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In the alloy materials, their mechanical properties mightly rely on the compositions and concentrations of
chemical elements. Therefore, looking for the optimum elemental concentration and composition is still a critical
issue to design high-performance alloy materials. Traditional alloy designing method via “trial and error” or
domain experts’ experiences is barely possible to solve the issue. Here, we propose a “composition-oriented”

method combined machine learning to design the Cu-Zn alloys with the high strengths, high ductility, and low
friction coefficient. The method of separate training for each attribute label is used to study the effects of
elemental concentrations on the mechanical properties of Cu-Zn alloys. Moreover, the elemental concentrations
of new Cu-Zn alloys with the good mechanical properties are predicted by machine learning. The current results
reveal the vital importance of the “composition-oriented” design method via machine learning for the
development of high-performance alloys in a broad range of elemental compositions.

Copper alloys are the foundation of the synchronous ring of
automobile transmission. However, the traditional wear-
resistant Cu alloys, such as Cu-Sn and Cu-Al alloys, are hardly
used in the rapid development of synchronous rings due to the
low strengths, ductility, and wear resistance [1, 2, 3, 4, 5]. To
improve the mechanical properties of traditional wear-resistant
Cu alloys, one or more alloy elements, such as Ti, Co, P, Mg,
Al, Sn, Mn, and Fe, can be introduced in a considerable
amount of experimental work [6, 7, 8]. However, using the
classical physics-based models to study the relationship
between composition and mechanical property of the Cu
alloys, it is easy to fall into the “dimension disaster” due to
the complexity of the elemental compositions, which leads to
a decrease in prediction accuracy of the classical physics-based
models. Therefore, traditional composition design of the Cu
alloys mainly depends on the “trial and error” method or the
intuitive technique [9, 10, 11]. Now, the ability to find new mate-
rials through machine learning makes it possible for engineers to
enhance the performance of existing materials [12, 13, 14].

As the most advanced computer technology, machine
learning can deeply mine the internal relationship between

data rather than rely on the inherent theoretical formula or

© The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

experience, so that it can capture the highly-complex nonlinear
input/output relationships. Furthermore, machine learning can
traverse the predicted values in the global scope to quickly find
the optimal value, which is crucial for material design.
Recently, machine learning has been widely used in the field
of materials science [14, 15, 16, 17, 18, 19]. The back-
propagation artificial neural network (ANN) combined with
a genetic algorithm is used to establish the inference model
of the mechanical properties of low-alloy steels by the compo-
sition and heat treatment conditions [20]. Using this machine
learning model, the effects of compositions and heat treatment
conditions on the mechanical properties of low-alloy steels are
revealed. In addition, the yield strength, ultimate strength, and
elongation of the Cu-Sn-Pb-Zn-Ni alloy system can be pre-
dicted via machine learning [21]. By inputting alloy composi-
tions and process conditions, the machine learning models can
estimate the properties of alloys. Importantly, the relationship
between composition and property obtained via machine
learning can guide the selection of the potential alloys rapidly
and accurately.

In the current study, we propose a “composition-oriented”
design method for high-performance wear-resistant Cu-Zn
alloys via machine learning. We use the multi-layer feed-
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forward ANN algorithm to train three attribute labels of the
original data set separately. Then, the trained models are
used to study the effects of elemental concentrations on the
mechanical properties of Cu-Zn alloys. According to the com-
parison of the comprehensive properties, the optimum range of
elemental concentrations in Cu-Zn alloys can be found.
Moreover, the new Cu-Zn alloys with the optimum elemental
concentration predicted by machine learning have better

mechanical properties.

Figures 1(a)-1(c) plot the

composition-EL model, and composition-FC model, respec-

composition-UTS  model,

tively. Each figure contains the prediction results of a training
set, testing set, and all data. The data points fall along the dot-
ted line, indicating that the predicted value is consistent with
the experiment [22]. We further linearly fit the predicted
value with the experimental value. The fitting solid line is
closer to the dotted line, revealing the higher accuracy pre-
dicted by the MLFFANN model. For the stage of training,
Figs. 1(d)-1(f) show the loss evolution of composition-UTS
model, composition-EL model, and composition-FC model,
respectively. It can be seen that three MLFFANN models per-
form relatively well for the training set, testing set, and all data.

The predicted accuracy of the MLFFANN models is further
validated, compared with the experimental data, which are not
in original database (Table 1). These data is randomly selected
from the experimental work [22] but does not participate in

training. In other words, they can represent the prediction abil-
ity of MLFFANN models for Cu-Zn alloys with random com-
position at the same process. Table 1 indicates that MLFFANN
models accurately predict UTS, EL, and FC in Cu-Zn alloys.
From Table 1, the prediction results of UTS and EL are better
than those of FC. The main factors to determine UTS and EL
of Cu-Zn alloys mainly depend upon the elemental concentra-
tion and composition [22]. The factors of FC rely on not only
the composition and concentration but also the surface mor-
phology [22].

According to the previous experimental results [22], the
strengthening mechanism is mainly caused by different ele-
mental concentrations in alloys [23, 24, 25, 26]. The strength-
ening mechanism of Cu alloys can be divided into (i)
precipitation strengthening represented by Ni, Co, and Si; (ii)
fine-grained strengthening represented by P; and (iii) solution
strengthening represented by Mn. The yield strength based on

the classical physical model can be expressed as follows [27]:
Oy = 0ss + 0Gp + Op, ey

where oy represents yielding strength and ogs, ogs, and
opdenote solution strengthening, fine-grained strengthening,
and precipitation strengthening, respectively. Therefore, we
use MLFFANN models to obtain the best elemental composi-
tions and concentrations instead of classical physical models
which consider the coupling effect of precipitate strengthening,
fine-grain strengthening, and solution strengthening [25, 26,
27, 28, 29]. In addition, the MLFFANN model also avoids
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Figure 1: The results of composition-UTS model (a), composition-EL model (b), and composition-FC model (c). (The dotted line represents the output data in
exactly the same as the target data in the all data set; the double-dash-dotted line means the regression result between the output data and the target data
in the testing data set; the dash-dotted line refers the regression result between the output data and the target data in the training data set; the solid line rep-
resents the regression result between the output data and the target data in the all data set.) The loss evolution of composition-UTS model (d), composition-EL
model (e), and composition-FC model (f).
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TABLE 1: Validating data outside the original data set.

Experimental results

Predicted results Error (%)

Sample [21] uts EL FC uts EL FC uts EL FC
Cu-29.1Zn-10.8AI-1.79Ti 94 10 0.125 943 9.74 0.123 03 26 16
Cu-39.7Zn-5.1AI-1.75Ti 89 15 0.12 89.3 15.4 0.119 03 27 0.86
Cu-29.5Zn-4.8A1-0.11Z-0.12P 85 165 0.09 826 166 0.09 238 06 6.7
Cu-28.6Zn-5A1-0.18Zr-0.03C0-0.0585n 83 175 0.095 825 17.04 0.107 06 26 126
Cu-29.1Zn-4.9A1-0.11Ti 86 17 0.1 86.1 17 0.104 0.1 0 4

the dependence of the classical physical model on microstruc-
ture, so that it can quickly predict the mechanical properties
based on the alloy compositions.

Figures 2(a) and 2(b) describe the influence of the change
ratio in (Ni+ Co)/Si and Al/(Ti+ Zr+ V) on the mechanical
properties by using composition-UTS model, composition-EL
model, and composition-FC model. As a result, the mechanical
properties of Cu-Zn alloys are fluctuated with the change ratio
in (Ni+ Co)/Si and Al/(Ti+ Zr + V), agreeing with the general
trend from the experiment. Previous experimental studies [25,
26, 27, 28, 29] have shown that the effect of the ratio of (Ni+
Co)/Si and Al/(Ti+ Zr+V) on the mechanical properties is
fluctuating. Since the MLFFANN model relies on the experi-
mental data, the models have the ability to predict in a wide
range. Here, the final prediction results show the obvious fluc-
tuations, which are dependent upon the experiment [25, 26, 27,
28, 29]. The increased ratios in (Ni+ Co)/Si and Al/(Ti+ Zr +
V) reduce the value of UTS. The optimum values of (Ni+
Co)/Si and Al/(Ti+ Zr+V) are 2 and 3, respectively. For the
Cu alloys with the same composition, the EL decreases with

increase of UTS. The change trend of EL and UTS appears

to be approximately opposite [28, 29, 30]. Figures 2(c)-2(d)
depict the influence of the change ratio in (Ni+ Co)/Si and
Al/(Ti+ Zr+V) on FC and the optimum ranges are clearly
marked in shadow (UTS X EL is larger, and FC is smaller).
The increased ratio in (Ni+ Co)/Si and Al/(Ti+Zr+V)
reduces the value of FC, and the optimum values of (Ni+
Co)/Si and Al/(Ti+ Zr+V) are 1.5 and 4, respectively. Thus,
the optimum comprehensive mechanical properties of Cu-Zn
alloys can be obtained when the ratios (Ni+ Co)/Si and
Al/(Ti+ Zr + V) are 2 and 3. In addition, considering the eco-
nomic benefit, the ratio should be as the relatively small value.

Many previous studies [27, 28, 29, 30] have analyzed the
strengthening mechanism of the Cu-Ni-Si-Co alloy system
based on the results of transmission electron microscopy
(TEM) and X-ray diffraction (XRD). The strengthening of
Cu-Ni-Si-Co alloys with the same structure and the similar
lattice parameter is mainly due to the precipitation of Ni,Si
and Co,Si phases. Further TEM study shows that the precipi-
tated phase structure of the alloy is 8-Ni,Si in the maximum
strengthening range [30, 31, 32, 33]. In fact, the nucleation
rate of the Ni,Si phase is much faster than that of the Co,Si
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phase. When the Cu alloy is cast, a large number of Ni,Si
phases nucleate. For refining the grain size, Cu alloys with
Ni,Si phases have excellent tribological properties because
Ni,Si phases have high strengths, high toughness, and strong
atomic bonds. After adding Co, the precipitates are similar to
the Cu-Ni-Si alloy system and do not increase with the
increase of the Co concentration [29, 30, 31, 32, 33].
Furthermore, Al, Ti, Zr, and V can also be added to the Cu
alloys to achieve the purpose of precipitation strengthening [33,
34, 35]. The introduction of alloy elements, such as V, Zr, and
Ti, which have low diffusivity and solubility, can form ther-
mally stable precipitates. This method is believed to maintain
high strengths at temperatures up to 350 °C. These transition
elements nucleate and precipitate in the form of Al;X. The
structure of the AL;X phase is similar to that of Ni;Al in
Ni-based superalloys. It is a kind of trialuminum compound
with a cubic L;, structure. It can also keep the coherence
with the matrix at high temperatures. Hence, it can enhance
the strength of the alloys. However, these precipitates are brittle
in nature because they have less slip systems and higher stack-
ing fault energies. At room temperature, trialuminum com-
pounds may lose symmetry with the matrix and have a
significant impact on plasticity. Therefore, the strengthening
effect of the trialuminum compound may be at the cost of elon-
gation, but high hardness and high strength lead to excellent
friction performance. This trend makes up for the defect of
plasticity decline [30, 31, 32, 33, 34, 35]. To find the best ele-
ment proportion of precipitation strengthening, the best pro-
portion predicted by machine learning is close to the
proportion of precipitation formed by alloy elements [33, 34,
35]. For example, the proportion of precipitates formed by

Ni,Si or Co,Si is 2:1, and the optimal proportion predicted
by machine learning is also 2. The prediction results of
machine learning also have been proved based on the previous
work on precipitation strengthening [27, 28, 29, 30, 31, 32, 33,
34, 35]. The atomic ratio of (Ni+ Co)/Si should be 2, such as
the mass ratio of 4. This way can ensure that all solute atoms
are separated from the Cu matrix. Hence, the current findings
reveal that machine learning based on different attribute labels
can be an efficient and accurate mean for the design of Cu
alloy.

Figures 3(a) and 3(c) show the effect of the concentration
of the P on the mechanical properties of Cu-Zn alloys. The
value of UTS decreases with the increase of the P concentration
[33, 34, 35, 36]. The value of UTS reaches the lowest value
when the concentration is 0.9, and then shows a rising trend.
With the increase of the P concentration, the value of EL firstly
shows an upward trend and reaches the maximum value at the
concentration of 0.5. Then, it shows a downward trend with the
increase of the P concentration. The change trend of the fric-
tion coefficient with the change of the P concentration is
approximately opposite to the change trend of UTS. As a result,
FC reaches the maximum value at the concentration of
1. According to the principle of the best comprehensive prop-
erties (UTS x EL is greater, FC is smaller), the best concentra-
tion range of the P can be determined and marked by shadow
[Fig. 3(c)].

In fact, in the early stage of the P addition, P elements dis-
solve in Al rapidly, reacting with Al rapidly to form AIP phase,
and disperse in the alloy melt. The Al-P phase has a crystal
structure, and its lattice constant is similar to that of Si.

According to the principle of a similar crystal structure and
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lattice constant, AI-P can be used as the heterogeneous nucleus
of the Si crystal in the alloy. It makes the Si atom cling to it and
crystallize into fine primary Si crystal independently. This fact
leads to refining the original coarse Si crystal particles so as to
enhance the mechanical properties of the alloy. However, with
the increase of P concentration, the P nucleates rapidly in a-Cu
matrix, and the vermicular CusP phase is distributed at the
grain boundary of o-Cu grain [36, 37, 38, 39]. The CusP
phase has high hardness and excellent tribological properties,
which can effectively improve the wear resistance of the alloy.
However, CusP is brittle, which makes the improvement of
wear resistance at the expense of UTS and EL [36, 37, 38].
Therefore, adding P to the Cu alloy requires a specific range
to maximize the strengthening effect and minimize the negative
effect.

Figures 3(b) and 3(d) show the effect of the concentration
of the Mn on the mechanical properties of Cu-Zn alloys. The
value of UTS increases with the decrease of the Mn concentra-
tion and reaches the maximum value when the concentration is
2. Then, the value of UTS shows a steady trend. With the
increase of Mn concentration, the value of EL firstly shows a
downward trend and reaches the minimum value at the con-
centration of 2.2. Then, the value of EL shows a rising trend
with the increase of the Mn concentration. In addition, with
the decrease of Mn concentration, the value of the FC shows
a rising trend and reaches the maximum value at the concen-
tration of 4. Based on the principle of the best comprehensive
properties, the optimum concentration range of Mn can be
determined, as shown in Fig. 3(d).

Due to the high solubility of Mn in the Cu matrix, the
strengthening of Cu alloys is mainly solution strengthening.
With the increase of Mn concentration, Mn diffuses continu-
ously in the Cu matrix to form a continuous solid solution.
Here, the atomic radii of Cu and Mn are 1.57 and 1.79 A,
respectively. The difference between the atomic radii of Cu
and Mn is 14%, leading to the distortion of local crystal lattice
and the strain field. At the same time, there is a strain field
around the dislocation in the solid solutions. According to
the electronic theory of solid solution, the Cu atoms around

Mn atoms undergo hetero step transition under the effect of

TABLE 2: The best range of elemental concentration or ratio.

Element (Ni + Co)/Si P Mn Al/(Ti + Zr + V)
Lower limits 17 0.18 0.3 32
Upper limits 24 0.38 1

the compressive stress and result in more valence electrons
(40, 41, 42], because the single-bond half-distance of Mn is
larger than that of Cu. In the process of solid solution, Mn
can provide more valence electrons. In other word, more cova-
lence electron pairs can be formed between Cu and Mn, result-
ing in the increase of bond strength in the solid solution. This
trend effectively improves the strength and hardness of the Cu
alloys. However, when the concentration of Mn is too high, it
may lead to the formation of MnO. This trend greatly hinders
the diffusion of Mn into the Cu matrix and reduces the
strength and hardness [40, 41, 42, 43]. Therefore, the concen-
tration of Mn should be in a suitable range.

The first-best range of elemental concentrations is listed in
Table 2, to design the new Cu-Zn alloys. In Table 3, the pre-
dicted copper alloy shows the better comprehensive perfor-
mance compared to the original data set. Due to the
limitation of time and resources, the experimental method
can not traverse all Cu alloy systems in a wide range at the
same processing route. The MLFFANN models can predict
the alloy system quickly and accurately. Therefore, the new
alloy system proposed in Table 3 is optimal. It can be seen
that based on the MLFFANN algorithm, a “composition-ori-
ented” design method for high performance wear-resistant
Cu-Zn alloys achieves good results. In the future, to develop
the high-performance Cu alloy system, the experimental initial
value can be selected from our prediction results from Tables 2
and 3.

The “composition-oriented” method combined with machine
learning is used to predict the Cu-Zn alloys with the great
strengths, high ductility, and low friction coefficient. The
effects of elemental concentrations on the mechanical

TABLE 3: Comparison of the performance of Cu-Zn alloys designed by machine learning with the best comprehensive performance of the original data set of Cu—

Zn alloy.

Samples UTS (kg/mm?) EL (%) FC
Cu-29.3Zn-5.5AI1-1.74Ti-0.0053Si [21] 83 19 0.1
Cu-29Zn-10AI-1.2Ti~1.2Z-1.05V~1.6Ni~1C0-0.24P-1.85i-1Mn 913 224 0.15
Cu-29Zn~10AI-1.4Ti~1Zr-1.05V~1Ni~1.6C0~0.24P-1.85i~TMn 91.9 219 0.14
Cu-29Zn-10AI-0.8Ti-1.6Zr-1.05V-0.9Ni-1.7Co-0.24P-1.8Si-1Mn 90.5 22.2 0.14
Cu-29Zn~10AI-0.9Ti~1.5Zr-1.05V~0.7Ni~1.9C0-0.24P~1.85i~TMn 90.9 219 0.137
Cu-29Zn-10AI1-0.9Ti-1.2Zr-1.35V-0.7Ni-1.9Co-0.24P-1.8Si-1Mn 91.3 22 0.128
Cu-29Zn~10AI-0.9Ti~1.1Zr-1.45V~0.8Ni~1.8C0-0.24P1.85i~TMn 91.4 222 0.127
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TABLE 4: The lower and upper limits of various elements in the original data, where the content of alloy element is weight percent (wt%), and content of O, is

ppm.
Element Cu Zn Al 0, Ti Zr Y Fe Ni Co P Mg Ca Mn Sn Si Pb
Lower limit ~ 51.56  17.2 2.1 51 0 0 0 0 0 0 0 0 0 0 0 0 0

Upper limit 76.23 39.8 10.9 2980 347 347 342 2.96

2.96 294 029 029 0.27 3.96 2.46 133 1.47

TABLE 5: The range of ultimate tensile strength, elongation, and friction

coefficient.

Ultimate tensile strength Elongation Friction
Properties (kg/mm?) (%) coefficient
Lower limit 69 9.5 0.014
alloy
Upper limit 95 20 0.145
alloy

properties are analyzed, and the optimal ranges of elemental
concentrations are determined. Here, the predicted results of
Cu-Zn alloys with the optimal concentrations have better com-
prehensive mechanical performance. The present work indi-
cates a great potential of the composition-oriented method
combined with machine learning to design the advanced mate-
rials with high performance.

Data preparation

For decades, the development of high-performance Cu alloys
has always experienced a surge in popularity, and a lot of
data about mechanical properties has been accumulated. The
detailed process parameters and relatively rich data from the
previous work [22, 44] would be used as the original data set

for the machine learning. The data includes the ultimate tensile

Input Input
Features Layer

Hidden
Layer 1

strength (UTS), elongation (EL), and friction coefficient (FC),
and the corresponding material compositions. Here, a database
of 179 well-labeled samples is built for the machine learning.
Table 4 lists the upper and lower limits of various elements.
Table 5 shows the range of properties of UTS, EL, and FC in
the database.

Machine learning

Multi-layer feed-forward artificial neural network (MLFFANN)
algorithm [45] is adopted to develop a machine learning
model. The construction and efficiency of the MLFFANN
model are mainly to determine six parameters, including the
number of the hidden layers and neurons, training epochs, acti-
vation functions, optimizer, and learning rate. Using the “trial
and error” method, these parameters are determined. In addi-
tion, the determination of descriptor has a crucial effect on the
construction of the MLFFANN model [46]. In the present
work, the ratios between different elements, such as (Ni+
Co)/Si, can not be used as the descriptor in training.
Elemental ratio neither directly evaluate the effect of a certain
element on the property nor adjust directly the composition.
The MLFFANN model in the current work is composed of
an input layer, two hidden layers, and one output layer
(Fig. 4). At the stage of model evaluation (see Fig. 5), under

the same optimal parameters of neural network, the

Hidden
Layer 2
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o
N
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Figure 4: An architecture of an .
MLFFANN  for  composition-UTS 2

model, consisting of an input layer,
two hidden layers, and one output
layer.
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Figure 5: Flowchart for constructing the composition-UTS model, composition-EL model, and composition-FC model.

construction of training set becomes the key factor to affect the
accuracy of the MLFFANN model. At present, the common
way for constructing the training set is to select a certain num-
ber of samples randomly from the original data set [22]. In this
work, considering the number of samples in the original data
set, we randomly select 100 times in the original data set and
calculate the accuracy of these MLFFANN models. The optimal
MLFFANN model presents higher accuracy among the 100
random selections.

There are three attribute labels in the original data set; how-
ever, the MLFFANN models in the current work can only pre-
dict one of them at one time. To this end, the MLFFANN
algorithm with the same parameters is used to train three attri-
bute labels separately. Here, three MLFFANN models, includ-
ing composition-UTS model, composition-EL model, and
composition-FC model, are built. The machine-learning design
system consists of five major processes (Fig. 5), including build-
ing of the data set, machine learning, model evaluation, export
model, and prediction.

Here, we need to point out that the predicted result of the
MLFFANN model relies heavily on experimental data. The ref-
erenced experiments only give the effect of elemental composi-
tion on the performance at the same processing conditions. On
the other hand, the microstructure is not mentioned in the
experiment [22], thus the current MLFFANN model does not

consider the effect of microstructure on UTS, EL, and FC.
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