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Abstract

Ehrhart theory measures a polytope P discretely by counting the lattice points inside its

dilates P,2P,3P, . . .. We compute the Ehrhart theory of four families of polytopes of great

importance in several areas of mathematics: the standard Coxeter permutahedra for the clas-

sical Coxeter groups An,Bn,Cn,Dn. A central tool, of independent interest, is a description

of the Ehrhart theory of a rational translate of an integer projection of a cube.

Keywords: Polytope, Ehrhart theory, Coxeter group, permutahedron, tree, Lambert func-

tion.

Resumen

La teorı́a de Ehrhart mide un politopo P discretamente, contando los puntos enteros dentro

de sus dilataciones P,2P,3P, . . .. En este artı́culo calculamos la teorı́a de Ehrhart de cuatro

familias de politopos de gran importancia en varias áreas de la matemática: los permutae-

dros de Coxeter de los grupos clásicos de Coxeter An,Bn,Cn,Dn. Una herramienta central,

de interés independiente, es la descripción de la teorı́a de Ehrhart de una traslación racional

de una proyección entera de un cubo.

Palabras clave: Politopo, teorı́a de Ehrhart, grupo de Coxeter, permutaedro, árbol, función

de Lambert.

1 Introduction

1.1 Measuring combinatorial polytopes

Measuring is one of the central questions in mathematics: How do we quantify the size or

complexity of a mathematical object? In the theory of polytopes, it is natural to measure

a shape by means of its volume or its surface area. Computing these quantities for a high-

dimensional polytope P is a difficult task Bárány & Füredi (1987); Dyer & Frieze (1988),

and one approach has been to discretize the question. One places the polytope P on a grid

and asks: How many grid points does P contain? How many grid points do its dilates

2P,3P,4P, . . . contain? This approach is illustrated in Figure 1 for four polygons.

Ehrhart Ehrhart (1962) showed that when the polytope P has integer (or rational) vertices,

then there is a polynomial (or quasipolynomial) ehrP(x) such that the dilate tP contains

exactly ehrP(t) grid points for any positive integer t. He also showed that the leading co-

efficient of ehrP(x) equals the (suitably normalized) volume of P, and the second leading

coefficient equals half of the (suitably normalized) surface area. Therefore the Ehrhart

(quasi)polynomial (which we will define in detail in Section 2.1 below) is a more precise

measure of size than these two quantities. Ehrhart theory is devoted to measuring polytopes
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Figura 1. The first three dilates of the standard Coxeter permutahedra Π(A2), Π(B2),
Π(C2), and Π(D2). Their tth dilates contain 1+3t +3t2, (1+4t +7t2 for t even and

2t +7t2 for t odd), 1+6t +14t2, and 1+2t +2t2 lattice points, respectively.

in this way, computing continuous quantities discretely (see, e.g., Fukuda (2008. Electroni-

cally available at http://www.ifor.math.ethz.ch/∼fukuda/cdd home/cdd.html)).

Combinatorics studies the possibilities of a discrete situation; for example, the possible

ways of reordering, or permuting the numbers 1, . . . ,n. In most situations of interest, the

number of possibilities of a discrete problem is tremendously large, so one needs to find

intelligent ways of organizing them. Geometric combinatorics offers an approach: model

the (discrete) possibilities of a problem with a (continuous) polytope. A classic example is

the permutahedron Πn, a polytope whose vertices are the n! permutations of {1,2, . . . ,n}.

(Figure 2 shows the permutahedron Π4.) One can answer many questions about permuta-

tions using the geometry of this polytope. In this way, the general strategy of geometric

combinatorics is to model discrete problems continuously.
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Figura 2. The permutahedron Π4 organizes the 24 permutations of {1,2,3,4}.

Combining these two forms of interplay between the discrete and the continuous, it is nat-

ural to begin with a discrete problem, model it in terms of a continuous polytope, and then

measure that polytope discretely. Stanley Stanley (1991) pioneered this line of inquiry, with

the following beautiful theorem.

Theorem 1.1 (Stanley Stanley (1991)). The Ehrhart polynomial of the permutahedron Πn

is

ehrΠn(t) = an−1tn−1 +an−2tn−2 + · · ·+a1t +a0 ,

where ai is the number of graphs with i edges on the vertices {1, . . . ,n} that contain no

cycles. In particular, the normalized volume of the permutahedron Πn is the number of

trees on {1, . . . ,n}, which equals nn−2.
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1.2 Our results: measuring classical Coxeter permutahedra

The permutahedron Πn is one of an important family of highly symmetric polytopes: the

reduced, crystallographic standard Coxeter permutahedra; see Section 2.3 for a precise

definition and some Lie theoretic context. These polytopes come in four infinite families

An−1,Bn,Cn,Dn (n ≥ 1) called the classical types, and five exceptions E6,E7,E8,F4, and

G2. The standard Coxeter permutahedra of the classical types are the following polytopes

in Rn:

Π(An−1) := conv{permutations of 1
2
(−n+1,−n+3, . . . ,n−3,n−1)},

Π(Bn) := conv{signed permutations of 1
2
(1,3, . . . ,2n−1)},

Π(Cn) := conv{signed permutations of (1,2, . . . ,n)},

Π(Dn) := conv{evenly signed permutations of (0,1, . . . ,n−1)}.

Here a signed permutation of a sequence S is obtained from a permutation of S by in-

troducing signs to the entries arbitrarily; the evenly signed permutations are those that

introduce an even number of minus signs. Figure 1 shows the standard Coxeter permuta-

hedra Π(A2),Π(B2),Π(C2), and Π(D2), as well as their second and third dilates. Note that

the evenly signed permutations of {0,1} are (+0,+1),(+1,+0),(−0,−1),(−1,−0).

The goal of this paper is to understand the Ehrhart theory of these four families of polytopes.

Our main results are the following. Theorem 4.3 generalizes Stanley’s Theorem 1.1, offer-

ing combinatorial formulas for the Ehrhart quasipolynomials of the Coxeter permutahedra

Π(An−1),Π(Bn),Π(Cn), and Π(Dn) in terms of the combinatorics of forests. Theorems 5.2

and 5.3 then give explicit formulas: they compute the exponential generating functions of

those Ehrhart quasipolynomials, in terms of the Lambert W function. Proposition 3.1 is an

intermediate step that may be of independent interest: it describes the Ehrhart theory of a

rational translate of an integral zonotope. This result was used in Ardila et al. (To appear.)

to compute the equivariant Ehrhart theory of the permutahedron.

We remark that each of these zonotopes can be translated to become an integral polytope,

and the Ehrhart polynomials of these integral translates were computed in Ardila et al.

(2015); see also De Concini & Procesi (2008); Deza et al. (2018) for related work.

2 Preliminaries

2.1 Ehrhart theory

A rational polytope P ⊂ Rd is the convex hull of finitely many points in Qd . We define

ehrP(t) :=
∣

∣

∣tP∩Zd
∣

∣

∣ ,

for positive integers t. Ehrhart Ehrhart (1962) famously proved that this lattice-point count-

ing function evaluates to a quasipolynomial in t, that is,

ehrP(t) = cd(t) td + cd−1(t) td−1 + c0(t)

where c0(t), . . . ,cd(t) : Z → Q are periodic functions in t; their minimal common period

is the period of ehrP(t). Ehrhart also proved that the period of ehrP(t) divides the least

common multiple of the denominators of the vertex coordinates of P. In particular, if P is

an integral polytope, then ehrP(t) is a polynomial.

All the polytopes we will consider in this paper are half integral. Therefore the periods of

their Ehrhart quasipolynomials will be either 1 or 2. For more on Ehrhart quasipolynomials,

see, e.g., Beck & Robins (2015).
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2.2 Zonotopes

A zonotope is the Minkowski sum Z (A) of a finite set A = {[a1,b1], . . . , [an,bn]} of line

segments in Rd ; that is,

Z (A) :=
n

∑
j=1

[a j,b j]

=
{ n

∑
j=1

c j : c j ∈ [a j,b j] for 1 ≤ j ≤ n
}

.

Equivalently, zonotopes are precisely the projections of cubes. For a finite set of vectors

U ⊂ Rd we define

Z (U) := ∑
u∈U

[0,u] .

Shephard Shephard (1974) showed that the zonotope Z (A) may be decomposed as a dis-

joint union of translates of the half-open parallelepipeds

I := ∑
u∈I

[0,u)

spanned by the linearly independent subsets I of {b j −a j : 1 ≤ j ≤ n}. This decomposition

contains exactly one parallelepiped for each independent subset. Figure 3 displays such a

zonotopal decomposition of a hexagon.

Figura 3. A decomposition of a hexagon into half-open parallelepipeds.

A useful feature of this decomposition is that lattice half-open parallelepipeds are arithmeti-

cally quite simple: I contains exactly vol( I) lattice points, where vol( I) denotes the

relative volume of I, measured with respect to the sublattice Zd ∩ aff( I) in the affine

space spanned by the parallelepiped. This implies the following result.

Proposition 2.1. (Stanley, Stanley (1991)) Let U ⊂ Zd be a finite set of vectors. Then the

Ehrhart polynomial of the integral zonotope Z (U) is

ehrZ (U)(t) = ∑
W⊆U

lin. indep.

vol(W) t |W|

where |W| denotes the number of vectors in W and vol(W) is the relative volume of the

parallelepiped generated by W.

2.3 Lie combinatorics

Assuming familiarity with the combinatorics of Lie theory Humphreys (1990) (for this sec-

tion only), we briefly explain the geometric origin of the polytopes that are our main objects
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of study. Finite root systems are highly symmetric configurations of vectors that play a

central role in many areas of mathematics and physics, such as the classification of regu-

lar polytopes Coxeter (1973) and of semisimple Lie groups and Lie algebras Humphreys

(1978). The finite crystallographic root systems can be completely classified; they come in

four infinite families:

An−1 :=
{

±(ei −e j) : 1 ≤ i < j ≤ n
}

,

Bn :=
{

±(ei −e j), ± (ei +e j) : 1 ≤ i < j ≤ n
}

∪{±ei : 1 ≤ i ≤ n} ,

Cn :=
{

±(ei −e j), ± (ei +e j) : 1 ≤ i < j ≤ n
}

∪{±2ei : 1 ≤ i ≤ n} ,

Dn :=
{

±(ei −e j), ± (ei +e j) : 1 ≤ i < j ≤ n
}

and five exceptions: E6,E7,E8,F4, and G2. For each of the four infinite families An−1,Bn,Cn,Dn

of root systems Φ, we can let the positive roots Φ+ be those obtained by choosing the plus

sign in each ± above.

Let Φ be a finite root system of rank d and W be its Weyl group. Let Φ+ ⊂ Φ be a choice

of positive roots. The standard Coxeter permutahedron of Φ is the zonotope

Π(Φ) := ∑
α∈Φ+

[

−α
2
, α

2

]

= conv{w ·ρ : w ∈W}

where ρ := 1
2
(∑α∈Φ+ α). These polytopes, and their deformations, are fundamental objects

in the representation theory of semisimple Lie algebras Humphreys (1978), in many prob-

lems in optimization Ardila et al. (2020), and in the combinatorics of (signed) permutations,

among other areas.

For the classical root systems An−1,Bn,Cn,Dn, the standard Coxeter permutahedra are pre-

cisely the polytopes Π(An−1),Π(Bn),Π(Cn),Π(Dn) introduced in Section 1.2.

3 Almost integral zonotopes and their Ehrhart theory

The arithmetic of zonotopes described in Section 2.2 becomes much more subtle when the

zonotope is not integral. However, we can still describe it for almost integral zonotopes

v+Z (U) , which are obtained by translating an integral zonotope Z (U) by a rational

vector v. They satisfy the following analog of Stanley’s Proposition 2.1.

Proposition 3.1. Let U ∈ Zd be a finite set of integer vectors and v ∈ Qd be a rational

vector. Then the Ehrhart quasipolynomial of the almost integral zonotope v+Z (U) equals

ehrv+Z (U)(t) = ∑
W⊆U

lin. indep.

χW(t) vol(W) t |W|

where

χW(t) :=

{

1 if (tv+ span(W))∩Zd
,∅,

0 otherwise.

Proof. The zonotope t(v+Z (U)) can be subdivided into lattice translates of the half-open

parallelepipeds t(v+ W) for the linearly independent subsets W ⊆ U. Let us count the

lattice points in t(v+ W); there are two cases:

1. If tv+ span(W) does not intersect Zd then |t(v+ W)∩Zd |= 0.

2. If tv+ span(W) contains a lattice point u ∈ Zd , then it also contains the lattice points

u+w for all w ∈ W, so Λ := (tv+ span(W))∩Zd is a |W|-dimensional lattice. Since
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tv+ span(W) can be tiled by integer translates of the half-open parallelepiped t(v+ W),
and that linear space contains the lattice Λ, each tile must contain vol(t · W) lattice points.

Therefore ∣

∣

∣t(v+ W)∩Zd
∣

∣

∣ = vol(t · W) = vol( W) t |W|

and the desired result follows. �

In Ardila et al. (To appear.), Proposition 3.1 is used to describe the equivariant Ehrhart

theory of the permutahedron and prove a series of conjectures due to Stapledon Stapledon

(2011) in this special case.

4 Classical root systems, signed graphs and Ehrhart functions

We will express the Ehrhart quasipolynomials of the classical Coxeter permutahedra in

terms of the combinatorics of signed graphs. These objects originated in the social sciences

and have found applications also in biology, physics, computer science, and economics;

they are a very useful combinatorial model for the classical root systems. See Zaslavsky

(1998) for a comprehensive bibliography.

4.1 Signed graphs as a model for classical root systems

A signed graph G = (Γ,σ) consists of a graph Γ = (V,E) and a signature σ ∈ {±}E
. The

underlying graph Γ may have multiple edges, loops, halfedges (with only one endpoint),

and loose edges (with no endpoints); the latter two have no signs. For the applications we

have in mind, we may assume that G has no loose edges and no repeated signed edges; we

do allow G to have two parallel edges with opposite signs.

A signed graph G = (Γ,σ) is balanced if each cycle has an even number of negative edges.

An unsigned graph can be realized by a signed graph all of whose edges are labelled with

+; it is automatically balanced.

Continuing a well-established dictionary Zaslavsky (1981), we encode a subset S ⊆ Φ+ of

positive roots of one of the classical root systems Φ ∈ {An−1,Bn,Cn,Dn : n ≥ 1} in the

signed graph GS on n nodes with

• a positive edge i j for each ei −e j ∈ S, • a halfedge at j for each e j ∈ S, and

• a negative edge i j for each ei +e j ∈ S, • a negative loop at j for each 2e j ∈ S.

The Φ-graphs are the signed graphs encoding the subsets of Φ+. More explicitly, a signed

graph is an An−1-graph (or simply a graph) if it contains only positive edges, a Bn-graph

if it contains no loops, a Cn-graph if it contains no halfedges, and a Dn-graph if it contains

neither halfedges nor loops. For a Φ-graph G, we let ΦG ⊆ Φ+ be the corresponding set of

positive roots of Φ.

It will be important to understand which subsets of Φ+ are linearly independent; to this end

we make the following definitions.

• A (signed) tree is a connected (signed) graph with no cycles, loops, or halfedges.

• A (signed) halfedge-tree is a connected (signed) graph with no cycles or loops, and

a single halfedge.

• A (signed) loop-tree is a connected (signed) graph with no cycles or halfedges, and a

single loop.
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• A (signed) pseudotree is a connected (signed) graph with no loops or halfedges that

contains a single cycle (which is unbalanced).

• A signed pseudoforest is a signed graph whose connected components are signed

trees, signed halfedge-trees, signed loop-trees, or signed pseudotrees.

• A Φ-forest is a signed pseudoforest that is also Φ-graph for each of the root systems

Φ ∈ {An−1,Bn,Cn,Dn : n ≥ 1}.

• A Φ-tree is a connected Φ-forest for Φ ∈ {An−1,Bn,Cn,Dn : n ≥ 1}.

In particular the An−1-pseudoforests are the forests on [n] := {1,2, . . . ,n}. For a signed

pseudoforest G, we let tc(G), hc(G), lc(G), and pc(G) be the number of tree components,

halfedge-tree components, loop-tree components, and pseudotree components, respectively.

In this language, we recall and expand on results by Zaslavsky Zaslavsky (1982) and Ardila–

Castillo–Henley Ardila et al. (2015) on the arithmetic matroids of the classical root systems.

Recall that for a linearly independent set W ⊂ Zn, we write vol(W) for the relative volume

of the parallelepiped Z (W) generated by W.

Proposition 4.1. Ardila et al. (2015); Zaslavsky (1982) Let Φ ∈ {An−1,Bn,Cn,Dn} be a

root system. The independent subsets of Φ+ are the sets ΦG for the Φ-forests G on [n]. For

each such G,

|ΦG|= n− tc(G) and vol(ΦG) = 2pc(G)+lc(G).

4.2 Ehrhart quasipolynomials of standard Coxeter permutahedron of classical type

We also define the integral Coxeter permutahedron

ΠZ(Φ) := ∑
α∈Φ+

[0,α].

This is a translate of the standard Coxeter permutahedron Π(Φ) which is an integral poly-

tope for all Φ. Its Ehrhart theory was computed in Ardila et al. (2015). This is sometimes,

but not always, the same as the Ehrhart theory of Π(Φ), as we will see in this section,

particularly in Theorem 4.3.

It follows from the description in Section 1.2 that the standard Coxeter permutahedron Π(Φ)
is an integral polytope precisely for Φ ∈ {An−1 : n ≥ 1 odd}∪{Cn : n ≥ 1}∪{Dn : n ≥ 1}.

It is shifted 1
2
1 := 1

2
(e1 + · · ·+en) away from being integral for Φ ∈ {An−1 : n ≥ 2 even}∪

{Bn : n ≥ 1}.

Proposition 4.2. Let Φ ∈ {An−1 : n ≥ 2 even}∪{Bn : n ≥ 1}. For a Φ-forest G, the affine

subspace 1
2
1+ span(ΦG) contains lattice points if and only if every (signed or unsigned)

tree component of G has an even number of vertices.

Proof. Let G1, . . . ,Gk be the connected components of G, on vertex sets V1, . . . ,Vk, respec-

tively. Along the decomposition Rn = RV1 ⊕·· ·⊕RVk , we have

1
2
1+ span(ΦG) =

k

∑
i=1

1
2
1Vi

+ span(ΦGi
)

where 1V := ∑i∈V ei for V ⊆ [n]. Therefore 1
2
1+ span(ΦG) contains a lattice point in Zn

if and only if 1
2
1Vi

+ span(ΦGi
) contains a lattice point in ZVi for every 1 ≤ i ≤ k. For this

reason, it suffices to prove the proposition for Φ-trees.
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For every labeling λ ∈ RE(G) of the edges of G with scalars, we will write

vG(λ ) := 1
2
1+ ∑

s∈E(G)

λs s . (4.1)

We need to show that for a Φ-tree G, there exists λ ∈ RE(G) with vG(λ ) ∈ Zn if and only if

G is not a (signed or unsigned) tree with an odd number of vertices. We proceed by cases.

(i) Trees: Let G = ([n],E) be a tree. If

vG(λ ) := 1
2
1+ ∑

i j∈E(G)

λi j (ei −e j) (4.2)

is a lattice point for some choice of scalars λ = (λi j)i j∈E , then the sum of the coordinates

of vG(λ )—which ought to be an integer—equals 1
2
n. Therefore n is even.

Conversely, suppose n is even. For each edge e = i j of G, let

λi j =

{

0 if G− e consists of two subgraphs with an even number of vertices each, and
1
2

if G− e consists of two subgraphs with an odd number of vertices each.

We claim that vG(λ ), as defined in (4.2), is an integer vector. To see this, consider any

vertex 1 ≤ m ≤ n and suppose that when we remove m and its adjacent edges, we are left

with subtrees with vertex sets V1, . . . ,Vk. Then

vG(λ )m ≡ 1
2
+ 1

2
(number of 1 ≤ i ≤ k such that |Vi| is odd) (mod 1),

and this is an integer since ∑
k
i=1 |Vi|= n−1 is odd.

We conclude that for a tree G, the affine subspace 1
2
1+ span(ΦG) contains lattice points if

and only if G has an even number of vertices, as desired.

(ii) Signed trees: Given a subset S ⊆ Bn = {±ei ±e j : 1 ≤ i < j ≤ n}∪{±ei : 1 ≤ i ≤ n},

we define the vertex switching Sm of S at a vertex 1 ≤ m ≤ n to be obtained by changing the

sign of each occurrence of em in an element of S. Notice that the effect of this transformation

on the expression
1
2
1+∑

s∈S

λs s

is simply to change the mth coordinate from 1
2
+a to 1

2
−a; this does not affect integrality.

Similarly, define the edge switching Sb of S at b ∈ S to be obtained by changing the sign of

b in S. Notice that
1
2
1+∑

s∈S

λs s = 1
2
1+ ∑

s∈Sb

λ ′
s s

where λ ′ is obtained from λ by switching the sign of λs.

We conclude that vertex and edge switching a subset S ⊆ Bn does not affect whether 1
2
1+

span(S) intersects the lattice Zn. Now, it is known Zaslavsky (1982) that for any balanced

signed graph G there is an ordinary graph H such that ΦG can be obtained from ΦH by

vertex and edge switching. In particular—as can also be checked directly—any signed tree

G can be turned into an unsigned tree H in this way. Invoking case (i) for the tree H, we

conclude that for a signed tree G, 1
2
1+ span(ΦG) contains lattice points if and only if G has

an even number of vertices.

(iii) Signed halfedge-trees: Let G be a signed halfedge tree. We need to show that 1
2
1+

span(ΦG) contains a lattice point. Let h be the halfedge. There are two cases:
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a. If n is even, we can label the edges s of G− := G− h with scalars λs in such a way

that vG−(λ |G−) ∈ Zn, in view of (ii). Setting the weight of the halfedge λh = 0 we obtain

vG(λ |G) = vG−(λ |G−) ∈ Zn, as desired.

b. If n is odd, let G+ be the signed tree obtained by turning the halfedge h into a full edge

h+, going to a new vertex n+1. Using (ii), we can label the edges s of G+ with scalars λs

such that vG+(λ |G+) ∈ Zn+1. Setting the weight of the halfedge h in G to be λh = λh+ , we

obtain that vG(λ |G) is obtained from vG+(λ |G+) by dropping the last coordinate; therefore

vG(λ |G) ∈ Zn as desired.

(iv) Signed pseudotrees: Let G be a signed pseudotree. We need to find scalars λs such that

vG(λ ) is a lattice vector. Assume, without loss of generality, that its unique (unbalanced)

cycle C is formed by the vertices 1, . . . ,m in that order. Let T1, . . . ,Tk be the subtrees of G

hanging from cycle C; say Ti is rooted at the vertex ai, where 1 ≤ ai ≤ m, and let si be the

edge of Ti connected to ai. We find the scalars λs in three steps.

1. Thanks to (ii), for each tree Ti with an even number of vertices, we can label its edges s

with scalars λs such that

vTi
(λ |Ti

) ∈ ZVi .

2. For each tree Ti with an odd number of vertices, we can label the edges s of Ti − si with

scalars λs such that vTi−si
(λ |Ti−si

) = 1
2
1Vi−ai

+∑s∈E(Ti)−si
λs s ∈ ZVi−ai . Setting λsi

= 0, we

obtain

vTi
(λ |Ti

) ∈ ( 1
2
eai

+ZVi).

3. It remains to choose the scalars λ12, . . . ,λm1 corresponding to the edges of the cycle C.

Since E(G) is the disjoint union of E(C) and the E(Ti)s, we have

vG(λ ) = vC(λ |C)+
k

∑
i=1

vTi
(λ |Ti

)+u , where u = 1
2

(

1−1[m]−
k

∑
i=1

1Vi

)

∈ Rm

is supported on the vertices [m] = {1, . . . ,m} of the cycle C. Therefore, vG(λ ) ∈ Zn if and

only if we have vC(λ |C)+ t ∈ Zm, where t := u+ 1
2 ∑i : |Vi| even eai

. We rewrite this condition

as

λ12(e1 −σ1e2)+λ23(e2 −σ2e3)+ · · ·+λm1(em −σme1)+ t ∈ Zm, (4.3)

where σi is the sign of edge connecting i and i+ 1 in C; this is equivalent to the following

system of equations modulo 1:

λ12 ≡ λm1σm−t1, λ23 ≡ λ12σ1−t2, . . . , λm1 ≡ λm−1,mσm−1−tm (mod 1). (4.4)

Solving for λ12 gives λ12 ≡ σ1 · · ·σmλ12 +a for a scalar a. Since the cycle C is unbalanced,

σ1 · · ·σm = −1, so this equation has the solution λ12 ≡ a/2 (mod 1)1. Using (4.4), we can

then successively compute the values of λ23, . . . ,λm1, guaranteeing that (4.3) holds. In turn,

this produces a lattice point vG(λ ) ∈
1
2
1+ span(ΦG), as desired. �

Theorem 4.3. Let F (Φ) be the set of Φ-forests, and E (Φ)⊆ F (Φ) be the set of Φ-forests

such that every (signed) tree component has an even number of vertices.

1. The Ehrhart polynomials of the integral Coxeter permutahedra ΠZ(Φ) are

ehrΠZ(Φ)(t) = ∑
G∈F (Φ)

2pc(G)+lc(G)tn−tc(G).

1In fact it has exactly two solutions λ12 ≡ a/2 (mod 1) and λ12 ≡ (1+ a)/2 (mod 1), explaining why we

have vol(ΦG) = 2 in this case.
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2. For Φ ∈ {An−1 : n ≥ 2 even} ∪ {Bn : n ≥ 1}, the Ehrhart quasipolynomials of the

standard Coxeter permutahedra Π(Φ) are

ehrΠ(Φ)(t) =















∑
G∈F (Φ)

2pc(G)tn−tc(G) if t is even,

∑
G∈E (Φ)

2pc(G)tn−tc(G) if t is odd.

For Φ ∈ {An−1 : n ≥ 1 odd}∪ {Cn : n ≥ 1}∪ {Dn : n ≥ 1}, we have ehrΠ(Φ)(t) =
ehrΠZ(Φ)(t).

Proof. This is the result of applying Proposition 3.1 to these zonotopes, taking into ac-

count Propositions 4.1 and 4.2, and the fact that Φ-forests of type A and B contain no loop

components. �

5 Explicit formulas: the generating functions

In this section, we compute the generating functions for the Ehrhart (quasi)polynomials of

the Coxeter permutahedra of the classical root systems. We will express them in terms of

the Lambert W function

W (x) = ∑
n≥1

(−n)n−1 xn

n!
.

As a function of a complex variable x, this is the principal branch of the inverse function of

xex. It satisfies

W (x)eW (x) = x .

Combinatorially, −W (−x) is the exponential generating function for rn = nn−1, the number

of rooted trees (T,r) on [n], where T is a tree on [n] and r is a special vertex called the

root (Stanley, 1999, Proposition 5.3.2).

To compute the generating functions of the Ehrhart (quasi)polynomials that interest us, we

first need some enumerative results on trees.

5.1 Tree enumeration

Proposition 5.1. The enumeration of (signed) trees, (signed) pseudotrees, signed halfedge-

trees, and signed loop-trees is given by the following formulas.

1. The number of trees on [n] is tn = nn−2. The exponential generating function for this

sequence is

T (x) := ∑
n≥1

nn−2 xn

n!
= −W (−x)−

1

2
W (−x)2.

2. The number of pseudotrees on [n] is pn, where

P(x) := ∑
n≥1

pn

xn

n!
=

1

2
W (−x)−

1

4
W (−x)2 −

1

2
log(1+W (−x)) .

3. The number of signed trees on [n] is stn = 2n−1nn−2. The exponential generating

function for this sequence is

ST (x) := ∑
n≥1

2n−1nn−2 xn

n!
= −

1

2
W (−2x)−

1

4
W (−2x)2.
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4. The number of signed pseudotrees on [n] is spn, where

SP(x) := ∑
n≥1

spn

xn

n!
=

1

4
W (−2x)− log(1+W (−2x)) .

5. The number of signed half-edge trees on [n] and of signed loop-trees is shn = sln =
(2n)n−1. The exponential generating function for this sequence is

SH(x) = SL(x) := ∑
n≥1

(2n)n−1 xn

n!
= −

1

2
W (−2x) .

Proof. We begin by remarking that most of these formulas were obtained by Vladeta Jovovic

and posted without proof in entries A000272, A057500, A097629, A320064, and A052746

of the Online Encyclopedia of Integer Sequences Sloane (n.d.). For completeness, we pro-

vide proofs.

1. The formula for tn is well known and due to Cayley; see for example (Stanley, 1999,

Proposition 5.3.2). Now, by the multiplicative formula for exponential generating functions

(Stanley, 1999, Proposition 5.1.1), W (−x)2/2 is the generating function for pairs of rooted

trees (T1,r1) and (T2,r2), the disjoint union of whose vertex sets is [n]. By adding an edge

between r1 and r2, we see that this is equivalent to having a single tree with a special chosen

edge r1r2; there are nn−2(n−1) such objects. Therefore

1

2
W (−x)2 = ∑

n≥0

nn−2(n−1)
xn

n!
= −W (−x)−T (x) ,

proving the desired generating function.

2. A pseudotree on [n] is equivalent to a choice of rooted trees (T1,r1), . . . ,(Tk,rk), the union

of whose vertex sets is [n], together with a choice of an undirected cyclic order on r1, . . . ,rn

— or equivalently, an undirected cyclic order on those trees. Since the exponential function

for rooted trees and for undirected cyclic orders are −W (−x) and

x+
x2

2
+ ∑

n≥3

(n−1)!

2

xn

n!
=

x

2
+

x2

4
+

1

2
log(1− x) ,

respectively, the desired result follows by the compositional formula for exponential gener-

ating functions.

3. There are 2n−1 choices of signs for a tree on [n], so we have stn = 2n−1tn. Combining

with 1. gives the desired formulas.

4. Each pseudotree on [n] can be given 2n different edge sign patterns, half of which will lead

to an unbalanced cycle; this leads to 2n−1 pn signed pseudotrees. This accounts for all signed

pseudotrees, except for the ones containing a 2-cycle. We obtain such an object by starting

with a signed tree, choosing one of its edges, and inserting the same edge with the opposite

sign. This counts each such object twice, so the total number of them is stn(n− 1)/2. It

follows that spn = 2n−1 pn + stn(n−1)/2, from which the desired formulas follow using 2.

and 3.

5. A signed half-edge tree (or a signed loop-tree) is obtained from a signed tree by choosing

the vertex where we will attach the half-edge (or loop). Thus shn = sln = n · stn = (2n)n−1.

The exponential generating function follows directly from the definition of W (x). �
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5.2 Generating functions of Ehrhart (quasi)polynomials of Coxeter permutahedra

Theorem 5.2. The generating functions for the Ehrhart polynomials of the integral Coxeter

permutahedra of the classical root systems are:

1+ ∑
n≥1

ehrΠZ(An−1)
(t)

xn

n!
= exp

(

−
1

t
W (−tx)−

1

2t
W (−tx)2

)

,

1+ ∑
n≥1

ehrΠZ(Bn)
(t)

xn

n!
= exp

(

−
1

2t
W (−2tx)−

1

4t
W (−2tx)2

)/

√

1+W (−2tx) ,

1+ ∑
n≥1

ehrΠZ(Cn)
(t)

xn

n!
= exp

(

−t −1

2t
W (−2tx)−

1

4t
W (−2tx)2

)/

√

1+W (−2tx) ,

1+ x+ ∑
n≥2

ehrΠZ(Dn)
(t)

xn

n!
= exp

(

t −1

2t
W (−2tx)−

1

4t
W (−2tx)2

)/

√

1+W (−2tx) .

Proof. Theorem 4.3.1 tells us that these exponential generating functions can be under-

stood as enumerating various families of (pseudo)forests, weighted by their various types

of connected components. The compositional formula for exponential generating functions

(Stanley, 1999, Theorem 5.1.4) then expresses them in terms of the exponential generating

functions for each type of connected component.

For example, in type A there are only tree components, so

1+ ∑
n≥1

ehrΠZ(An−1)
(t)

xn

n!
= ∑

n≥0
∑

forests
G on [n]

tn−tc(G) xn

n!

= ∑
n≥0

∑
forests

G on [n]

(

1

t

)tc(G) (tx)n

n!

= exp







1

t
∑
n≥0

∑
trees

T on [n]

(tx)n

n!







= exp

(

1

t
T (tx)

)

= exp

(

−
1

t
W (−tx)−

1

2t
W (−tx)2

)

by Proposition 5.1.1.

Similarly, for the other types we have

1+ ∑
n≥1

ehrΠZ(Bn)
(t)

xn

n!
= ∑

n≥0
∑

B−forests
G on [n]

2pc(G)tn−tc(G) xn

n!

= ∑
n≥0

∑
B−forests
G on [n]

2pc(G)

(

1

t

)tc(G)

1hc(G) (tx)
n

n!

= exp

(

2SP(tx)+
1

t
ST (tx)+SH(tx)

)
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and, analogously,

1+ ∑
n≥1

ehrΠZ(Cn)
(t)

xn

n!
= exp

(

2SP(tx)+
1

t
ST (tx)+2SL(tx)

)

,

1+ x+ ∑
n≥2

ehrΠZ(Dn)
(t)

xn

n!
= exp

(

2SP(tx)+
1

t
ST (tx)

)

.

Carefully substituting the formulas in Proposition 5.1, we obtain the desired results. �

Using the formulas in Theorem 5.2 and suitable mathematical software, one easily computes

the following table of Ehrhart polynomials. The reader may find it instructive to compare

this with the analogous table in (Ardila et al., 2015, Section 6), which lists the Ehrhart

polynomials with respect to the weight lattice of each root system. The tables coincide only

in type C, which is the only classical type where the weight lattice is Zn.

Φ Ehrhart polynomial of ΠZ(Φ+)
A0 1

A1 1+ t

A2 1+3t +3t2

A3 1+6t +15t2 +16t3

B1 1+ t

B2 1+4t +7t2

B3 1+9t +39t2 +87t3

B4 1+16t +126t2 +608t3 +1553t4

C1 1+2t

C2 1+6t +14t2

C3 1+12t +66t2 +172t3

C4 1+20t +192t2 +1080t3 +3036t4

D2 1+2t +2t2

D3 1+6t +18t2 +32t3

D4 1+12t +72t2 +280t3 +636t4

Table 1. Ehrhart polynomials of integral Coxeter permutahedra.

Theorem 5.3. The generating function for the odd part of the Ehrhart quasipolynomials of

the non-integral standard Coxeter permutahedra are the following. For t odd,

1+ ∑
n≥1

ehrΠ(A2n−1)(t)
x2n

(2n)!
= exp

(

−
W (−tx)+W (tx)

2t
−

W (−tx)2 +W (tx)2

4t

)

1+ ∑
n≥1

ehrΠ(Bn)(t)
xn

n!
=

exp
(

−W (−2tx)+W (2tx)
4t

− W (−2tx)2+W (2tx)2

8t

)

√

1+W (−2tx)

Proof. We carry out similar computations as for Theorem 5.2. This requires us to observe

that the generating functions for even trees and even signed trees are

Teven(x) := ∑
n≥0

t2n

x2n

n!
=

1

2
(T (x)+T (−x)),

STeven(x) := ∑
n≥0

st2n

x2n

n!
=

1

2
(ST (x)+ST (−x)) .
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Now, in light of Theorem 4.3.2, and analogously to the proof of Theorem 5.2, we have

1+ ∑
n≥1

ehrΠ(A2n−1)(t)
x2n

(2n)!
= exp

(

1

t
Teven(tx)

)

= exp

(

1

2t
T (tx)+

1

2t
T (−tx)

)

and

1+ ∑
n≥1

ehrΠ(Bn)(t)
xn

n!
= exp

(

2SP(tx)+
1

t
STeven(tx)+2SL(tx)

)

= exp

(

2SP(tx)+
1

2t
ST (tx)+

1

2t
ST (−tx)+2SL(tx)

)

,

which give the desired results using Proposition 5.1. �

Using these formulas, and combining them with Table 1, one computes the following table

of Ehrhart quasipolynomials.

Φ Ehrhart quasipolynomial of Π(Φ+)

A1

{

1+ t for t even

t for t odd

A3

{

1+6t +15t2 +16t3 for t even

3t2 +16t3 for t odd

B1

{

1+ t for t even

t for t odd

B2

{

1+4t +7t2 for t even

2t +7t2 for t odd

B3

{

1+9t +39t2 +87t3 for t even

6t2 +87t3 for t odd

B4

{

1+16t +126t2 +608t3 +1553t4 for t even

12t2 +212t3 +1553t4 for t odd

Table 2. Ehrhart quasipolynomials of the non-integral standard Coxeter permutahedra.

The reader may find it instructive to count the lattice points in the polygons of Figure 1, and

compare those numbers with the predictions given by Tables 1 and 2.
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Andes in Bogotá. He thanks Los Andes for their hospitality and SFSU and the Simons

Foundation for their financial support. He was supported by National Science Foundation

grant DMS-1855610 and Simons Fellowship 613384.

14



References

Ardila, F., Castillo, F., Eur, C., & Postnikov, A. (2020). Coxeter submodular functions

and deformations of Coxeter permutahedra. Adv. Math., 365(), 107039.

Ardila, F., Castillo, F., & Henley, M. (2015). The arithmetic Tutte polynomials of the

classical root systems. International Mathematics Research Notices, 2015(12), 3830–

3877.

Ardila, F., Supina, M., & Vindas-Meléndez, A. R. (To appear.). The equivariant Ehrhart

theory of the permutahedron. Proceedings of the American Mathematical Society,(), .

(arXiv:1911.11159)
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