Don’t Work on Individual Data Plane Algorithms.
Put Them Together!

Chen Qian, Shougian Shi,

Xiaofeng Shi,

Minmei Wang

University of California, Santa Cruz
Santa Cruz, California, USA
{cqian12, sshi27, xshi24, mwang107}@ucsc.edu

ABSTRACT

Algorithms and data structures for data plane network functions
have been extensively studied in the literature. Recently various
compact data structures and algorithms have been used in data
plane to achieve less memory cost and higher throughput. However,
most of these studies only focus on individual network functions,
such as packet forwarding information base (FIB), traffic measure-
ment, and load balancing. To our knowledge, no study has been
conducted to design compact data structures and algorithms for
multiple and co-located network functions. We argue that there is a
huge space of optimization if we design algorithms and data struc-
tures considering multiple co-located network functions, compared
to designing them individually. It is because many of them share
similar design goals and building blocks. We use two recently pub-
lished methods as examples and present a new memory-compact
design that serves both FIB and traffic measurement functions by a
novel integration of the two methods. The preliminary results show
that the new design can achieve almost 2x throughput compared
to running them individually while achieving a higher accuracy of
measurement using the same memory. In addition, we will discuss
potential research directions and challenges.

CCS CONCEPTS

« Theory of computation — Sketching and sampling; Bloom
filters and hashing; « Networks — Data path algorithms.

KEYWORDS
Data plane algorithms; Hashing; Sketches

ACM Reference Format:

Chen Qian, Shougian Shi, Xiaofeng Shi, Minmei Wang. 2020. Don’t
Work on Individual Data Plane Algorithms. Put Them Together!. In Pro-
ceedings of the 19th ACM Workshop on Hot Topics in Networks (HotNets °20),
November 4-6, 2020, Virtual Event, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3422604.3425932

1 INTRODUCTION

Data plane algorithms and data structures of computer networks
have been studied extensively, such as those for packet forward-
ing, packet measurement and monitoring, load balancing, firewalls,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

HotNets 20, November 4—6, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8145-1/20/11.

https://doi.org/10.1145/3422604.3425932

network address translation (NAT), and other network functions.
Recent advances of programmable networking [3, 8, 17, 25, 33, 35,
37] use software, running on general-purpose computers or pro-
grammable switches, to perform network forwarding and functions,
brings tremendous advantages and conveniences for designing and
implementing new data plane algorithms and data structures.

We have witnessed a line of extensive studies of using space-
compact algorithms and data structures for packet measurement
and monitoring [12, 15, 22, 29-31, 43, 45, 50]. These data structures
include variants of cardinality-estimation sketches [4, 6, 19] and
frequency-estimation sketches [9, 12]. Meanwhile we have also no-
ticed a line of research of applying other space-compact algorithms
and data structures for network forwarding information base (FIB)
(13, 20, 26, 34, 38, 44, 46, 48, 49] and load balancing [14, 32, 47].
These data structures include variants of Bloom filters [7], cuckoo
hashing [36], Bloomier filters [10, 11], and a recent design called
Ludo hashing [38]. Both research topics frequently appeared in
recent main-stream networking conferences such as SIGCOMM,
SIGMETRICS, NSDI, ICNP, INFOCOM, and ANCS. An interesting
observation is that, although both packet measurement and for-
warding are necessary network functions and many programmable
switches/routers that support packet measurement should also sup-
port packet forwarding, none of these studies in the first line of
research has considered optimizing packet forwarding while de-
signing their methods. Similarly, none of the studies in the second
line of research has considered the co-existence of packet measure-
ment. One natural challenge is, since many of these designs set
their goal as achieving line rate on hardware or software switches,
will the line rate still be preserved if a switch needs to execute
both measurement and forwarding — a very common situation in
practice? To our knowledge, no study has been conducted to design
compact data structures and algorithms for multiple and co-existed
network functions from the above ones (e.g., one data structure and
algorithm to support both packet measurement and forwarding).

We argue that there is a huge space of optimization if we
design algorithms and data structures by considering multiple co-
located network functions, compared to designing them individu-
ally. At the very least, we can get an immediate benefit by putting
them together in the following example. Sketches, Bloom filters,
and hash tables all require computing multiple universal hash func-
tions. These hash functions must be independent to satisfy certain
properties of these algorithms. However, they do not have to be
independent across two different functions. One hash value can
be used in a measurement sketch and used again in a forwarding
table lookup, since they are independent functions by themselves.
Hence the number of hash computations can be reduced signifi-
cantly compared to executing them separately. It has been reported

https://doi.org/10.1145/3422604.3425932
https://doi.org/10.1145/3422604.3425932

that the number of per-packet hash computations contributes to
the bottleneck overhead that prevents data plane packet process-
ing from achieving the line rate [29]. The simple idea above can
definitely help to achieve or at least be closer to the line rate when
we need to run both forwarding and measurement functions. The
optimization space is more than this single one, as we will explain
later.

We expect a great future of optimizing algorithms for co-existed
network functions because:

(1) The data plane algorithms and data structures for different
network functions usually share similar design goals. First,
they require space efficiency. It is because they are hosted
in special hardware (e.g., SRAM) or high levels of the mem-
ory hierarchy (e.g., cache), where the memory is fast, small,
expensive, and power-hungry. Second, they need to be fast
enough to achieve line rate. Third, they should support dy-
namic updates to work in practice.

(2) These algorithms and data structures also share similar com-
putation steps. For example, we explained earlier that they
all need to compute multiple independent hash functions.

(3) These algorithms and data structures can be co-located to
reduce space cost and/or reduce the number of memory
accesses per packet, another main overhead of packet pro-
cessing [29]. For example, it is possible to store the measure-
ment sketch and the forwarding port of a flow together in a
same memory unit to reduce the number of random memory
accesses.

To demonstrate the power of consolidated design of network
functions, we study two very recent papers, one for FIBs and the
other for measurement sketches, from the program of ACM SIGMET-
RICS (June 2020) [38, 50] and published by two different groups. We
present a new data plane design that serves both memory-compact
FIB and traffic measurement functions by a novel integration of the
two methods. The preliminary results show that the new design
can achieve almost 2x throughput compared to running them indi-
vidually while achieving higher accuracy of measurement in theory.
In addition, we will discuss potential research directions towards
finding better algorithm and data structure designs that support
multiple network functions. We believe this paper introduces a new
research direction that has potential big impacts to networking
research.

2 RELATED WORK

Since data plane fast memory is precious resource, extensive stud-
ies have been conducted to design memory-compact data plane
algorithms and data structures.

Sketching algorithms for traffic measurement. Sketches are
important tools for network measurement tasks on programmable
software/hardware switches that have limited memory [12, 15, 22,
29-31, 43, 45, 50]. They are able to conduct tasks such as estimating
the sizes (number of packets) and cardinalities (number of distinct
elements) of network traffic flows and find heavy hitters (elephant
flows). Count-Min Sketches [12] are designed to estimate the flow
sizes with memory/accuracy trade-offs. OpenSketch [45] is one of
the first works that implement sketches on programmable switches
for traffic measurement. UnivMon [30] provides a more generic

Look up f hash seeds

1® 0

Bloomier filter 1

ALLTTTTTT] 2

%‘ 3
s(IITTTT11] @+ -
/@
Two arrays 4 and B. ®Find the value
Get b=A[h(f)|® Compute Hg(k)=t, vin slot ¢
B[h'(f)], be{0, 1} te{0,1,2.3}

Figure 1: Ludo hashing

algorithm design, in which the control plane can support a wide
range of estimation algorithms for different application-level mea-
surement tasks. SketchVisor [22] improves the performance of flow
measurement sketches by introducing a fast path (a separate sketch
with smaller memory) to process the top-k largest flows. NitroS-
ketch [29] is another design to solve the processing speed issues of
sketches using sampling. Recently a generalized sketch family has
been proposed to achieve various measurement tasks [50].

Memory-efficient FIBs. A forwarding information base (FIB)
on a network router or switch is a fundamental function to process
every packet. It tells the forwarding action (which port to send
the packet or drop it) based on the lookup result of the packet ID
(e.g., flow ID, four tuple, or destination address). Buffalo [44] is an
layer-two enterprise network switch design based on Bloom filters.
CuckooSwitch [49] is a software switch based on cuckoo hash tables
[36]. SetSep [16, 48] is a lookup table that uses brute force to resolve
collisions, with applications of LTE packet forwarding [48]. Concise
[46] is a memory-efficient FIB design using Bloomier filters [10, 11]
and the update method called Othello hashing. Shi et al. present
the comparison among FIB designs using various compact data
structures [39]. Ludo hashing [38] is a recent work that achieves
the smallest memory cost of dynamic FIB data structures among
existing work.

Other network functions using compact data structures.
Cuckoo hash tables and Othello have been used for difference cloud
load balancer designs [14, 32, 40]. Bloom filters have been used for
cloud firewalls [23].

3 A CONSOLIDATED ALGORITHM DESIGN

We present a new data plane design that serves both memory-
compact FIB and traffic measurement functions by a novel integra-
tion of the two methods [38, 50] that were recently presented on
SIGMETRICS on June 2020.

3.1 Background

We first briefly described the algorithms and data structures used
in [38, 50].

Ludo hashing is a key-value lookup engine with very small
memory cost [38]. For each key, it can return the corresponding
value of the key. Hence it can be used as a FIB on memory-limited
devices. For each packet, depending on the network operation
requirement, the lookup key can be the destination address for
destination-based routing or flow ID (such as the four tuples) for
flow-based routing. The returned value is the index for forwarding

m arrays

d estimators >

per array l

€1 T
h1V

Packet ha(f) P B e
(5)

hn () S

Figure 2: cSketch

actions (such as which port to forward or drop tk

use f to denote the key for packet forwarding loc

Fig. 1, the data structure of Ludo hashing is a tup

where T is an array of buckets (on the right side o .
bucket includes a hash seed s and four slots storing up to 4 v

hg and h; are two uniform hash functions; O is a Bloomier

[10, 46] that maintains two bitmaps A and B and returns 1-bit

to indicate whether a key f is mapped to bucket ho(f) or /

and H is a universal hash function family. The query of a

will output the value v¢. Ludo hashing will query the Blo
filter first to get whether the value is stored in bucket hq(
h1(f) and then determine the slot index ¢ that stores the val ;
computing t = Hs(f) where s is the seed stored in this bucket
and t € {0, 1,2, 3}. Finally, the value in slot ¢ of bucket h;(f) is
returned as vy. Other designs, such as how to construct and update
the data structure and control plane/data plane communication, are
skipped here.

Zhou et al. present a generalized sketch families for traffic mea-
surement [50]. One proposed sketch is called cSketch, which is an
extension of the well-known CountMin Sketch (CM-Sketch) [12].
As shown in Fig. 2, cSketch maintains m arrays, each of which
includes d estimators. So there are md estimators from ej1 to e, .
Each estimator provides the approximate count of the flow f that
maps to this estimator. An estimator can be implemented by a
bitmap [41], FM sketch [19], Hyperloglog sketch [18], or simply
an integer counter. Each packet is identified by < f,i >. If cSketch
wants to count the size of flows to identify elephant flows, f can be
set to the four tuples, and i can be the TCP sequence number and
other fields that differ among different packets. If cSketch wants to
count the ‘flow spread’, i.e., how many sources have been sent to a
particular destination, for applications like DDoS detection, then
f can be the destination IP/MAC address and i can be the source
IP address. For each packet, for each array j, cSketch computes
h;(f) and update the hj(f)-th estimator. To query the size of a
flow, cSketch will return the minimum value of the m estimators of
the flow f.

3.2 Integrating Ludo and cSketch

We find that for each packet, Ludo needs to compute four indepen-
dent hash functions h, h’, one of hy and h1, and H. It also needs
three random memory accesses to read one bit from A, one bit from
B, and a bucket in T. For cSketch, it needs to compute at least m
independent hash functions, one for each array. More hashes may

Packet (f, i

) hash seeds
\, @
Bloomier filter €31
A 11 | 1 | €32
sl 1L 11111
€, e,

Figure 3: Consolidated Ludo and cSketch (LuCS)

Hash table (physical) Top-k flow heap (virtual)

\f v, e,p,clcri
1N Rt 1
RS TS
\
S
v
|

Figure 4: A table for maintaining top-k flows. The left side is
the physical organization and the right side show a virtual
heap in logic.

be needed to compute complicated estimators such as the Hyper-
loglog sketch. It also needs m random memory accesses. In practice,
m is usually set to 3 to 5, because a large m significantly limits the
packet throughput.

Our idea is to reduce the processing time by consolidating Ludo
and cSketch is to share the hash results and co-locate the memory
spaces of them for a same key f. Both Ludo and cSketch assume
a hash value to be 32-bit long to support up to 232 length of ar-
rays/bitmaps/buckets. As shown in Fig. 3, we propose a design to
co-locate 3 cSketch arrays with Ludo called LuCS, where each array
Jj contains d estimators e;1, €;2, ..., ;4. In practice, n, the length of
bitmap A, is much larger than d. We align each estimator with
k = n/d bits in the bitmap A. The estimator and the k bits are co-
located in a same memory unit. In Fig. 3, k = 3. Each estimator will
be responsible for counting all keys that are hashed to the 3 bits in
A. Hence when the h(f) bit in A is accessed, the estimator of f is
simultaneously accessed. Similarly bitmap B can be co-located with
another estimator array including e21, €22, ..., e94. The third array
of cSketch can be put together with the bucket table. For example,
in Fig. 3 an estimator is put at the end of each bucket, which counts
all packets whose flow ID f is mapped to the bucket. Note the
number of estimators d can be dynamically adjusted. Hence it is
also possible to put one estimator for two buckets. It is not always
possible to put a whole bucket in a 64-bit memory unit but they are
in a same cacheline unit. Hence the time of memory access was also
significantly reduced. Using this data structure, at least for three
estimator arrays, very little extra complexity of hash computation
and memory accesses are needed besides the original cost of Ludo.
Note Ludo needs a fourth hash function H;(f), whose result can
be used for the fourth array if the fourth array is needed. A fifth
array, if necessary, can be separately maintained since these arrays
are mutually independent. The vSketch design proposed in [50]
can also be co-located with Ludo similarly.

Consolidated table for top-k flows. Many traffic measure-
ment tools require to track the top-k flows in a heap, in order to
notify the control plane any elephant flow, such as UnivMon [30]
and NitroSketch [29]. Maintaining the top-k flows is also beneficial
for packet forwarding: Since it is well-known that network traffic
is likely to follow power-law distribution [21, 27, 42], most packet
forwarding actions are also among the top-k flows. Hence if we
maintain a hash table that allows one hash computation and one
memory access to retrieve the action, the overall lookup perfor-
mance can be improved. Note the hash value used for the top-k
table can be again used for Ludo because they are independent data
structures. The bucket overflow of the hash table can be reduced
by lowering the load factor. Since k is a small value, lowering the
load factor does not significantly increase memory cost.

Assume a faction p of packets are in top-k, the time for comput-
ing a hash function is Ty, and the time for one random memory
access is T. The overall time cost for each lookup with a top-k table
is

(p+3=3p)Tp+(p+3-3p)Ty = (3=-2p)Tp + 3 - 2p)T»

If p = 0.5, the value is 2T;, +27T,.. If p = 0.8, the value is 1.4T;,+1.4T,..
They are much smaller than the original complexity 4Ty, + 37,

We present a consolidated table for tracking and querying top-
k flows, as shown in Fig. 4. The physical organization is a hash
table with multiple buckets, each of which has s slots. We do not
use Cuckoo hash table [36] because Cuckoo requires 1.5 memory
accesses for each lookup among top-k and 2 memory accesses for
each outside top-k. Since the hash table may have overflow, certain
methods will be used to mitigate this problem, such as lowering the
load factor and limited linear probing. Since k is a small number, it
is relatively easy to resolve these problems by trading with some
extra memory space. Each slot of the table contains the flow ID f,
the forwarding action index v, the estimation of the flow size e, the
parent node p in the heap, and the left and right children ¢; and ¢,.
p, ¢, and ¢, are represented by the indices of these nodes in the
table. The virtual heap structure is formed by using the values of p,
c;, and ¢, as shown in the right side of Fig. 4.

Why does this design save memory compared to maintaining a
table and a heap separately? f contributes to the majority storage
in the table. A four tuple costs 96 bits, e may cost 20 to 30 bits,
while each of others only cost no more than 10 bits. Maintaining
the table and heap separately needs to store two copies of f hence
it increases memory cost.

3.3 Analysis of LuCS

LuCS is a preferred design compared to using Ludo and cSketch
individually because 1) it provides higher lookup speed and 2)
it provides higher accuracy of flow size estimation at the same
memory cost (or potentially smaller memory to reach a target
accuracy).

Lookup time analysis. Assume the time for computing a hash
function is Ty, the time for one random memory access is T, and
the time for one memory write is T,,. Note that in a platform with
memory hierarchy, T may not be fixed, but still the overall lookup
time would be less with fewer memory accesses in theory. For every
packet, the data plane wants to know the its forwarding action and
its estimated size (to report if it is considered an elephant flow), Ludo

requires 4Ty, + 3T, and cSketch requires 3Ty, + 3T, + T,,, assuming
m = 3 and each estimator is simply a counter. Hence they require
7Ty, + 6T, + T,y in total. On the other hand, LuCS only requires
4Ty, + 3T, + Ty, There is another factor that would further reduce
LuCS’s lookup time. We know that in practice a large proportion
of packets belong to the top-k flows. In platform with memory
hierarchy such as software switches on commodity servers, it is
desired that lookups to the top-k flows should hit the fast memory
such as cache. The LuCS design makes the memory locations of top-
k flows of both Ludo and cSketch co-located and hence it increases
the cache hit rate. Running Ludo and cSketch individually will
likely to cause more cache misses.

Accuracy analysis. We show that the estimator arrays co-located
with Ludo actually achieves a better accuracy than using cSketch
separately. It is known that CM-Sketches (and cSketch too) will
over-count the size or spread of a flow, due to collisions among
different flows. Let X; denote the excess of an estimator array i of
cSketch. Let f be a flow, cf be the count of f (e.g., the size), and
¢r be the reported estimate of f. Y; j be the indicator of the event
hi(j) = hi(f) and a # j in cSketch. Let X; denote the excess of an
estimator array i of cSketch: X; = ¢f —cr. Hence X; = Zjc;Y ;.

The first and second estimator arrays of LuCS are identical to
the first two arrays of cSketch. Let us compare the estimators
e31, €32, ..., e3q of LuCS of those in cSketch. Assume the number of
all flows is n and the number of buckets in Ludo is 1.05n/4. Hence
E[Y;j] = 3.8/n. Let C be the count of all flows. Thus

E[Xi] =2;3.8fj/n=3.8(C—cf)/n
Based on Markov’s inequality, we have
P{X; > e(C—cy)/n} < 3.8/e

On the other hand, let X’ denote the excess of the third estimator
array of LuCS and Yj' be the indicator of the event h3(j) = h3(f)
and a # j in LuCS. Note the number of collisions to f in Ludo
is bounded by 3 with average 2.8, i.e., the other three values in a
bucket. Hence we have

E[X'] = 2.8(C - cf)

P{X’' > e(C- cr)/n} <2.8/e

Hence using the same memory size and computation time, X’ is
smaller than X; by utilizing the feature of Ludo hashing. Since we
take the minimum count from the estimators from all arrays, the
probability that the reported excess X is bigger than a particular
value is the product of that probability from each array.

P{X 2 e(C—cp)/n} =IL;iP{X; = e(C — cf)/n}

Hence the overall estimation of LuCS is also more accurate.
Compared to OpenFlow-style tables. An intuitive approach
for co-located network functions is to apply OpenFlow-style tables
[2] where each entry of the tables represents one flow or one type
of flows. Following the matching fields of each entry, each “action”
field can express a network function. The major weakness of this
design is that its memory cost is very high (>356 bit per flow),
compared to many compact data structures that costs 10 to 20 bits
per flow [38, 46]. In addition, OpenFlow tables cannot be integrated
with counting sketches because flows cannot shared counters.

N = LuCS
16 (N
% - Ludo+CM-Sketch
%
% 141 Sse
TXR==Xo

= 124 %~
ERUE
=%
© 81
=]
g 6
=
= a4

2

256K M am 16M 64M 256M 1B

Number of flows

Figure 5: Throughput comparison with uniform traffic

20{ TR AETIEm MmN K=
< e \
@ \
é 184 \
\
2 161 k
5 \
E 14 \
5 X
3 121
£
= 104
8 = LuCS -~ Ludo+CM-Sketch
256K M am 16M 64M 256M 1B

Number of flows

Figure 6: Throughput comparison with Zipfian traffic

3.4 Preliminary results

We implement LuCS and compare it with using both Ludo and CM-
Sketch [12] (CM-Sketch can be considered a special case of cSketch).
They were run in single thread on a commodity workstation with
two Intel E5-2660 v3 10-core CPUs at 2.60GHz. The traffic workloads
are in two types: in the uniform distribution and Zipfian distribution.
For the uniform distribution, all flows are requested with an equal
probability. For the Zipfian distribution, items are requested with
biased probabilities, which better simulates the workload in most
practical systems.

Figs. 5 and 6 show the throughput results, in millions of queries
per second (Mqps), for uniform and Zipfian traffic respectively.
The overall memory costs of LuCS and Ludo+CM-Sketch are the
same. We find that LuCS achieves almost twice of the throughput
of Ludo+CM-Sketch. The throughput results from both figures
experience drops when the number of flows exceeds certain values,
which indicate the memory cost exceeds the cache size. Compared
Fig. 5 with Fig. 6, the throughput with Zipfian traffic is also higher
than those of uniform traffic, because Zipfian causes fewer cache
misses. The results are close to those from recent work that aims
to achieve fast packet processing [29, 50]. The source code of LuCS
is available for reproduction [1].

4 POSSIBLE RESEARCH DIRECTIONS

The research of algorithm designs for consolidated network func-
tions is not limited to the above example. We identify possible
research topics towards this field in this section.

4.1 Systematical design methodologies

As we stated, numerous algorithmic designs of network functions
have been proposed in the past. Can we identify possible approaches
to find those algorithms that can be consolidated. We propose some
possible methodologies.

1. Do these network functions apply to the same packet header
fields. Depending on the network operation requirements, different
network functions may operate on different packet header fields. For
example, in a network with Ethernet semantics, packet forwarding
is based on the MAC address [24]. In a flow-based network, packet
forwarding may be based on the four-tuple. To count the flow size,
the hash key could be the four tuples. To count the flow spread, the
hash key should be the destination address (IP or MAC). The first
step of designing algorithms for consolidated network functions
is to identify their operation targets and find those that share the
same operation fields. In addition, some network functions operate
on the content of a packet, such as content-based routing and
distributed caching [28]. They can also be designed together to
optimize network performance.

2. Do these network functions share similar data structures. Each
compact network algorithm uses one or more data structures, most
of which are hashing based. If two network functions obviously rely
on similar data structures, it is a natural decision for a consolidated
design. For example, BUFFALO [44] and CAESAR [34] use Bloom
filters for packet forwarding and Bloom filters are also key building
blocks of the bSketch [50]. A co-located data structure based on
Bloom filters can be designed similar to LuCS presented in Section
3. Furthermore, even if some network functions do not use exactly
the same data structures, like Lodu and cSketch, they can still be
optimized by consolidation. The main reason is that many data
structures require to map the keys uniformly to a bitmap, array, or
table.

3. Can one feature of a data structure be used by others. Some
data structures achieve certain features by paying some memory
or computation cost. For example, Cuckoo hashing [36] uses two
hashes and more space (load factor lower than 100%) to resolve
collisions. Ludo hashing [38] uses 3.76 bits per key to resolve the col-
lisions. These collision resolution results can also benefit sketches
because the estimation errors are caused by collisions. As we show
in Section 3 that putting the estimators with Ludo will actually
decrease the error. It is interesting to explore other features that
can be utilized by multiple data structures.

4. Do these network functions track similar information. The con-
solidated top-k flow table in Section 3 shows that some information
can be tracked among multiple network functions and only be
maintained in one copy. Similar information could be the popular
contents, congested links, and overloaded servers. We will study
how maintaining these information helps multiple network func-
tions.

4.2 Update and coordination

Many compact data plane algorithms and data structures require
the control plane coordination to maintain consistency and correct-
ness, such as those in [30, 38, 44, 46, 48]. One important challenge
is that some updates to these data plane algorithms cannot be im-
mediately determined and reflected in the data plane, because the

keys

benefit possible combination

FIB+ flow-size sketch flow ID faster processing, higher accuracy Ludo+cSketch
FIB+ flow-spread sketch destination faster processing, higher accuracy (Ludo + cSketch) or (Buffalo [44] + bSketch [50])
LB+NAT four-tuple smaller memory, faster processing Maglev [14] or Concury [40] + NAT
LB+sketches four-tuple faster processing Maglev [14] or Concury [40] + cSketch

FIB+sketches with samples flow ID or destination less memory per node, higher accuracy

Ludo+NitroSketch [29]

Table 1: Examples of possible consolidation of NF algorithms. LB: load balancer; NAT: network address translation;

data plane either does not have enough information or does not
have enough computation power. However, both packet measure-
ment and forwarding require instant operations on the packets.
One approach that works in practice is the maintain a separate
table of the new arrival or changed flows, instead of putting them
into the compact data structure. Then periodically the control plane
will combine the temporal table into the compact data structure
and allow the data plane to update according to the control plane
update messages. More approaches should be explored under this
topic.

4.3 Network-wide optimization

It is true that every network device needs to have the forward-
ing functions. However, for other network functions, a network
may need only one or a few nodes to provide these functions. In
addition, with programmable networking such as SDN, it is possi-
ble that multiple network nodes collaboratively complete certain
network operations. For example, a flow can be monitored at any
switch on its forwarding path. The SDN controller can optimize
the network operation load distribution to all nodes based on the
resource availability and cost on these nodes. We summarize the
following challenges of network-wide optimization. i) Heterogene-
ity is ubiquitous in the network, i.e., different nodes and hosts have
varied configuration. ii) Resource consumptions of different flows
are highly coupled together in some cases. For example, in traffic
measurement, a bitmap may be used for flow number estimation. If
we double the bitmap size, the estimation accuracy does not double.
Hence an optimized strategy is to allow different nodes maintain
proper sizes of bitmaps, and assign the flow measurement tasks
approximately evenly to the nodes. iii) Correlation between differ-
ent tasks further complicates the optimization. First of all, some
tasks may composite together to form a more complicated task,
such as heavy-hitter detection [5]. Second, some computational
resources could be saved if one flow has several tasks conducted
at the same node. We notice that most existing designs of compact
network functions are based on one single node and they pay little
attention to the network-wide optimization. The key motivation of
network-wide optimization is that, the increasing use of software
switches enables a network function can be executed anywhere
in the network. By using the entire network to complete these
functions, the overhead on every single node can significantly be
reduced. More research is expected to be conducted on this topic.

4.4 Generalizability of NF algorithm co-design

Following the principles discussed above, we suggest a number
of possible consolidated data plane algorithms in Table 1. FIB+

flow-size/flow-spread sketches have been discussed in Sec. 3. In
addition, a load balancer can be combined with a NAT to achieve
both functions while storing the flow IDs in the lookup table only
once. Hence this design reduces the memory cost. A load balancer
could also be consolidated with sketches to count the flow sizes and
the traffic load to different servers. We also propose a co-design
of FIB and sampling-based sketches following the idea in Sec. 4.3.
Sampling-based sketches such as NitroSketch [29] achieve the line-
rate process but significantly increase the memory cost. We propose
to embed the sketch function into different FIBs across the network
while achieving line-rate on every forwarding node and distribute
the memory cost to different nodes.

4.5 Make use of existing design modules

Consolidated data plane algorithms do not simply play the inte-
gration versus modularity game. In fact, they can be designed in a
way that preserves the current modules of data plane algorithms.
Most recently proposed data plane algorithms consist of two main
components: 1) the data plane module that processes packets and
2) the control plane module that builds the data plane module and
tracks the necessary information such as active flows and desti-
nation addresses, such as those in [29, 38, 40]. The data plane and
control plane modules communicate via custom-defined control
messages. In the proposed design, the data plane modules will be
replaced by the consolidated data structures, but the control plane
modules of the individual network functions are still preserved. A
middle layer will be added in the control plane to use the output of
the individual modules as inputs to produce the consolidated data
structures.

5 CONCLUSION

In this paper, we introduce the opportunities of designing co-located
and consolidated network functions using compact algorithms and
data structures, to achieve fast packet processing, smaller memory,
and/or higher accuracy of network measurement. We present LuCS
that serves both memory-compact FIB and traffic measurement
functions of two recently proposed methods Ludo hashing [38] and
cSketch [50]. We show LuCS provides 2x throughput in experiments
and higher accuracy in analysis, compared to running the two
original methods. We also identify the potential research directions
and challenges along this research direction. We believe this new
field has potential big impacts on networking research.

6 ACKNOWLEDGMENT

The authors were partially supported by NSF Grants 1717948 and
1932447. We thank the anonymous reviewers and our shepherd Ben
Leong for their constructive comments.

REFERENCES

[10]

[11

[12]
[13]

[14]

[15]

[16

[17]

[18

[19]
[20]
[21]

[22

[23]

[24]
[25]
[26]

[27]

Implementation of LuCS in C++. https://github.com/QianLabUCSC/LuCS.
OpenFlow Switch Specification 1.3.4. http://www.opennetworking.org/.
Network Functions Virtualisation: Introductory White Paper. https://portal.etsi.
org/nfv/nfv_white_paper.pdf, 2012.

N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the
frequency moments. 7. Comput. Syst. Sci., 1999.

N. Bandi, A. Metwally, D. Agrawal, and A. El Abbadi. Fast data stream algorithms
using associative memories. In Proc. of the ACM SIGMOD, 2007.

Z.Bar-Yossef, T. S. Jayram, R. K. D. Sivakumar, and L. Trevisan. Counting distinct
elements in a data stream. In Proc. 6th International Workshop on Randomization
and Approximation Techniques in Computer Science, 2002.

B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422-426, 1970.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4: programming protocol-
independent packet processors. ACM SIGCOMM Computer Communication Re-
view, 2014.

M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data
streams. Theor. Comput. Sci., 2004.

D. Charles and K. Chellapilla. Bloomier Filters: A Second Look. In Proc. of ESA,
2008.

B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The Bloomier Filter: An Efficient
Data Structure for Static Support Lookup Tables. In Proc. of ACM SODA, pages
30-39, 2004.

G. Cormode and S. Muthukrishnan. An improved data stream summary: the
count-min sketch and its applications. Journal of Algorithms, 2005.

S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor. Longest prefix matching
using bloom filters. In Proceedings of ACM SIGCOMM, 2003.

D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-Hielscher,
A. Cilingiroglu, B. Cheyney, W. Shang, and J. D. Hosein. Maglev: A Fast and
Reliable Software Network Load Balancer. In Proc. of USENIX NSDI, 2016.

C. Estan, G. Varghese, and M. Fisk. Bitmap Algorithms for Counting Active Flows
on High Speed Links. In Proceedings of the 3rd ACM SIGCOMM conference on
Internet measurement, pages 153-166, 2003.

B. Fan, D. Zhou, H. Lim, M. Kaminsky, and D. G. Andersen. When cycles are
cheap, some tables can be huge. In Proc. of USENIX HotOS, 2013.

N. Feamster, J. Rexford, and E. Zegura. The road to SDN: An intellectual history
of programmable networks. ACM Queue, 2013.

P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier. Hyperloglog: The Analysis of
A Near-optimal Cardinality Estimation Algorithm. 2007.

P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base
applications. J. Comput. Syst. Sci., 1985.

A. Goel and P. Gupta. Small subset queries and bloom filters using ternary
associative memories, with applications. In Proc. of ACM SIGMETRICS, 2010.

L. Guo and I. Matta. The war between mice and elephants. In Proc. of IEEE ICNP,
2001.

Q. Huang, X. Jin, P. P. Lee, R. Li, L. Tang, Y.-C. Chen, and G. Zhang. Sketchvisor:
Robust network measurement for software packet processing. In Proceedings of
the Conference of the ACM Special Interest Group on Data Communication, pages
113-126, 2017.

A. R. Khakpour and A. X. Liu. First Step Toward Cloud-Based Firewalling.
In Proceedings of the 31st IEEE International Symposium on Reliable Distributed
Systems (SRDS), 2012.

C. Kim, M. Caesar, and J. Rexford. Floodless in SEATTLE: A Scalable Ethernet
Architecture for Large Enterprises. In Proc. of Sigcomm, 2008.

E. Kohler. The Click Modular Router. PhD thesis, Massachusetts Institute of
Technology, 2000.

D. Li, H. Cui, Y. Hu, Y. Xia, and X. Wang. Scalable data center multicast using
multi-class Bloom filter. In Proc. of IEEE ICNP, 2011.

X. Li and C. Qian. Low-Complexity Multi-Resource Packet Scheduling for Net-
work Functions Virtualization. In Proceedings of IEEE INFOCOM, 2015.

[28

[29]

[30]

(31]

[33

[34

[39

[40]

[41

[42

=
&

[44]
[45]

[46

[47]

[48

[49]

[50

Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman, X. Jin, and L. Stoica. Dist-
Cache: Provable Load Balancing for Large-Scale Storage Systems with Distributed
Caching. In Proc. of USENIX FAST, 2019.

Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braverman, R. Friedman, and
V. Sekar. NitroSketch: Robust and General Sketch-based Monitoring in Software
Switches. In Proc. of ACM SIGCOMM, 2019.

Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman. One Sketch to
Rule Them All: Rethinking Network Flow Monitoring with UnivMon. In Proc. of
ACM SIGCOMM, 2016.

Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani. Counter
braids: A novel counter architecture for per-flow measurement. ACM SIGMET-
RICS Performance Evaluation Review, 36(1):121-132, 2008.

R.Mao, H. Zeng, C.Kim, J. Lee, and M. Yu. SilkRoad: Making Stateful Layer-4 Load
Balancing Fast and Cheap Using Switching ASICs. In Proc. of ACM SIGCOMM,
2017.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner. Openflow: Enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev., 2008.

M. Moradi, F. Qian, Q. Xu, Z. M. Mao, D. Bethea, and M. K. Reiter. Caesar: High-
Speed and Memory-Efficient Forwarding Engine for Future Internet Architecture.
In Proceedings of ACM/IEEE ANCS, 2015.

B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti. A Sur-
vey of Software-Defined Networking: Past, Present, and Future of Programmable
Networks . IEEE Communications Surveys and Tutorials, 2014.

R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms, 2004.

B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross, A. Wang,
J. Stringer, P. Shelar, K. Amidon, and M. Casado. The Design and Implementation
of Open vSwitch. In Proc. of USENIX NSDI, 2015.

S. Shi and C. Qian. Ludo Hashing: Compact, Fast, and Dynamic Key-value
Lookups for Practical Network Systems. In Proceedings of ACM SIGMETRICS,
2020.

S. Shi, C. Qian, and M. Wang. Re-designing Compact-structure based Forwarding
for Programmable Networks. In Proc. of IEEE ICNP, 2019.

S. Shi, Y. Yu, M. Xie, X. Li, X. Li, Y. Zhang, and C. Qian. Concury: A Fast and
Light-weight Software Cloud Load Balancer. In Proceedings of ACM SOCC, 2020.
K. Whang, B. T. Vander-Zandan, and M. H. Taylor. A linear-time probabilistic
counting algorithm for database applications. ACM Transactions on Database
Systems, 1990.

W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson. Self-similarity through
High-variability: Statistical Analysis of Ethernet LAN Traffic at the Source Level.
IEEE/ACM Transactions on Networking, 1997.

T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao, X. Li, and S. Uhlig.
Elastic Sketch: Adaptive and Fast Network-wide Measurements. In Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data Communication,
pages 561-575, 2018.

M. Yu, A. Fabrikant, and J. Rexford. BUFFALO: Bloom filter forwarding architec-
ture for large organizations. In Proc. of ACM CoNEXT, 2009.

M. Yu, L. Jose, and R. Miao. Software defined traffic measurement with OpenS-
ketch. In Proc. of USENIX NSDI, 2013.

Y. Yu, D. Belazzougui, C. Qian, and Q. Zhang. Memory-efficient and Ultra-fast
Network Lookup and Forwarding using Othello Hashing. IEEE/ACM Transactions
on Networking, 2018.

Y. Yu, X. Li, and C. Qian. SDLB: A Scalable and Dynamic Software Load Balancer
for Fog and Mobile Edge Computing. In Proc. of ACM SIGCOMM Workshop on
Mobile Edge Computing (MECCOM), 2017.

D. Zhou, B. Fan, H. Lim, D. G. Andersen, M. Kaminsky, M. Mitzenmacher, R. Wang,
and A. Singh. Scaling up clustered network appliances with scalebricks. In
SIGCOMM, 2015.

D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. Andersen. Scalable, High
Performance Ethernet Forwarding with CuckooSwitch. In Proc. of ACM CoNEXT,
2013.

Y. Zhou, Y. Zhang, C. Ma, S. Chen, and O. Odegbile. Generalized Sketch Families
for Network Traffic Measurement. In Proceedings of ACM SIGMETRICS, 2020.

https://github.com/QianLabUCSC/LuCS
http://www.opennetworking.org/
https://portal.etsi.org/nfv/nfv_white_paper.pdf
https://portal.etsi.org/nfv/nfv_white_paper.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 A Consolidated Algorithm Design
	3.1 Background
	3.2 Integrating Ludo and cSketch
	3.3 blackAnalysis of LuCS
	3.4 Preliminary results

	4 Possible Research Directions
	4.1 Systematical design methodologies
	4.2 Update and coordination
	4.3 Network-wide optimization
	4.4 blackGeneralizability of NF algorithm co-design
	4.5 blackMake use of existing design modules

	5 Conclusion
	6 Acknowledgment
	References

