, r;), the disjoint union of whose vertex sets is [n]. By adding an edge
between r| and r,, we see that this is equivalent to having a single tree with a special chosen
edge r|r,; there are n"~2(n — 1) such objects. Therefore

%W(—x)2 = Znn_z(n—l)g = —W(—x)-T(x),

n>0
proving the desired generating function.

2. A pseudotree on [n] is equivalent to a choice of rooted trees (77,r1), ..., (T}, r), the union
of whose vertex sets is [n], together with a choice of an undirected cyclic order on ry,...,r,
— or equivalently, an undirected cyclic order on those trees. Since the exponential function
for rooted trees and for undirected cyclic orders are —W (—x) and

(n—1)1x" x ¥ 1
S TN P e
3 a1~ atgtaleell—y),

X2
X+ =+ Z
2 n>3

respectively, the desired result follows by the compositional formula for exponential gener-
ating functions.

3. There are 2"~! choices of signs for a tree on [n], so we have st, = 2"~ !t,. Combining
with 1. gives the desired formulas.

4. Each pseudotree on [n] can be given 2" different edge sign patterns, half of which will lead
to an unbalanced cycle; this leads to 2"~ p,, signed pseudotrees. This accounts for all signed
pseudotrees, except for the ones containing a 2-cycle. We obtain such an object by starting
with a signed tree, choosing one of its edges, and inserting the same edge with the opposite
sign. This counts each such object twice, so the total number of them is st,(n —1)/2. Tt
follows that sp, = 2"~ p, +st,(n — 1) /2, from which the desired formulas follow using 2.
and 3.

5. A signed half-edge tree (or a signed loop-tree) is obtained from a signed tree by choosing
the vertex where we will attach the half-edge (or loop). Thus sh,, = sl, =n-st, = (Zn)”’l.
The exponential generating function follows directly from the definition of W (x). O
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5.2 Generating functions of Ehrhart (quasi)polynomials of Coxeter permutahedra

Theorem 5.2. The generating functions for the Ehrhart polynomials of the integral Coxeter
permutahedra of the classical root systems are:

1 —&-r; ehrHZ(An_])(t)g = exp (—:W(—tx) — 21tW(—tx)2> )
| +'§lehrnz(3n)(r)”:; ~ exp (—ZIIW(—th) _ 41tW(—2tx)2> / VITTW (2,
1+) ehrHZ<Cn)(t)x—r: = exp (’1 W(—21x) — 1W(2tx)2)/ VI1+W(=2tx),
=l n! 2t 4t
1+x+ ) ehrnzwn)(t)x—r: = exp (H W (—2tx) — 1W(—2tx)2>/ V1+W(=21x).
i=h n! 2t 4t

Proof. Theorem 4.3.1 tells us that these exponential generating functions can be under-
stood as enumerating various families of (pseudo)forests, weighted by their various types
of connected components. The compositional formula for exponential generating functions
( , , Theorem 5.1.4) then expresses them in terms of the exponential generating
functions for each type of connected component.

For example, in type A there are only tree components, so

xn n

L) ehrppzgy (0~ Y X "HC(G)X*.

|
n>1 n: n>0 forests n:
G on [n]

n>0 forests
G on [n]

1 (tx)"
~wfly p @
" ro

= exp (:T(tx))
— exp (—iW(—tx) - zltW(—tx)2)

by Proposition 5.1.1.

Similarly, for the other types we have

x" G) ntc(G) X"

1+ ZehI'HZ(Bn)(I)E = Z Z ZPC( >tn o );

n>1 : n>0 B—forests :
Gon [n]

-y ¥ 7pe(G) (1)tC<G) lhc(G)(tx)"
t

n!
n>0 B—forests '
G on [n]

= exp (ZSP(tx) + %ST(tx) + SH(tx))

12



and, analogously,

x" 1
1+ Z ehrpz ¢, ) (1 )— = exp <2SP(tx) + ;ST(tx) —i—ZSL(tx)) ,
n>1
x" 1
1+x+ ;ehrnz (o) (O) oy = exp | 2SP(x) + —ST(1x) |
n
Carefully substituting the formulas in Proposition 5.1, we obtain the desired results. O

Using the formulas in Theorem 5.2 and suitable mathematical software, one easily computes
the following table of Ehrhart polynomials. The reader may find it instructive to compare
this with the analogous table in ( R , Section 6), which lists the Ehrhart
polynomials with respect to the weight lattice of each root system. The tables coincide only
in type C, which is the only classical type where the weight lattice is Z".

® | Ehrhart polynomial of ITZ (™)
Ay | 1

Ay | 1+1

Ay | 143t +372

Az | 146t + 15t + 163

By | 141t

By | 144147+

By | 149t +39¢2 48713

By | 1416t + 1261> + 60873 4 1553¢*
Cp | 14+2¢

Cy | 146t+141%

Cy | 1412t +661% +172¢3

Cy | 1420 +192¢2 4+ 1080¢ +3036¢*
Dy | 14214242

D3 | 146t + 18t +323

Dy | 1412147212 42808 + 63614

Table 1. Ehrhart polynomials of integral Coxeter permutahedra.

Theorem 5.3. The generating function for the odd part of the Ehrhart quasipolynomials of
the non-integral standard Coxeter permutahedra are the following. Fort odd,

X" W(—tx)+W(tx) W(—tx)*>+W(tx)?
L e .
B W (=2x)+W(2rx)  W(=21x)>+W (2tx)?
1+ ) eh e eXp(_ S ([))
ehr — =
T 1+ W(—2tx)

Proof. We carry out similar computations as for Theorem 5.2. This requires us to observe
that the generating functions for even trees and even signed trees are

Teven (x) = Zot2n ! = ( ) + T(_x))
STeven(x) = ZSlzn ST( )+ ST(—x)).
n>0 !
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Now, in light of Theorem 4.3.2, and analogously to the proof of Theorem 5.2, we have

x2n

1
1+ Z ehrH(AZWI)(t)w = exp <tTeven(tx)>

n>1

= exp <21tT(rx) + thT(tx)>

and

x" 1
1+ Z ehrpyg,) (1) py exp <2SP(tx) + ;STevcn(tx) + ZSL(tx))

n>1

1 1
exp <25P(tx) + ZST(tx) + ZST(—tx) + 25L(tx)> ,

which give the desired results using Proposition 5.1. O

Using these formulas, and combining them with Table 1, one computes the following table
of Ehrhart quasipolynomials.

@ | Ehrhart quasipolynomial of I1(®™)
1+t forteven
Ay
t for t odd
A 1+6f+15:2+ 1663 fort even
132168 for 7 odd
14+t forteven
B
t for ¢ odd
B 1+4t+7t2 fort even
21 2t 4722 for 1 odd
B 14974392 +8713 fort even
1) 62487 for 1 odd
3 1+ 161 + 1261 + 608> +1553t*  for t even
Y122 421263 4155344 for 7 odd

Table 2. Ehrhart quasipolynomials of the non-integral standard Coxeter permutahedra.

The reader may find it instructive to count the lattice points in the polygons of Figure 1, and
compare those numbers with the predictions given by Tables 1 and 2.
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