
CSIAM Trans. Appl. Math.
doi: 10.4208/csiam-am.2020-0026

Vol. 1, No. 4, pp. 766-801
December 2020

A Derivative-Free Geometric Algorithm for

Optimization on a Sphere

Yannan Chen1, Min Xi2 and Hongchao Zhang3,∗

1 School of Mathematical Sciences, South China Normal University, Guangzhou,
China.
2 School of Mathematics and Statistics, Guangdong University of Foreign Studies,
Guangzhou China; School of Mathematical Sciences, Jiangsu Key Laboratory for
NSLSCS, Nanjing Normal University, Nanjing, China.
3 Department of Mathematics, Louisiana State University, Baton Rouge,
LA 70803-4918, USA.

Received 8 June 2020; Accepted 21 October 2020

Abstract. Optimization on a unit sphere finds crucial applications in science and engi-
neering. However, derivatives of the objective function may be difficult to compute or
corrupted by noises, or even not available in many applications. Hence, we propose a
Derivative-Free Geometric Algorithm (DFGA) which, to the best of our knowledge, is
the first derivative-free algorithm that takes trust region framework and explores the
spherical geometry to solve the optimization problem with a spherical constraint. Nice
geometry of the spherical surface allows us to pursue the optimization at each iteration
in a local tangent space of the sphere. Particularly, by applying Householder and Cay-
ley transformations, DFGA builds a quadratic trust region model on the local tangent
space such that the local optimization can essentially be treated as an unconstrained
optimization. Under mild assumptions, we show that there exists a subsequence of
the iterates generated by DFGA converging to a stationary point of this spherical op-
timization. Furthermore, under the Łojasiewicz property, we show that all the iterates
generated by DFGA will converge with at least a linear or sublinear convergence rate.
Our numerical experiments on solving the spherical location problems, subspace clus-
tering and image segmentation problems resulted from hypergraph partitioning, indi-
cate DFGA is very robust and efficient for solving optimization on a sphere without
using derivatives.

AMS subject classifications: 65K05, 90C30, 90C56

Key words: Derivative-free optimization, spherical optimization, geometry, trust region method,
Łojasiewicz property, global convergence, convergence rate, hypergraph partitioning.

∗Corresponding author. Email addresses: ynchen@scnu.edu.cn (Y. Chen), mxi@gdufs.edu.cn (M. Xi),
hozhang@math.lsu.edu (H. Zhang)

http://www.global-sci.org/csiam-am 766 c©2020 Global-Science Press

Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801 767

1 Introduction

In this paper, we consider the following spherical optimization problem

min f (x) s.t. x∈Sn−1, (1.1)

where Sn−1 := {x ∈Rn : ‖x‖ = 1} is a unit sphere under the Euclidean norm ‖·‖ and
f : Sn−1→R is continuously differentiable with Lipschitz continuous gradient. How-
ever, we assume that the derivatives of f are unavailable during algorithm designment.
The spherical optimization problem (1.1) has extensive applications in science and engi-
neering. For example, the classical Weber problem is to find the best location on a three
dimensional sphere which minimizes the weighted sum of the distances to several desti-
nation points on the sphere [37, 55]. In geophysics, climate modelling and global naviga-
tion, various nonlinear optimization problems on a sphere need to be solved for dealing
with massive signals on the surface of the earth [13, 18]. Finding the largest and smallest
Z-eigenvalues of an even order symmetric tensor [26, 48] is equivalent to calculate the
maximum and minimum values of a homogeneous polynomial associated with a tensor
on a unit sphere, respectively. The best rank-one approximation of a symmetric tensor
could be also formulated as a spherical optimization [58]. Other spherical optimization
problems which have nonsmooth objectives include the robust subspace detection [29],
the sparse principal component analysis (PCA) [2, 54], and the sparse blind deconvolu-
tion [17,34] etc. In addition, for some practical applications, the data may come from sim-
ulations or experiments, for which the analytic derivatives of the objective function are
unavailable or prohibitively expensive to compute. For example, the objective functions
proposed in [27, 39] depend on random variables whose distributions are unknown. In
particular, for studying precision medicine, it is proposed to maximize the hypervolume
under the manifold (HUM) [27], which can be interpreted as the probability of disease de-
tection. Other examples include [28,49], where the evaluation of objective function needs
solution of differential equations, and therefore, it is expensive or impossible to compute
derivatives of the objective functions at each iteration. Hence, developing derivative-free
algorithms for solving (1.1), which only uses the function values of f , has great impor-
tance in both theory and applications.

Recently, derivative-free optimization (DFO) has become an important research topic
in nonlinear optimization since derivatives of the objective function may be difficult to
compute or corrupted by noises, or even not available in many real applications. Hence,
DFO methods need to be developed to solve these optimization problems without using
derivatives. Currently, the DFO methods can be generally divided into three classes. The
first class of methods approximate derivatives by finite-differences and then derivative-
based methods can be applied using the approximate derivatives [12,14,32]. For instance,
Nocedal et al. [14] combines the classical BFGS updating and an adaptive finite-difference
technique for minimization without derivatives. The second class of methods are direct
search methods [38], which for example include pattern search methods [33, 53], Nelder-
Mead simplex method [43] and mesh adaptive direct search methods [7]. This class of

768 Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801

methods sample the objective functions according to a predetermined pattern strategy.
Hence, the direct search methods are usually very robust, but may require a large amount
of function evaluations in some applications. The third class of methods are model based
methods [10, 41, 46, 59], which build local linear or quadratic models by function inter-
polations at each iteration. This class of methods intrinsically use the smoothness of the
objective function. Hence, fast convergence can be often expected. One may refer to
monographs [8, 24] for more general theory and literature review on DFO methods.

Our Derivative-Free Geometric Algorithm (DFGA) developed in this paper belongs to
the model based methods, which in the literature include UOBYQA [46], NEWUOA [47],
DFO [25], COBYLA [45], DFBOLS [57] and DFO-GN [16], etc. In particular, UOBYQA,
NEWUOA and DFO are designed for solving unconstrained optimization. UOBYQA
and DFO construct local quadratic approximation models, while NEWUOA uses more
flexible models between linear and quadratic to approximate the objective function. Both
DFBOLS and DFO-GN are derivative-free Gauss-Newton methods for solving nonlinear
least squares optimization, while COBYLA uses local linear approximations of the objec-
tive and constraint functions for solving more general constrained optimization. How-
ever, to the best of our knowledge, DFGA is the first derivative-free method which is
particularly designed to solve the spherical optimization (1.1) and explores the spherical
geometry of the constraint. Note that although the spherical constraint is nonconvex, it is
a smooth manifold from geometry point of view. At any given point on the sphere, there
exists an (n−1)-dimensional tangent space of the sphere. Then, using Householder and
Cayley transformations, we can establish a bijective map (called a chart) between the unit
sphere (except one point) and Rn−1 through the tangent space. We will see that the com-
putational costs of the chart and its inverse are onlyO(n). Hence, this chart conveniently
allows us to locally handle the spherical constraint as simply as Rn−1. For solving the
spherical optimization (1.1), our DFGA takes a trust region framework. At each iteration
of DFGA, function values at 2n−1 points on the unit sphere are used to construct a func-
tion interpolation model. In fact, through the chart, we can find the corresponding 2n−1
points in Rn−1 to build a quadratic model in Rn−1 to locally approximate the objective
function, which is then minimized inexactly in a trust region. Again through the chart,
the approximate minimizer of the trust region model would provide a trial point on the
sphere. Because of the bijection mapping by the chart, all the iterates generated by DFGA
will be kept strictly feasible on the sphere, which is crucial in many applications since vi-
olation of the spherical constraint may lead to nonsense meanings in some applications.
On the other hand, we do not resort to traditional techniques for handling nonlinear con-
straints, such as penalty method, augmented Lagrangian or filter methods. By exploring
the spherical geometry of the sphere constraint, our derivative-free trust region approach
can be locally simply treated as solving an unconstrained optimization. So, we call our
algorithm a derivative-free geometric algorithm.

The following convergence results are established for DFGA. Under the boundness
assumption on the Hessian of the local trust region model, we show that there at least
exists a subsequence of the iterates generated by DFGA converging to a stationary point

Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801 769

of the spherical optimization (1.1). Furthermore, when the objective function satisfies
the Łojasiewicz property, we show that the whole sequence of the iterates generated by
DFGA will converge with at least a linear or sublinear convergence rate, which has not
been discussed in the derivative-free optimization literature even for the unconstrained
case. To verify the efficiency of DFGA, we compare different derivative-free optimiza-
tion solvers using pattern search, finite difference and model based strategies to solve
the classical Weber problem, the spherical location problem, the subspace clustering and
image segmentation problems resulted from hypergraph partitioning. Our preliminary
numerical results indicate that DFGA is quite robust, efficient and could be very useful
for solving optimization on a sphere without using derivatives.

The remainder of the paper is organized as follows. In Section 2, by exploring the
topological geometry, we introduce the Householder and Cayley transformations to con-
struct a chart, which establishes a map between a unit sphere (except one point) and
Rn−1. Our derivative-free geometric algorithm based on a trust region framework is
presented in Section 3. The global convergence and the convergence rate of DFGA are
analyzed in Section 4. Some preliminary numerical experiments are reported in Section 5
to show the effectiveness of our algorithm. Finally, some conclusions are drawn in the
last section.

2 Geometry of a unit sphere

In this section, we consider the geometry of the unit sphere embedded in Rn under the
Euclidean norm (2-norm):

Sn−1={x∈R
n :‖x‖=1},

where ‖·‖ denotes 2-norm throughout the paper. Though Sn−1 is a nonconvex set, from
the geometry point of view it is a smooth manifold [4, 9]. Before going to the concrete
concept of manifold, let us recall the concept of a topological space.

Definition 2.1. A topological space is a set X together with a family of subsets of X, called the
open sets, required to satisfy the following conditions:

1. The empty set and X itself are open;

2. If U ,V ⊆X are open, so is U∩V ;

3. If the sets Uα⊆X are open, so is the union
⋃Uα.

A function f :X→Y from one topological space to another is defined to be continuous
if, for any given open setU⊆Y, the inverse image f−1(U)⊆X is open. Given a topological
space X and an open set U ⊆X, a chart is defined to be a continuous function ϕ :U→Rd

with a continuous inverse (the inverse being defined on the set ϕ(U)).

770 Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801

Definition 2.2. A d-dimensional manifold is a topological space M equipped with charts ϕα :
Uα→Rd, where the collection of Uα are open sets coveringM, such that the transition function
ϕα◦ϕ−1

β is smooth at where it is defined.

Generally speaking, a manifold is a topological space that locally resembles the Eu-
clidean space. The bridge locally connecting the manifold and the Euclidean space is a
chart. In the following, we construct a useful chart for the manifold Sn−1. For extensive
and general discussion of optimization on manifold, one may refer to [4].

2.1 Tangent space

For an arbitrary point x on the unit sphere Sn−1, the normal space and tangent space of
Sn−1 at x∈Sn−1 are defined as

NxSn−1={αx : α∈R} and TxSn−1={y∈R
n : yTx=0}, (2.1)

respectively. Hence, the normal spaceNxSn−1 is a straight line with dimension 1 and the
dimension of the tangent space TxSn−1 is n−1.

To identify the tangent space, we study a bijection that maps TxSn−1 to Rn−1. Let
Q∈Rn×(n−1) be an orthonormal matrix such that

QTQ= I and QTx=0, (2.2)

where I ∈R(n−1)×(n−1) is the identity matrix. So, the columns of Q form a basis of the
tangent space TxSn−1. Then, for any y∈TxSn−1, there exists a unique z∈Rn−1 such that

y=Qz ⇐⇒ z=QTy. (2.3)

While y is restricted in the tangent space (i.e., yTx=0), the vector z is free in Rn−1. Hence,
it will be much convenient to construct local interpolation models based on the vector z

for derivative-free optimization methods.
Note that the matrix Q in (2.2) is not unique. For computational efficiency, we can

use the Householder transformation to generate Q [19]. Given x∈Sn−1 and x 6=e1, where
e1=(1,0,··· ,0)T, let

v=x−e1 and β=
2

vTv
.

Then, the Householder matrix Q̃ = I−βvvT is an orthogonal matrix that maps x to e1,
i.e., Q̃TQ̃= I and Q̃x=e1. Clearly, the second to the last columns of Q̃ would make up a
matrix Q satisfying (2.2). Hence, given z∈Rn−1, to calculate y=Qz, we can let

z̃=

(
0
z

)
and compute y=Qz= Q̃z̃=(I−βvvT)z̃= z̃−(βvT z̃)v.

On the other hand, given y∈Rn, to calculate z=QTy, we can compute

z̃= Q̃Ty=(I−βvvT)y=y−(βvTy)v and let z= z̃(2 : n).

Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801 771

So, once x∈Sn−1 is given, it only requires about 3 operations to calculate v and β. And
the computation of y=Qz or z=QTy only needs about 4n operations.† Hence, the House-
holder transformation provides us a reliable and efficient way to compute the translations
between y∈TxSn−1 and z∈Rn−1.

2.2 Cayley transformation

The Householder transformation constructed in the previous subsection provides us a
bijection between a tangent space and Rn−1. Now, we build a bijection between the tan-
gent space and a subset of the unit sphere using Cayley transformation. Let W∈Rn×n be
a skew-symmetric matrix and I be the identity matrix in Rn×n. Then I+W is invertible.
Cayley transformation produces an orthogonal matrix

O=(I+W)−1(I−W), (2.4)

whose eigenvalues do not contain −1. The converse is also true, i.e., W=(I+O)−1(I−O)
is skew-symmetric if O is orthogonal and I+O is invertible. Hence, Cayley transforma-
tion reveals a valuable relationship between orthogonal matrices and skew-symmetric
matrices.

Given the current point x∈Sn−1 and the search direction s∈TxSn−1, let

W=
1

2
(xsT−sxT), (2.5)

which is a skew-symmetric matrix. Then, the matrix O constructed in (2.4) is an orthog-
onal matrix and hence, we have

x+=Ox∈Sn−1. (2.6)

More specifically, we can explicitly obtain x+ by the following formula.

Lemma 2.1 ([36]). Let x∈Sn−1 and s∈TxSn−1. Suppose that O,W and x+ are defined by (2.4),
(2.5) and (2.6), respectively. Then, we have

x+=
(4−‖s‖2)x+4s

4+‖s‖2
. (2.7)

By (2.7), it is clear that the new point x+ is located in the plane spanned by the vectors
x and s. When the norm of s goes to zero, the new point x+ tends to x. And when the
norm of s becomes large, the x+ would tend to −x, which is the opposite point of x on
the unit sphere. Observe that there is no need to store the matrices O and W, and the

†Since v=x−e1, it only needs 1 subtraction for computing v. Since vTv=‖x‖2−2x1+1=2(1−x1), we have
β=1/(1−x1). Hence, it requires 2 operations to calculate β. Then, it costs 2n operations to compute βvT z̃ or
βvTy. Thereafter, we perform n multiplications and n subtractions to calculate z̃−(βvTz̃)v or y−(βvTy)v.

772 Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801

new point x+ can be easily computed by (2.7) using about 5n operations. Indeed, we can
define the following map:

Cayx : TxSn−1 → Sn−1\{−x}

s 7→ (4−‖s‖2)x+4s

4+‖s‖2
.

(2.8)

The following lemma gives the inverse of Cayx.

Lemma 2.2. Let x∈Sn−1. The map (2.8) is a bijection and

Cay−1
x : Sn−1\{−x} → TxSn−1

x+ 7→ 2(I−xxT)x+
1+xT

+x
.

(2.9)

Proof. For a given x+ ∈ Sn−1\{−x}, we will find a unique s ∈ TxSn−1 such that x+ =
Cayx(s). From (2.7), we know

4s=(4+‖s‖2)x+−(4−‖s‖2)x. (2.10)

By taking norms of both sides of the above equation, it yields that

16‖s‖2 =(4+‖s‖2)2+(4−‖s‖2)2−2(4+‖s‖2)(4−‖s‖2)xT
+x,

which gives

2(4−‖s‖2)
(
(1+xT

+x)‖s‖2−4(1−xT
+x)

)
=0.

Note that 1+xT
+x 6=0 since x+∈Sn−1\{−x}. Hence, we have

‖s‖2 =4 or ‖s‖2 =4(1−xT
+x)/(1+xT

+x).

If ‖s‖2 = 4, we have by (2.10) that 2x+ = s∈ TxSn−1 and therefore, xT
+x = 0. Hence, we

always have

‖s‖2 =
4(1−xT

+x)

1+xT
+x

,

which together with (2.10) gives

s=
2(I−xxT)x+

1+xT
+x

.

Clearly, s∈TxSn−1 since I−xxT is a projection matrix onto the tangent space TxSn−1.

Now, we are ready to construct our required chart explicitly.

Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801 773

Figure 1: An illustration of the chart ϕx.

Theorem 2.1. Let x∈Sn−1. The map

ϕx : Sn−1\{−x} → R
n−1

x+ 7→ QTCay−1
x (x+)

(2.11)

is a chart, whose inverse is

ϕ−1
x : R

n−1 → Sn−1\{−x}
z 7→ Cayx(Qz),

(2.12)

where Q∈Rn×(n−1) is any matrix satisfying (2.2).

Proof. Consider the local geometry around x∈Sn−1 as illustrated in Fig. 1. For any point
x+∈Sn−1\{−x}, we have Cay−1

x (x+)∈TxSn−1 by Lemma 2.2. Then, by (2.3), we obtain

QTCay−1
x (x+)∈Rn−1. In a word, we say that the chart ϕx acts

x+∈Sn−1\{−x} 7→ Cay−1
x (x+)∈TxSn−1 7→ QTCay−1

x (x+)∈R
n−1.

Conversely and similarly, the inverse ϕ−1
x of the chart acts

z∈R
n−1 7→ Qz∈TxSn−1 7→ Cayx(Qz)∈Sn−1\{−x}.

Finally, by the definitions of Cayx and Cay−1
x in (2.8) and (2.9), it is clear that both ϕx and

ϕ−1
x are continuous map on their domain. The proof is complete.

Note that the computational costs of Cayx and Cay−1
x are all about 5n operations.

Hence, computing the chart or its inverse acting on a vector in Theorem 2.1 only takes
about 9n operations.

774 Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801

3 A derivative-free geometric algorithm

The geometric algorithm proposed in this section is a feasible trust region method. Given
an initial point on the unit sphere Sn−1, we establish a local quadratic model of the ob-
jective function in a trust region by function value interpolations. Then, we find an ap-
proximate minimizer of the model in this trust region, which is a candidate of the next
iterate on the sphere. This candidate will be either accepted or further improved in the
framework of trust region methods. During this procedure, the chart introduced in the
previous section enables us to locally handle sphere constrained optimization simply as
an unconstrained optimization.

3.1 Interpolation

For unconstrained optimization without derivatives, it is well-studied to construct a lin-
ear or quadratic model by function value interpolations [21, 22]. In this subsection, we
would generalize the minimum Frobenius norm model used in derivative-free methods
for unconstrained optimization to our case where it has a sphere constraint.

Let x∈Sn−1 be the current iteration point. Since the local chart ϕx :Sn−1\{−x} →Rn−1

is bijective by Theorem 2.1, we can map every point z∈Rn−1 to ϕ−1
x (z) on the sphere and

then evaluate the function value f (ϕ−1
x (z)). That is to say, we can define a local surrogate

function
f̂x : R

n−1 → R

z 7→ (f ◦ϕ−1
x)(z),

(3.1)

which would capture the contour profile of the objective function around x. Note that

f̂x(0)= f (x). Now, suppose that we have a set of p (n≤ p≤ 1
2 n(n+1)) points on the unit

sphere

x1,x2,··· ,xp∈Sn−1\{−x}
with known function values f i = f (xi) for i=1,2,··· ,p. Using the chart ϕx, we let

zi = ϕx(x
i)∈R

n−1, i=1,2,··· ,p.

Then, by the definition of local surrogate function (3.1), we know

f̂x(z
i)= f i, i=1,2,··· ,p.

Hence, we obtain a set of p points Z := {z1,z2,··· ,zp}⊂Rn−1 with their function values

f̂x(zi), i=1,··· ,p.

Let Pd
n−1 be the space of multivariate polynomials defined on Rn−1 with degree less

than or equal to d. Then, the set of 1
2 n(n+1) monomials

φ(z)=
{

φi,i=1,··· , 1
2 n(n+1)

}
:=
{

1,z1,··· ,zn−1, 1
2 z2

1,z1z2,··· , 1
2 z2

n−1

}

Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801 775

forms a natural basis of P2
n−1. We are going to construct a quadratic model

m(z) :=
1

2
zT Hz+gTz+c=αTφ(z) (3.2)

of f̂x satisfying the interpolation linear system

M(φ,Z)α= f̂x(Z), (3.3)

where H ∈ S(n−1)×(n−1), g∈Rn−1, and c∈R are the model unknowns need to be deter-
mined. In addition, S(n−1)×(n−1) denotes the set of (n−1)×(n−1) symmetric matrices,
α∈Rn(n+1)/2 assembles {c,g,H} according to the order of the monomial bases in φ(z),

M(φ,Z)=




φ1(z
1) φ2(z1) ··· φn(n+1)/2(z

1)
φ1(z

2) φ2(z2) ··· φn(n+1)/2(z
2)

...
...

. . .
...

φ1(z
p) φ2(zp) ··· φn(n+1)/2(z

p)


 and f̂x(Z)=




f̂x(z1)

f̂x(z2)
...

f̂x(zp)


.

When n≤ p< 1
2 n(n+1), there are more unknowns than the number of equations in the

linear system (3.3). Thus, to construct model (3.2), we would like to require the minimum
Frobenius norm on its Hessian matrix H (see [24]). Let

φL(z) :={1,z1,··· ,zn−1} and φQ(z) :=
{

1
2 z2

1,z1z2,··· , 1
2 z2

n−1

}

be the linear and quadratic parts of the basis φ(z), respectively, and α be also partitioned
into αL and αQ accordingly. Then, the unknown α is determined by solving the following
quadratic optimization problem

min
α∈Rn(n+1)/2

1

2
‖αQ‖2

s.t. M(φQ,Z)αQ+M(φL,Z)αL = f̂x(Z).
(3.4)

The optimization problem (3.4) has one unique solution if the following matrix is nonsin-
gular

F(φ,Z) :=

(
M(φQ,Z)M(φQ,Z)T M(φL,Z)

M(φL,Z)T 0

)
. (3.5)

If the matrix (3.5) is nonsingular, we say that the interpolation set Z is poised in the
minimum Frobenius norm sense. Now, we give the definition of Λ-poisedness.

Definition 3.1 ([24]). Let Λ>0 and B(∆) :={z∈Rn−1 :‖z‖≤∆}⊂Rn−1. Then, a poised set
Z = {z1,··· ,zp} is said to be Λ-poised in B(∆) (in the minimum Frobenius norm sense) if and
only if, for any z∈B(∆), there exists a solution λ(z)∈Rp of

min ‖M(φQ,Z)Tλ(z)−φQ(z)‖2

s.t. M(φL,Z)Tλ(z)=φL(z)
(3.6)

776 Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801

such that

‖λ(z)‖∞≤Λ.

Note that the optimization problem (3.6) has a unique solution when the matrix
F(φ,Z) in (3.5) is nonsingular, i.e., the set Z is poised (in the minimum Frobenius norm
sense). In fact, the solution λ(z) of (3.6) is just the Lagrange polynomial for the set Z
with minimum Frobenius norm of the Hessian [24].

Suppose that we are given any set Z⊂B(∆) with n≤|Z|≤ 1
2 n(n+1). Here, |·| means

the cardinality of a set. We can apply a finite number of substitutions of the points in
Z , in fact, at most |Z|−1 points, such that the new resultant set is Λ-poised in B(∆) for
a polynomial space P, with dimension |Z| and P

1
n−1⊆P⊆P

2
n−1 [51, 56, 57]. Since the

selection of interpolation points and their poisedness are beyond the main scope of this
paper, we refer the reader to [21,22,24]. Once the interpolation setZ is Λ-poised in B(∆),
the interpolating polynomial obtained from (3.4) will be at least a fully linear model, as
stated in the following lemma [57].

Lemma 3.1. Given any ∆> 0 and Λ-poised set Z ⊂B(∆) with n≤ |Z|≤ 1
2 n(n+1). Let the

interpolating model (3.2) be obtained from (3.4). If f̂x : Rn−1→R is continuously differentiable

and∇ f̂x is Lipschitz continuous with Lipschitz constant L in an open set containing B(∆), then,
for any d∈B(∆), we have

‖∇ f̂x(d)−∇m(d)‖≤ κ̂eg(‖H‖+L)∆,

| f̂x(d)−m(d)|≤ κ̂e f (‖H‖+L)∆2,

where κ̂eg and κ̂e f are constants depending only on n and Λ.

3.2 A trust region framework

Our trust region method for solving spherical optimization (1.1) is motivated and de-
signed to have a similar spirit of the derivative-free trust region methods for uncon-
strained optimization [11, 23, 24, 31]. When derivatives are available, Absil et al. [1]
designed the trust region method for Riemannian manifold that includes the spherical
surface as a special case. At the current iteration point xk ∈ Sn−1, we choose a set of
interpolating points and construct a local quadratic model

mk(d)=
1

2
dTHkd+gT

k d+ck,

using the method discussed in the previous subsection. Then, the following trust region
subproblem

min
d∈Rn−1

mk(d) s.t. ‖d‖≤∆k , (3.12)

Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801 777

Algorithm 3.1: A Derivative-Free Geometric Algorithm (DFGA) for spherical optimization

1: Step 0: Initialization.

Set positive parameters Λ, 0<η<1<η1, 0<τ0≪τ, γ1<1<γ2, and ̺< ∆̃0≤∆max. Sample a

set of p=2n−1 points X0={x1,x2,··· ,xp}⊂Sn−1 uniformly and evaluate function values therein

f (X0). Choose the best point x0∈X0 such that f (x0)=min1≤i≤p f (xi). Set k←0.

2: Step 1: Construct interpolation model.

Compute Zk ={zi = ϕxk
(xi) : xi∈Xk}⊂R

n−1. Applying the minimum Frobenius norm model for

Zk and f̂xk
(Zk)= f (Xk), we have a quadratic model:

mk(d)=
1

2
dT Hkd+gT

k d+ck (3.7)

and then set

∆k =min{∆̃k,τ‖gk‖}. (3.8)

If ∆k≤̺, we ensure the Λ-poisedness of Zk. For this purpose, we possibly choose a new ∆k∈(0,∆̃k],
adjust the interpolation set Zk, and update Hk and gk in the model mk accordingly such that

∆k =min{max{τk‖gk‖,∆̃k},τ‖gk‖}, (3.9)

and Zk is Λ-poised in B(∆k).

3: Step 2: Compute a trial point.

Solve the trust region subproblem (3.12) inexactly to obtain dk satisfying (3.13), and then generate

the feasible trial point

x+k = ϕ−1
xk

(dk).

4: Step 3: Update the iterate and the trust region radius.

Evaluate f (x+k) and compute

ρk =
f (x+k)− f (xk)

mk(dk)−mk(0)
. (3.10)

If ρk≥η, accept the trial point xk+1=x+k , let τk+1=τk and set

∆̃k+1∈ [∆k,min{γ2∆k,∆max}];

Otherwise, set xk+1=xk, ∆̃k+1=γ1∆k, and let

τk+1=

{
τk/η1, if ∆k > ∆̃k,

τk, otherwise.
(3.11)

Let Xk+1=(Xk\{x̃k})∪{x+k }, where x̃k=argmax{ f (x) : x∈Xk}.
5: Step 4: Set k← k+1 and goto Step 1.

778 Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801

is solved inexactly to obtain a trial step dk, where ∆k is a proper trust region radius adap-
tively adjusted by DFGA. Next, we compute the trial point

x+k = ϕ−1
xk
(dk)∈Sn−1

and evaluate its function value f (x+k). In fact, f (x+k) = f̂xk
(dk) and f (xk) = f̂xk

(0). By
comparing the actual function value reduction f (xk)− f (x+k) and the predicted function
value reduction mk(0)−mk(dk), DFGA decides whether to accept the trial point as the
next iteration point or not. The trust region radius may be enlarged if sufficient function
value reduction is achieved, which also indicates the interpolation model is sufficiently
accurate; otherwise, the trust region radius will be reduced. And when the trust region
radius is sufficiently small, we would make sure the interpolation point set is Λ-poised
such that the interpolation model will be at least fully linear. In addition, for both theo-
retical and practical efficiency reason, we prefer to keep the trust region radius be propor-
tional to the norm of the model gradient in DFGA. This updating process is repeated until
the sequence of iteration points converges or some stopping tolerances are satisfied. In
practice, the trust region based derivative-free optimization algorithms often stop when
the trust region radius is sufficiently small or the total number of function evaluations
reaches a certain preset limit (the computational budget). The detail description of our
derivative-free geometric algorithm is stated in Algorithm 3.1. Notice that usually only
one point is replaced in the interpolation set Xk in an iteration of DFGA. This will only
lead to a rank-2 change on the matrix M(φQ,Z)M(φQ,Z)T in (3.5). Taking advantage of
this property will significantly reduce the computational cost of solving the minimum
Frobenius model (3.4) at each iteration.

Now, let us establish some important properties of the trial step dk, which are crucial
for our later convergence analysis. Let dC

k be the Cauchy point of the trust-region sub-
problem (3.12) (see the definition in [44, 52].) As standard trust region method [20], we
only need to solve the subproblem (3.12) inexactly, that is to find a trial step dk satisfying

mk(0)−mk(dk)≥ c1

(
mk(0)−mk(d

C
k)
)
>0, (3.13)

where c1∈ (0,1] is a constant. Then, the trial step dk has the following properties.

Lemma 3.2. Assume that dk is an approximate solution of the trust-region subproblem (3.12)
satisfying (3.13) and ∆k≤τ‖gk‖ for a constant τ>0. Then, we have

mk(0)−mk(dk)≥
c1

2
‖gk‖min

{ ‖gk‖
‖Hk‖

,∆k

}
. (3.14)

In addition, if ‖Hk‖≤M, where M>0 is a constant, we have

mk(0)−mk(dk)≥ c2‖gk‖‖dk‖ (3.15)

and
‖dk‖≥ c3min{∆k,‖gk‖}, (3.16)

where c2 and c3 are two positive constants.

Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801 779

Proof. First, (3.14) is a well-known consequence of condition (3.13) [20]. Now, we estab-
lish (3.14) and (3.15). Since dC

k is the Cauchy point of the trust region subproblem (3.12),
we know

dC
k =





− ‖gk‖2

gT
k Hkgk

gk, if ∆kgT
k Hkgk≥‖gk‖3,

− ∆k

‖gk‖
gk, otherwise.

(3.17)

Then, it follows from (3.17) directly that

mk(0)−mk(d
C
k)≥

1

2
‖gk‖‖dC

k ‖ (3.18)

and

‖dC
k ‖≥min

{
‖gk‖3

gT
k Hkgk

,∆k

}
≥min

{ ‖gk‖
‖Hk‖

,∆k

}
. (3.19)

(In fact, we can see (3.14) follows from (3.13), (3.19) and (3.18).) By (3.19) and assumptions
‖Hk‖≤M and ∆k≤τ‖gk‖ with M>0 and τ>0, we have

‖dC
k ‖≥min

{
∆k

τM
,∆k

}
≥min

{
1

τM
,1

}
∆k,

which together with (3.13) and (3.18) gives

mk(0)−mk(dk)

‖dk‖
≥ c1

(
mk(0)−mk(d

C
k)
)

∆k
≥ c1

2
min

{
1

τM
,1

}
‖gk‖.

This gives (3.15) with c2 := c1
2 min

{
1

τM ,1
}

.
On the other hand, by (3.13) and (3.18), we have

1

2
‖Hk‖‖dk‖2+‖gk‖‖dk‖≥mk(0)−mk(dk)≥ c1

(
mk(0)−mk(d

C
k)
)
≥ c1

2
‖gk‖‖dC

k ‖,

which together with ‖dk‖>0 implies

‖dk‖≥
−‖gk‖+

√
‖gk‖2+c1‖Hk‖‖gk‖‖dC

k ‖
‖Hk‖

.

Simplifying the above inequality, we have

‖dk‖≥
c1‖gk‖‖dC

k ‖√
‖gk‖2+c1‖Hk‖‖gk‖‖dC

k ‖+‖gk‖
≥ c1√

1+c1‖Hk‖‖dc
k‖/‖gk‖+1

‖dC
k ‖.

This inequality together with ‖Hk‖≤M, ‖dc
k‖≤∆k and ∆k≤τ‖gk‖ gives

‖dk‖≥
c1√

1+c1‖Hk‖‖dc
k‖/‖gk‖+1

‖dC
k ‖≥

c1√
1+c1τM+1

‖dC
k ‖.

Recalling (3.19), we get the validity of (3.16) with c3 := c1√
1+c1τM+1

min{ 1
M ,1}.

780 Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801

4 Convergence analysis

In this section, we first study the global convergence of DFGA. In fact, according to
the overall structure of Algorithm 3.1, global convergence of DFGA can be established
following a similar approach of the trust region derivative-free algorithms for uncon-
strained optimization [23, 24]. However, due to the local Householder and Cayley map-
pings to handle the sphere constraint and a particular mechanism of maintaining the
trust region radius be proportional to the norm of model gradient, proper considerations
and adjustments are needed throughout the global convergence proof. Then, under the
Łojasiewicz property, we further strengthen the global convergence result and establish
the linear or sublinear convergence rate of DFGA for which, to the best of our knowl-
edge, no similar results has been established in the derivative-free optimization literature.
Overall, we need the following assumption.

Assumption 4.1. There exists a constant M such that ‖Hk‖≤M for all k.

Note that the minimum Frobenius norm model obtained from (3.4) keeps ‖Hk‖ as
small as possible. Hence, the choice of minimum Frobenius norm model by DFGA also
has practical convergence importance. Because the unit sphere Sn−1 is compact and the
function f is continuous on Sn−1, there exists a lower bound fmin on the function values
such that f (x)≥ fmin for all x∈Sn−1. For any given point x∈Sn−1, we first establish the

following lemma on the gradient of the surrogate function f̂x.

Lemma 4.1. Let x∈Sn−1 and∇ f (x) be the gradient of f at x. Then, the gradient of the function

f̂x defined in (3.1) reads as

∇ f̂x(z)=

(
4QT

4+‖z‖2
− 16zxT+8zzTQT

(4+‖z‖2)2

)
∇ f (Cayx(Qz)). (4.1)

Proof. Because of (f ◦ϕ−1
x)(z)= f (Cayx(Qz)), it yields that

∇ f̂x(z)=QT (∇Cayx(Qz))T (∇ f (Cayx(Qz))).

By the map (2.8) and QTQ= I, we get

∇Cayx(s)=
4I

4+‖s‖2
− 16xsT+8ssT

(4+‖s‖2)2

and (4.1) then follows straightforwardly.

Since f is Lipschitz continuously differentiable on Sn−1, it follows from Lemma 4.1

that ∇ f̂xk
is Lipschitz continuous in B(∆max+1) with Lipschitz constant, say L>0, inde-

pendent of xk. Hence, when the interpolation set Zk is Λ-poised in B(∆k), by Lemma 3.1
we get

‖∇ f̂xk
(d)−∇mk(d)‖≤κeg∆k, (4.2)

| f̂xk
(d)−mk(d)|≤κe f ∆2

k , (4.3)

Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801 781

for all d ∈ B(∆k), where κeg := κ̂eg(M+L) and κe f := κ̂e f (M+L). In this sense, we say
the interpolation model mk is at least fully linear. The following lemma gives a relation

between∇ f̂xk
(0) and ∇mk(0) when the interpolation set Zk is Λ-poised.

Lemma 4.2. If the interpolation set Zk is Λ-poised in B(∆k), then we have

‖∇ f̂xk
(0)‖≤ (1+κegτ)‖gk‖.

Proof. Since the interpolation set Zk is Λ-poised in B(∆k), by (4.2) and gk =∇mk(0), we
know

‖∇ f̂xk
(0)−gk‖≤κeg∆k. (4.4)

On the other hand, from Step 1 of DFGA, we see ∆k≤τ‖gk‖. Thus, it yields that

‖∇ f̂xk
(0)‖≤‖gk‖+‖∇ f̂xk

(0)−gk‖≤‖gk‖+κeg∆k≤ (1+κegτ)‖gk‖.

The proof is completed.

Next, we show that when ∆k is sufficiently small and the model is at least fully linear,
the trial point x+k will be accepted and hence, the tentative trust region radius ∆̃k+1 at
next iteration can not be smaller than ∆k. The following lemma plays a similar role as [23,
Lemma 5.2] or [24, Lemma 10.6] for showing convergence of derivative-free algorithm
for unconstrained optimization.

Lemma 4.3. Suppose Assumption 4.1 holds and the interpolation set Zk is Λ-poised in B(∆k).
If

∆k≤
1

κeg+c4
‖∇ f̂xk

(0)‖ or ∆k≤
1

c4
‖gk‖, (4.5)

where

c−1
4 :=min

{
1

M
,
(1−η)c1

4κe f
,τ

}
,

we have ρk≥η and therefore
∆̃k+1≥∆k.

Proof. Since the interpolation set Zk is Λ-poised in B(∆k), we know (4.2) and (4.4) hold.
Hence, by (4.4) and (4.5), we have

‖gk‖≥‖∇ f̂xk
(0)‖−‖∇ f̂xk

(0)−gk‖≥‖∇ f̂xk
(0)‖−κeg∆k≥ c4∆k, (4.6)

which gives

∆k≤ c−1
4 ‖gk‖=min

{
1

M
,
(1−η)c1

4κe f
,τ

}
‖gk‖. (4.7)

By (3.14) and (4.7), we get

|mk(0)−mk(dk)|≥
c1

2
‖gk‖min

{‖gk‖
M

,∆k

}
=

c1

2
∆k‖gk‖.

782 Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801

Then, by (4.3) and (4.7), we derive

|ρk−1|= | f̂xk
(0)− f̂xk

(dk)−mk(0)+mk(dk)|
|mk(0)−mk(dk)|

≤ 2κe f ∆2
k

(1/2)c1∆k‖gk‖
=

4κe f

c1

∆k

‖gk‖
≤1−η.

Hence, we obtain ρk≥η. Finally, by Step 3 of DFGA, we verify this lemma.

Now we show that the scalar τk in DFGA can only be reduced in a finite number of
iterations, and hence is bounded below. This implies the trust region radius in DFGA will
be proportional to the norm of model gradient ‖gk‖, which in fact has both theoretical
and practical importance in derivative-free optimization.

Lemma 4.4. Under Assumption 4.1, for all k, we have

τk≥min{τ0,1/(c4η1)} := c5, (4.8)

where the constant c4 is given in Lemma 4.3.

Proof. By the rules of updating ∆k in DFGA, i.e., (3.8) and (3.9), we claim that ∆k > ∆̃k

only if the interpolation set Zk is Λ-poised in B(∆k) and ∆k = τk‖gk‖. So, if ∆k > ∆̃k and
τk < 1/c4, we have ∆k = τk‖gk‖< 1

c4
‖gk‖ and hence, we have ρk ≥ η by Lemma 4.3. In

addition, it follows from (3.11) that τk is reduced by a factor η1 >1 only when ρk <η and
∆k > ∆̃k. By considering the above two facts, we deduce (4.8) holds.

The following lemma reveals a fundamental property for establishing the global con-
vergence of trust region methods. Similar techniques were first proposed in [42] and later
were also used in [31].

Lemma 4.5. Under Assumption 4.1, we have

∞

∑
k=0

∆2
k <+∞. (4.9)

Proof. We first consider the set of successful iterations, that is

K :={k : ρk≥η}.

Then, for all k∈K, by Assumption 4.1 and (3.14), we have

f (xk)− f (xk+1)= f̂xk
(0)− f̂xk

(dk)

≥η(mk(0)−mk(dk))≥
ηc1

2
‖gk‖min

{ ‖gk‖
‖Hk‖

,∆k

}

≥ηc1

2τ
min

{
1

τM
,1

}
∆2

k := c6∆2
k .

Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801 783

This inequality means

∆2
k≤

f (xk)− f (xk+1)

c6

for all k∈K. Summarizing all k∈K, we establish

∑
k∈K

∆2
k≤ ∑

k∈K

f (xk)− f (xk+1)

c6
≤ 1

c6
(f (x0)− fmin). (4.10)

Second, we consider the set of unsuccessful iterations, that is

K̄ :=N \K={k : ρk <η},

whereN ={0,1,2,···} is the set of natural numbers. By Lemma 4.4, τk is bounded below.
This together with the rule (3.11) for updating τk imply that the set

K̂ := K̄∩{k : ∆k > ∆̃k}

is a finite set. More precisely, we can deduce |K̂| ≤max{logη1
(τ0c4)+1,0}, where |K̂|

means the cardinality of the set K̂. Hence, there exists a k̄ such that

∆k≤ ∆̃k, if k∈K̄ and k≥ k̄. (4.11)

For convenience, we denote K={k1,k2,···} with k1 < k2 < ···. So, by (4.11), for any ki∈K
such that ki+1≥ ki+2 and ki≥ k̄, we have

ℓ∈K̄ and ∆ℓ≤ ∆̃ℓ, (4.12)

for all ℓ= ki+1,··· ,ki+1−1. By DFGA, we clearly have ∆̃ki+1≤γ2∆ki
and ∆̃ℓ+1 =γ1∆ℓ for

all ℓ= ki+2,··· ,ki+1−1. Hence, it follows from (4.12) that

ki+1−1

∑
ℓ=ki+1

∆2
ℓ
≤

∆2
ki+1

1−γ2
1

≤ γ2
2

1−γ2
1

∆2
ki

. (4.13)

Finally, by Lemmas 4.3 and 4.4, we have |K|=∞. Let

kI =min{k∈K : k≥ k̄}<∞.

784 Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801

Then, summing the squares of ∆k for k≥ kI , it follows from (4.10) and (4.13) that

∞

∑
k=kI

∆2
k = ∑

k∈K,k≥kI

∆2
k+ ∑

k∈K̄,k≥kI

∆2
k

= ∑
ki∈K,ki≥kI

(
∆2

ki
+

ki+1−1

∑
ℓ=ki+1

∆2
ℓ

)

≤ ∑
ki∈K,ki≥kI

(
∆2

ki
+

γ2
2

1−γ2
1

∆2
ki

)

=
1+γ2

2−γ2
1

1−γ2
1

∑
ki∈K,ki≥kI

∆2
ki

≤ 1+γ2
2−γ2

1

(1−γ2
1)c6

(f (x0)− fmin),

which implies (4.9) holds. The proof is completed.

By Lemma 4.5, we can directly get the following corollary.

Corollary 4.1. Under Assumption 4.1, we have limk→∞ ∆k =0.

Now we can establish the following lemma which immediately implies the global
convergence of DFGA.

Lemma 4.6. Under Assumption 4.1, we have

liminf
k→∞

‖∇ f̂xk
(0)‖=0.

Proof. We prove by contradiction. Assume there exists a constant ε>0 such that

‖∇ f̂xk
(0)‖≥ ε.

From Corollary 4.1, we see ∆k→0 as k→∞. So, ∆k≤̺ for k sufficiently large. Hence, by
Step 1 of DFGA, the model function mk is at least fully linear when k is sufficiently large.
In the following proof, we assume k is sufficiently large that ∆k ≤ ̺ and hence mk is at
least fully linear.

First, by Lemma 4.2, we get ‖gk‖≥ (1+κegτ)−1ε. So, when ∆k≤ τε
γ2(1+κegτ)

, we know

∆̃k+1≤γ2∆k≤
τε

1+κegτ
≤τ‖gk+1‖

and hence ∆k+1 ≥ ∆̃k+1 by Step 1 of DFGA. Furthermore, we have by Lemma 4.3 that
∆̃k+1≥∆k whenever ∆k≤ (κeg+c4)

−1ε. Combining the above two observations, we have
∆k+1≥∆k whenever

∆k≤min

{
̺,min

{
1

κeg+c4
,

τ

γ2(1+κegτ)

}
ε

}
.

This, however, contradicts with ∆k→0 as k→∞.

Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801 785

We recall that the projection of gradient∇ f onto Txk
Sn−1 is indeed

(I−xkxT
k)∇ f (xk)=QkQT

k∇ f (xk)=Qk∇ f̂xk
(0),

where columns of Qk ∈Rn×(n−1) form a basis of Txk
Sn−1 and the last equality holds by

Lemma 4.1. By Lemma 4.6, we immediately get the following global convergence theo-
rem on DFGA.

Theorem 4.2. Under Assumption 4.1, we have

liminf
k→∞

‖(I−xkxT
k)∇ f (xk)‖=0.

We say x∗ is a stationary point (also a KKT point) of the spherical optimization (1.1)
if x∗∈Sn−1 and (I−x∗xT

∗)∇ f (x∗)=0. Since Sn−1 is a compact set and xk∈Sn−1 for all k,
Theorem 4.2 implies there exists at least a subsequence of the iterates {xk} converging to
a stationary point of the spherical optimization (1.1).

4.1 Convergence based on Łojasiewicz property

Łojasiewicz property is a kind of regularization property, which holds for a broad class
of functions, such as polynomial, semi-algebraic and analytic functions [19,40]. Strong it-
erate convergence of trust region methods under analytic cost functions was first studied
in [3] and [6]. In this subsection, we prove that the total sequence of the iterates generated
by DFGA converges and establish its convergence rate under the Łojasiewicz property,
respectively.

Definition 4.1 (Łojasiewicz property). Let x∗ be a stationary point of the spherical optimization
(1.1). We say that the Łojasiewicz property holds at x∗, if there exist θ ∈ [1/2,1), µ> 0, and a
neighborhood U(x∗) such that for all x∈U(x∗)∩Sn−1,

| f (x)− f (x∗)|θ≤µ‖(I−xxT)∇ f (x)‖=µ‖∇ f̂x(0)‖. (4.14)

Based on the Łojasiewicz property, we have the following key lemma.

Lemma 4.7. Suppose Assumption 4.1 holds and the Łojasiewicz property holds at a stationary
point x∗ of the spherical optimization (1.1). Let x0 ∈Sn−1 be the initial point of DFGA that is
close to x∗ in the sense that x0∈B(x∗,r) :={x∈Rn :‖x−x∗‖< r}⊂U(x∗), where

r>‖x0−x∗‖+
µ(1+κegτ)

c2η(1−θ)
| f (x0)− f (x∗)|1−θ. (4.15)

If ∆k≤̺ for all k, then we have
xk∈B(x∗,r) (4.16)

for all k and
∞

∑
k=0

‖xk+1−xk‖≤
µ(1+κegτ)

c2η(1−θ)
| f (x0)− f (x∗)|1−θ. (4.17)

786 Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801

Proof. We show (4.16) by induction. Obviously, we have x0 ∈ B(x∗,r). Assume
x0,x1,··· ,xk ∈ B(x∗,r). We show in the following proof that xk+1 ∈ B(x∗,r). Clearly, if
ρk <η, we have xk+1=xk∈B(x∗,r). Hence, we only need to consider the case ρk≥η.

Consider the following function:

ζ(t) :=
µ

1−θ
|t− f (x∗)|1−θ , (4.18)

which is nonnegative and concave for all t> f (x∗). Then, we have

ζ(f (xk))−ζ(f (xk+1))≥ ζ′(f (xk))(f (xk)− f (xk+1))

=
µ

| f (xk)− f (x∗)|θ
(f (xk)− f (xk+1))

≥ 1

‖∇ f̂xk
(0)‖

(f (xk)− f (xk+1)), (4.19)

where the last inequality holds by Łojasiewicz property (4.14) at xk.
From (3.15) and ρk≥η, we obtain

f (xk)− f (xk+1)≥η(mk(0)−mk(dk))≥ηc2‖gk‖‖dk‖.

In addition, since ρk≥η, we know xk+1=x+k = ϕ−1
xk
(dk)=Cayxk

(Qkdk) and

xk+1−xk =
(4−‖Qkdk‖2)xk+4Qkdk

4+‖Qkdk‖2
−xk =

−2‖Qkdk‖2xk+4Qkdk

4+‖Qkdk‖2
, (4.20)

which gives

‖xk+1−xk‖2=
4‖Qkdk‖4+16‖Qkdk‖2

(4+‖Qkdk‖2)2
=

4‖Qkdk‖2

4+‖Qkdk‖2
≤‖Qkdk‖2=‖dk‖2. (4.21)

Hence, we have ‖dk‖ ≥ ‖xk+1−xk‖. By Lemma 4.2, we immediately get ‖gk‖ ≥ (1+

κegτ)−1‖∇ f̂xk
(0)‖. So, it follows from (4.19) that

ζ(f (xk))−ζ(f (xk+1))≥
c2η

1+κegτ
‖dk‖≥

c2η

1+κegτ
‖xk+1−xk‖. (4.22)

Therefore, by (4.15), we have

‖xk+1−x∗‖≤
k

∑
ℓ=0

‖xℓ+1−xℓ‖+‖x0−x∗‖

≤ 1+κegτ

c2η

k

∑
ℓ=0

(ζ(f (xℓ))−ζ(f (xℓ+1)))+‖x0−x∗‖

≤ 1+κegτ

c2η
ζ(f (x0))+‖x0−x∗‖< r.

Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801 787

Hence, xk+1∈B(x∗,r). So, by induction the whole sequence {xk}⊂B(x∗,r). Furthermore,
by (4.22), we have

∞

∑
ℓ=0

‖xℓ+1−xℓ‖≤
1+κegτ

c2η

∞

∑
ℓ=0

ζ(f (xℓ))−ζ(f (xℓ+1))

=
1+κegτ

c2η
ζ(f (x0)),

which is just (4.17) by the definition of function ζ(·) in (4.18).

Under the Łojasiewicz property, we can in fact show the convergence of the whole
sequence of iterates generated by DFGA.

Theorem 4.3. Suppose that Assumption 4.1 holds and there exists a subsequence of the iterates
{xk} generated by DFGA converging to a stationary point x∗ of the spherical optimization (1.1),
where the Łojasiewicz property holds. Then, we have

∞

∑
k=0

‖xk+1−xk‖<+∞, (4.23)

which implies
lim
k→∞

xk =x∗. (4.24)

Proof. Suppose there exists a subsequence {xki
} converging to a stationary point x∗ where

the Łojasiewicz property holds. So, there exists an iterate xk0
∈B(x∗,r)⊂U(x∗), where

r>‖xk0
−x∗‖+

µ(1+κegτ)

c2η(1−θ)
| f (xk0

)− f (x∗)|1−θ,

and U(x∗) is a neighborhood of x∗ where the Łojasiewicz property holds. And also by
Corollary 4.1, we can assume that k0 is sufficiently large such that ∆k≤ ̺ for all k≥ k0.
Then, it follows from Lemma 4.7 that ∑

∞
ℓ=k0
‖xℓ+1−xℓ‖<+∞, which implies (4.23). By

(4.23), the iterates {xk} generated by DFGA form a convergent Cauchy sequence. So,
(4.24) holds.

By Theorem 4.2, there always exists a subsequence of iterates generated DFGA con-
verging to a stationary point x∗. Hence, if the Łojasiewicz property holds at all the station-
ary points of the spherical optimization (1.1), it will follow directly from Theorem 4.3 that
the whole sequence of iterates generated by DFGA converges to a stationary point of the
spherical optimization (1.1). Since ∇ f is Lipschitz continuous on the unit sphere Sn−1,
under the conditions of Theorem 4.3, the conclusion of Theorem 4.2 can be strengthened
to

lim
k→∞
‖(I−xkxT

k)∇ f (xk)‖=0.

Now, we would like to discuss the convergence rate of {xk} under the Łojasiewicz prop-
erty. We start with the following lemma.

788 Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801

Lemma 4.8. Under Assumption 4.1, there exists a constant ς>0 such that

‖xk−xk+1‖≥ς‖∇ f̂xk
(0)‖, (4.25)

for all k sufficiently large such that ∆k≤̺ and xk+1 6=xk.

Proof. By Corollary 4.1, we can assume that k is sufficiently large such that ∆k ≤ ̺ and
xk+1 6=xk. Then, it follows from (4.21) and ‖dk‖≤∆k≤̺ that

‖xk+1−xk‖=
2‖dk‖√
4+‖dk‖2

≥ 2‖dk‖
2+‖dk‖

≥ 2‖dk‖
2+̺

. (4.26)

By Lemma 4.4, we have τk ≥ c5, where c5 is a positive constant. So, by (3.9), we get
∆k≥ c5‖gk‖. Then, by Lemma 4.2, (3.16) and (4.26), we obtain

‖xk+1−xk‖≥
2‖dk‖
2+̺

≥ 2c3

2+̺
min{∆k,‖gk‖}

≥ 2c3

2+̺
min{c5,1}‖gk‖

≥ 2c3min{c5,1}
(2+̺)(1+κegτ)

‖ f̂xk
(0)‖=: ς‖∇ f̂xk

(0)‖.

The proof is completed.

The following theorem shows the convergence rate of DFGA. We only need to con-
sider the successful iterations where xk+1 6=xk.

Theorem 4.4. Suppose that Assumption 4.1 holds and all the iterates {xk} generated by DFGA
are successful and converge to a stationary point x∗, where the Łojasiewicz property holds. Then,
we have the following convergence rate according to the parameter θ in (4.14):

• If θ= 1
2 , there exist γ>0 and ρ∈ (0,1) such that

‖xk−x∗‖≤γρk. (4.27)

That is, the iterates {xk} converge to x∗ with an R-linear rate.

• If θ∈ (1
2 ,1), there exists a γ>0 such that

‖xk−x∗‖≤γk−
1−θ

2θ−1 . (4.28)

That is, the iterates {xk} converge to x∗ with an R-sublinear rate.

Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801 789

Proof. First, by Lemma 4.7 and Corollary 4.1, without loss of generality, we can simply
assume x0∈B(x∗,r)⊂U(x∗), where x0∈Sn−1 satisfies (4.15) and ∆k≤̺ for all k.

Now, denote δk =∑
∞
i=k‖xi−xi+1‖≥‖xk−x∗‖. Then, by Lemma 4.7, (4.14) and (4.25),

we have

δk=
∞

∑
i=k

‖xi−xi+1‖

≤ µ(1+κegτ)

c2η(1−θ)
| f (xk)− f (x∗)|1−θ =

µ(1+κegτ)

c2η(1−θ)

(
| f (xk)− f (x∗)|θ

) 1−θ
θ

≤ µ(1+κegτ)

c2η(1−θ)

(
µ‖∇ f̂xk

(0)‖
) 1−θ

θ ≤ µ(1+κegτ)

c2η(1−θ)

(
µς−1‖xk−xk+1‖

) 1−θ
θ

=
µ

1
θ (1+κegτ)

c2η(1−θ)ς
1−θ

θ

(δk−δk+1)
1−θ

θ = c7(δk−δk+1)
1−θ

θ , (4.29)

where c7 :=(µ
1
θ (1+κegτ))/(c2η(1−θ)ς

1−θ
θ) is a positive constant.

First, consider the case that θ= 1
2 . We have from the inequality (4.29) that

δk≤ c7(δk−δk+1),

which implies

δk+1≤
c7−1

c7
δk.

Hence, noticing ‖xk−x∗‖≤δk, we have (4.27) holds with γ=δ0 and ρ= c7−1
c7

.

Now, consider the case that θ∈ (1
2 ,1). Let h(s)= s−

θ
1−θ . Obviously, h(s) is monotonely

decreasing for s>0. Then, the inequality (4.29) could be rewritten as

c
− θ

1−θ

7 ≤h(δk)(δk−δk+1)=
∫ δk

δk+1

h(δk) ds

≤
∫ δk

δk+1

h(s) ds=− 1−θ

2θ−1
(δ
− 2θ−1

1−θ

k −δ
− 2θ−1

1−θ

k+1).

Let ν=− 2θ−1
1−θ <0 since θ∈ (1

2 ,1). Then, we get

δν
k+1−δν

k ≥−νc
− θ

1−θ

7 := c8>0,

which gives

δk≤ (δν
0+c8k)

1
ν ≤ (c8k)

1
ν .

Hence, (4.28) holds with γ= c
1
ν
8 .

790 Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801

5 Numerical experiments

In this section, we apply DFGA to solve several well-known optimization problems with
a sphere constraint. Our DFGA is implemented in MATLAB R2018b with parameters

η=0.05, η1=2, τ0=0.0001, τ=10, γ1=0.25, γ2=2, ̺=0.1, ∆̃0=1, ∆max=10.

The algorithm terminates if ∆k is sufficiently small and the function values do not de-
crease sufficiently after five successive iterates, that is

∆k≤10−6 ·
√

n and
| f (xk)− f (xk−4)|

1+| f (xk)|
≤10−10 ·n.

We will also stop the algorithm if the number of iterations exceeds 1000. In DFGA,
the trust region subproblem (3.12) is solved inexactly by a truncated conjugate gradi-
ent method [44, 52], which guarantees the condition (3.13) holds. All codes are run on
a Linux computer with 2.2GHz CPU and 64GB memory and we compare the following
four numerical algorithms.

• PatternS: The pattern search method implemented as MATLAB built-in function
“patternsearch”;

• Fmincon: MATLAB built-in function “fmincon” with the choice of approximating
gradients by finite difference method;

• COBYLA : a well-known model based derivative-free optimization software for
solving optimization with general constraints [45, 50];

• DFGA: Algorithm 3.1 of this paper written in MATLAB.‡

5.1 The classical Weber problem

Given N destinations ai ∈ S2 and their associated positive weights wi, i = 1,··· ,N, the
classical Weber problem [37] on a unit sphere S2 is to find a source point x ∈ S2 that
minimizes

f (x)=
N

∑
i=1

wid(x,ai),

where the metric d(·,·) could be the Euclidean distance or geodesic distance, i.e.,

dEuc(x,y)=‖x−y‖ or dgeo(x,y)=2arcsin
‖x−y‖

2
,

‡Note that in later comparisons, CPU time of DFGA could be much less if it is written in C or Fortran,
while both PatternS and Fmincon are built-in functions of MATLAB which are essentially written in C, and
COBYLA is written in Fortran.

Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801 791

Table 1: The classical Weber problem with Euclidean distance.

Solver Func ConsE #F Time Func ConsE #F Time

θ=30◦ θ=40◦

PatternS 3.0000 4.3e-9 71808 8.59 2.5357 2.4e-7 262833 33.55

COBYLA 3.0000 6.9e-13 273 0.02 2.5357 4.0e-14 108 0.01

Fmincon 3.0000 8.9e-16 126 0.03 2.5357 2.9e-15 47 0.03

DFGA 3.0000 1.3e-15 51 0.01 2.5357 0.00 48 0.01

θ=50◦ θ=60◦

PatternS 2.0521 1.5e-7 114045 14.86 1.5529 1.1e-7 79082 10.05

COBYLA 2.0521 8.2e-13 87 0.01 1.5529 8.6e-13 91 0.01

Fmincon 2.0521 6.7e-16 42 0.01 1.5529 2.2e-16 52 0.01

DFGA 2.0521 4.4e-16 46 0.01 1.5529 0.00 30 0.00

θ=70◦ θ=80◦

PatternS 1.0419 1.9e-9 21372 2.85 0.5229 3.3e-9 16637 2.17

COBYLA 1.0419 6.9e-13 93 0.01 0.5229 2.5e-13 112 0.01

Fmincon 1.0419 8.9e-16 52 0.01 0.5229 2.2e-16 54 0.01

DFGA 1.0419 4.4e-16 45 0.01 0.5229 3.3e-16 34 0.01

respectively. Following the setting in [37], we use all weights wi = 1 and the following
three destinations:

a1 =(cosθ,0,sinθ)T, a2 =
(
− 1

2 cosθ,
√

3
2 cosθ,sinθ

)T
,

a3 =
(
− 1

2 cosθ,−
√

3
2 cosθ,sinθ

)T
.

We consider the Weber problem on a unit sphere using the Euclidean distance and six
different latitudes θ∈{30◦ ,40◦,50◦,60◦,70◦,80◦}. So, we have 6 test problems and all of
them have the same solution x∗=(0,0,1)T , which is the north pole of S2. For each test,

we run all the comparison algorithms using the same initial point x0 =
(

1
2 , 1

2 ,
√

2
2

)T
. The

numerical results using Euclidean and geodesic distances are shown in Tables 1 and 2,
respectively, where “Func” is the final function value, “ConsE” denotes the final con-
straint violation, “#F” is the total number of function evaluations, and “Time” gives the
used CPU time in seconds. All solvers solve the test problems successfully. Clearly,
COBYLA, Fmincon, and DFGA perform much better than the pattern search method
PatternS. However, DFGA almost always uses the least number of function evaluations
and CPU time. Furthermore, although both DFGA and COBYLA are model based meth-
ods, by particularly taking care of the spherical constraint, DFGA only takes about 50%
number of function evaluations used by COBYLA. Since PatternS performs significantly
worse than other methods, we only compare COBYLA, Fmincon and DFGA in later nu-
merical experiments.

792 Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801

Table 2: The classical Weber problem with a geodesic distance.

Solver Func ConsE #F Time Func ConsE #F Time

θ=30◦ θ=40◦

PatternS 3.1416 9.7e-8 196752 25.24 2.6180 4.9e-7 131739 17.26

COBYLA 3.1416 1.4e-13 103 0.01 2.6180 4.5e-13 92 0.01

Fmincon 3.1416 6.7e-16 42 0.01 2.6180 3.6e-15 42 0.01

DFGA 3.1416 2.2e-16 33 0.01 2.6180 2.2e-16 38 0.01

θ=50◦ θ=60◦

PatternS 2.0944 9.9e-8 81794 10.54 1.5708 3.2e-7 49258 6.41

COBYLA 2.0944 8.7e-13 85 0.02 1.5708 4.7e-13 102 0.01

Fmincon 2.0944 1.3e-15 42 0.01 1.5708 2.2e-16 50 0.01

DFGA 2.0944 0.00 40 0.01 1.5708 2.2e-16 36 0.01

θ=70◦ θ=80◦

PatternS 1.0472 6.9e-8 41984 5.35 0.5236 3.5e-9 12448 1.70

COBYLA 1.0472 4.5e-13 90 0.01 0.5236 1.3e-12 74 0.01

Fmincon 1.0472 2.0e-15 52 0.01 0.5236 4.4e-16 53 0.01

DFGA 1.0472 3.3e-16 48 0.01 0.5236 0.00 52 0.01

5.2 Spherical location problem

In this numerical experiment, we consider solving the more general n-dimensional spher-
ical location problem proposed in [30]. In this problem, the pole xpse := (0,··· ,0,1)T ∈
Sn−1 is regarded as a pseudo-center. We then randomly generate N points in Rn un-
der normal distributions N (xpse, I) and project these points onto Sn−1 to obtain a set
A := {a1,a2,··· ,aN}⊂Sn−1. Our goal is to find a center of the set A on Sn−1 by solving
the following spherical optimization problem

min f (x)=
1

N

N

∑
i=1

‖x−ai‖ s.t. x∈Sn−1.

We solve this problem with dimensions n varying from 10 to 100 and the number of
points N in set A varying from 50 to 5000 as shown in Table 3. In total, we have 12
test problems. For each problem, we run COBYLA, Fmincom and DFGA using a same
starting point on the sphere Sn−1. The numerical results are shown in Table 3. Again
all the software achieve about the same final function values. However, for some prob-
lems Fmincon or COBYLA could not maintain the constraint error as small as that given
by DFGA, which may be critical in some real applications. Compared with COBYLA
and Fmincon, we can see that DFGA saves about 90% and 70% function evaluations. In
addition, we see that the CPU time of DFGA increases when either n and N increases.
However, when the dimension n is fixed, DFGA only uses about the same amount of

Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801 793

Table 3: Numerical results on the location problems.

N Solver Func ConsE #F Time Func ConsE #F Time

n=10 n=40

50 COBYLA 1.1136 1.9e-13 461 0.05 1.2593 4.2e-13 4452 1.69

Fmincon 1.1136 0.00 334 0.04 1.2593 0.00 2044 0.26

DFGA 1.1136 5.5e-16 133 0.05 1.2593 8.9e-16 438 0.51

500 COBYLA 1.1399 1.4e-12 477 0.14 1.2922 1.1e-13 5070 3.01

Fmincon 1.1399 4.4e-15 381 0.12 1.2922 0.00 2145 0.73

DFGA 1.1399 2.7e-15 166 0.12 1.2922 1.9e-15 470 0.65

5000 COBYLA 1.1604 1.7e-13 459 1.01 1.2943 7.0e-13 5287 13.96

Fmincon 1.1604 8.9e-16 442 0.99 1.2943 0.00 2235 5.35

DFGA 1.1604 2.4e-15 178 0.53 1.2943 7.1e-15 495 1.93

n=70 n=100

50 COBYLA 1.2594 1.2e-13 8693 12.02 1.2819 5.1e-14 14085 51.84

Fmincon 1.2594 0.00 3023 0.32 1.2819 8.9e-15 3007 0.29

DFGA 1.2594 1.0e-14 666 1.46 1.2819 6.0e-15 836 4.12

500 COBYLA 1.3157 5.0e-13 12075 19.41 1.3273 6.5e-13 19084 75.16

Fmincon 1.3157 0.00 3031 1.03 1.3274 1.9e-10 3028 1.04

DFGA 1.3157 8.9e-16 869 2.34 1.3274 4.0e-15 1015 4.99

5000 COBYLA 1.3240 4.8e-13 11804 44.66 1.3379 2.0e-13 22328 139.80

Fmincon 1.3240 1.9e-13 3057 7.77 1.3380 6.5e-10 3027 8.18

DFGA 1.3240 1.3e-15 802 3.20 1.3379 8.0e-15 1352 7.92

function evaluations as the number of fixed points N increases. This is a very desirable
property for efficient derivative-free optimization algorithm.

5.3 Subspace clustering

Subspace clustering is a crucial problem in pattern analysis and machine learning [15,19].
For instance, there are 50 points in a plane roughly located on two crossing circles as
shown in Fig. 2(a), where the larger circle has center (4,4)T with radius 3 and the smaller
one has center (7,3)T with radius 2. Suppose both the centers and the radii of these two
circles are unknown. The subspace clustering problem is to estimate them from positions
of these 50 points. One approach for solving this subspace clustering problem is to first
partition the 50 points into two sets: one set of points are estimated on the larger circle
and the other set of points are estimated on the smaller circle. Then, we fit each set of
points by a circle to obtain the center and radius we want to find. Hence, the partition
step is crucial in the overall approach.

The spectral method based on a weighted hypergraph G [19] is quite effective for this

794 Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801

(a) Points for clustering two circles (b) Estimated vs. ground truth

Figure 2: Fifty points for clustering two circles (a) and estimated circles vs. the ground truth (b).

partition. In this method, the 50 points first form a vertex set V = {1,2,··· ,50}. Since
positions of the 50 points are known, we can fit a circle by every four points (say i, j,k,ℓ∈
V) using the linear least squares method. Suppose (xi,yi), (xj,yj), (xk,yk), (xℓ,yℓ) are the
coordinates of these four points i, j,k,ℓ, respectively. Then, the center (x,y) and radius R
of this circle can be estimated by solving the least squares model with fitting error

r=min
α
‖Aα−b‖,

where

A=




2xi 2yi 1
2xj 2yj 1

2xk 2yk 1

2xℓ 2yℓ 1


, α=




x
y

R2−x2−y2


, b=




(xi)2+(yi)2

(xj)2+(yj)2

(xk)2+(yk)2

(xℓ)2+(yℓ)2


.

By this way, we can connect an edge E := {i, j,k,ℓ} with weight w = exp(−r). Then, a
medium scale random hypergraph can be generated by the following way. First, we
generate a complete graph which has (50

2)=1225 edges and each edge contains 2 vertices.
Second, for each edge of the graph, randomly choose other two different vertices from
V and add these two vertices to the graph edge. Hence, we get 1225 edges and each of
them contains 4 vertices. Repeating the above process in total 120 times, we can obtain
147,000 edges and each of them contains 4 vertices. So, we have constructed a random
weighted hypergraph G=(V,E,w), where E={Ep : p=1,2,··· ,147000} is the set of edges
and w=(wp)∈R147000

+ is the weight vector with component being the weight of each edge
Ep. Moreover, G is a 4-uniform connected hypergraph.

Next, we turn to construct the Laplacian tensor of the weighted hypergraph G =
(V,E,w). For each i∈V, the degree of the vertex i is defined as

di = ∑
Ep∈E,i∈Ep

wp.

Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801 795

Table 4: Numerical results on subspace clustering.

Solver Func ConsE #F Time

COBYLA 0.06228 3.22e-13 4283 9.49

Fmincon 0.06275 3.55e-7 3036 4.55

DFGA 0.05618 1.55e-15 672 2.10

Let ei∈R50 be the i-th column of the identity matrix. For the vertex i in the Ep, we define

u
p
i :=

3

4 4
√

di

ei− ∑
j∈Ep, j 6=i

1

4 4
√

dj

ej.

Then, the Laplacian tensor of G=(V,E,w) is represented as

L(G) := ∑
Ep∈E


wp ∑

i∈Ep

u
p
i ◦u

p
i ◦u

p
i ◦u

p
i


, (5.1)

where “◦” stands for the outer product of vectors and u◦u◦u◦u is indeed a fourth order
rank-one tensor. The smallest Z-eigenvalue of L(G) is 0 and the associated Z-eigenvector

is z0=d̃/‖d̃‖where d̃∈R50
+ with d̃i=

4
√

di [35]. The Z-eigenvector z1 corresponding to the
second smallest Z-eigenvalue of L(G) is called the Fiedler vector, which is very useful
for clustering. In fact, the Fiedler vector satisfies zT

1 z1 = 1 and zT
1 z0 = 0. Consider the

subspace z⊥0 that is perpendicular to z0. Let Q∈R50×49 be an orthonormal basis of z⊥0 .
We can represent the Fiedler vector as z1 =Qx with xTx= 1. Hence, to find the Fiedler
vector, we can apply DFGA to solve the following spherical optimization problem

min f (x)= 〈L(G),(Qx)◦(Qx)◦(Qx)◦(Qx)〉 s.t. x∈S49, (5.2)

where 〈L,z◦z◦z◦z〉=∑ i,j,k,ℓLijkℓzizjzkzℓ is the inner product of tensors. In fact, the objec-
tive function can be explicitly written as

f (x)= ∑
Ep∈E


wp ∑

i∈Ep


3eT

i Qx

4 4
√

di

− ∑
j∈Ep, j 6=i

eT
j Qx

4 4
√

dj




4

.

Now, we employ DFGA, COBYLA, and Fmincon to solve the spherical optimization
problem (5.2) using a same starting point. We can see from the numerical results given
in Table 4 that DFGA uses much less number of function evaluations than both COBYLA
and Fmincon, but achieves the minimum final function value and the smallest constraint
evaluation.

With the solution x∗ of (5.2) returned by DFGA, we can compute the Fiedler vector
z1 =Qx∗. Then, z1 will naturally partition vertices V into two sets as {i∈V : (z1)i≥ 0}

796 Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801

(a) Points for clustering two circles (b) Estimated vs. ground truth

Figure 3: One thousand points for clustering two circles (a) and estimated circles vs. the ground truth (b).

and {i∈V : (z1)i<0}. After fitting the positions of vertices in each set, we get two circles
shown in Fig. 2(b). For comparison, the ground truth circles are also shown in Fig. 2(b).

Whereafter, to examine the performance of DFGA for solving a large dimensional
problem, we increase the number of points roughly around the two circles from 50 to
1000. Fig. 3(a) depicts the positions of these points. By a similar approach as before,
we construct a 4-uniform hypergraph with 1,000 vertices and 2,997,000 edges. The as-
sociated Laplacian tensor L(G) and the corresponding spherical optimization problem
would still have format (5.1) and (5.2), respectively. But the constraint in (5.2) turns to be
x∈S999. To solve this larger dimensional problem, DFGA costs 5,164 function evaluations
to find an approximate solution x∗, while both FMINCON and COBYLA can not solve
the problem. The estimated circles and the ground truth circles are illustrated in Fig. 3(b).

5.4 Image segmentation

The spectral hypergraph method described for the subspace clustering problem in the
previous subsection could also be applied for image segmentation. Suppose we want to
separate the main object (the note book) and background in a given image in Fig. 4(a).
We can first employ the SLIC superpixel approach [5] to produce a set of 42 superpixels;
See Fig. 4(b). Using these superpixels and a similar approach in the last subsection, we
can construct a weighted hypergraph G =(V,E,w), where these superpixels constitute
the vertex set V= {1,2,··· ,42} and the set E has 77,490 edges. For each edge Ep∈E, the
weight wp is proportional to the similarity of color distributions of superpixels colorp and
is inversely proportional to the distance among superpixels distp. Here, we only briefly
discuss on how to compute colorp and distp. One can refer to [19] for the details on
how to compute the weight wp. Consider the image in the HSV color space, where HSV
stands for hue, saturation and value, respectively. Hue is divided into twelve intervals.
Saturation and value are each divided into four intervals. Hence, the whole HSV color

Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801 797

(a) Original image (b) Superpixels

(c) Notes (d) Background

Figure 4: Segment an image of a notes and a pen.

space is divided into 192 areas. Then, we count the HSV color distribution hsvi∈R192
+ in

these areas for i= 1,··· ,42. The similarity of color distributions of the superpixels in an
edge Ep={i, j,k,ℓ} is defined as

colorp=
hsvT

i (hsvj∗hsvk∗hsvℓ)

‖hsvi‖4‖hsvj‖4‖hsvk‖4‖hsvℓ‖4
,

where ∗ is the component-wise Hadamard product.§ For calculating distp, we first find
the center centi of each superpixel, i= 1,··· ,42, and then the star distance among super-
pixels in an edge Ep is set by

distp= ∑
i∈Ep

(centi−centp)
4,

§We have hsvT
i (hsvj∗hsvk∗hsvℓ)=∑

192
p=1(hsvi)p(hsvj)p(hsvk)p(hsvℓ)p.

798 Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801

Table 5: Numerical results on image segmentation.

Solver Func ConsE #F time

COBYLA 0.000552 3.67e-13 3124 3.93

Fmincon 0.000552 9.16e-12 3003 2.43

DFGA 0.000553 3.44e-15 507 0.97

where centp=
1
4(centi+centj+centk+centℓ). With these colorp and distp, we can compute

the weight wp, and therefore, construct the 4-uniform hypergraph G=(V,E,w).
According to this hypergraph G, we can again generate its Laplacian tensor L(G)

given in (5.1) and establish the following optimization model

min f (x)= 〈L(G),(Qx)◦(Qx)◦(Qx)◦(Qx)〉 s.t. x∈S41,

using the same approach introduced in the last subsection. We can see from the numerical
results given in Table 5 that DFGA again takes much less number of function evaluations
than COBYLA and Fmincon to solve this resulted optimization. Finally, the signs of the
resulting Fiedler vector will again provide a segmentation: one is the note book image
shown in Fig. 4(c) and the other is the background shown in Fig. 4(d).

6 Conclusions

In this paper, we propose a derivative-free geometric algorithm to solve the spherically
constrained optimization problem (1.1). This DFGA combines the function interpolation
techniques used in derivative-free optimization and the local spherical geometry on a
sphere in a trust region framework. Using the chart, a map defined from the sphere to
Rn−1, we are able to keep all the iterates being strictly feasible on the sphere, which is
crucial in many applications, and locally minimize the objective function as an uncon-
strained optimization. We have shown that there at least exists a subsequence generated
by DFGA converging to a stationary point of the spherical optimization problem (1.1).
Furthermore, under the Łojasiewicz property, we have shown the convergence of all the
iterates generated by DFGA with at least a linear or sublinear convergence rate. Our
numerical experiments on comparing different derivative-free optimization solvers in-
dicate DFGA is quite robust, efficient and could be very useful for solving spherically
constrained optimization arising from practical problems, for which the explicit calcula-
tions of the derivatives of the objective function are difficult or even impossible.

Acknowledgments

This research was supported by the National Natural Science Foundation of China under
grants 11771405, 11901118, and 11571178, and by the USA National Science Foundation
under grants 1522654 and 1819161.

Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801 799

The authors are grateful to the associate editor and two anonymous referees for their
comments which helped us to improve our manuscript essentially.

References

[1] P. A. ABSIL, C. G. BAKER, AND K. A. GALLIVAN, Trust-region methods on Riemannian mani-
folds, Found. Comput. Math., 7 (2007), pp. 303–330.

[2] P. A. ABSIL AND S. HOSSEINI, A collection of nonsmooth Riemannian optimization problems,
In: Hosseini S., Mordukhovich B., Uschmajew A. (eds) Nonsmooth Optimization and Its
Applications. International Series of Numerical Mathematics, vol 170. Birkhäuser, Cham.
(2019), pp. 1–15.

[3] P. A. ABSIL, R. MAHONY, AND B. ANDREWS, Convergence of the iterates of descent methods for
analytic cost functions, SIAM J. Optim., 16 (2005), pp. 531–547.

[4] P. A. ABSIL, R. MAHONY, AND R. SEPULCHRE, Optimization Algorithms on Matrix Manifolds,
Princeton University Press, Princeton, 2008.

[5] R. ACHANTA, A. SHAJI, K. SMITH, A. LUCCHI, P. FUA, AND S. SÜSSTRUNK, SLIC superpix-
els compared to state-of-the-art superpixel methods, IEEE Trans. Pattern Anal. Mach. Intell., 34
(2012), pp. 2274–2282.

[6] H. ATTOUCH AND J. BOLTE, On the convergence of the proximal algorithm for nonsmooth func-
tions involving analytic features, Math. Program., 116 (2009), pp. 5–16.

[7] C. AUDET AND J. E. DENNIS JR., Mesh adaptive direct search algorithms for constrained opti-
mization, SIAM J. Optim., 17 (2006), pp. 188–217.

[8] C. AUDET AND W. HARE, Derivative-Free and Blackbox Optimization, Springer, Berlin, 2017.
[9] J. BAEZ AND J. P. MUNIAIN, Gauge Fields, Knots and Gravity, World Scientific, Singapore,

1994.
[10] A. S. BANDEIRA, K. SCHEINBERG, AND L. N. VICENTE, Computation of sparse low degree

interpolating polynomials and their application to derivative-free optimization, Math. Program.,
134 (2012), pp. 223–257.

[11] A. S. BANDEIRA, K. SCHEINBERG, AND L. N. VICENTE, Convergence of trust-region methods
based on probabilistic models, SIAM J. Optim., 24 (2014), pp. 1238–1264.

[12] R. R. BARTON, Computing forward difference derivatives in engineering optimization, Eng. Opti-
miz., 20 (1992), pp. 205–224.

[13] T. BENDORY, S. DEKEL, AND A. FEUER, Super-resolution on the sphere using convex optimiza-
tion, IEEE Trans. Signal Process., 63 (2015), pp. 2253–2262.

[14] A. S. BERAHAS, R. H. BYRD, AND J. NOCEDAL, Derivative-free optimization of noisy functions
via quasi-Newton methods, SIAM J. Optim., 29 (2019), pp. 965–993.

[15] S. R. BULÒ AND M. PELILLO, A game-theoretic approach to hypergraph clustering, IEEE Trans.
Pattern Anal. Mach. Intell., 35 (2013), pp. 1312–1327.

[16] C. CARTIS AND L. ROBERTS, A derivative-free Gauss-Newton method, Math. Program. Com-
put., 11 (2019), pp. 631–674.

[17] S. CHEN, S. MA, A. SO, AND T. ZHANG, Proximal gradient method for nonsmooth optimization
over the Stiefel manifold, SIAM J. Optim., 30 (2020), pp. 210–239.

[18] X. CHEN AND R. WOMERSLEY, Spherical designs and nonconvex minimization for recovery of
sparse signals on the sphere, SIAM J. Imaging Sci., 11 (2018), pp. 1390–1415.

[19] Y. CHEN, L. QI, AND X. ZHANG, The Fiedler vector of a Laplacian tensor for hypergraph parti-
tioning, SIAM J. Sci. Comput., 39 (2017), pp. A2508–A2537.

800 Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801

[20] A. R. CONN, N. I. M. GOULD, AND PH. L. TOINT, Trust-Region Methods, MPS-SIAM Series
on Optimization, SIAM, Philadelphia, 2000.

[21] A. R. CONN, K. SCHEINBERG, AND L. N. VICENTE, Geometry of interpolation sets in derivative
free optimization, Math. Program., 111 (2008), pp. 141–172.

[22] A. R. CONN, K. SCHEINBERG, AND L. N. VICENTE, Geometry of sample sets in derivative-free
optimization: polynomial regression and underdetermined interpolation, IMA J. Numer. Anal., 28
(2008), pp. 721–748.

[23] A. R. CONN, K. SCHEINBERG, AND L. N. VICENTE, Global convergence of general derivative-
free trust-region algorithms to first- and second-order critical points, SIAM J. Optim., 20 (2009),
pp. 387–415.

[24] A. R. CONN, K. SCHEINBERG, AND L. N. VICENTE, Introduction to Derivative-Free Optimiza-
tion SIAM, Philadelphia, 2009.

[25] A. R. CONN AND PH. L. TOINT, An algorithm using quadratic interpolation for unconstrained
derivative-free optimization, in Nonlinear Optimization and Application, G. D. Pillo and F.
Giannessi (eds.), Plenium Publishing, New York, 1996, pp. 27–47.

[26] C. F. CUI, Y. H. DAI, AND J. NIE, All real eigenvalues of symmetric tensors, SIAM J. Matrix
Anal. Appl., 35 (2014), pp. 1582–1601.

[27] P. DAS, D. DE, R. MAITI, B. CHAKRABORTY, C. B. PETERSON, Estimating the optimal linear
combination of biomarkers using spherically constrained optimization, arXiv:1909.04024, (2019).

[28] M. FARSI, M. ASEMANI, AND M. R. RAHIMPOUR, Mathematical modeling and optimization of
multi-stage spherical reactor configurations for large scale dimethyl ether production, Fuel Process.
Technol., 126 (2014), pp. 207–214.

[29] M. FORNASIER, H. HUANG, L. PARESCHI, AND P. SÜNNEN, Consensus-based optimization on
the sphere II: convergence to global minimizers and machine learning, arXiv:2001.11988v3, (2020).

[30] S. GÖRNER AND C. KANZOW, On Newton’s method for the Fermat–Weber location problem, J.
Optim. Theory Appl., 170 (2016), pp. 107–118.

[31] S. GRATTON, C. W. ROYER, L. N. VICENTE, AND Z. ZHANG, Complexity and global rates of
trust-region methods based on probabilistic models, IMA J. Numer. Anal., 38 (2018), pp 1579–
1597.

[32] A. GRIEWANK, Computational differentiation and optimization, in Mathematical Programming:
State of the Art, J. R. Birge and K. G. Murty (eds.), The University of Michigan, Ann Arbor,
MI, 1994, pp. 102–131.

[33] R. HOOKE AND T. A. JEEVES, Direct search solution of numerical and statistical problems, J.
ACM, 8 (1961), pp. 212–229.

[34] J. HU, X. LIU, Z. WEN, AND Y. YUAN, A brief introduction to manifold optimization, Journal of
the Operations Research Society of China, 8 (2020), pp. 199–248.

[35] S. HU AND L. QI, Algebraic connectivity of an even uniform hypergraph, J. Comb. Optim., 24
(2012), pp. 564–579.

[36] B. JIANG AND Y. DAI, A framework of constraint preserving update schemes for optimization on
Stiefel manifold, Math. Program. A, 153 (2015), pp. 535–575.

[37] I. N. KATZ AND L. COOPER, Optimal location on a sphere, Comput. Math. Appl., 6 (1980),
pp. 175–196.

[38] T. G. KOLDA, R. M. LEWIS, AND V. TORCZON, Optimization by direct search: new perspectives
on some classical and modern methods, SIAM Rev., 45 (2003), pp. 385–482.

[39] C. LIU, A. LIU, AND S. HALABI, A min–max combination of biomarkers to improve diagnostic
accuracy, Statist. Med., 30 (2011), pp. 2005–2014.

[40] S. ŁOJASIEWICZ, Une propriété topologique des sous-ensembles analytiques réels, in Les Équations

Y. Chen, M. Xi and H. Zhang / CSIAM Trans. Appl. Math., 1 (2020), pp. 766-801 801

aux Dérivées Partielles, Éditions du centre National de la Recherche Scientifique, Paris, 1963,
pp. 87–89.

[41] M. MARAZZI AND J. NOCEDAL, Wedge trust region methods for derivative free optimization,
Math. Program. A, 91 (2002), pp. 289–305.

[42] J. J. MORÉ, Recent developments in algorithms and software for trust region methods, In: Bachem
A., Korte B., Grötschel M. (eds) Mathematical Programming The State of the Art. Springer,
Berlin, Heidelberg. (1983), pp. 258–287.

[43] J. A. NELDER AND R. MEAD, A simplex method for function minimization, Comput. J., 7 (1965),
pp. 308–313.

[44] J. NOCEDAL AND S. J. WRIGHT, Numerical Optimization, Springer, Science & Business Media,
2006.

[45] M. J. D. POWELL, A direct search optimization method that models the objective and constraint
functions by linear interpolation, in Advances in Optimization and Numerical Analysis, S.
Gomez and J. P. Hennart (eds.), Kluwer, Dordrecht, 1994, pp. 51–67.

[46] M. J. D. POWELL, UOBYQA: unconstrained optimization by quadratic approximation, Math. Pro-
gram., 92 (2002), pp. 555–582.

[47] M. J. D. POWELL, The NEWUOA software for unconstrained optimization without derivatives, in
Large-Scale Nonlinear Optimization, P. G. Di, M. Roma (eds), Springer, Boston, MA, 2006.

[48] L. QI, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), pp. 1302–1324.
[49] M. R. RAHIMPOUR, D. IRANSHAHI, AND A. M. BAHMANPOUR, Dynamic optimization of a

multi-stage spherical, radial flow reactor for the naphtha reforming process in the presence of cat-
alyst deactivation using differential evolution (DE) method, Int. J. Hydrogen Energy, 35 (2010),
pp. 7498–7511.

[50] T. M. RAGONNEAU AND Z. ZHANG, PDFO: Powell’s derivative-free optimization solvers, Avail-
able at http://zhangzk.net/software.html, (2020).

[51] P. R. SAMPAIO AND PH. L. TOINT, A derivative-free trust-funnel method for equality-constrained
nonlinear optimization, Comput. Optim. Appl., 61 (2015), pp. 25–49.

[52] W. SUN AND Y. X. YUAN, Optimization Theory and Methods: Nonlinear Programming, Springer,
Science & Business Media, 2006.

[53] V. TORCZON, On the convergence of pattern search algorithms, SIAM J. Optim., 7 (1997), pp.
1–25.

[54] N. XIAO, X. LIU, AND Y. YUAN, Exact penalty function for L2,1 norm minimization over the
Stiefel manifold, SIAM J. Optim., (2020) (under review).

[55] K. YAMAGUCHI, Borda winner in facility location problems on sphere, Soc. Choice Welf., 46
(2016), pp. 893–898.

[56] H. ZHANG AND A. R. CONN, On the local convergence of a derivative-free algorithm for least-
squares minimization, Comput. Optim. Appl., 51 (2012), pp. 481–507.

[57] H. ZHANG, A. R. CONN, AND K. SCHEINBERG, A derivative-free algorithm for least-squares
minimization, SIAM J. Optim., 20 (2010), pp. 3555–3576.

[58] X. ZHANG, C. LING, AND L. QI, The best rank-1 approximation of a symmetric tensor and related
spherical optimization problems, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 806–821.

[59] Z. ZHANG, Sobolev seminorm of quadratic functions with applications to derivative-free optimiza-
tion, Math. Program., 146 (2014), pp. 77–96.

