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A user-friendly and generic finite element framework for simulating hydraulic fracture with a complex
crack network in unconventional oil and gas exploitation is developed in this work with the following
unique features. While the cohesive zone model (CZM) removes crack singularities, its finite element
simulations suffer numerical convergence problem during crack nucleation and growth, which can
be regularized by a fictitious viscosity approach. The decoupling of cohesive-cracked solid and fluid
into separate free body diagrams allows the development of a weak-form finite element formulation
for the former and a finite-difference approach for the transport analysis in the latter. Enforcing
the Kirchhoff condition in polycrystalline geomaterials allows the study of the fluid-driven complex
fracture propagation process. Our method has been verified by analytical solutions, and then employed
to simulate the synergistic roles of confining pressure and grain boundary anisotropy on the fracking
morphology. Numerical implementation into a user-defined element (UEL) subroutine in ABAQUS
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provides easy adaptation and further development for the research community.
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1. Introduction

Hydraulic fracturing, or commonly called fracking, has been
one of the primary engineering tools for improving well pro-
ductivity, especially for unconventional reservoirs such as shale
or tight sand reservoirs [1,2]. Upon the injection of highly pres-
surized fluid, cracks may nucleate and propagate in these sedi-
mentary rocks, thus allowing the passage and harvesting of the
stored natural gas. The hydromechanical coupling lies on three
main physical processes: rock deformation induced by the fluid
pressure acting on the weak surfaces, the fluid flow in the cracked
pathways, and the crack morphology [3]. As will be explained
shortly, despite tremendous technological advancements, it still
remains difficult to accurately predict the geometry of hydraulic
fractures deeply under the ground, which thus prevents further
quantitative studies such as seismic detection and monitoring.

Due to many insurmountable difficulties in measuring the
hydraulic fracture processes, a variety of numerical simulation
approaches have been employed in modeling hydraulic fractures.
With the help of prior analytical solutions for the stress intensity
factor calculations, several analytical models, such as the PKN
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model [4] and KGD model [5], have been proposed to predict the
shape and size of a hydraulic fracture based on simplifications
regarding the planar geometry, homogeneous media, and uniform
fluid pressure distribution along the fracture. These solutions are
used for verification and validation of numerical models, such
as the boundary element method (BEM) [6,7], discrete element
method (DEM) [8-10], and finite element method (FEM) [11-13].
BEM is a very efficient method to simulate fracture propagation
because only the boundary of the simulation domain is dis-
cretized, but it is restricted to homogeneous and isotropic elastic
media and simple fracture morphology [14]. Since it treats the
rock mass as an ensemble of individual particles, DEM has the
advantage of simulating relatively complex fracture geometry,
but its disadvantages lie on the time-consuming calibration pro-
cess and the restriction on particle-particle interactions [15]. In
the FEM community, the cohesive zone model (CZM) and the
extended finite element method (XFEM) are the most widely used
techniques. XFEM allows a fracture to diverse its course to a new
direction, but it is rather difficult to use this approach for multi-
physical and multi-fracture problems [16,17]. CZM treats the en-
tire solid as the sum of a weak interface and two adjoining bulks,
which can then be easily extended with computer-aided design
to generate multiple weak interfaces for polycrystalline and gran-
ular materials [18,19]. The prescribed traction-separation law in
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Fig. 1. The hydromechanical problem can be regarded as a sum of two free body diagrams: a cracked solid (with cohesive tractions at the tip and crack-surface

pressures from fluid) and a fluid transport problem with a pressure field.
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Fig. 2. Ttraction-separation relationship from the cohesive zone law [20]: (a) pure normal loading, and (b) pure tangential loading, where g =1 and r = 0.
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Fig. 3. Element connectivity showing various flow patterns into a given element i, whereas arrows indicate the flow directions. Eq. (9) is derived based on the
balance of the mass accumulation rate inside this element and the sum of fluxes into and out of this element.

the CZM removes the crack tip singularities in the linear elastic
fracture mechanics.

While CZM has been widely used in hydraulic fracturing sim-
ulations [21-25], many practical hurdles need to be resolved
beyond simple benchmark studies on verification and valida-
tion. First, micro-seismic monitoring of hydraulic fracturing pro-
cesses in unconventional reservoirs shows that hydraulic frac-

tures may propagate as a complex fracture network with lots

of branches [26]. Modeling such hydromechanically coupled pro-
cesses associated with complex fracture morphology is a chal-
lenging problem, as the transport analysis needs ad hoc con-
tinuity condition even though the mere fracture analysis does
not pose a challenge when cohesive interface elements are in-
troduced along all possible pathways. Second, CZM studies in
literature can be grouped into two categories: those which rely on
existing capabilities in ABAQUS [21-24], and others with home-
made codes [25,27-29]. In the former (e.g., [21-24]), it should be
pointed out that ABAQUS treats nodal pressure as one of the field
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Fig. 4. Schematic illustration of the user-defined cohesive elements inserted between the surrounding grains: (a) grain boundaries, and (b) triple junctions.
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Fig. 5. Schematic illustration of the hydromechanical coupling.

parameters, which does not allow the users to introduce consti-
tutive model other than the Newtonian viscous fluid. Meanwhile,
the CZM law is restricted to a bilinear law (or initially linear
followed by an exponential decay), which again does not allow
important features such as hysteresis and dilatancy for geomate-
rials to be incorporated. Decoding the finite element formulation
and yet providing a user-friendly interface will open tremen-
dous opportunities in realistic applications, especially in taking
advantage of computer-aided engineering modules in ABAQUS.
Nguyen et al. [25] presented a complete formulation based on
the weak forms for both fluid flow and the fracture problem,
but their results are still yet to be proven in simulating complex
fracture patterns. Third, while CZM smears out the stress singu-
larity, it still faces numerical divergence problem when the crack

bridging zone (details given later in this paper) is much smaller
than the crack size. From the mechanics point of view, this is
an intrinsic problem corresponding to the snap-back instability
when multiple solutions are possible. A preliminary assessment
by the authors show that many literature studies have chosen pa-
rameters to ensure unphysically large bridging-zone size, which
certainly avoids the snap-back instability but surely casts doubts
on the validity of simulation results. A simple technique for
avoiding convergence problems in finite element simulations of
cohesive cracks can be introduced by adding a fictitious viscosity
in our previous work [30].

The objective of this study is to introduce a numerical frame-
work for the hydromechanically coupled processes, with key
features including:
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Fig. 6. (a) Geometric representation for the plane-strain KGD model. (b) Model setup and boundary conditions for the fluid-driven fracture propagation simulation.

Table 1

Parameters used for the simulation of the KGD problem.
Parameters Values
Rock Young's modulus, E (GPa) 30
Rock Poisson’s ratio, v 0.25
Mesh size, e (m) 0.05
Maximum traction stress, o (MPa) 3
Characteristic normal lengths, 8, (im) 20
Characteristic tangential lengths, §; (jvm) 20
Normalized fictitious viscosity 0.0001
Fluid viscosity, u (Pa s) 0.001
Fluid injection rate per thickness of reservoir, giject (m3/(s m)) 0.001
Leak-off coefficient, ¢; (m?/Pa) 0

Table 2

Mechanical and hydraulic parameters for reservoir models.
Parameters Value
Young's modulus, E (GPa) 30
Poisson’s ratio, v 0.25
Voronoi grain size (mean), (m) 0.2
Vertical confining stress, oy (MPa) 7
Horizontal confining stress, o, (MPa) 5
Minimum of traction strength, o, (MPa) 2
Minimum of characteristic normal lengths, §, (wm) 150
Minimum of characteristic tangential lengths, §; (j.m) 150
Normalized fictitious viscosity 0.0001
Fluid viscosity, u (Pa s) 0.001
Injection rate, q (m?/s) 0.01
Leak-off coefficient, ¢; (m?/Pa) 0

- A finite element framework for the cohesive cracks with
a fictitious viscosity approach to regularize the snap-back
instability;

- A finite difference method for fluid transport equation with
built-in Kirchhoff conditions to ensure continuity and to
address arbitrary crack morphology;

- The coupling of the above two processes is made possible
via the crack surface pressure field, and iterative implicit-
explicit algorithms and staggered time incrementation to
ensure numerical performance;

- All the above are built into a user-defined element (UEL)
subroutine in ABAQUS, suitable for easy integration with
computer-aided engineering.

The numerical details for the above bullets will be given in
Section 2, and the code will be validated to analytical solutions in
Section 3. To demonstrate our capability of simulating complex
fracture morphology, Section 4 presents a hydraulic fracturing

example with various degrees of grain boundary anisotropy in
fracture energy, which open room for further studies and exper-
imental comparisons. Summary will be given in Section 5 in the
end.

2. Numerical framework

As shown in Fig. 1, the crack problem and fluid transport
problem are handled separately by two free body diagrams, with
the connection being the crack-surface pressure field. For the
cracked solid, the finite element framework is built upon the
following principle of virtual work,

/aijSui,jdV+/ TigAidA:/ tfauidA’
Q cohesive all

where oj are the stress tensor and u;; are the displacement
gradients in the volume integral, T; and A; are tractions and
separations of the cohesive interface in the surface integral on the
left hand side, t; are the surface tractions (including the applied
traction on the external boundary and the pressure field on the
cohesive surfaces) of the surface integral on the right hand side,
and ¢ is the variational operator. Latin subscripts run from 1 to 3,
and summation convention is implied over repeated indices.

For a given cohesive element, we can define a local coordinate
system as spanned by the element tangent s and normal n with
right hand convention. The upper and lower surfaces are S*, and
the displacement jumps define the CZM separation by,

Ap=(u"—u")-n A= (u" —u")-s. (2)

The CZM tractions relate to the Cauchy stress in adjoining solids
by

(1)

(3)

In local coordinates, the constitutive relationship between the
traction vector (T,, T;) and the separation (A,, As) is defined by
a potential function & such that

0P 0P
T, = » s = T

A, 04
Various forms of cohesive zone models have been proposed for
this potential, all of which can be easily implemented in our
UEL. For an illustrative purpose, we use the Xu-Needleman ver-
sion [20],

Ap Ap | 1—¢q
P (An, As) = Po+ Ppexp (== ) 1—r+ ==

T,=n-0-n, i=n-06-8.

(4)

n S | T—1
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where @, is the work of normal separation, @; is the work of
tangential separation, 8, and §; are corresponding characteristic
lengths, and A} is the value of A, after complete shear sepa-
ration. The representative traction-separation relations resulting
from Eq. (5) are given in Fig. 2, where the maximum traction is

Omax = ﬁ;(l) and @, can be interpreted as the fracture energy

under the Mode I loading condition.

The cohesive interface simulations are often limited by the
occurrence of a snap-back instability, resulting singular stiffness
matrix in the Newton-Raphson iteration. Such numerical conver-
gence problem can be solved by introducing a small viscosity to
the derivatives of the cohesive constitutive Eq. (5),

Ay A, A2 d (A,
T, = —_— L — — 1=, 7
n O-max&1 EXP( 5 852)+§ndf((3n> (7)
Sn\ { As A, A2 d (A
T, =2 )= e 1 —(=).
s Omax (55) ( s ) exXp ( 5, 552 + & dr \ 3,
(8)

where ¢ = 1 and r = 0 are adopted for simplicity. The appropri-
ate choice of viscosity parameters, ¢, and ¢; can be found in [30],
where a detailed finite element procedure is also described. A
nonlinear finite element implementation for Eq. (1) also requires
the Jacobian matrix, comprised of the differentiation of (T, T;)
with respect to (A,, As). It should be noted that the viscous terms
in Egs. (7) and (8) also contribute to the Jacobian upon the finite
difference formulation of these two rate terms. Essentially, when
the snap-back instability occurs, the original Jacobian becomes
singular, but the added terms, proportional to ¢,/ At, regularizes
this singularity and forces the convergence of Newton-Raphson
iteration.

We now move on to the fluid flow, as governed by the
momentum and mass transport equations. Degenerating from
the general Navier-Stokes equation, the former is given by the
Poiseuille’s law in laminar flow. Substituting this to the latter
will convert the continuity equation into the classic lubrication
equation [1,2], given by

ow 1
¥+q,=@v.(w3Vp)+Q(t)5(x—x*), (9)
where p is the pressure of the fluid inside the fractures, w is the
fluid channel thickness (i.e., this is the crack opening displace-
ment, A,, in Eq. (2)), u is the viscosity of the injected fluid, q; is
the leak-off flow rate to the surrounding solids, and Q (t) is the
fluid injection rate at a point source of X = Xx*. Since the fluid
flow is confined into 1D paths, the divergence operator in Eq. (9)
is equivalent to the net flux at the two end points of any cohesive
element along the arc direction.

These governing equations will be solved by finite difference
(FD) with mixed implicit-explicit integration scheme. Upon dis-
cretization, we note that any element is connected by at most
four other elements, as shown by the topological connectivity in
Fig. 3, the flux direction flowing into the element is defined as
positive. Summing the fluid flow from neighboring elements to
element i from the Poiseuille equation, we have

1 [(ng—l + w!H—l) /2]3 (p{, _ pp+l)
;Cﬁi = m Z ' : : '

j=1~4 (Lf + Lf) /2

. (10)
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Fig. 7. Comparisons between numerical simulation and KGD solutions: (a)
fracture length, (b) crack opening displacement, (c) pressure gradients along
the crack path, and (d) crack opening displacements along the crack path.

where L; is the element length, i and j are element numbers, and
the superscripts n and n + 1 denote quantities evaluated at time
t, and t,41 = t, + At, respectively.

The continuity equation (9) includes the injection, leak-off,
and fluid flow exchange at the two end points of a given element,
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Fig. 8. (a) Outcrop of Lu Jiaping shale formation showing complex fracking patterns [31]. (b) In such anisotropic shales under hydraulic fracturing test, the fracture
patterns usually consist of several main opening cracks (labeled by “a”) and shear-type tributary cracks (labeled by “d”) [32].
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Fig. 10. The interface traction-separation relationship with respect to 8: (a) normal direction (when A vanishes), and (b) tangential direction (when A, vanishes).
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Fig. 11. Fracture morphologies due to fluid injection (Fig. 9) with material anisotropy direction lying horizontally (i.e., 8 = 0): (a) 8 =2, and (b) 8 = 1.

n+1 n
wi — wi n
L 4 ¢(p}
At 1(13,

1

—pr) = EJZQJi+Q(tn+1)5(X—X*)s (11)
where the leak-off flow rate takes the linear form by Darcy
equation for permeable solids, with ¢; being the fluid leak-off
coefficient and p; being the pore pressure in the adjacent solid.
The Dirac delta term needs to be smeared out at the element
receiving the fluid injection. Substituting Eq. (10) into Eq. (11)
will give an increment form to solve for Ap; = p?“ — pl.
The parabolic nature of Eq. (9) puts a restriction on the time
increment At and element length L. More specifically, we choose
the time increment according to the following [33,34],

w,~L,-
2 Zj Gji’

where Ngemene 1S the total number of interface elements, Zj gji
is the total flow rate into element i, and At* is dictated from
element size by the Lax condition, At* < 12ul? (e.g., taken as
5 x 107> s in our examples later in Tables 1 and 2).

In a polycrystalline material, the grain boundaries are dis-
cretized by a number of 2D four-node user-defined elements, on
which the FEM procedure for the traction-separation relationship
and the FD procedure for the fluid flow are conducted. As shown
in Fig. 4, the initial gap is zero, A, = A; = 0, i.e., the top and
bottom nodes collapse onto each other, although the drawing
exaggerates the element thickness for the sake of illustration.
Of course, pre-existing cracks or foreign objects can be easily

At:min:At*,min{ i=1v---7Nelement}} s (12)

added. The rock grains are discretized with four-node plane strain
elements with reduced integration. The connectivity condition
in Fig. 4(a) suggests two single-channel flows on the two end
points of such a grain-boundary cohesive element, while there
will be three flows into the element adjacent to the trip junction
in Fig. 4(b). Kirchhoff conditions are automatically satisfied from
Eq. (10) and Fig. 3.

The above FEM/FD formulation encounters two practical diffi-
culties in the implementation into the user-defined element (UEL)
subroutine in ABAQUS: (i) nonlocal information acquisition, and
(ii) time incrementation. According to Eq. (10), the Poiseuille flow
fluxes need to be computed with the knowledge of neighboring
elements, while ABAQUS UEL does not provide a function to ac-
cess such nonlocal information. This difficulty can be resolved by
the COMMON BLOCK technique for data storage and acquisition.
As illustrated in Fig. 5, several data tables have been created
to store the information of cohesive element connectivity (for
the sake of Poiseuille flow), interface-bulk element connectivity
(for the sake of Darcy flow), and pressure values for all cohesive
elements at t, and t,,. In UEL, given u" and u™*!, together with
p! table in the COMMON BLOCK, the pressure values will be
updated to p,f'“ from Eqgs. (10) and (11), and then stored in the
COMMON BLOCK.

The time incrementation scheme can be better illustrated by
the two separate solvers in Fig. 5. The mechanical solver by FEM
is based on the Newton-Raphson method to solve the nonlinear
Eq. (1) upon finite element discretization. Therefore, UEL sub-
routine requires the calculation of CZM Jacobian to assemble the
element stiffness matrix, and tractions at t,,; to calculate the



X. Cai, W. Liu, X. Shen et al.

UVARM2
35 0-45°
29.97 Anisotrqpy direction
4
31 01 Pel‘fomﬂng\d‘h‘emon
18.02
15.04
12.05
9.06
i
$ o
SN
(a) -
UVARMI1
2.00
1.84
1.68
1552
1.37
2
1.05
0.89
037 A
3% ~
0.10 e
0.00 W -
r i N
) \
p

(c)

Extreme Mechanics Letters 45 (2021) 101281

UVARM?2
45.95
42.13
38.31
34.49
30.67
26.85
23.02
19.20
15.38
11.56
3'33 ﬂ\
0.10 \
0.00 ‘4\.‘ e
F o
E 2 ¢
(b) =
UVARMI
2.00
1.84
1.68
1.52
1°37
1.21
1.05
o3t
i
TN
0.00 e
=5

(d)

Fig. 12. Fracture morphologies due to fluid injection in the center (Fig. 9) with material anisotropy direction lying at 6 = 45°: (a) 8 =2, (b) B =3, (c) B =4, (d)

B =5.

residual vector. As shown in Fig. 1, the fluid pressure is taken as
applied force onto the cohesive elements, and thus incorporated
into the UEL residual vector by replacing T,, by T,, — p. The related
tangent, dp/d A, is however not added to the UEL stiffness ma-
trix; in other words, we are using a semi-consistent Jacobian for
the Newton-Raphson iteration. Nevertheless, FEM convergence is
rather fast and any numerical difficulties associated with crack
nucleation can be resolved by the fictitious viscosity in Eqgs. (7)
and (8), and the related time steps are chosen by ABAQUS auto-
matic incrementation algorithm as determined from the radius
of convergence calculation for the Newton-Raphson iterations.
On the other hand, the hydraulic solver takes cohesive element
separations as inputs and update the pressure fields from the FD
approach. The governing equation is parabolic and thus the time
step has to be chosen according to fluid viscosity and element size
as shown in Eq. (12). In other words, it is sometimes necessary
to discretize [t,, t,+1] into many time bins to ensure numerical
stability.

3. Validation

In this section, our numerical framework is validated against
the analytical KGD solution, which was first proposed by Khris-
tianovic and Zhelton [35] and then improved by Geertsma and
de Klerk [5]. It addresses the propagation of a single crack, due to
the injection of an incompressible fluid under a constant rate, in
an infinite, brittle elastic solid under uniform pressure as shown
in Fig. 6(a). The crack half-length and the opening were derived

as [36]:
1
E/q3 I 2
Lyep(t) = G4 <70) t3 (13)
m
1
3\ 6
wiep(t) = & (é‘{o) £3 (14)

where qo is the injection rate per unit height of the fracture,
E' = 2E/(1—v?) is the plane strain modulus of the rock with
the Young’s modulus E and Poisson’s ratio v, and C; and G,
are numerical factors. Due to numerous assumptions in the KGD
model such as a uniform flow rate along the fracture and no
explicit dependence of the solution on the fracture toughness,
our validation is focused on the parametric grouping and power
exponents in Eqs. (13) and (14), rather than on the exact values
of the pre-factors.

As shown in Fig. 6(b), the numerical example simulates the
propagation of a straight and vertical crack driven by injecting
fluid at a constant flow rate into an elastic, homogeneous rock.
The simulation domain is of 10 m x 10 m with impermeable
surrounding boundaries and fluid injection at the top element.
Material and fluid properties are listed in Table 1. The mesh size
is chosen based on the following considerations. When a cohesive
constitutive law is introduced to smear out the stress singularity
in the linear elastic fracture mechanics, the corresponding crack
bridging zone is thus given by [30]

bridging zone ~ 0.2

On, (15)

Omax
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where the pre-factor of 0.2 is based on numerical simulations. The
mesh size should be smaller than or comparable to this value,
rather than §, (which is impossible to resolve in such simula-
tions). In this case, this bridging zone size is orders of magnitude
smaller than the crack size, thus corresponding to the crack
nucleation problem. Without the use of fictitious viscosity, the
finite element calculations will encounter difficulty in attaining
numerical convergence.

A good agreement between the analytical solutions and the
numerical simulation is found in Fig. 7, from which we fit C; =
0.34 from Fig. 7(a) and C; = 3.3 from Fig. 7(b). Numerical
simulations calculate the fluid flow rate that is coupled with the
deformation field in the rock. The obtained evolution of pressure
gradient fields in Fig. 7(c) clearly defies the KGD assumption of a
uniform pressure field. Fracture opening along fracture length is
also shown in Fig. 7(d). Our choices of cohesive properties lead
to a quite small bridging zone size so that they rather have a
minimal effect on the fracture length. The fracture toughness may
have a large effect on the fracture length, but the actual values of
rocks do not differ noticeably from ~2.1 MPa 4/m from Table 1
so that our simulations are of quintessential nature.

4. Anisotropic hydraulic fracture

Not all grain boundaries in geomaterials are weak surfaces,
as some natural fracture and bedding planes are more prone to
failure in shale reservoir [26,31,37]. As shown in Fig. 8(a), these
planes are filled with minerals and not able to contribute to the
reservoir storage or conductivity, but they bring serious crack
branching and anisotropic fracture to rock materials. We also

note the relative degree of opening and shear modes changes in
various crack branches, as illustrated in Fig. 8(b).

To investigate the effect of rock anisotropy on fracture geom-
etry, a hydraulic fracturing simulation with random grains is pre-
sented. The use of Voronoi tessellation generates random polygo-
nal grains with controllable shape distributions, which guarantees
that the macroscopic behavior of reservoirs is not biased by
any spurious particle distributions [38]. As shown in Fig. 9, a
polycrystalline model of 25 m x 25 m with confining pressures
oy and oy, is created to represent the reservoir rock. The hydraulic
flow is injected into a fracture element in the center of the model,
and the perforating direction (or initial fracture orientation) is
also marked.

Previous works in [17,39,40] have focused on the role of
elastic anisotropy on the growth direction of individual cracks.
In contrast, our work here is motivated by the experimental
observations in Fig. 8, and thus considers the fracture anisotropy.
We note that there are two independent directions in our simu-
lations, one being the element orientation as characterized by «
in Fig. 9, and the other being the material anisotropy direction (or
symmetry line) as shown later by 6 in Figs. 11 and 12. We now
assume the cohesive strength depends on |0 — «| as a four-fold
symmetry function,

Omax (0, @)
Omax (MIN)

where the parameter 8 determines the degree of anisotropy. The
cohesive characteristic lengths are prorated similarly, as shown
in Fig. 10 where |6 — | = /2.

Hydromechanical parameters used in our simulations are listed
in Table 2, and representative results are given in Figs. 11 and 12,

=1+ (B —1sinl|0 —af, (16)
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whereas UVARM2 shows the fluid pressure. The crack is initially
horizontal as forced by the element directions at the center of
the model, but whether this central crack will deflect depends on
0 and B. In Fig. 11, 6 = 0° and thus Eq. (16) dictates that the
horizontally lying elements are weak surfaces. Consequently, the
crack morphology will tend to be horizontal, and more so at a
higher value of 8. The zig-zag nature arises from the graininess
nature of the material.

In Fig. 12, the perforating direction and the strength anisotropy
direction make an angle of # = 45°. While the weak surfaces are
at 45° off the perforating direction, the final crack morphology
approaches this inclined direction only for a high value of 8
as shown in Fig. 12(b). The transitional behavior of crack mor-
phology and branching clearly depends on the particular choice
in Eq. (16), but these results demonstrate the computational
capability of our numerical approach and can be easily extended
to realistic application problems.

In order to compare to experiments in Fig. 8(b), we plot
the failure modes in Figs. 14 and 15, which correspond to
the crack opening displacement results in Figs. 12 and 13, re-
spectively. When the perforating direction is not parallel to the
fracture energy anisotropy direction, we will see multiple sec-
ondary branches in predominately shear fracture mode. These
findings are in good agreement with previous experiments in
Fig. 8(b), suggesting the importance of the complex interplays
amongst anisotropy, fracture morphology, and fracture model.

Extreme Mechanics Letters 45 (2021) 101281

(b) d

=5

(d)

Fig. 14. Crack failure types, where green means tensile failure and red means shear failure with material anisotropy direction lying at 6§ = 45°: (a) 8 =2, (b) 8 =3,
(c) B =4, (d) B =5. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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5. Summary

This study proposes a numerical approach to simulate hy-
draulic fracture propagation by a coupled FEM/FD formulation.
The nonlinear FEM implementation of the cohesive interface
model into ABAQUS UEL subroutine provides a user-friendly
interface to incorporate more advanced hydromechanical consti-
tutive laws. The FD solver for fluid flow provides the updated
pressure field as inputs to the residual vector for the UEL. The
nonlocal information needed for FD is obtained from the COM-
MON BLOCK technique, and the time incrementation can be
treated separately for nonlinear FEM and FD procedures. Our
numerical scheme has been successfully verified against the KGD
analytical solution. Furthermore, our approach is capable of cap-
turing complex fracture patterns and branching behavior. In this
case, the geomaterial can be modeled as a polycrystal with
Voronoi tessellation, and the grain boundaries can represent
flaws for fracture propagation. Considering materials with frac-
ture anisotropy, our simulation results found that, when the
anisotropy direction is not in alignment with the perforating
direction, a complex fracture morphology may appear during
the fracking process. When the degree of fracture anisotropy
increases, the fracture pattern eventually turns to the weak-
est direction. These simulation results are amenable to further
experimental comparisons.
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(b)

B=3
p=5

(d)

Fig. 15. Crack failure types, where green means tensile failure and red means shear failure with material anisotropy direction lying at & = 90°: (a) 8 =2, (b) 8 =3,
(c) B =4, (d) B =5. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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