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Abstract—As mainstream computing is poised to embrace
the advent of byte-addressable non-volatile memory (NVM), an
important roadblock has remained largely unnoticed, support
of legacy libraries on NVM. Libraries underpin modern soft-
ware everywhere. As current NVM programming interfaces
all designate special types and constructs for NVM objects
and references, legacy libraries, being incompatible with these
data types, will face major obstacles for working with future
applications written for NVM. This paper introduces a simple
approach to mitigating the issue. The novel approach centers
around user-transparent persistent reference, a new concept that
allows programmers to reference a persistent object in the
same way as reference a normal (volatile) object. The paper
presents the implementation of the concept, carefully examines
its soundness, and describes compiler and simple architecture
support for keeping performance overheads very low.

I. INTRODUCTION

Non-volatile memory (NVM) provides persistency, byte-
addressability, and DRAM-like access latency and bandwidth,
such that programmers can read and write data in NVM
as if they were in DRAM without worrying about losing
data upon system failure. It has drawn a lot of attention
recently [1]-[7]. Cloud service providers have started adopting
NVM in production environments [8], and observed up to 10X
performance gains or 38% cost reduction [9] across a wide
range of data center systems.

In this paper, we focus on a pressing issue that has not
received prior attention but is going to manifest as a major
roadblock for the adoption of NVM, supporting legacy library.
Libraries, especially those low-level libraries, are the foun-
dation underpinning modern computing. The Ubuntu 20.04
LTS official package archive, for instance, contains 6,505
libraries [10], including Boost [11], Gnulib [12], GTK [13],
CPL [14], and so on. They constitute a layer indispensable
in the execution stack of almost every mainstream computing
system. They form a huge codebase. In particular, the four
libraries contain 5.4 million lines of C/C++ code and 342
thousand of functions in total'.

It is hence imperative to ensure that these libraries can still
work with future NVM-based applications. While the commu-
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nity is poised to embrace NVM with architecture support [15]—
[17] and new programming models for writing code for future
NVM [18]-[20], this pressing issue has however remained
largely unnoticed.

Doing nothing is not an option. If nothing is done, legacy
libraries will not work for NVM applications. It is due to the
required persistent data types in NVM programming models.
The state-of-the-art persistent programming models [21]-[25]
organizes persistent data in regions or pools; we call them
persistent memory objects pools (PMOPs) in this paper. As
PMOPs are long living, they are expected to be used by
different programs, and in different runs they could be mapped
to different virtual addresses. As a result, pointers contained
in a persistent object must be relocatable, that is, even if the
objects they point to are moved to a new address, from these
pointers, the program can still reach those objects. They are
called persistent pointers.

To support relocatability, persistent pointers are represented
and implemented differently from conventional pointers. All
existing programming models define persistent pointers with a
new data type and dereference them through special APIs. For
example, Intel PMDK uses 128 bits PMEMoid as persistent
pointers [21] and NVHeap adopts a similar design [22].
Some other designs [26]-[28] pack the pool id and offset
into an eight-byte pointer, but still require special types to
be declared and used for referencing persistent objects via
persistent pointers. We call this method explicit persistent
references.

As a result, legacy libraries will face major obstacles for
working with NVM applications, for they do not accept the
new data types for persistent objects, nor have invocations of
those special APIs when accessing an object that could reside
on NVM [29]. As NVM starts getting into mainstream com-
puting systems, this roadblock has already been manifested in
the practical adoptions of NVM. For instance, the incompatible
data types and virtual addresses have been recognized [29] as
two of the main challenges for adopting NVM for a production
key-value store, Redis. Skilled engineers at Intel spent several
months on porting Redis to NVM [30]. According to the log
of the git repository, they updated 4,348 lines of code, which



constitute 7.6% of the codebase of Redis. The migration is
incomplete [31], as data structures such as zipmap are still
unavailable; hence more effort is expected for production use.
Another research project [32] that migrates only the indexing
data structure of another key-value store, rocksDB, adds 4,117
lines of code.

Principled requirements. A desirable solution to the problem
must meet several principled requirements.

(i) Avoiding manual code rewriting whenever possible.
Consider the opposite, which is to require all legacy libraries to
be rewritten with the new programming models. The changes
required in the rewriting would be massive: they have to be
global as all object accesses are potential places where the
changes must occur. More importantly, as a library is usually
going to be used in many applications, the objects passed
into it via parameters could be volatile in some invocations
but persistent in some other calls. The uncertainty adds even
more complexities in the rewriting. Given the large codebase
of legacy libraries, manual code rewriting should be avoided
whenever possible.

(i) No reliance on the features that exist in only some
programming languages. Generics (or templates), for instance,
could potentially simplify the treatment to the data type uncer-
tainty issue mention earlier; a recent study, AutoPersist [33],
proposed the use of Garbage Collection (GC) to help mitigate
software migrations to NVM. These solutions however are not
applicable to the large volume of libraries written in C or other
languages that do not support Generics or GC.

(iii)) Accommodating various usage and manipulations of
pointers. It is essential for the soundness of the solution, espe-
cially important for libraries written in low-level programming
languages.

(iv) Low performance overheads and costs. The solution
must keep the efficiency of the libraries as much as possible.
Any architecture support should be minor.

Proposed solution. In this paper, we propose a solution to meet
all four requirements. The basic idea is simple: Embedding
the persistence/volatility type info of a pointer into the pointer
itself, and using runtime checks to discern them for different
treatments. But to realize the idea effectively, we have to
address concerns on both soundness and efficiency. This paper
presents our answers.

More specifically, this paper makes five contributions: (i)
introduce the concept of user-transparent persistent references
for effortless migration of legacy libraries to NVM; (ii) design
the storage format of persistent pointers to keep their length
the same as conventional pointers but at the same time using
special bits to mark the persistence; (iii) systematically ana-
lyze the soundness of user-transparent persistent references
by examining all kinds of pointer-related operations in C,
the language that allows the largest freedom (and hence
complexity) in pointer manipulations; (iv) create a simple
architecture support that reduces the execution time overheads
of user-transparent persistent references to a nearly negligible
level; (v) empirically demonstrate the high efficiency of the
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implementation and the benefits in mitigating library migration
complexities.

Experiments on a popular C/C++ library Boost and a case
study on a machine learning application show that (i) user-
transparent persistent references provides a sound solution to
significantly mitigate the migration burden for programs and
libraries; (ii) Hardware support for efficient user-transparent
persistent reference is crucial. The pure software implemen-
tation slows down the original libraries by 2.75x on aver-
age, while the hardware support removes nearly the entire
performance loss. (iii) User-transparency does not necessarily
sacrifice performance; compared to the state-of-the-art hard-
ware supported for explicit persistent references, our solution
even gains 1.33x speedup on average, thanks to the reduced
numbers of memory address translations the new method
entails. (iv) The overheads incurred by migrating programs to
NVM are minor (less than 5%) for all benchmarks, averaging
only 2% with the architecture support.

To the best of our knowledge, this is the first solution
proposed for supporting legacy libraries on NVM. Software
developers can adopt the programming language support for
legacy libraries by installing a compiler plugin and a persistent
memory allocator. A legacy library only needs to go through
a recompilation (or binary rewriting) before it can be invoked
in an NVM application, either outside or inside a persistent
transaction®, which the user may rely on to achieve crash con-
sistency. Although the needed architecture support adds some
cost, it involves only minor changes to the store instruction;
the benefit is however tremendous, considering the massive
rewriting effort it could save to for a huge volume of legacy
libraries.

In the rest of the paper, we first provide some background
of this work in Section II, give a high-level view of the
proposed solution in Section III, a careful analysis of the
soundness in Section IV, the architecture-compiler support
for efficiency in Section V-A, discussion of the relations
with crash consistency and code optimizations in Section VI,
experiments in Section VII, related work in Section VIII, and
the conclusions in Section IX.

II. BACKGROUND

Existing persistent programming models share lots of
commonality. We give a brief explanation based on Intel
libpmemobj [21]. Before using persistent memory, a pro-
grammer needs to create a persistent pool with a name. The
pool is in the persistent memory. The operating system assigns
a system-wide unique ID to the pool. Before reading from
or writing to the pool, the programmer opens the pool with
the name or the pool id, and the operating system maps the
pool into a contiguous virtual address range in the process
address space, which is similar to memory mapping a file
into address space. Operating systems may map the pool to
different addresses among executions of programs. However,

2Certainly, if a user would like to add persistent transactions into a library,
she can still do that through manual or compiler-based code changes.



the offset from an object in the pool to the head of the pool
stays the same. Figure 1 demonstrates the mappings.

<— offset —

-~ "T==~.__pool mapping

obj
page mapping
’ physical address space ‘
D persistent pool page - object

Fig. 1: Persistent pool based programming model

III. SOLUTION AT A HIGH LEVEL

As mentioned earlier, the representations of addresses in a
persistent pointer have to differ from those in a volatile pointer,
because those pointers have to stay valid even when the per-
sistent objects are mapped to a different address in a new run.
The principle of user-transparent persistent references is that
despite the differences in representation, at the programming
level, there shall be no difference when the program references
a persistent object on NVM or a volatile object on DRAM.

The basic idea of our solution, user-transparent persistent
references, is simple: embedding the type info (persistent or
volatile) into the representation of pointers and then using
runtime checks to discern the two types of pointers. The
challenges are on ensuring both soundness and efficiency of
the scheme. This section presents the solution at a high level.
The next two sections focus on the soundness and efficiency
respectively.

Memory Layout and Pointer Representation Figure 2 illus-
trates the virtual address space layout and the representation
of pointers in our design.

virtual address | DRAM | NVM |
space layout
P 4 2B 2%p
pointing to DRAM data (0) or NVM data (1)
. e
pointer | virtual address |0/1 | (1] |
representation
bit 0 bit 32 47 63 64
| intra-PMOP offset | PMOP ID/ 'l 1 |
7

virtual address (0) or relative address(1)

Fig. 2: Virtual address space layout and pointer representation

We divide the 256 terabytes virtual address of a process
into two equal halves. The first half starting from byte O
is dedicated to pages on DRAM while the second half is
dedicated for pages on NVM. Given a virtual address, we
determine if it points to NVM by checking the bit 47 rather
than translating the address into physical address.

We use the most significant bit (MSB, bit 63) of a pointer
to determine how the other bits shall be interpreted. When it
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is 0, the other bits constitute a virtual address corresponding
to a regular/conventional pointer; for 1, a relative address
corresponding to a persistent pointer. The relative address
contains a 31-bit pool ID starting from bit 32 and a 32-bit
intra-pool offset.

Runtime Checks Figure 3 uses pseudo-code to illustrate the
runtime checks needed for interpreting the value of a pointer
appropriately, and how it plays out in executing a pointer
assignment statement. The checks are simply on the flagging
bits in the pointer value. The two functions va2ra () and
ra2va () are respectively translations between virtual address
to relative address.

determineX(char* addr):
if bit 63 of addr is 1
return NVM

! determineY(char* val):

if bit 64 of val is 1
return Relative

else else
return Virtual
return NVM

else

return DRAM

]
]
]
]
]
i
]
if bit 47 is 1 |
i
]
]
]
]
]
[}

pointerAssignment(char** to, char* p):
if determineX(to) = NVM

if determineY(p) = Relative — *to = p
else = *to = va2ra(p)
else
if determineY(p) = Relative — *to = ra2va(p)

else = *to = p

Fig. 3: Pseudocode showing the runtime checks to determine
the right interpretation of a pointer value (top) and how it plays
out in executing a pointer assignment statement. vaZra(p)
translates virtual address to relative address, and ra2va(p) goes
the other way.

Considerations There are two major concerns with the user-
transparent persistent reference idea. The first is whether the
removal of type differences at the programming level causes
soundness issues to programs in all possible usage of pointers.
The second is whether the overhead of the runtime checks can
be minimized. Conducting the software checks at every pointer
access would obviously incur large overhead. We discuss these
two issues next.

IV. SOUNDNESS

To check the soundness in a complete manner, we go
over ISO Cl11 standard [34] to enumerate all operations
involving pointers, as shown in Figure 4. On each line, we
list one type of operation allowed in C11 on pointers, and
then provide the corresponding behavior semantics that C11
with user-transparent persistent reference will have. Wherever
necessary, we use pxy to indicate the various kinds of pointers
(x = n,d for pointers on NVM or DRAM, y = u,r



T: any type; I: integer type; i: an integer variable;

$$: the left hand side of an expression;

p: a pointer; p.val: the value of the pointer; p.type: the type of p; p.va: the virtual address of p; p.ra: the relative

address of p;

pxy: a pointer with property x and y; x: n for the pointer is in NVM and d for DRAM;

y: v for pxv.val is a virtual

address and r for relative address; For example, pxr is a pointer either in NVM or DRAM and its value is a relative

address;

cast operator

additive operator: +, -

T)p $$.val = p.val pxy op i $$.val = pxy.val op i; $$.type = pxy.type
(T)i $$.val = i.val i+ pxy $$.val = i + pxy.val; $$.type = pxy.type
pxv .val = pxv.va pXvV - pxv .val = pxv.val op pxv'.val; $$.type =
(n $$.val 1 : $$.val 1 ‘.val; $$.t I
(Dpxr $$.val = razva(pxr.val) pXr = pxv $$.val = ra2va(pxy.val) op pxv.val;
unary operator pXv - pxr $$.type = I
+p, —-p, 'p, ~p  $$.val = op p.val pxr - pxr' $$.val = pxr.val - pxr'.val; $$.type = I
&p $$.val = p.addr postfix operator
*pXv $$ = *(pxv.val) p+, p-- $$.val = p.val op
*pxr $$ = *(ra2va(pxr.val)) plil, $$.val = *(p+i)
sizeof p $$ - .identifier
. .val = op p.type p ) - * : i e
alignof p p p.typ p—>identifier $$.val (p + OffsetOf(identifier))
assignment operator pxv(argument list) $$.val = pxv.val (argument list)
* ORI $%.val = vaz2ra(pxv.val) [ EI IR EE Y I SSIVaT = Ra2va(pxirsval) (argument 1ist)
ol pny = pxr  $$.val = pxr.val relational and equality operator: <, >, =, =, =, =+
* pdy = pxv  $$.val = pxv.val pxv op pxv' $$.val = pxv.val op pxv’.val
* LR O $¢.val = ra2va(pxv.val) pxr op pxr' ra2va(pxr.val) op ra2va(pxr'.val)
p = NULL $$.val = NULL.val
PXr op pxv pxv.val op ra2va(pxr.val)
pxy += i, pxy -= i $$.val = pxy.val op i pxv op pxr
logical operator: &&, || pxv op i $$.val = pxv.val op i
A : 1 0p pxv
popi,iopp $$.val = (I)p op i; $$.type = I _
Xr op i .
popp' $$.val=()p op (I)p'; $$.type=I E op gxr ra2va(pxr.val) op i
conditional operator p op NULL $$.val op NULL
p ? expr : expr $$.val = (Dp ? expr : expr

filled boxes for modified semantics

Fig. 4: A full list of operations ISO C11 standard allows on pointers and the corresponding semantics if user-transparent

persistent reference is used.

for normal virtual address representation or relative address
representation).

By checking the table against the specifications in ISO C11
standard, one can easily confirm that with user-transparent
persistent reference, the returned value of every operation that
involves pointers is consistent with the specifications in the
ISO Cl11 standard, despite whether the actual representation of
the pointer is a relative address format for a persistent pointer
or an absolute address format for a volatile pointer. The reason
is that the dynamic format checks automatically resolve the
differences whenever necessary, as shown by the filled boxes.
Intuitively, the hardware support converts between absolute
addresses and the relative ones just before using/storing them.
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That means that we could safely convert a relative address to
an absolute address to every NVM pointer before doing any
operation to it. It is possible to do better than that in terms of
performance by opportunistically keeping pointers as proper
relative addresses so we do not have to convert them back
before storage, as what our proposed scheme does. Preserving
these relative pointers is “just an optimization”, so we can do
it opportunistically without impairing the soundness.

V. EFFICIENCY

Naively adding the dynamic checks at every pointer access
would incur large time overhead and code size increase. We
have explored two ways to reduce the overhead, one based on



novel architecture support, the other based on pure compiler
analysis and transformations.

A. Hardware-based Method

This hardware-based solution introduces a new instruction,
some additional semantics to memory instructions, and some
assistant hardware components. It dramatically reduces the
overhead of the dramatic checks. The use of it requires only
lightweight support of the compiler.

a) Instruction semantics: Our 64-bit pointers have two
formats. A persistent pointer uses relative address format while
conventional pointer uses virtual address format. For quick
identification, the MSB (bit 63) distinguishes them (“1” for
relative address, “0” for virtual address). Furthermore, our 48-
bit virtual address space is split equally into volatile region (bit
47 is “0”) and persistent region (bit 47 is “17). Let us denote
source and destination registers as Rs and Rd, respectively, and
ra2va and va2ra as functions that convert relative (or virtual)
address to virtual (or relative) address, respectively. Table I
shows the semantics of memory reference instruction:

TABLE I: Instruction semantics

‘When Rxy= 0, 1, or any (-)

Instruction Semantics
[ | Rdes | Rds7 [ Rses | Rsaz
load Rd, (Rs) Rd = Mem[Rs] - - 1 -
Rd = Mem[ra2va[Rs]] - - 0 -
storeD (Rd), Rs  Mem[Rd] = Rs 0 - - -
Memlra2va[Rd]] = Rs 1 - - -
storeP (Rd), Rs  Mem[Rd]=va2ralRs] 0 1 0 1
Mem[Rd]=Rs 0 1 1 -
Mem[ra2va[Rd]]=va2ra[Rs] 1 - 0 1
Mem[ra2va[Rd]]=Rs 1 - 1 -
Mem[RdI=Rs 0 0 0 -
Mem[Rd]=ra2va(Rs) 0 0 1 -
Error other combinations

For a load instruction, if Rs bit 63 is “1”, the relative
address must first be converted to virtual address before
issued to the TLB or cache. Similarly, this applies to Rd
for storeD instruction. Note that additionally there is a new
store instruction (storeP ). While storeD is a regular store
instruction intended to store data into a memory location,
storeP is intended to store a pointer value to a memory
location. Our architecture provides two types of stores because
for storing pointer value, the pointer may need to be converted
into a relative address before written to memory. A program
can use sforeP to write an address value into a persistent
memory location. For example, we can use storeP to replace
pointerAssignment function presented in Figure 3 and
storeD for = (int«)p

1.

The semantics for storeP largely reflects cases of whether
or not Rs contains virtual address (hence needing conversion
to relative address) or relative address, and whether or not Rd
represents virtual address or relative address (hence needing

conversion to virtual address).
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b) Changes to the pipeline: Figure 5 (left) shows that
we assume the compiler chooses storeD or storeP whenever it
stores data or pointer to memory, respectively. Specifically,
an LLVM optimization pass detects pointer operations and
translates them to combination of LLVM IRs according to the
semantics.

code ‘
'

b StoreP Unit g

r 1

2|

LLVM Pass <—> ) y ! §;
> Memory et

P \lanagement Unit g
Store Unit 0

storeD o

| StoreP i |

Arithmetic
CPU Logic Unit

Fig. 5: Overview of compiler assumption (left) and modifica-
tions on CPU pipeline (right)

Figure 5 (right) shows the CPU pipeline modification.
Load and Store functional units execute load and storeD
instructions, respectively, as in a regular processor, but with
an additional step to convert relative address to virtual address
during effective address generation at the execute stage. To
translate relative address to virtual address, we adopt a trans-
lation structure analogous to the page table and TLB called
persistent object table (POT) and persistent object lookaside
buffer (POLB) [26]. After translation, virtual address is used
in the rest of the pipeline, hence mechanisms such as load
bypassing, load forwarding, memory dependence checking,
and speculation are not affected.

The storeP instruction requires additional processing to
convert pointer format, so we introduce a separate functional
unit for it. The storep unit must translate virtual to relative
address. To achieve that, it relies on a finite state machine
to keep track of the translation. The unit derives the pointer
properties of its two operands with hardware logic implements
the determineX and determineY in Figure 3.

POLB: Persistent Object Look-aside Buffer, from ObjectID to virtual address;
VALB: Virtual Address Look-aside Buffer, from virtual address to ObjectID;
POW: Persistent Object Walker; VAW: Virtual Address Walker; PTW: Page Table Walker;

storep unit

©)

Finite State
Machine |3

ustorep Rd, Rs

,,,,,, =

create an entry in , the entry contains <Rd, Rs, stated, statets>
@ t try in FSM, the entry contains <Rd, Rs, stated, statet
@'@ @ translate Rd to virtual address

@ ® translate Rs to relative address

step . . .
dependency @ issue an conventional store operation from TLB

Fig. 6: Design of storep function unit and dataflow of operation
pny prv. Solid filled blocks indicating the modified
modules. Dashed arrows are for data path. ustorep refers to
micro operation of storep instruction.



Since virtual to relative address conversion may incur a
variable latency, we use a buffer to hold outstanding storeP
instructions so that multiple instructions can be executed con-
currently. Each buffer entry contains four fields: placeholders
for virtual address in Rd and relative address in Rs, and the
state of translations for Rs and Rd. Each entry has a finite state
machine that keeps track of the progress of both translations.
The memory management unit (MMU) is added two lookaside
buffers to implement ra2va and va2ra translations using
POLB [26] and the new virtual address lookaside buffer
(VALB), respectively. VALB translates virtual address in Rs
to relative address, in two steps: it retrieves PMO ID given a
virtual address, and concatenates it with the offset portion of
the virtual address.

Each VALB entry has three fields: PMO starting address
(64 bits), PMO size (32 bits), and PMO ID (32 bits). VALB
may use a ternary content addressable memory (TCAM) to
find an entry with the longest prefix match, allowing quick
retrieval of PMO ID. Just as POLB is backed by kernel table
POTB [26], VALB is backed by a kernel table called virtual
address table (VATB). Since PMOs have different sizes and
starting addresses, VATB adopts a B-Tree based range table
structure that was proposed for Range TLB [35]. Note that
POLB and VALB do not contain permission bits as permission
control is already enforced by the TLB [36].

When a storeP instruction is executed, the bottom portion
of Figure 6 illustrates the steps tracked by the state machine.
Both Rd and Rs are translated (if needed) to virtual address
and relative address, respectively, simultaneously. Once both
are completed, the virtual address can be forwarded to the TLB
for permission check. In addition to protection and permission
fault, storeP may incur a fault for errors listed in Table I).

¢) Hardware complexity and storage overheads: The
storeP unit acts as a functional unit which could have its
own reservation stations, hence it does not affect the critical
path delay of other instructions. The POLB and VALB are
accessed prior to the TLB hence they add small delay to the
critical path of address translation in the MMU (modeled in
the simulation). Some prediction mechanisms can be deployed
to accelerate this, to predict non-PMO accesses that bypass
the POLB/VALB, but we leave this out for future work. The
total on-chip storage costs for the hardware structures (FSM,
POLB, and VALB) is minor, at less than 2KB, as detailed
in Table II. Others (POTB and VATB) are software data
structures in kernel memory. We use Cacti [37] to evaluate the
die area needs with 45nm process. The total on-chip storage
consumes only 0.059% die area of a 45nm octal core Nehalem
processor [38].

TABLE II: Space cost of hardware implementation

Entry Size  Num Total Area
Structure (Bytes) Entries  (Bytes) (mm?)
FSM 16 32 512 0.0205
POLB 12 32 384 0.0137
VALB 12 32 384 0.0137

Total size: 1,280 bytes; Total area: 0.0479 mm?
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d) Compiler support: Unlike in the software solution,
with the architecture support, the compiler’s role changes to:
(1) generating storeP instruction for assignment operations
rather than calling functions; (2) generating load and storeD
instructions for data load and assignment as the instructions
now accept user-transparent persistent references as input;
(3) leveraging storeP to convert a relative to virtual address.
Figure 7 illustrates an example linked list Append() function
utilizing storeP instructions, inserted by an LLVM pass for
hardware supported user-transparent persistent reference. The
LLVM pass for hardware supported user-transparent persistent
reference is invoked after all other optimization passes as none
of them recognizes storeP instruction.

void Append(Node* p, Node* n){!

else return;
}

original code

Node* tmp_p_8, tmp_n_8;
storep p, &tmp_p_0
storep n, &tmp_n_@
if(tmp_p_8 = tmp_n_8){
Node* tmp_p_T;
storep p, &tmp_p_1;
storep &(tmp_p_1->next), p;

} generated code

Fig. 7: Generated code for linked list appending function

The first two storeP instructions store pointer p and n into
temporary variables tmp_p_0 and tmp_n_0. Since stack
variables are in volatile memory, according to the semantic
for pointer assignment pdy = pxr, the storeP instructions
translate p and n into virtual addresses if they are relative
addresses.

B. Compiler-based Method

Besides the hardware-based method, we have also explored
the use of pure compiler-based static analysis to infer the
actual types of the pointers in a program, and hence avoid
insertions of the checks at the places where the actual type of
the pointer can be precisely determined.

Compiler-based type inference is a well-studied topic in
programming languages. For this task, it is possible in some
cases based on the contexts. For example, for statement
voidx p pmalloc (1024), the compiler can determine
that: (1) p must be on DRAM as it is a stack variable, and
(2) the persistent memory allocation function must return a
relative address per its definition. It is however not always
possible for C programs due to the difficulties in function
parameter passing and point-to aliases and hence cannot
remove all dynamic checks.

Figure 8 outlines this approach. We implement a pass in
LLVM to conduct the inference based on its type inference
module. The pass first marks a predefined set of functions
accepting or returning relative addresses, including pmalloc
and pfree. Starting from the arguments or return values of
the functions, it uses backward dataflow analysis to propagate
the properties to other variables as much as possible. The prop-
agation follows the pointer properties change of the semantic



in Figure 4. For example, assigning a pxr pointer to a stack
variable makes the variable a pzv pointer.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,, : [ ]
! pointer inference 1 i memory layout
| assignment |;
! : : i
code LLVM i pomtgr Iog.|cal i
Passes i | detection relational |!
i i
i i

Fig. 8: Components and workflow of the compiler-based
approach

For the pointer variables that compiler cannot determine
properties at compile time, the compiler inserts the dynamic
checks. Figure 9 demonstrates the generated code for a
linked list appending function. For the relational operation
p != n, the compiler inserts determineY for the point-
ers on both sides and converts them to virtual addresses
accordingly; for assignment operation, the compiler inserts
pointerAssignment function call.

void Append(Node* p, Node* n){ struct Node{

if(p = n) int value;
——1_ p—>next|=n; Node* next;

else return;

b

} originalll code

generated code
determineY(p) = Relative ? ra2va(p) : p;
Node* tmp_n_8 = determineY(n) = Relative ? ra2va(n) : n;
if (tmp_p_8 = tmp_n_8){
Node* tmp_p_1 = determineY(p) = Relative ? ra2va(p) : p;
Node** to = &(tmp_p_1->next);
pointerAssignment(to, n);

}

Fig. 9: Linked list appending function generated by the LLVM
pass

Node* tmp_p_8

VI. DISCUSSION

With the solution proposed in this work, to make a legacy
library callable in an NVM application, it just needs to go
through a recompilation (or binary rewriting) such that the
store instructions in the code can be replaced with either
storeD or storeP instructions. The library functions can
then be invoked in the application, regardless of whether
the objects passed into the library function are persistent or
volatile. If the call is enclosed in a persistent transaction in
the application code, it will be the job of the compiler of
the application program to insert necessary runtime logging
instructions into the application and the library function to
ensure crash consistency. Obviously, our solution does not
prevent a user from changing the library if she would like
to take a full advantage of NVM by, for instance, adding
persistent transactions inside the library.

Both software and hardware implementation insert the code
generation pass after all code optimizations. The order pre-
vents scalar optimizations, such as value numbering, lazy code
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tmpd = ra2va(p) tmp = ra2va(p)
... «— PMO detach—» ...
tmp1 = ra2va(p) if(tmp = q && tmp = o)

if(tmp8 =+ q || tmpl = o)

(@) code generated

Fig. 10: Generated code for p != q && p != 0. Pool detach
causes inconsistent program semantics.

(b) with value numbering

motion, or common subexpression elimination. For example,
for p != g && p != o, the software user-transparent
persistent reference compiler may generate a ra2va (p)
function call for each p of the two statements. Trivial value
numbering can easily remove the redundant ra2va (p) if it
was employed after the user-transparent persistent reference
pass.

However, changing optimization order results in inconsistent
program semantic. Figure 10 illustrates a case that the pool
associated with p detached [39] during program execution.
The code generated for the software method interrupts at
the second ra2va function call while the value-numbering
optimized code executes normally.

The two methods can be potentially used together. The
compiler conducts type inference, and at places where it is
uncertain about, inserts the extended hardware instructions
rather than software-based dynamic checks. Our experiments
reported next however show that it is not necessary thanks to
the superior performance of the hardware-based method.

Under the proposed solution, considering that most hard-
ware prefetchers use physical addresses [40], they work as
usual as our proposal does not change data placement in the
physical address space. Virtual address based stride prefetch-
ers [41] may lose performance when data in persistent memory
pools are mapped to distributed virtual addresses. It is however
the consequence of persistent memory pool address mapping
introduced by the persistent memory programming model [21]
rather than by our proposed techniques.

VII. EVALUATION

This section evaluates the soundness and effects of the
proposed technique from four aspects:

o Soundness: the semantic of the program must be pre-
served; the pointers in NVM shall hold the correct relative
addresses.

Productivity: the number of lines needs to be modified for
libraries or applications to migrate them to NVM shall be
largely reduced.

Performance: the performance of the program generated
with the proposed techniques shall be comparable if not
better than the default explicit persistent reference cases.
Breakdown: the sensitivity analysis to latency of new
hardware unit VALB and the breakdown of the cost and
benefits.



A. Methodology

Benchmarks As the complexities and compatibility of libraries
for NVM is a main motivation of this work, we focus our
evaluations on commonly used C/C++ libraries. As none of the
existing NVM benchmarks are designed for evaluating library
performance, we developed a benchmark suite ourselves to do
the study.

Specifically, we concentrate on Boost [42], a popular set
of libraries for the C++ programming language that provides
support for tasks and structures such as linear algebra, pseudo-
random number generation, multithreading, image processing,
regular expressions, and unit testing. Table III lists the six
commonly used data structures in Boost that our experiments
focus on. Together they have 22,206 lines of source code.

To measure the performance of the libraries, we need a
harness to invoke them. We create the harness based on Intel
PMDK [43], a key-value store framework for NVM. The core
operations in the harness are mapping keys to value records.
When evaluating one of the data structures listed in Table III
(except LL), the harness replaces the mapping scheme with the
corresponding implementation in the data structure of interest
and then runs a number of key-value store operations and
measures the performance.

The harness uses YCSB [44] to generate the workload for
the key-value store. Specifically, we use workloadd (one of the
preset workloads) in YCSB to generate 10,000 key-value pairs
and 100,000 GET and SET operations. Both key and value are
8 bytes text string. 95% of the operations are GET and 5%
are SET. All SET operations insert new key-value pairs into
the key-value store such that the key-value store updates the
indexing data structures and pointers. The operations access
keys with latest distribution, which is zipfian distribution with
more recently inserted records are more likely to be read.

All of the data structures in Table III can play in the role
of mapping and hence are compatible with the key-value store
harness, except the linked list LL. We hence create a separate
harness for evaluating LL, which generates 10,000 nodes with
each node containing two pointers and a 16-byte randomly
generated integer value, and then iterates the linked list and
accumulates the values.

We in addition conduct a detailed case study on a machine
learning application KNN from a machine learning algorithm
collection MLPack [45], which also uses two other C/C++
libraries, Armadillo [46] and Boost [42]. It implements the
k-nearest neighbor (KNN) algorithm that is widely used in
data mining. We use iris dataset [47] as input. The dataset
contains 150 samples of three types of iris plants.

We persist all the content of six data structures by explicitly
specifying pmalloc as the memory allocator, while leaving
other data volatile. Each data structure requires only one line
of code modification in the application; no code change is
needed in the Boost library. On the KNN benchmark, we
persist two matrices with two lines of code modified; the
modification is the in the KNN application rather than the
MLPack, Armadillo, or Boost libraries.
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TABLE III: Benchmarks in use

Benchmark | Description \
Implemented with Boost Library
1L linked list with 10,000 nodes inserted and iterated 10
times.
chained hash table. Number of buckets equals to the
Hash
number of keys.
RBTree red-black tree, a s'elf-balancmg binary tree with wide
range of applications.
AVLTree AVL tree, used fqr database transactions that frequent
lookups are required.
Spla Splay tree, used in garbage collector that same ele-
play ment is retrieved multiple times in a short period.
Scapegoat tree, a self-balancing tree with low space
SG . .
cost and high rebalancing performance.
Implemented with MLPack, Armadillo, and Boost
k-nearest neighbor algorithm widely used for object
KNN P .
classification in data mining.

Hardware Simulator We evaluate all implementations with
an interval-based timing accurate hardware simulator, Sniper-
sim [48]. The simulator uses Pin as the frontend. We imple-
ment the new instructions as magic instructions in Snipersim
and add latency to them. Table IV lists the simulator parame-
ters. We set the capacity and latency of POLB according to the
original work [26], [49]. We use CACTI [37] to ensure that the
latency fit into the number of cycles. For VALB, by default, we
use the same latency as POLB; we conduct separate sensitivity
studies on the influence from its latency.

TABLE 1V: Simulated architecture

Component Parameter

ISA 64-bit X86, Gainestown architecture
CPU 1 core, 2.66Ghz, 64B cache line
Branch predictor | Pentium M, miss penalty 8 cycles
L1 data TLB 4-way, 64 entries, 1 cycle

L2 shared TLB 4-way, 1536 entries, 7 cycles for hit, 30 cycles
for miss

8-way, 64 entries, 4 cycles

L1 data cache

L2 cache 8-way, 256KB, 12 cycles
L3 cache 8-way, 2MB, 40 cycles
Memory 120 cycles (45ns) for DRAM, 240 cycles for
NVM
Buffer
POLB 3 cycles for hit, 30 cycles for miss
VALB 3 cycle for hit, 30 cycles for miss

a) Versions to Compare: In the performance comparison,
we focus on the following versions:

o« HW: the version of the NVM program written with our
hardware-based user-transparent persistent references.
SW: the version of the NVM program written with our
compiler-based user-transparent persistent references.
Explicit: the version of the NVM program written with a
representative explicit persistent references programming
model [26]. In this version, special APIs are used in
the program for accessing NVM data objects. At every
access, the object ID (i.e., relative pointers) is converted
to the virtual address through a hardware extension.
Volatile: the version of the native implementation of
the program with normal pointers without considerations



of NVM. This version is subject to no NVM-caused
overhead. It cannot work on real NVM systems, but offers
a clean reference point for examining the overhead of the
other versions.

B. Soundness Evaluation

We first check the soundness of the user-transparent persis-
tent references. We examine the execution of programs using
both the proposed HW and SW versions empirically, including
both whether their outputs are consistent with the outputs of
the original programs, and the correctness of every pointer in
the data structures. We confirm that all the programs outputs
are correct. Moreover, all the pointers in the persistent objects
are in the correct relative pointer format and carry the correct
values throughout the entire executions of the programs. The
results confirm the analytical results in Section IV.

Moreover, we test the soundness of the technique on a
production-quality LLVM test-suite [50]. The test-suite con-
tains test programs written in C, C++, bitcode, and LLVM
intermediate representation (IR). We use only C test programs;
there are 267 application tests and 1518 regression tests (1483
from gcc-torture test-suite [51]). We use the SW version,
user-transparent persistent references, to test the semantics of
pointer operations. All tests were passed.

To use persistent memory, we persist the entire heap by
replacing the default memory allocator with libvmmalloc [52],
a library that transparently overrides the malloc function to
allocate memory on NVM; the stack memory remains volatile.
It is a common practice of prior studies [7], [31], [53], [54].

C. Performance Evaluation

Figure 11 reports the execution time of the programs
normalized to the volatile time. We make the following
observations from the figure.

(1) The HW version outperforms the explicit version by 1-
3X. This observation was initially surprising to us. We expect
to see productivity improvement over explicit methods, but not
speedups. After a detailed analysis, we found out the reason.
The explicit version, due to the use of the special APIs and
object IDs rather than pointers, requires address conversion
at every access to a persistent object. In contrast, with the
HW version, the conversion results are naturally assigned to
normal pointers and hence get reused in later accesses to the
object through those pointers. Figure 12 illustrates it through
an example codelet. This benefit comes as a side effect of the
removal of the differences of persistent and volatile pointers
at the programming level.

(2) The SW version suffers from significant time overhead.
Although the compiler-based type inferences try to avoid
the insertions of dynamic checks whenever possible, the
complexities in pointer and alias analysis leave a substantial
amount (about 42%) of dynamic checks in the code. These
dynamic checks contain conditional statements that add lots of
branch mispredictions. Figure 13 reports the number of branch
mispredictions normalized to those from the volatile version.
The branch mispredictions in the SW version is 6.7 — 2944 x
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Fig. 11: Simulated execution time normalized to native execu-
tion. EPR denotes explicit persistent references. Less is better.

struct String:
char* str;

user-transparent
persistent references
size_t len;

//x and y are persistent string
bool compare(String* x, String* y):
char* a = x—>str; //x.str stores relative address
char* b = y—>str; //a and b store virtual addresses
for(size_t i = 0; i < x.len; i+):
‘if(*(a+i) %+ *(b+i)) return false;
return true;

//persist_ptr is persistent pointer template

struct PMString:
persist_ptr<char> str;
size_t len;

explicit
persistent references

bool compare(persist_ptr<PMString> x, persist_ptr<PMString> y):
persist_ptr<char> a =
persist_ptr<char> b =
for(size_t i = 8; i < x.len; i+):

if(*(a+i) = *(b+i)) return false

return true;

x—=>str;
y—>str; //a and b store relative address

every access goes through
address translation

Fig. 12: (a) A codelet in user-transparent persistent references,
where, the accesses to the persistent object naturally reuse the
virtual address of the object attained at the first conversion. (b)
A codelet in explicit persistent references, where, every access
to the persistent object need to go through a conversion from
relative address to the virtual address.

higher compared to the HW version. Its overheads on LL and
Hash are relatively smaller because these two programs have
relatively less data locality, and hence the inserted dynamic
checks weigh less in the overall time.

(3) With the hardware support, the user-transparent persis-
tent pointers remove almost all the overhead incurred by the
use of persistent pointers. The largest overhead is on Splay,
about 12%, compared to the volatile case where no persistent
pointers are used.

Table V shows the number of dynamic checks and conver-
sions.
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Fig. 13: The number of branch mispredictions, normalized to
those of the volatile version. Lower is better.

TABLE V: The number of dynamic checks, conversions from
absolute address to relative, and vice-versa for each bench-
mark. abs. refers to absolute address, rel. refers to relative
address.

Benchmark | dynamic checks abs. to rel.  rel. to abs.
LL 8,200,020 199,999 3,999,960

Hash 2,577,030 29,944 444 844
RB 14,518,568 50,805 8,392,150
Splay 25,572,050 850,878 10,949,713
AVL 14,407,532 55,327 8,287,941
SG 18,137,435 29,885 11,830,136

D. Sensitivity Analysis to VALB Latency

The latency of VALB and VAW generates marginal impact
on performance. Even with 50 cycles of latency set for VALB
and VAW, which implies that every three VALB lookups
access memory once, the execution time of all benchmarks
increases by less than 10%. Figure 14 shows the execution
time normalized to the execution time of explicit persistent
references.
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Fig. 14: Execution time to amortized latency of VALB and
VAW, normalized to the execution time of explicit persistent
references

Figure 15 demonstrates the reason for the observed small
impact. Only 0.38% of memory access instructions are storeP
; only 0.22% accesses VALB or VAW. In comparison, 12.6%
of memory accesses access POLB and POW.

E. Case Study with KNN on Productivity and Performance

In this part, we provide a detailed case study on KNN, which
uses multiple libraries including Armadillo [46] for matrix
creation, and Boost [42] for computation.
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Fig. 15: Portion of load/store instructions that involve VALB
or POLB.

The KNN algorithm uses four matrixes, one for input,
one for internal uses, and two for outputs. Each matrix is a
compound data structure defined by the Armadillo library. A
matrix contains a pointer to a data array and a set of metadata,
which indicate for instance whether the matrix is column-
major or row-major. Any of the matrices can be in NVM
or DRAM. For example, another data collection program
forwards its output to KNN, or KNN persistifies its output.
If a matrix is in NVM, the pointer in it should be converted
to persistent pointer. We allocate all matrices on NVM except
for the input matrix. Instead of interacting directly with the
matrices, the Boost library takes an object as input and encases
a matrix.

We assume that all matrices need to be persistified. With
our proposed technique, only seven lines of the code need to
be modified, to replace malloc and free with the persistent
versions (which can be automated by a compiler). In the
explicit version, in contrast, the changes include 863 lines of
code, more than 10 data objects, and over 32 functions.

As KNN itself may serve as a machine learning library
function, to make it usable for all the possible situations on
a system equipped with both DRAM and NVM, it would
need to be able to handle any combination of the data objects
in terms of their placements on DRAM or NVM. The four
matrices correspond to 16 possibilities. In the explicit case,
16 versions of the KNN would need to be created. The total
number of lines of code that needs to be changed quickly grow
to thousands. All the resulting code versions would then need
to be maintained in the future.

The performance of the HW version has marginal difference
from that of the baseline as only 0.22% of the load instruc-
tions incur address translation. The SW version sees 7.56X
slowdown.



TABLE VI: Related work

user-transparent q q
. . allow object | relocation . .
programming framework | language persistent 1 A head solution for relocation
references? relocation? overhea
Espresso [19] Java Yes Yes High update all pointers via pointer tracing
AutoPersist [33] Java Yes Yes High update all pointers via pointer tracing
go-pmem [55] Go Yes Yes High update all pointers via pointer tracing
PMDK [21] C/C++ No Yes Low position independent pointer (fat pointer)
Breeze [20] C++ No Yes High update all pointers via pointer tracing
Atlas [56] C Yes No - No
iDO [57] C++ Yes No - No
Our work C/C++ Yes Yes Low position independent pointer (8 bytes pointer)

F. Overall Observations
Overall, through the case study, we conclude the following:

o User-transparent persistent references, with either HW or
SW support, do not affect the soundness of programs.

o User-transparent persistent references remove most of
the programming burdens in migrating code and libraries
to NVM.

o The proposed hardware-based support significantly im-
proves the performance of the NVM programs compared
to the use of explicit persistent pointers, reducing the
execution time overheads to a nearly negligible level.

VIII. RELATED WORK

While industry recently finds a single type system for
persistent and volatile objects is essential for practical per-
sistent programming [55], legacy libraries expectedly benefit
from such type system as they can run without distinguishing
persistent and volatile pointers. However, existing proposals
provide limited supports, summarized in Table VI.

Espresso [19], AutoPersist [33], and Go-pmem [55] mitigate
explicit persistent references for managed languages such as
Java and Go. While the semantic of Java or Go reference
(pointer) operations are much simpler than that of C as Java
or Go does not support pointer casting to integer or most of
the other operations supported in C, the major obstacle for
those techniques to be applied for C-based libraries is that
they depend on garbage collection to enable reusability of
persistent objects, which has been proposed by a number of
prior studies [21], [22], [26], [27], [58], [59].

In particular, Espresso [19] uses conventional pointers for
persistent objects but scarifies security on address space layout
randomization. Its Java virtual machine loads persistent heap
and maps to the same address space among different programs
or executions. If the mapping fails as the address space is
occupied, Espresso map the persistent heap to other address
space and updates all pointers within that persistent heap.

AutoPersist [33] uses object reachability as a criterion of
whether an object should be persistent. It automatically moves
objects from DRAM to NVM with JVM and updates the
pointers to the objects, hence it does not need special pointer
type for persistent objects at programmers’ end. However, it
applies only to managed programming languages running in a
virtual machine. Further, it is unclear how it tackles cross-run
object reusability problem.
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Early proposals such as Atlas [56] and iDo [57] disallow
NVM objects to be mapped to different addresses in different
runs.

For the restrictions and loss of security protection oppor-
tunities, most other studies assume that NVM objects can be
mapped to different addresses in different runs. NV-Heaps [22]
and PMDK use 128 bits fat pointer composed of 64 bits pool
ID and 64 bits intra-pool offset. Every pool hence can be
up to 2% bytes. Chen et al. [27] point out that fat pointer
incurs substantial overhead. They proposed 64 bits position-
independent RIV pointer and software solution to translate
from RIV pointer to virtual address. Wang et al. [26] proposed
hardware acceleration for 64 bits relative pointers that are
composed of 32-bit pool ID and 32-bit intra-pool offset. They
use special instructions to access data through relative pointers.
All of them require programmers to use a special pointer
type and APIs for persistent objects, belonging to the explicit
category as evaluated in this work.

Chen et al. [27] proposes a type system for conversion be-
tween relative pointers and conventional pointers. The seman-
tics proposed in this work provides user-transparent addresses
conversion and reusability, which selects correct form for the
pointer to be retained in NVM. Cai et al. [23] implements the
pointer conversion of offset-based pointer, which is called off-
holder by Chen et al. [27]. Twizzler [24] requires programmers
to call functions to explicitly dereference a relative pointer
or convert a conventional pointer to a relative pointer. Those
works can be enhanced with the semantics of pointer opera-
tions proposed by this work to implement compiler support to
automatically insert those dereferences and conversions.

Proposals for C/C++ [20], [60] use a separate type system
for persistent and volatile objects. Breeze [20] requires pro-
grammers to annotate persistent pointers and objects. PMDK
[60] provides a persistent pointer template, persist_ptr, that
offers identical interfaces for operations persistent pointers
and normal pointers. As such, programmers define persistent
pointers as an instance of the persist_ptr template and later
use the persistent pointers as if they were normal pointers.
However, this method requires programmers to define persis-
tent pointer as a type other than that of normal pointer and is
hard to materialize for programming languages such as C and
Go where template is absent.

The idea of using different pointers has been explored in the
context of managed language, such as generational garbage



collection [61] and persistent object stores [62], [63]. The
assumptions are different from those of persistent pointers in
other languages. For example, C/C++ allows more kinds of
pointer operations, lacks rich runtime support, and outweighs
performance consideration.

A relevant technique in implementing user-transparent per-
sistent pointer is Java read and write barriers [64]. The
technique is orthogonal to the semantics of pointer operations
or hardware support proposed by this work. In particular,
the read and write barriers are functions that Java compiler
or runtime transparent inserted into a program to instrument
every memory accesses. The content of the functions is defined
by developers of Java runtime or compiler. One can easily
implement the semantics of pointer operations proposed by
Section IV as Java read and write barriers. Furthermore, such
software scheme suffers from substantial runtime overhead.
For reference, the conditional read barrier implemented with
only two assembly instructions can slowdown a Java program
by 10% [64]. The operations on user-transparent persistent
pointer are complex and apply for both read and write memory
accesses, which makes the hardware support an appealing
solution to preserve the performance.

IX. CONCLUSION

As libraries form a fundamental layer in the modern com-
puting stack, the lack of support of legacy libraries on NVM
would pose a major obstacle for broad practical adoptions of
NVM. This paper has introduced the first known solution to the
problem. It introduces user-transparent persistent reference, a
concept for effortless migration of legacy libraries to NVM.
It carefully analyzes the soundness of the design against all
kinds of pointer-related operations. It proposes a lightweight
architecture support to eliminate the runtime overhead of user-
transparent persistent reference. It reports the effectiveness of
the solution on a popular C/C++ library Boost and a case
study on a machine learning application. The results show
that the proposed solution is promising in removing the major
roadblock that legacy libraries pose for the adoption of NVM.

X. ACKNOWLEDGEMENT

We thank anonymous reviewers for their feedback. This
work is supported by the National Key Research and Devel-
opment Program of China under grant No.2017YFB1001603,
the National Natural Science Foundation of China under grant
No. 61832006, 61825202, 61702202, and the National Science
Foundation (NSF) under Grants CNS-1717425 and 16406268.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of NSF.

REFERENCES

[1] B. Lepers, O. Balmau, K. Gupta, and W. Zwaenepoel, “Kvell: the design
and implementation of a fast persistent key-value store,” in Proceedings
of the 27th ACM Symposium on Operating Systems Principles, 2019,

pp. 447-461.
O. Kaiyrakhmet, S. Lee, B. Nam, S. H. Noh, and Y.-r. Choi, “SLM-DB:

single-level key-value store with persistent memory,” in Proceedings of
the 17th USENIX Conference on File and Storage Technologies, 2019,
pp. 191-205.

454

[7]

[10]

[11]
[12
[13
[14]
[15]

[16]

[17]

[18]

[19]

[20]

21
[22]

[23]

[24]

[25]

[26]

Y. Chen, Y. Lu, F. Yang, Q. Wang, Y. Wang, and J. Shu, “Flatstore: An
efficient log-structured key-value storage engine for persistent memory,”
in Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2020, pp. 1077-1091.

V. J. Marathe, M. Seltzer, S. Byan, and T. Harris, “Persistent mem-
cached: Bringing legacy code to byte-addressable persistent memory,”
in Proceedings of the 9th USENIX Workshop on Hot Topics in Storage
and File Systems, 2017.

L. Lersch, X. Hao, I. Oukid, T. Wang, and T. Willhalm, “Evaluating per-
sistent memory range indexes,” Proceedings of the VLDB Endowment,
vol. 13, no. 4, pp. 574-587, 2019.

M. Nam, H. Cha, Y.-r. Choi, S. H. Noh, and B. Nam, “Write-optimized
dynamic hashing for persistent memory,” in Proceedings of the 17th
USENIX Conference on File and Storage Technologies, 2019, pp. 31—
44,

S. K. Lee, J. Mohan, S. Kashyap, T. Kim, and V. Chidambaram, “Recipe:
converting concurrent DRAM indexes to persistent-memory indexes,”
in Proceedings of the 27th ACM Symposium on Operating Systems
Principles, 2019, pp. 462-4717.

“Intel persistent memory partners,” https://www.intel.com/content/www/
us/en/architecture-and-technology/optane-dc- persistent-memory.html.
“Gain with intel persistent memory,” https://www.intel.com/content/
www/us/en/products/docs/memory- storage/optane- persistent-memory/
optane- persistent-memory-200-series- brief.html.

“Library section in ubuntu 20.04 Its packages,” https://packages.ubuntu.
com/focall/.

“Boost C++ Library,” https://www.boost.org/.

“The gnu portability library,” https://www.gnu.org/software/gnulib/.
“GTK library,” https://www.gtk.org/.

“Common pipeline library,” http://www.eso.org/sci/software/cpl/.

A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “DHTM: durable
hardware transactional memory,” in Proceedings of the ACM/IEEE 45th
Annual International Symposium on Computer Architecture, 2018, pp.
452-465.

J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutiu, “Thynvm:
Enabling software-transparent crash consistency in persistent memory
systems,” in Proceedings of the 48th Annual IEEE/ACM International
Symposium on Microarchitecture, 2015, pp. 672—685.

M. Cai, C. C. Coats, and J. Huang, “Hoop: efficient hardware-assisted
out-of-place update for non-volatile memory,” in Proceedings of the
ACM/IEEE 47th Annual International Symposium on Computer Archi-
tecture, 2020, pp. 584-596.

SNIA NVM Programming Model, https://www.snia.org/sites/default/files/
technical_work/final/NVMProgrammingModel_v1.2.pdf.

M. Wu, Z. Zhao, H. Li, H. Li, H. Chen, B. Zang, and H. Guan,
“Espresso: Brewing Java for more non-volatility with non-volatile
memory,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2018, pp. 70-83.

A. Memaripour and S. Swanson, “Breeze: User-level access to non-
volatile main memories for legacy software,” in Proceedings of the IEEE
36th International Conference on Computer Design, 2018, pp. 413—422.
Intel PMDK, https://pmem.io/pmdk/libpmemobj/.

J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta,
R. Jhala, and S. Swanson, “NV-Heaps: Making persistent objects fast
and safe with next-generation, non-volatile memories,” in Proceedings
of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2011, pp. 105—118.
W. Cai, H. Wen, H. A. Beadle, C. Kjellqvist, M. Hedayati, and M. L.
Scott, “Understanding and optimizing persistent memory allocation,” in
Proceedings of the 2020 ACM SIGPLAN International Symposium on
Memory Management, 2020, pp. 60-73.

D. Bittman, P. Alvaro, P. Mehra, D. D. Long, and E. L. Miller, “Twizzler:
a data-centric OS for non-volatile memory,” in Proceedings of the
USENIX Annual Technical Conference, 2020, pp. 65-80.

Y. Solihin, “Persistent memory: Abstractions, abstractions, and abstrac-
tions,” IEEE Micro, vol. 39, no. 1, pp. 65-66, 2019.

T. Wang, S. Sambasivam, Y. Solihin, and J. Tuck, “Hardware supported
persistent object address translation,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, 2017, pp.
800-812.



[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]
[37]
[38]

[39]

[40]

[41]

[42]

[43

[44]

G. Chen, L. Zhang, R. Budhiraja, X. Shen, and Y. Wu, “Efficient support
of position independence on non-volatile memory,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture,
2017, pp. 191-203.

Y. Xu, C. Ye, Y. Solihin, and X. Shen, “Hardware-based domain
virtualization for intra-process isolation of persistent memory objects,”
in Proceedings of the ACM/IEEE 47th Annual International Symposium
on Computer Architecture, 2020, pp. 680-692.

J. Xu, J. Kim, A. Memaripour, and S. Swanson, “Finding and fixing
performance pathologies in persistent memory software stacks,” in Pro-
ceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, 2019, pp.
427-439.

“Pmem-redis,” https://github.com/pmem/pmem-redis.

W. Zhang, S. Shenker, and I. Zhang, “Persistent state machines for
recoverable in-memory storage systems with NVRAM,” in Proceedings
of the 14th USENIX Symposium on Operating Systems Design and
Implementation, 2020, pp. 1029-1046.

T. Yao, Y. Zhang, J. Wan, Q. Cui, L. Tang, H. Jiang, C. Xie, and X. He,
“Matrixkv: Reducing write stalls and write amplification in LSM-tree
based KV stores with matrix container in NVM,” in Proceedings of the
USENIX Annual Technical Conference, 2020, pp. 17-31.

T. Shull, J. Huang, and J. Torrellas, “Autopersist: an easy-to-use Java
NVM framework based on reachability,” in Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2019, pp. 316-332.

Cl1  Standard, http://www.open-std.org/jtc1/sc22/wgl4/www/docs/
n1548.pdf.

V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill, K. S.
McKinley, M. Nemirovsky, M. M. Swift, and O. Unsal, “Redundant
memory mappings for fast access to large memories,” in Proceedings
of the ACM/IEEE 42nd Annual International Symposium on Computer
Architecture, 2015, pp. 66-78.

Y. Solihin, Fundamentals of Parallel Multicore Architecture. Chapman
& Hall, CRC Computational Science, 2015, ISBN-13 978-1482211184.
S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “Cacti
5.1,” Technical Report HPL-2008-20, HP Labs, Tech. Rep., 2008.
“Nehalem,” https://en.wikichip.org/wiki/intel/microarchitectures/
nehalem_(client).

Y. Xu, Y. Solihin, and X. Shen, “Merr: Improving security of persistent
memory objects via efficient memory exposure reduction and random-
ization,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2020, pp. 987-1000.

J. Kim, S. H. Pugsley, P. V. Gratz, A. N. Reddy, C. Wilkerson,
and Z. Chishti, “Path confidence based lookahead prefetching,” in
Proceedings of the 49th Annual IEEE/ACM International Symposium
on Microarchitecture, 2016, pp. 1-12.

B. Falsafi and T. F. Wenisch, “A primer on hardware prefetching,”
Synthesis Lectures on Computer Architecture, vol. 9, no. 1, pp. 1-67,
2014.

O. Kizikalla and I. Gaztanaga, “Boost intrusive containers.”
https://www.boost.org/doc/libs/1_70_0/libs/histogram/doc/html/
histogram/overview.html, online; accessed August, 2020.

“Persistent key-value store from pmdk,” https://github.com/pmem/pmdk/
tree/master/src/examples/libpmemobj/map.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking cloud serving systems with YCSB,” in Proceedings of

the 1st ACM symposium on Cloud computing, 2010, pp. 143-154.

455

[45]

[46]
[47]

[48]

[49]

[50]
[51]

[52
[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60

[61]

[62]

[63]

[64]

R. R. Curtin, M. Edel, M. Lozhnikov, Y. Mentekidis, S. Ghaisas, and
S. Zhang, “mlpack 3: a fast, flexible machine learning library,” Journal
of Open Source Software, vol. 3, p. 726, 2018.

C. Sanderson and R. Curtin, “Armadillo.” http://arma.sourceforge.net/
speed.html, online; accessed August, 2020.

D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An
evaluation of high-level mechanistic core models,” ACM Transactions
on Architecture and Code Optimization, 2014.

T. Wang, S. Sambasivam, and J. Tuck, “Hardware supported permission
checks on persistent objects for performance and programmability,” in
Proceedings of the ACM/IEEE 45th Annual International Symposium on
Computer Architecture, 2018, pp. 466-478.

“LLVM test-suite 11.0,” https://llvm.org/docs/TestSuiteGuide.html.
“Gece torture,” https://github.com/gcc-mirror/gec/tree/master/gec/

testsuite/gce.c-torture.

“Intel libvmmalloc,” https://pmem.io/vmem/libvmmalloc/.

A. Papagiannis, G. Xanthakis, G. Saloustros, M. Marazakis, and A. Bi-
las, “Optimizing memory-mapped I/O for fast storage devices,” in
Proceedings of the USENIX Annual Technical Conference, 2020, pp.
813-827.

M. Friedman, N. Ben-David, Y. Wei, G. E. Blelloch, and E. Petrank,
“Nvtraverse: In NVRAM data structures, the destination is more im-
portant than the journey,” in Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2020, pp. 377-392.

J. S. George, M. Verma, R. Venkatasubramanian, and P. Subrahmanyam,
“go-pmem: Native support for programming persistent memory in GO,”
in Proceedings of the USENIX Annual Technical Conference, 2020, pp.
859-872.

D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: Leveraging
locks for non-volatile memory consistency,” ACM SIGPLAN Notices,
vol. 49, no. 10, pp. 433-452, 2014.

Q. Liu, J. Izraelevitz, S. K. Lee, M. L. Scott, S. H. Noh, and C. Jung,
“iDO: Compiler-directed failure atomicity for nonvolatile memory,” in
51st Annual IEEE/ACM International Symposium on Microarchitecture,
2018, pp. 258-270.

H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight persis-
tent memory,” in Proceedings of the Sixteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2011, pp. 91—104.

D. Bittman, P. Alvaro, D. D. Long, and E. L. Miller, “A tale of two
abstractions: the case for object space,” in Proceedings of the 11th
USENIX Conference on Hot Topics in Storage and File Systems, 2019,
pp. 11-11.

persist_ptr  from PMDK, https://pmem.io/libpmemobj-cpp/master/
doxygen/classpmem_1_1lobj_1_1persistent__ptr.html.

D. Ungar, “Generation scavenging: A non-disruptive high performance
storage reclamation algorithm,” ACM Sigplan notices, vol. 19, no. 5, pp.
157-167, 1984.

M. P. Atkinson, L. Daynes, M. J. Jordan, T. Printezis, and S. Spence,
“An orthogonally persistent Java,” ACM Sigmod Record, vol. 25, no. 4,
pp. 68-75, 1996.

A. Dearle, G. N. Kirby, and R. Morrison, “Orthogonal persistence
revisited,” in Proceedings of the International Conference on Object
Databases. Springer, 2009, pp. 1-22.

X. Yang, S. M. Blackburn, D. Frampton, and A. L. Hosking, “Barriers
reconsidered, friendlier still!” in Proceedings of the 2012 International
Symposium on Memory Management, 2012, pp. 37-48.



