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Abstract—We propose to study mobile object tracing, which
allows a mobile system to report the shape, location, and
trajectory of the mobile objects appearing in a video camera
and identifies each of them with its cyber-identity (ID), even
if the appearances of the objects are not known to the system.
Existing tracking methods either cannot match objects with their
cyber-IDs or rely on complex vision modules pre-learned from
vast and well-annotated datasets including the appearances of
the target objects, which may not exist in practice. We design
and implement TagAttention, a vision-RFID fusion system that
achieves mobile object tracing without the knowledge of the
target object appearances and hence can be used in many
applications that need to track arbitrary un-registered objects.
TagAttention adopts the visual attention mechanism, through
which RF signals can direct the visual system to detect and
track target objects with unknown appearances. Experiments
show TagAttention can actively discover, identify, and track the
target objects while matching them with their cyber-IDs by using
commercial sensing devices in complex environments with various
multipath reflectors. It only requires around one second to detect
and localize a new mobile target appearing in the video and keeps
tracking it accurately over time.

Index Terms—Radio-frequency identification (RFID), Sensing,
Mobile tracing, Perception fusion.

I. INTRODUCTION

As the key components of the Internet of Things (IoT),
many moving objects (the ‘Things’) carry their cyber-identities
(IDs) such as unique sequence numbers or network addresses.
We study the mobile object tracing problem, which allows a
mobile system to report the shape, location, and trajectory of
the mobile objects appearing in a video camera and identifies
each of them with its cyber-ID, even if the appearances of the
objects are not known to the system. Mobile object tracing
is one essential problem of mobile computing with emerging
applications such as cashier-free stores (identify and track
the customers and the merchandise in their shopping carts),
autonomous cars (identify other vehicles and traffic signs),
electronic article surveillance (EAS), virtual/augmented real-
ity, TV motion sensing games, and lost child/object searching.
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In most of these applications, the appearances of the objects
(customers, merchandise, vehicles, lost objects) may not be
known in advance to the system, or the objects are of a huge
variety whose appearances are too many to learn.

Mobile object tracing requires the following specific tasks.

e Object detection: detect each mobile object from the

video frames and highlight its shape and boundary.

o Identify matching: match each mobile object with its

assigned cyber-ID.

o Movement tracking: obtain the location and moving tra-

jectory of each target object.

These tasks have been individually studied in many areas
including computer vision, wireless sensing, and human com-
puter interaction. For example, computer vision may be able
to segment a moving object from video frames — most of these
methods require the object’s appearance is pre-registered and
learned. However, computer vision provides no information
about the cyber-ID. Wireless sensing methods can tell the
cyber-IDs of the objects in an area but their appearances and
detailed behaviors are not known. However, combining these
two types of methods and achieving fast speed, cost efficiency,
and accuracy are still challenging, especially in many appli-
cations where the appearances of the moving objects are not
known in advance.

Computer vision is a powerful tool for object classification
[22], detection [34], segmentation [18], and tracking [44] from
images and videos. Most modern computer vision methods
can effectively detect and track objects only if the object’s
appearance is pre-registered [1], [44]. For example, a com-
prehensive and annotated data set is usually required to train
these learning models. In addition, these vision based methods
can only classify the arbitrary objects with their categorical
labels, while they cannot process any cyber-ID information
and identify objects with similar appearances. On the other
hand, tracking approaches based on RFID can only estimate
the coarse location of objects as wireless signals are much less
robust to the environmental noises (such as device deviations
and unanticipated reflectors) [7], [9], [16], [17], [41], [46].
Thus, they fail to precisely localize the targets and report the
object appearances (such as shapes and edges).

An intuitive solution is combining computer vision and
RFID technologies to simultaneously obtain the location of
the target objects from the visual channel and the identities
from the wireless channel [11], [24], [25], [31], [45]. However,
existing vision-RFID fusion methods cannot achieve mobile
object tracing with zero human’s assistance. They all require



to pre-learn the appearances of the objects, either from a vast
and well-annotated dataset that describes the target objects or
from users’ annotation when the targets initially appear in the
scene. If the object appearances are unknown, these solutions
are NOT able to detect and track the objects from the video and
match them with their cyber-IDs. In fact, in many applications
the system does not know the appearances of the target objects
in advance.

In this paper, we argue that the wireless communication
between the target and the reader through the RF channel can
essentially assist the visual channel to actively find the target
mobile object without knowing the objects’ appearance. We
consider the raw visual sensing information (such as video
frames obtained from cameras) as the bottom-level information
and the abstraction of the objects (such as their cyber-IDs
and coarse motion trajectories which can be obtained from
the RF channel) as the top-level information. We propose
the TagAttention, which adopts the “bottom-up” and “top-
down” visual attention model to fuse the visual and wireless
sensing channels for mobile object tracing. The “bottom-up”
visual attention model predicts the optical flows (patterns of
apparent motion of the objects) from the RGB frames and
the “top-down” step detects, segments and tracks the visual
regions by matching the motion of targets in the video with
the tag IDs and wireless channel information. The intention
to use attention model in our framework is that physical
layer properties of wireless signals, such as signal phases,
can “direct” the vision model to focus its attention only to
the moving targets. TagAttention could automatically detect,
localize, and identify any tagged object in the video when
it appears in the camera and then keep tracking it. It only
requires around one second to detect and localize a new mobile
target appearing in the video and keeps tracking it accurately
over time. To our knowledge, no prior method can achieve
this task.

In summary, the main advantages of TagAttention include:
1) It can actively discover rigid tagged mobile objects and
automatically track them without pre-knowledge of the ob-
jects’ appearance, hence it requires zero human’s assistance
to label visual data; 2) It is fast and cost-efficient; 3) it does
not need manually annotated datasets for training; 4) it uses
only commercial off-the-shelf (COTS) devices for sensing and
no hardware-level modification is required; 5) it works well
in complex and dynamic environments with many multi-path
reflectors.

The balance of this paper is summarized as follows. Sec.
IT presents the related work. Sec. III illustrates the design of
TagAttention. In Sec. IV we present the primary evaluation
results, and in Sec. V we further analyze the system with
empirical studies. The limitations of the system are discussed
in Sec. VI. We conclude the paper in Sec. VIL

II. RELATED WORK
A. Localization Based on RFID

Recent RFID research uses physical layer properties of the
back-scatter RF signals to localize the RFID tags. The those
physical properties typically include received signal strength
(RSS) [5], [50], signal phase [26], [27], [36], and angle of

arrival (AoA) [43], [51]. However, the accuracy of these
methods usually suffers from the multi-path effect caused by
destructive reflectors in the environments. In addition, many
methods [27], [30], [39] require the RFID tag to be static for a
few seconds so that plenty of signal samples are collected for
statistical analysis, which makes real-time tracking of the tags
in a mobile and dynamic scenario challenging. Meanwhile, the
initial measurement bias cause by RFID readers and tags, such
as the signal phase bias, usually needs to be carefully measured
or canceled before data samples are recorded [27], [43].
Recent studies achieve sub-centimeter localization accuracy by
manipulating the radio signals with multiple Universal Soft-
ware Radio Peripherals (USRPs). For example, TurboTrack
[28] estimates the RF signals in much wider bandwidth to
reduce the impact of environmental reflectors. However, these
methods can hardly be compliable with commercial off-the-
shelf (COTS) RFID readers.

In TagAttention, since we can adopt vision as an additional
channel which provides plenty of spatial information of the
target we want to trace (although with vision alone we do not
know exactly the tracing target), the system does not demand a
precise localization performance using the RF signals. Hence,
the system does not rely on the self-defined radio signals and
can be easily implemented with most commercial RF readers
and 3D cameras.

B. Visual Tracking Systems

Object tracking in computer vision research is usually de-
fined as predicting bounding boxes for certain objects in every
video frame. One category of the solutions uses correlation
filters, such as MOSSE [2] filter. More recently, the target
patch searching can be accomplished in an end-to-end manner
by deep neural networks [23], [48]. Another type of methods
utilize the motion information in spatio-temporal context [44]
or optical flows [6] of the video, which can also be learned
through DNNs. The third type adopts the tracking-by-detection
strategy to track specific objects, such as human bodies [14],
[15].

However, all the above methods require either a large
well-annotated dataset to train their models, or users’ initial
annotation to tell the model what to track, or both. Actively
finding and identifying the targets that are not registered or
learned by the models remains unsolved.

C. Vision-RFID Fusion

In recent years, attempts have been made to fuse vision
and RF signals so that the systems can both track and
identify mobile targets by matching the information from both
channels [11], [12], [24], [25], [31], [45]. Mandeljc et al.
[31] propose to detect and track anonymous humans from
videos with Probabilistic Occupancy Map (POM) algorithm,
and then identify the individuals by matching the IDs in RF-
channel to the detected human instances based on the location
information. ID-Match [25] is a novel vision-RFID fusion
system for human identification from a group through an RGB-
D camera and an RFID sensor. However, both of the above-
mentioned methods rely on the human detection or human
pose estimation module accomplished by specifically-trained
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Fig. 1. Overview of TagAttention. The system is mainly comprised of the bottom-up and top-down attention modules.

computer vision models. Therefore they cannot be used to
identify objects other than humans.

Beyond tracking and identification of humans, TagVision
[11], [12] fuses signals of RFID tags on objects and 2D
surveillance video by calculating probabilistic matching scores
of the signal phases and object motions. However, the vision
model is hard to be applied in complex 3D scenarios: it can
only track objects on a static 2D plane by which the camera
model is calibrated. A recent work proposes IDCam [24],
which fuses RFID and 3D camera to trace a tagged item
that is held by a user’s hand. The system requires a precise
detection of the user’s gestures, which is accomplished by
a carefully tuned visual detection and tracking module. In
addition, TaggedAR [45] is proposed to detect and identify
stationary objects by rotating the sensors and pairing RF-
signals with the depth of the target objects. However, the
system discards the informative object descriptions from the
visual intensity channels and simply segments objects from
the background based on depth histogram, which significantly
reduces the robustness of the system in complicated scenarios.

Existing fusion solutions cannot achieve tracing arbi-
trary mobile objects in 3D space. They either only trace
particular targets (such as a human body) with sophisticated
models or trace objects on a calibrated 2D plane. They cannot
identify and track objects with unknown arbitrary appearances
in complex 3D environments, which is our design objective of
this work.

III. DESIGN OF TAGATTENTION
A. Overview

In TagAttention, we use a commercial RFID reader carrying
one antenna and an RGB-D camera on top of the antenna to
capture the sensing data. In addition, each tracing target carries
an RFID Tag that can be read by the RFID reader through
the antenna. Fig. 1 shows an overview of our attention-based
fusion system. The inputs of our fusion model are the RGB
intensity and distance maps (each pixel of the distance map
represents the distance from the 3D voxel to the sensor origin)
captured by the RGB-D camera, and the RFID EPCs (denoting
the cyber-IDs of the objects) and their corresponding phase
signals obtained by the RF reader.

We consider the raw video inputs as the bottom-level
information and the abstraction of the objects (such as their

cyber-IDs and motion trajectories) as the top-level information.
Given two consecutive RGB frames, the bottom-up visual
attention mechanism estimates the pixel-level optical flow
to measure the motions of pixels from the visual frames.
Since the produced optical flow can highlight moving pixels
from raw video, it works as a bottom-up visual attention
mechanism [8], where the system naturally notice the salient
visual components of potential importance from visual inputs.

Meanwhile, the fop-down visual attention module in TagAt-
tention functions as a detector of the targets given the RF
signals that match the visual targets. In the top-down attention
module, we obtain the consecutive distance by unwrapping the
phases of RFID tags, and map it with the per-frame optical
flows. By combining the bottom-up and top-down modules
together, we can obtain an attention map for each times-
tamp, which represents the pixel-level consistency between
the motion trajectories in the video and the distance changing
of the RFID tag. The attention map is a 2D matrix with
the same size as the video frame resolution, in which each
element represents the magnitude of attention (measured by
the probabilistic matching score of the two sensing channel in
our design) on the corresponding image pixel.

Finally, a tracker is designed to actively discover the target
objects and output their corresponding shape and location
(represented by a pixel-wise mask for the object, we use
‘mask’ in the following) from the video based on the per-
frame attention maps.

Compared to the existing fusion methods, TagAttention
can actively highlight ubiquitous target objects in a video
without any pre-knowledge of the object’s appearance. Thus,
this tracing model can be applied on a much wider variety
of visually-complex scenarios in which target objects are not
visually pre-registered.

B. RF Signal Preprocessing

In TagAtthention, the RFID tags are matched to the objects
in the video through the correlation of the motion trajectories
of the objects. The distance L from the reader antenna to the
tag can be calculated as follows:

L c
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Fig. 2. RF phase signal preprocessing and the relative distance trajectory
where ¢ represents the corresponding phase change over the
signal travel distance, ¢ is the speed of light and f is the
signal frequency (equals to 920MHz for our reader). Note
that with the current COTS devices, we can not calculate
the exact distance of the tag. There are two reasons. One
is that in addition to the phase ¢; over distance, both the
reader and tag’s circuits will introduce some additional phase
rotations to the received phase ¢, i.e., ¢ = (¢ + ¢r + é1)
mod 27, where ¢r and ¢r are the additional phases of the
reader and tag respectively [13], [19]. Another reason is that
our commercial RFID reader (ImpinJ R420) also introduces &
radians of ambiguity. In other words, the reported phase can
either be the true phase or the true phase plus 7 radians [19].
Hence for our reader, ¢; = nm + ¢ — (¢pg + ¢r), where n is a
non-negative integer. Since ¢ and ¢r are constant over the
whole reading period, to estimate the motion of the tag over
time, we only consider the relative distance changes of the
tag, i.e.,
(Anmt + Ag) - ¢

4 f ’

where L is a reference distance which can be set as the first
calculation. And An = n —ng and A¢p = ¢ — ¢o. After this
step, we can obtain a relative moving distance of the tag, AL,
which only related to the changing positions.

To extract the motion trajectory of the objects, we conduct
two signal processing progress, namely phase de-periodicity
[4] and motion smoothing. As illustrated as the black plus
sign in Fig. 2 (A), the received phases are wrapped over
cycles and fall into the range of O to 2z. This characteristic of
the phase values makes the motion estimation discontinuous.
Hence we first unwrap the received phase values and retrieve
the consecutive motion profile. In our design, we adopt two
thresholds, thy = 0.5z and th, = 1.5z, to detect the «
and 27 hops. Specifically, let A¢y, ;, = |¢,2 - ¢>,1| represent
the difference between two adjacent phases ¢, and ¢;,. The
latter phase value ¢,;, will be added or subtracted by =m if
thy < A¢y ., < thy, and by 2n if A¢,,, > thy. The
performance can be found in Fig. 2 (A).

We also consider the motion smoothing to get rid of the
environment and device noises. Since the received phases can
be easily impacted by outside environments and equipments, it
is hard to tell whether a hop between adjacent received phases
is caused by the 7 or 27 phase wrapping, or by a sudden
movement of the object, or by insufficient reading. Hence, we
further smooth the phase based on the estimated acceleration
of the moving object. The main idea is based on an observation
that the rapid and sudden change of velocity, which requires a
huge force acting on the object, is unlikely to happen in most
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real applications. Thus, we calculate the average velocities and
accelerations of the object within the reading time slots after
de-periodicity. If the acceleration of the object in a certain
time slot is higher than a threshold, i.e. the gravity acceleration
g ~ 9.8m/s?, we consider the high acceleration is caused by
the inappropriate de-periodicity or other environmental noises.
To smooth the motion of the objects in such case, we keep
the average velocity y,, in previous time slot constant for
the next time slot and approximate the gain of distance at 1,
by (2 — t1)V4,.1,- A smoothing result is shown in Fig. 2 (B).

C. Channel Synchronization

The fusion of the RFID and Vision channels requires the
synchronization of two-channel data samples. When collecting
the data from the two channels, we use the operating system’s
clock to generate a timestamp signature for each of the RFID
phase sample and video frame.

When there are multiple targets and interference RFID tags
in the same scene, the phase sampling rate of each RFID tag
becomes rather non-uniform. First, due to the uncertainty in
slotted ALOHA protocol, we cannot predict which tag will
respond and occupy the next slot. Second, since most of our
experiments are conducted in a noisy environment and the
target object is placed at a relatively long distance (2 to 5
meters) from the antenna, many packets carrying the target
tag information may get lost during transmitting. Therefore, to
synchronize the two channels, we use the timestamps of Kinect
data as the timestamps for channel fusion. Then as shown in
Fig. 3, the tag distance trajectory obtained from the RFID
channel (as shown in Fig. 2) is interpolated and resampled
to match each Kinect frame. Specifically, we use polynomial
interpolation in our implementation.

D. Bottom-up Attention Module

In TagAttention, the bottom-up attention module captures
the salient visual features through the optical flow, i.e. the
motion of pixels in two consecutive video frames at ¢ and
t+At. The optical flow will be used to warp! the video distance
maps and propagate the predicted attention maps over frames.

In our framework, we learn the optical flow through an end-
to-end deep neural network, which has been proved to be both
more effective and efficient [10] [32] than traditional methods.
Specifically, we adopt the FlowNet [10] as the backbone neural

In this paper, warping stands for forward warping with the optical flow.
Namely, we move each pixel of the current frame in the image plane according
to the pixel velocity, such that we can reconstruct a “virtual” frame for the
next timestamp.



network architecture and the training strategy presented by
[32] to train the neural network in an unsupervised manner.

By feeding the consecutive video frame pairs Fy,, F;, into
the FlowNet, the model predicts the optical flow map f;, -, =
{(Ax,Ay)}(x,y)- The estimated optical flow naturally highlights
the pixels on moving objects from the image frames, which
works similarly as a visual bottom-up attention mechanism to
notice the mobile objects. In addition, the optical flow will
be further used to warp the distance maps and propagate the
predicted attention maps over frame timestamps. Note that the
FlowNet can be replaced with any optical flow model that
yields better accuracy.

E. Top-down Attention Module

1) Motion Estimation: In the top-down attention module,
TagAttention finds and highlights the target objects’ pixels by
matching the motion of each pixel in the visual system with the
distance changes measured by the RF phase and calculating
their correlation probabilistic scores. To estimate the pixel-
level motion (the moving trace of each pixel in Kinect frames),
we warp the distance maps D,,,, with the optical flows frame
by frame and obtain the motion maps M,qp. In My.p, each
pixel denotes the distance trajectory (represented by a vector)
of the invariant real-world voxel in 3D space. Specifically, let
do,dy,...,d; € Dpqp represent distance maps from the first
frame Fpy to the current frame F;, and fy—1, fi>2,.., fi—-1¢ €
Flowpa, represent the optical flows of the RGB video. We
warp Dmap with Flow,p to estimate the motion maps Mj;,q .

.
Let m; """ be a instance of Mpap on frame ¢;. The size of

m:’i """ 7is HXW x (t; —t; + 1), where H and W are the height
and width of the video frames, and the third dimension is the
time channel from #; to ¢;. Then m,j can be calculated as
Eq. 3:

mti i = ((((dti ® ﬁi"t[“’l) 5] dt,~+1) ® fti+lati+2)

3)
® dti+2 e ® ﬁj—1—>tj) @ dtj’

where ® represents the warping process with optical flow
over all channels of the third dimension of the matrix, and ®
represents concatenating of two maps along the third channel
(i.e. the time channel).

Meanwhile, the RFID reader collects the RF signal for
each tag idy during f; to t;, and the signals are converted
into relatlve distance vectors rd‘ """ rd """ b ,...,rd;:i’""t’ €
RD'>--' We then match the movmg plxels with the RF tag
by calculatmg the correlation probabilistic scores between the
motion map mg """ " and the RF distance vector rd,; ol Fig,
4 presents an example. As shown in Fig. 4, (A) shows an RGB
frame at time 75, and (B) represents the motion map m;‘ """ s
over five timestamps from #; to #5 (= 150ms) computed by
Eq. 3. In Fig. 4 (A), we arbitrarily sample a few pixels as
random anchors and illustrate their motion trajectories in (C).
As a comparison, we also label two pixels (denoted by red
and green) on the target object as target anchors in m
and show their estimated relative distance vectors as well over

time in (C) 2. In addition, the motion estimated by RF channel

.....

2Note that the anchors are artificially selected only for the visualization
and illustration purpose.

rd'i+' is also plotted with the black line in (C). To eliminate
the overall bias caused by the m or 2x rotations of RF signal
phases, the motion vectors are translated so that the initial
relative distance of motion trajectory in the window is 0,
namely, for each timestamp #; within [7;,1;], t,k_ = milk - mi;
= rdtk - rd?’dn. Hence, we obtain the unbiased
motion map mt and RF motion vectors RD"""" for
comparison and matchmg (as shown in Fig. 4 (C)). From Fig.
4 (C), we notice the motions of the two anchor pixels located
at the target object in the motion map match well to the motion
of the RFID tag estimated by RF signals, while other random
anchor pixels fail to match.

Ideally, the motions of the pixels on a rigid target in
the unbiased motion map mj """ Y from the visual channel
should perfectly match with the unbiased motion vector of the
corresponding RFID tag, since they all measure the relative
distance from the anchor point of the object to the sensors
within timestamp #; to ¢; in the physical 3D space. However,
both measurements could be inaccurate, causing the possible
misalignment of the two traces. For example, in the visual
channel, error exists when warping the distance map as the
optical flow may not be perfect; while in the RF channel, the
error can be caused by multi-path, random Gaussian noise, low
sampling rate and inappropriate De-periodicity. Nevertheless,
the tendency of the motions in two channels can match in
a long term, as all these noisy factors only cause random
and temporary impact on the signals. Hence, we introduce an
attention mechanism Attgp, which is robust to the temporary
and random noise, to measure the correlation of the motions
in different channels.

2) Attention Mechanism: The proposed attention mecha-
nism Attgr is comprised of two attention components: 1)
Att,pr, which uses an radial basis function (RBF) kernel to
measure the similarity of the motion vectors in Euclidean
space; 2) Att.orr, Which measures the correlation coefficient
of the motion vectors. To calculate the attention scores, we
first reshape m W with each element

liseesslj

and rdld

representing the motion Vector from t; to t; of each

.....

pixel p,w) in the motion map m, . Then the pixel-level
attention mechanism can be formulated by Eq. 4 and Eq. 5.

112

Attypr = exp| — “4)

Atteorr = Relu

(&)

where we use the rectifier activation function Relu(x)
max(0,x) to suppress negative correlations, « is the RBF
kernel parameter, cov(-) represents the covariance of the two
vectors and o (-) represents the variance of the vector. To
combine the two types of attention mechanism together, we
used Eq. 6, which calculates the weighted sum of the two
attention scores.

A[[RF = ,BAttrbf + (1 - B)Attcorraﬂ € [0, 1] (6)
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We empirically set « = 5 x 107 and 8 = 0.8 in our
implementation. According to the formulas, Atfgp is in the
range of [0,1]. Hence we approximately consider Atfgr to
describe the probability that the pixel (h,w) at timestamp ¢;
matches with the target object that is labeled by a certain
RFID tag. Thus, for each target object, we construct the
attention map matrix a,, which is of the same size as the
input image matrix. Each element in a, represents the attention
probabilistic score Artgr of the corresponding pixel. Fig. 4 (D)
shows an example of the attention map with a heat map.

F. Attention Propagation

The top-down attention module enables the system to
predict an attention probabilistic map for each video frame.
However, the prediction can be accurate only when the target
objects move during the attention window, since we assume
the top-down attention is triggered based on the movement of
the targets. When the target object is static, the distance values
of the object pixels keep unchanged in the RGB-D camera.
However, due to the dynamical factors of the environment
(such as the movement of other objects), the phase values
of the corresponding tag may still subtly change over time. In
such case, the noise of the environment dominates the attention
probabilistic scores of the pixels according to Eq. 4 and Eq.
5. In addition, distance measurement or localization of objects
through RF signals within a pixel level error bound (about
several millimeters) is rather challenging [3], [7], [29], [42],
[49], especially when using commercial RFID readers and a
single antenna in our system [33], [35], [36], [39], [41], [47].
Therefore, it is nearly impossible to precisely match every
pixel with the corresponding RF signals based on the relative
motion at a single frame. Fortunately, the visual channel
provides tremendous semantic information of the target objects
and the environments, which enables us to track and segment
the target objects cross multiple timestamps based on the
correlation of objects’ appearances.Though there maybe some
mismatches at a few frames, the overall trend of motions of
the two channels can finally match with each other in a long
term.

Hence, in order to improve the robustness of our tracking
system, we propose an Attention Propagation mechanism as
illustrated in Fig. 5. The major intuition in the Attention
Propagation module is utilizing a history of the continuous
frames of the attention maps to learn the shape and position
of the target. The historical motion information of the mobile
target has been used in many existing RFID tracking systems,
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for example, in TurboTrack [28], tracking a mobile RFID tag
is formulated as a Hidden Markov Model (HMM). However,
the HMM method is not a suitable solution in TagAttention
for following reasons.

First, the goal of TagAttention is tracing the target “object”
instead of the RFID tag (Existing methods consider the tag
position as a coordinate in space). Namely, TagAttention
requires not only estimating the motion trajectory of the RFID
tag but also detect the shape and position of the associated
target by highlighting all target pixels in video. Therefore,
it is rather expensive to form an HMM of each candidate
pixel in the video. Instead, plenty of historical information
about the target positions can be extracted from the optical
flows. Compared with HMM, the optical flows learned from
a deep neural net can estimate a pixel-level historical trace
by considering not only the spatial likelihood of the pixel
positions (given the prior positions) but also the similarity of
the visual features (such as color intensity and object edges)
between the two neighboring frames.

Thus, in the proposed Attention Propagation module, we
consider that a model based on optical flow is a more efficient
and effective method than the HMM to formulate the historical
information and trace the target. Specifically in Attention
Propagation (Fig. 5), for each target object instance idy, we
initialize the likelihood map /;,, = loga,, (logay, represents
the element-wise log operation of the attention map matrix
ay, in our notation) at the first frame Fy,. For each following
frame F;,, we warp the likelihood map /;; with the optical flow
Jt;—t;+1 to reconstruct the warped likelihood map prediction
at frame F;,,,, which is denoted as if;ﬂ. Then the likelihood



map /;,,, at frame Fy,,, is calculated by Eq. 7,
I = I+ O(vy,,, — vo) X log(ay,,,), (7
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where vy, = “——=———— denotes the absolute velocity of
the motion of the target measured by the RF signal within
the time window in which a;,,, is computed, k is the window
size (count of the timestamps in the window), ®(x) = 1 if
x > 0 otherwise ®(x) = 0, and vy > 0 represents a velocity
threshold.

In our implementation, we set vy = 0.1m/s, meaning the
system is only triggered by the mobile targets that move at a
temporary absolute velocity higher than 0.1m/s. An empirical
analysis about the parameter vy will be discussed in Sec. V-B.

G. Tracking by Attention

In the previous attention modules, only the pixels of the
target object in video frames would have consistently high
attention probabilistic score over different timestamps, thus
yielding high likelihood value in the current likelihood map
l;;. Therefore, we can simply use a threshold to cut off
the likelithood and segment the target in current frame F,.
However, according to Eq. 7, the likelihood value of each
pixel keeps decreasing over time as more frames are processed,
which makes it infeasible to set a fixed cutting-off threshold.
Therefore, we design an automatic thresholding method to seg-
ment the target from the video frames based on the likelihood
map.

Specifically, we first convert the likelihood map /;, to the
normalized probabilistic map p,, by calculating p;, (h,w) =
eli %) in element-wise of the 2D matrix /,. Then we nor-
malize p;, crossing all pixels using min-max normalization.
By observing the value distribution of the pixels in the
probabilistic map p;,, we can easily find that the probabilistic
values are highly hierarchical: the background pixels, which
usually comprise the major regions of the frame image, have
significantly smaller probabilistic values (close to 0) than the
target objects; the“soft” body components that temporarily
move in consistency with the target rigid body would have
relatively smaller probabilistic values, and the values of these
body pixels keep decreasing when the motion consistency no
longer holds; while the target object would have consistent
highest values. Fig. 6 shows an example of the cumulative
distribution function (CDF) of the pixel values in p;,. Based
on this observation, we can use multiple ways to segment the
frames according to the normalized probabilistic map, such as
value clustering or simply cutting off the CDF of the value
distribution at the “corners” (showing as a sudden change of
the gradient) on the CDF plot (as labeled in Fig. 6). In our
implementation, we choose the last corner point in the CDF
to cut-off the image to extract the target mask.

Another issue of the tracking system is that the errors in
the predicted optical flow accumulate over the warping steps,
resulting in the possible misdetection of the target after a
few iterations of attention propagation. To solve this problem,
we refine the shapes of the target masks according to the
3D segmentation of scene based on K-means clustering [20],
[38]. Fig. 7 illustrates an example of the segmentation and
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Fig. 6. CDF of the normalized probabilistic values in an example probabilistic
map py; . Blue circles represent the Conner points in the CDF plot.
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Fig. 7. Mask refinement.

refinement. Then the refined likelihood maps are used in Eq.
7 for attention propagation.

1V. EVALUATION
A. Implementation

In our experiments, we utilize a similar sensor setting as
[25] to obtain the visual frames and RFID signals. As shown
in Fig 8, a Kinect v2 camera is deployed on the top of an RFID
antenna. The antenna is connected to a commercial RFID
reader ImpinJ R420. We choose the center of the antenna as the
origin O of 3D localization reference system and measure the
coordination (AX,AY,AZ) of the depth sensor on the Kinect.
Thus, the XYZ 3D point cloud in Kinect reference system
could be translated by (AX,AY,AZ) to obtain the coordination
of pixels in the RF reference system.

In our implementation, the FlowNet [10] module for optical
flow estimation is implemented with Tensorflow, and we used
the loss functions and parameter settings suggested by [32] for
training. The neural network is first pre-trained on the synthetic
dataset FlyingChairs [10] without using the ground truth data,
then fine-tuned on Kinect video frames collected arbitrarily
in dynamic environments. The Top-down attention module is
also implemented jointly with FlowNet in Tensorflow, but no
training is required for this part. The whole system is tested
with one Titan X GPU and 8§ vCPUs @ 2.6 GHz. Without
any decent optimization in the implementation, the average
overall processing time for each video frame is around 95ms,
which demonstrates the potential of the proposed method to
be applied to online tracking systems.

B. Experiment Setup

To evaluate the performance of the tracing system, we
ask 2 volunteers to move everyday objects continuously with
arbitrary traces in front of the sensors. Examples of the objects
that we tested are shown in Fig 9. The objects tested are
of different shapes, sizes, materials and textures. We stick an
RFID tag on each of the objects. When collecting sensing data,
the Kinect records the RGB image frames and 3D coordination
of the pixels. Meanwhile, the RFID reader records the tag
EPCs (considered as the cyber IDs of the targets) and phase
information.
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Fig. 10. The performance of single target tracing. Panel (A) and (B): Average
IoU (A) and CLE (B) of each tested target object.

Tracing cases: We consider two tracing cases in our evalua-
tion, namely single moving target tracing and multiple moving
targets tracing. In the single moving target tracing case, we
conduct the experiments in two totally different environments.
One is in a relatively static meeting room with several furniture
(e.g., tables and chairs) in it. In this environment, we test
tracing of 5 different objects and repeat for 4 times for each
object. Besides, to investigate the impact of noise factors such
as multipath effects of the RF signals, we also evaluate our
system in a noisy and crowded office room, which has narrow
open space, multipath reflectors (tables, chairs, cubicle walls),
metal and electronic furniture (cabinet, servers, workstations),
various wireless signals (WiFi, LTE), and magnetic fields
(whiteboard) in it. We also ask another volunteer to keep
walking around to make some dynamic noises. The experiment
in such scenario is repeated for 5 times.

We also evaluate the system for tracking multiple moving
targets and assign the correct ID to each of them in a noisy
environment (the office room scenario). Some of the tested
targets are of the similar appearance. Thus, a pure vision-based
detection system cannot distinguish them.

C. Evaluation Metrics

We use the Intersection over Union (IoU) and Center
Location Error (CLE) to evaluate the tracing performance. loU
is calculated as Eq. 8:

_ S(B,N By)
~ S(B;UB,)’
where B;N B, and B;UB,, represent the intersection and union
of the ground truth bounding box B; and predicted bounding
box B, of the target object in video frames respectively, and

S(X) represents the area of the region X. CLE measures the
Euclidean distance (in number of image pixels) between the

IoU ®)

centers of the ground-truth bounding box and predicted bound-
ing box in pixels, compared with to the overall input/output
frame resolution 512 x 424.

D. Single Object Tracing

1) Tracing in Static Environment: Fig 10 shows the perfor-
mance of tracing single target in static scenarios. In Fig 10,
plot (A) and (B) show the average IoU and CLE metrics of
the five different target objects respectively, where the X axis
represents the timestamps of the 90 video frames, and the Y
axis represents the average loU or CLE value.

The evaluation results in Fig 10 illustrate the process in
which TagAttention gradually and actively discover the targets
and keep tracking them over time. We find TagAttention
achieves low IoU scores and high center location errors in the
first 20 video frames (at the very beginning frames, the IoUs
are always close to 0), showing initially TagAttention cannot
track anything as it knows little information about what to
trace. This property contrasts to the existing tracking systems,
in which they find the targets’ location well at the initial stage
by human’s assistance or an object detection module that is
well-trained on large datasets to learn the target. However,
we notice the IoU score keeps increasing and the error keeps
decreasing until around the 40¢h frame, showing TagAttention
can gradually find the location of the targets based on the
consistency of the target motion trajectories observed from
both sensing channels. Moreover, after around the 40¢h frame,
TagAttention becomes confident of the objects’ location and
mask. Then it keeps tracking the objects for the following
frames, yielding high IoUs, low CLEs.

In Fig 11, we present examples of the attention heatmaps
a; learned by the top-down attention module. Warmer color
in the figure represents higher attention probabilistic score.
Image regions that are not masked by the heat map have 0
attention score. The number at left-up corner of each image
shows the frame index. Due to the error factors including the
channel noise, inaccurate motion warping and multipath of the
signals, or even the negligible motion velocity of the target at
certain frames, we can find in several frames the top-down
attention module cannot always only focus attention on the
target. However, the target can always receive continuous and
stable attention from the tracer for most of the frames, enabling
TagAtthention to trace the target in a long term.

2) Tracing in Dynamic and Narrow Environments: To
evaluate the impact of environmental noises, such as multi-
path effects, to our tracing system, we conduct the tracing
experiments in a dynamic and crowded office room. Fig 12
shows the performance in comparison with the tracing results
of the same target in the previous static environment.

Fig 12 (A) and (B) shows the average IoU and CLE
results respectively. From the results, we notice the tracing
performances in two different scenarios are equivalent, which
shows the system is robust to multipath of the signals. In fact,
since TagAttention only estimates the coarse motion of the
targets rather than accurate localization using the RF signals,
the system does not suffer as much from inaccurate phase
measurement. In addition, the smoothing methods introduced
in Section 3.2 to preprocess the RF signals and the mask
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Fig. 12. Tracing performance of single target in noisy environments.
refinement strategies introduced in Section 3.6 also help to
minimize the impact of signal noise in real-world scenarios.

To better illustrate the actual tracing quality and investigate
where the errors come from, we show some selected tracing
results of the single object scenarios in Fig 13. Specifically,
the first row in Fig 13 shows the meeting room scenario,
the second row shows the office scenario, and the third row
shows how the system reacts with errors that occur at certain
frames. In Fig 13, the number at the left-up corner of each
image indicates the frame index in the tracing scenarios. The
IoU and CLE of the tracing performance are also presented
below each frame image. From Fig 13, we find most tracing
errors is caused by the ambiguous boundary between the
target and its surroundings. Since TagAttention requires no
prior knowledge of the appearance of the target, it cannot
distinguish the target and its surrounding body parts (i.e. the
hand and wrist of the volunteer) that move consistently with
the target. In these cases, the system considers the target as
well as part of its surroundings as an entire rigid body. Since
the bounding box IoU score is sensitive to the redundant
areas, especially for small objects, we observe a low IoU score
for these predictions, whereas the tracing performance is still
acceptable.

From the third row of Fig 13, we also notice that a sudden
decrease of tracing performance occurs at the 62nd frame after
TagAttention has already found an accurate position of the
targets. We find this phenomenon happens occasionally during
tracking. It is mainly caused by the flow warping error in the
tracking module of TagAttention. Usually, in such cases, the
optical flow measured by FlowNet is inaccurate at a certain
frame. Consequently, when propagating the attention maps,
the target image region “leaks the attention values” to some
irrelevant image pixels. Then in the mask refinement module,
the tracer mistakenly considers these irrelevant pixels are of
the same rigid body as the target object because these pixels
are also spatially close the target. Hence, it starts tracking
more body parts than the target rigid body (for example, the
entire human body in frame # 64 in the last row of Fig 13).
However, after a few frames, as the irrelevant body parts
move inconsistently with the target, the attention values of
corresponding pixels decrease quickly. Then the tracer can
recapture the accurate position of the target and track only
the target part (for example, the 66th and 68¢h frame in the

last row of Fig 13).

E. Multiple Object Tracing

TagAttention can trace multiple mobile targets simultane-
ously by their cyber IDs without introducing much extra
computation. In fact, the most computationally intensive part
in TagAttention is the optical flow module, which estimates
the optical flow map through a deep neural network. However,
the optical flow of the video can be reused by any top-down
attention parts to detect and track different targets. Specifically,
when the RFID tags of multiple targets are detected, their
EPCs and the corresponding phase signals are recorded and
processed independently. After the optical flow and the pixel-
wise motion map of the video frames are calculated, TagAt-
tention can use these phases signals to compute the attention
values of the pixels and produce their corresponding likelihood
maps in parallel.

We evaluate the performance of TagAttention in multiple
target tracking scenarios. Fig 14 shows the average IoU and
CLE scores of different targets in the two-object tracing sce-
narios. From Fig 14, we find the performance of TagAttention
for each individual target is similar to the single object tracing
cases. Specifically, the tracer takes less than 35 frames to
discover the accurate location of each individual targets and
keep tracking them for the following frames.

In addition, we show some selected tracing frames of two-
object and four-object tracing scenarios in Fig 15. At the 5th
frame, the tracer cannot recognize and detect any targets. After
more motion data is collected, TagAttention produces fine-
grained bounding box and segmentation mask for each target,
and labels the targets by the corresponding tag IDs. Especially
in the four-object scenarios, we find the system can distinguish
the two cylindrical bottles (ID_2 and ID_3) by their IDs, even
though the two bottles are very similar in appearance.

V. SYSTEM ANALYSIS AND DISCUSSION
A. Impact of Moving Speed

To evaluate the impact of the moving speed rate of the
target, we design the following human tracing experiment: the
volunteer who wears the RFID tag walks toward the sensors
in the crowded office room at different levels of speed rates
(the average speed rates are about 2m/s, 1.3m/s, 0.8m/s,
0.5m/s respectively). Different from previous works [25] [45]
that fuse RF signal and vision to track humans, our system
does not rely on any human detection module (which requires
extensive training) to localize humans in videos. Fig. 16 shows
the tracing performance. From the results, we can see for all
speed rates, the system finds and keeps tracking the target
stably after around 25 frames. We also notice the system can
react faster to the high-speed targets, since in these cases the
changes of RF phase signals as well as the speed of the target
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Fig. 14. Tracing results of the two-object scenarios

are significant, hence yielding high correlation between the
two channels. As a contrast, if the target remains static (the
relative speed rate to the sensors is 0), the system can hardly
detect the target.

B. Impact of Velocity Threshold

In TagAttention, we use vy = 0.lm/s as the minimal
relative velocity to trigger the matching of the signals from
the two channels (Eq. 7). Note this parameter is fixed for all
above experiments and is empirically selected based on the
measurement accuracy of our sensors used in the experiments.
In order to illustrate how this parameter impacts the tracing
performance, as well as to provide intuition regarding how to
set this parameter when using different devices, we present
the ToU scores of the tracing system with respect to different
Vo settings in two different scenarios, as shown in Fig. 17.

During the first scenario (the left plot in Fig. 17), the target
is static at the beginning and speeds up to around 0.5m/s,
while in the second scenario (the right plot), the target speeds
from static to around 2.5m/s. From the first scenario, we can
see the system with smaller vy reacts faster, i.e., the IoU score
starts increasing at earlier stage of the motion. At this stage
(from frame No. 5 to No. 15), the velocity is relatively small
and the system with smaller vy is more sensitive to the slow
target. However, when the threshold vg is set too large (i.e.,
0.5m/s), since for the most time of the motion, the target
is slower than vy, the system cannot detect the target at all in
those frames. For the second scenario, on the other hand, since
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the target moves faster than 0.5m/s for most frames (except
the first 15 frames when the target is static), all systems can
successfully detect the target within a short latency.

Therefore, in order to reduce the latency of the detection and
make use of the maximum number of effective frames during
the tracing, vo should be set as small as possible. Ideally,
with “perfect” sensors that can measure the relative distance
accurately in the system, vy should be set as 0 to achieve
the best performance. However, the commercial sensors we
adopt in our experiments can introduce tremendous noise in
the sensing data, such as RF phase and depth.

As shown in the first scenario of Fig. 17, although the
system with vg = 0.01m/s reacts slightly faster than the one
with vo = 0.1m/s, the overall tracing accuracy is worse than
the vo = 0.1m/s setting. The reason is that for a few certain
frames when the target is static or moves slow, the noise in the
measurement dominates the changes of RF phase compared
with the impact of target velocity. Consequently, for those
frames, the attention map computed by Eq. 6 mainly reflects
the signal noises rather than the motion of the target. Hence,
in practice, we set a larger v (i.e. 0.1m/s) to filter out those
frames for the optimal overall performance. As a comparison,
in the second scenario, we find the impact of vy is much
smaller, because the signal noise is neglectable when the target
moves fast.

The evaluation result in Fig. 17 suggests us to select vg
according to the following principles: (1) Choose v as small as
possible. (2) vg cannot be too small such that the signal noise
becomes a significant part of the phase change in the effective
frames. (3) It is easier to find an optimal vy when the target
moves faster. (4) If the application scenario requires to detect
slow targets, more accurate sensing devices are necessary.

In addition, we find the following major factors in practice
that impacts the velocity measurement accuracy of the RFID
reader. (1) manufacture of the RFID reader and tag. (2)
signal strength of the antenna, which effects the sampling
rate of the target tag. (3) number of the concurrent tags
in the environment, which also effects the sampling rate of
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target. (4) distance of the tag and other dynamic factors in the
environment.

C. Impact of Illlumination

In this section, we show how the system performs under
different illumination conditions. We conduct a comparison
experiment under three different illumination conditions: suf-
ficient illumination, moderate illumination, and limited illu-
mination. The sufficient illumination scenario is similar as the
scenario presented in Fig. 15, while the moderate illumination
and limited illumination scenarios are presented in Fig. 18. In
the moderate illumination scenario, only some nature lighting
through the shutters is allowed in the office. In the limited
illumination scenario, the target and the volunteer are almost
unseen from the video. With less illumination, the Signal-to-
noise ratio (SNR) of the video becomes smaller, which may
impact the accuracy of the optical flows learned by the bottom-
up attention module.

We repeat the tracing experiment for five times in each
scenario, and show the average tracing performance in Fig.
19. From the results, we find the system is robust to the
illumination conditions if the target can be seen from the
video. However, the performance degrades significantly when
the target can hardly be visualized by the camera. In addition,
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Fig. 18. Moderate (left) and limited (right) illumination scenarios and tracing
results. The frames have low SNRs when the illumination is constrained.
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Fig. 19. Impact of illumination.
the system is not expected to work when there is no lighting
at all.

D. Blockage and Occlusion

Our current system cannot trace the target when the target
is blocked due to the following two major challenges. First,
the system relies on the visual system to localize the target. If
the target is invisible in the video frames due to the blockage,
the system cannot acquire the fine-grained localization infor-
mation of the target. In addition, when the target is blocked,
the Non-LoS RF components would dominate the received
RF phase signal, which makes it challenging to estimate the
distance of the RFID tag.

In Fig. 20, we show how TagAttention would perform in a
blockage scenario. In the experiment, we ask a volunteer to
use a notebook to block the target toy from being sensed by
the camera and RF antenna. From Fig. 20 we find the system
can only detect the body part that is exposed to the camera
when the target is partially blocked and the RFID tag is fully
blocked (frame No. 52 and No. 56). When the target is fully
blocked (frame No.60), the system cannot detect the target
from the video. Then after the notebook is move away and
the target exposed to the camera again for a while (around



Fig. 21. Two objects A and B move consistently. The dashed boxes represent
the groundtruth of the target positions.

one second), the system is able to capture the target again by
the attention mechanism.

There could be two types of possible solutions to resolve
tracing with temporary blockage. One is deploying multiple
antennas and using advanced RF signal analysis techniques to
extract the LoS signal component from the received RF signals
[21], [39], [40], [43], then localizing the tag based on the RF
signals. However, this type of methods also introduces extra
device expenses, sensor calibration and deployment difficulties
and larger localization errors. Another type of methods is
considering the correlation of visual features of the discovered
target over the consecutive frames. For example, since TagAt-
tention can already find the correct mask before the rotation
or blockage happens, we may use optical correlation filters
[2] [23], which are pretrained on conventional video tracking
datasets, to continuously track the targets when they are
partially blocked. However, we still cannot correctly localize
the target when the target is completely unseen with this type
of methods.

E. Consistent and Concurrent Mobile Targets

TagAttention correlates the RFID tag and the target object
by the consistency of their motion trajectories. Thus, if two
objects move along the same direction and at the same speed to
the sensors consistently and concurrently, TagAttention cannot
distinguish the two objects. TagAttention has this natural
limitation due to the assumption that the system has no prior
knowledge about the appearances of the targets to trace and it
learns the concept of the “target” from the RFID tags. Hence,
the concept of the “target” becomes ambiguous to the system
if the two targets move consistently and concurrently.

In Fig. 21, we show how the system would perform in such
kind of scenario. In the experiment, we ask the volunteering
to hold the two objects (a coffee bottle and a toy) and move
the object consistently. In the result, we find the system
can highlight the shape of both objects from the video and
recognize them as one whole target.

E Choice of Sensing Technologies
In TagAttention, we utilize an RGB-D camera to capture the
fine-grained 3D coordination of video frame pixels. However,
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Fig. 22. An illustration of the 2D camera model in a tracing system.

RGB-D camera is not a scalable commercial sensing device
due to its higher expense ($100 to $200 for most commercial
RGB-D cameras) and shorter sensing range than normal RGB
cameras. Here we discuss a few other alternative options of
the sensing system settings.

Option 1: one RGB camera with one RFID antenna.
Though the RGB camera is carefully calibrated (the intrinsic
camera matrix is known), we show this system setting is
insufficient to trace an unknown object. As the camera model
illustrated by Fig. 22, the object appearance projected on the
image plane may imply multiple possible positions of the
object in 3D space. Any motion vector of an anchor pixel
of the target on the RGB image is a projection of the real 3D
motion vector on the image plane. We assume we know the
“precise” distance from the RFID tag to the sensor by using
one RFID antenna in an ideal case (which is impossible in
practice due to the 27 wrapping of RFID phase and sensing
noises). Then the 3D motion component along the direction
of the line-of-sight (LoS) will result in zero position change
of the corresponding anchor pixel on the 2D image plane. In
addition, without knowing the distance, the 2D motion velocity
of the anchor pixel on the image plane can reflect different
scales of velocity on the planes that are parallel to the image
plane in 3D. Thus, it is infeasible to match a change of RFID
signal phase with the projected 2D motion of the tag (or object
pixels) in the image plane, without additional information of
the RFID tag position or target appearance.

Recent studies adopt this device setting with additional
constraints of the target motion space. For example, TagVision
[11] and Tagview [12] require the object to move only on a
calibrated or fixed 2D subspace.

Option 2: two (or more) RGB cameras with one RFID
antenna. A camera stereo system can also provide a depth
channel by using multiple calibrated 2D cameras. Thus, the
camera stereo system could be another alternative of the RGB-
D sensor, though a commercial stereo camera is no cheaper
than an Infrared camera. The channel fusion algorithm of
TagAttention can easily be extended to the camera stereo
system.

Option 3: one RGB camera with multiple RFID anten-



nas. Another possible solution is to use a single calibrated
2D camera and multiple RFID antennas. The RFID anten-
nas placed at different locations can provide sensing data
(such as RSS, signal phase, angle of arrival) from multiple
perspectives, which can help reduce the solution space of
the projected RFID tag position on the 2D image plane.
However, in practice, due to the phase wrapping, multi-path
and measurement noise of the RFID sensing signal, two
antennas are far from being accurate to obtain a fine-grained
projected location, especially when using the commercial
RFID readers and antennas as we used in the experiments.
Therefore, to make the plan feasible, we need to either increase
the number of antennas (such as using antenna arrays) [39],
[40], [43] or use software defined radio (SDR) with larger
bandwidth [28], or a combination of both, to improve the
RFID localization accuracy. Nevertheless, these settings will
significantly increase the expense of the sensing devices and
difficulties to deploy the sensors in practice.

In summary, we adopt the most commercial sensing hard-
ware setting to achieve the goal of 3D object tracing in
TagAtthention. Since vision techniques are more mature and
accurate in fine-grained localization of objects, our key insight
is to use the vision channel data as the major positioning
method of the object and use the RFID channel information
to actively detect and identify the unknown visual components
from the videos.

VI. LIMITATIONS OF THE WORK

Tracing of the mobile target without human’s supervision
is a critical but challenging problem in wireless sensing and
robotics. TagAttention solves detecting and tracking mobile
targets with RFID tags in an active manner. Meanwhile, we
acknowledge the following limitations of our current work and
invite new research ideas to resolve those challenges. First,
as discussed in Sec. V-D and Sec. V-E, our current system
does not support target tracing when the target is temporarily
blocked. Neither can it distinguish the IDs of the objects that
move consistently and concurrently. In addition, the system
can only detect mobile objects that moves faster than vy (Sec.
V-B). Due to these limitations, the current system is not ready
to be applied in the real-world scenarios that contain too much
complex semantics, such as cashier-free stores with tens of
tags and customs in a crowded space.

VII. CONCLUSION

We summarize the contribution of this work as the follow-

ing:

« We make the first attempt to design a pixel-level RF-
Vision fusion system that can detect and track the targets
with unknown appearances. The system is mainly based
on a novel “attention” model, namely, we use the RF
signal as a “top-down” supervision to direct the visual
system to discover the target.

« We propose an “attention propagation” method to propa-
gate the per-frame attention maps that contains historical
localization information over video frames, so that the
system can trace the target in the long-term.
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The system integrates advanced optical flow techniques
from Computer Vision and RF signal phase processing
from RFID localization studies.

A calibration-free tracing system is implemented using
a commercial RFID reader and an RGB-D camera. We
also propose the RF signal smoothing, channel synchro-
nization, and tracking refinement strategies to resolve the
practical challenges in the real system.
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