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In the alloy materials, their mechanical properties mightly rely on the compositions and concentrations of
chemical elements. Therefore, looking for the optimum elemental concentration and composition is still a critical
issue to design high-performance alloy materials. Traditional alloy designing method via “trial and error” or
domain experts’ experiences is barely possible to solve the issue. Here, we propose a “composition-oriented”
method combined machine learning to design the Cu–Zn alloys with the high strengths, high ductility, and low
friction coefficient. The method of separate training for each attribute label is used to study the effects of
elemental concentrations on the mechanical properties of Cu–Zn alloys. Moreover, the elemental concentrations
of new Cu–Zn alloys with the good mechanical properties are predicted by machine learning. The current results
reveal the vital importance of the “composition-oriented” design method via machine learning for the
development of high-performance alloys in a broad range of elemental compositions.

Introduction
Copper alloys are the foundation of the synchronous ring of

automobile transmission. However, the traditional wear-

resistant Cu alloys, such as Cu–Sn and Cu–Al alloys, are hardly

used in the rapid development of synchronous rings due to the

low strengths, ductility, and wear resistance [1, 2, 3, 4, 5]. To

improve the mechanical properties of traditional wear-resistant

Cu alloys, one or more alloy elements, such as Ti, Co, P, Mg,

Al, Sn, Mn, and Fe, can be introduced in a considerable

amount of experimental work [6, 7, 8]. However, using the

classical physics-based models to study the relationship

between composition and mechanical property of the Cu

alloys, it is easy to fall into the “dimension disaster” due to

the complexity of the elemental compositions, which leads to

a decrease in prediction accuracy of the classical physics-based

models. Therefore, traditional composition design of the Cu

alloys mainly depends on the “trial and error” method or the

intuitive technique [9, 10, 11]. Now, the ability to find new mate-

rials through machine learning makes it possible for engineers to

enhance the performance of existing materials [12, 13, 14].

As the most advanced computer technology, machine

learning can deeply mine the internal relationship between

data rather than rely on the inherent theoretical formula or

experience, so that it can capture the highly-complex nonlinear

input/output relationships. Furthermore, machine learning can

traverse the predicted values in the global scope to quickly find

the optimal value, which is crucial for material design.

Recently, machine learning has been widely used in the field

of materials science [14, 15, 16, 17, 18, 19]. The back-

propagation artificial neural network (ANN) combined with

a genetic algorithm is used to establish the inference model

of the mechanical properties of low-alloy steels by the compo-

sition and heat treatment conditions [20]. Using this machine

learning model, the effects of compositions and heat treatment

conditions on the mechanical properties of low-alloy steels are

revealed. In addition, the yield strength, ultimate strength, and

elongation of the Cu–Sn–Pb–Zn–Ni alloy system can be pre-

dicted via machine learning [21]. By inputting alloy composi-

tions and process conditions, the machine learning models can

estimate the properties of alloys. Importantly, the relationship

between composition and property obtained via machine

learning can guide the selection of the potential alloys rapidly

and accurately.

In the current study, we propose a “composition-oriented”

design method for high-performance wear-resistant Cu–Zn

alloys via machine learning. We use the multi-layer feed-
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forward ANN algorithm to train three attribute labels of the

original data set separately. Then, the trained models are

used to study the effects of elemental concentrations on the

mechanical properties of Cu–Zn alloys. According to the com-

parison of the comprehensive properties, the optimum range of

elemental concentrations in Cu–Zn alloys can be found.

Moreover, the new Cu–Zn alloys with the optimum elemental

concentration predicted by machine learning have better

mechanical properties.

Results and Discussion
Figures 1(a)–1(c) plot the composition-UTS model,

composition-EL model, and composition-FC model, respec-

tively. Each figure contains the prediction results of a training

set, testing set, and all data. The data points fall along the dot-

ted line, indicating that the predicted value is consistent with

the experiment [22]. We further linearly fit the predicted

value with the experimental value. The fitting solid line is

closer to the dotted line, revealing the higher accuracy pre-

dicted by the MLFFANN model. For the stage of training,

Figs. 1(d)–1(f) show the loss evolution of composition-UTS

model, composition-EL model, and composition-FC model,

respectively. It can be seen that three MLFFANN models per-

form relatively well for the training set, testing set, and all data.

The predicted accuracy of the MLFFANN models is further

validated, compared with the experimental data, which are not

in original database (Table 1). These data is randomly selected

from the experimental work [22] but does not participate in

training. In other words, they can represent the prediction abil-

ity of MLFFANN models for Cu–Zn alloys with random com-

position at the same process. Table 1 indicates that MLFFANN

models accurately predict UTS, EL, and FC in Cu–Zn alloys.

From Table 1, the prediction results of UTS and EL are better

than those of FC. The main factors to determine UTS and EL

of Cu–Zn alloys mainly depend upon the elemental concentra-

tion and composition [22]. The factors of FC rely on not only

the composition and concentration but also the surface mor-

phology [22].

According to the previous experimental results [22], the

strengthening mechanism is mainly caused by different ele-

mental concentrations in alloys [23, 24, 25, 26]. The strength-

ening mechanism of Cu alloys can be divided into (i)

precipitation strengthening represented by Ni, Co, and Si; (ii)

fine-grained strengthening represented by P; and (iii) solution

strengthening represented by Mn. The yield strength based on

the classical physical model can be expressed as follows [27]:

sY = sSS + sGB + sP, (1)

where sY represents yielding strength and sSS, sGB, and

sPdenote solution strengthening, fine-grained strengthening,

and precipitation strengthening, respectively. Therefore, we

use MLFFANN models to obtain the best elemental composi-

tions and concentrations instead of classical physical models

which consider the coupling effect of precipitate strengthening,

fine-grain strengthening, and solution strengthening [25, 26,

27, 28, 29]. In addition, the MLFFANN model also avoids

Figure 1: The results of composition-UTS model (a), composition-EL model (b), and composition-FC model (c). (The dotted line represents the output data in
exactly the same as the target data in the all data set; the double-dash-dotted line means the regression result between the output data and the target data
in the testing data set; the dash-dotted line refers the regression result between the output data and the target data in the training data set; the solid line rep-
resents the regression result between the output data and the target data in the all data set.) The loss evolution of composition-UTS model (d), composition-EL
model (e), and composition-FC model (f ).
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the dependence of the classical physical model on microstruc-

ture, so that it can quickly predict the mechanical properties

based on the alloy compositions.

Figures 2(a) and 2(b) describe the influence of the change

ratio in (Ni + Co)/Si and Al/(Ti + Zr + V) on the mechanical

properties by using composition-UTS model, composition-EL

model, and composition-FC model. As a result, the mechanical

properties of Cu–Zn alloys are fluctuated with the change ratio

in (Ni + Co)/Si and Al/(Ti + Zr + V), agreeing with the general

trend from the experiment. Previous experimental studies [25,

26, 27, 28, 29] have shown that the effect of the ratio of (Ni +

Co)/Si and Al/(Ti + Zr + V) on the mechanical properties is

fluctuating. Since the MLFFANN model relies on the experi-

mental data, the models have the ability to predict in a wide

range. Here, the final prediction results show the obvious fluc-

tuations, which are dependent upon the experiment [25, 26, 27,

28, 29]. The increased ratios in (Ni + Co)/Si and Al/(Ti + Zr +

V) reduce the value of UTS. The optimum values of (Ni +

Co)/Si and Al/(Ti + Zr + V) are 2 and 3, respectively. For the

Cu alloys with the same composition, the EL decreases with

increase of UTS. The change trend of EL and UTS appears

to be approximately opposite [28, 29, 30]. Figures 2(c)–2(d)

depict the influence of the change ratio in (Ni + Co)/Si and

Al/(Ti + Zr + V) on FC and the optimum ranges are clearly

marked in shadow (UTS × EL is larger, and FC is smaller).

The increased ratio in (Ni + Co)/Si and Al/(Ti + Zr + V)

reduces the value of FC, and the optimum values of (Ni +

Co)/Si and Al/(Ti + Zr + V) are 1.5 and 4, respectively. Thus,

the optimum comprehensive mechanical properties of Cu–Zn

alloys can be obtained when the ratios (Ni + Co)/Si and

Al/(Ti + Zr + V) are 2 and 3. In addition, considering the eco-

nomic benefit, the ratio should be as the relatively small value.

Many previous studies [27, 28, 29, 30] have analyzed the

strengthening mechanism of the Cu–Ni–Si–Co alloy system

based on the results of transmission electron microscopy

(TEM) and X-ray diffraction (XRD). The strengthening of

Cu–Ni–Si–Co alloys with the same structure and the similar

lattice parameter is mainly due to the precipitation of Ni2Si

and Co2Si phases. Further TEM study shows that the precipi-

tated phase structure of the alloy is δ-Ni2Si in the maximum

strengthening range [30, 31, 32, 33]. In fact, the nucleation

rate of the Ni2Si phase is much faster than that of the Co2Si

TABLE 1: Validating data outside the original data set.

Sample [21]

Experimental results Predicted results Error (%)

UTS EL FC UTS EL FC UTS EL FC

Cu–29.1Zn–10.8Al–1.79Ti 94 10 0.125 94.3 9.74 0.123 0.3 2.6 1.6
Cu–39.7Zn–5.1Al–1.75Ti 89 15 0.12 89.3 15.4 0.119 0.3 2.7 0.86
Cu–29.5Zn–4.8Al–0.11Zr–0.12P 85 16.5 0.09 82.6 16.6 0.096 2.8 0.6 6.7
Cu–28.6Zn–5Al–0.18Zr–0.03Co–0.058Sn 83 17.5 0.095 82.5 17.04 0.107 0.6 2.6 12.6
Cu–29.1Zn–4.9Al–0.11Ti 86 17 0.1 86.1 17 0.104 0.1 0 4

Figure 2: The influence of the
change ratio in (a,c) (Ni + Co)/Si and
(b,d) Al/(Ti + Zr + V) on the mechani-
cal properties of Cu–Zn alloys.
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phase. When the Cu alloy is cast, a large number of Ni2Si

phases nucleate. For refining the grain size, Cu alloys with

Ni2Si phases have excellent tribological properties because

Ni2Si phases have high strengths, high toughness, and strong

atomic bonds. After adding Co, the precipitates are similar to

the Cu–Ni–Si alloy system and do not increase with the

increase of the Co concentration [29, 30, 31, 32, 33].

Furthermore, Al, Ti, Zr, and V can also be added to the Cu

alloys to achieve the purpose of precipitation strengthening [33,

34, 35]. The introduction of alloy elements, such as V, Zr, and

Ti, which have low diffusivity and solubility, can form ther-

mally stable precipitates. This method is believed to maintain

high strengths at temperatures up to 350 °C. These transition

elements nucleate and precipitate in the form of Al3X. The

structure of the Al3X phase is similar to that of Ni3Al in

Ni-based superalloys. It is a kind of trialuminum compound

with a cubic L12 structure. It can also keep the coherence

with the matrix at high temperatures. Hence, it can enhance

the strength of the alloys. However, these precipitates are brittle

in nature because they have less slip systems and higher stack-

ing fault energies. At room temperature, trialuminum com-

pounds may lose symmetry with the matrix and have a

significant impact on plasticity. Therefore, the strengthening

effect of the trialuminum compound may be at the cost of elon-

gation, but high hardness and high strength lead to excellent

friction performance. This trend makes up for the defect of

plasticity decline [30, 31, 32, 33, 34, 35]. To find the best ele-

ment proportion of precipitation strengthening, the best pro-

portion predicted by machine learning is close to the

proportion of precipitation formed by alloy elements [33, 34,

35]. For example, the proportion of precipitates formed by

Ni2Si or Co2Si is 2:1, and the optimal proportion predicted

by machine learning is also 2. The prediction results of

machine learning also have been proved based on the previous

work on precipitation strengthening [27, 28, 29, 30, 31, 32, 33,

34, 35]. The atomic ratio of (Ni + Co)/Si should be 2, such as

the mass ratio of 4. This way can ensure that all solute atoms

are separated from the Cu matrix. Hence, the current findings

reveal that machine learning based on different attribute labels

can be an efficient and accurate mean for the design of Cu

alloy.

Figures 3(a) and 3(c) show the effect of the concentration

of the P on the mechanical properties of Cu–Zn alloys. The

value of UTS decreases with the increase of the P concentration

[33, 34, 35, 36]. The value of UTS reaches the lowest value

when the concentration is 0.9, and then shows a rising trend.

With the increase of the P concentration, the value of EL firstly

shows an upward trend and reaches the maximum value at the

concentration of 0.5. Then, it shows a downward trend with the

increase of the P concentration. The change trend of the fric-

tion coefficient with the change of the P concentration is

approximately opposite to the change trend of UTS. As a result,

FC reaches the maximum value at the concentration of

1. According to the principle of the best comprehensive prop-

erties (UTS × EL is greater, FC is smaller), the best concentra-

tion range of the P can be determined and marked by shadow

[Fig. 3(c)].

In fact, in the early stage of the P addition, P elements dis-

solve in Al rapidly, reacting with Al rapidly to form AlP phase,

and disperse in the alloy melt. The Al–P phase has a crystal

structure, and its lattice constant is similar to that of Si.

According to the principle of a similar crystal structure and

Figure 3: (a,c) The influence of con-
centration of P on the mechanical
properties of Cu–Zn alloys. (b,d)
The influence of concentration of
Mn on the mechanical properties of
Cu–Zn alloys.
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lattice constant, Al–P can be used as the heterogeneous nucleus

of the Si crystal in the alloy. It makes the Si atom cling to it and

crystallize into fine primary Si crystal independently. This fact

leads to refining the original coarse Si crystal particles so as to

enhance the mechanical properties of the alloy. However, with

the increase of P concentration, the P nucleates rapidly in α-Cu

matrix, and the vermicular Cu3P phase is distributed at the

grain boundary of α-Cu grain [36, 37, 38, 39]. The Cu3P

phase has high hardness and excellent tribological properties,

which can effectively improve the wear resistance of the alloy.

However, Cu3P is brittle, which makes the improvement of

wear resistance at the expense of UTS and EL [36, 37, 38].

Therefore, adding P to the Cu alloy requires a specific range

to maximize the strengthening effect and minimize the negative

effect.

Figures 3(b) and 3(d) show the effect of the concentration

of the Mn on the mechanical properties of Cu–Zn alloys. The

value of UTS increases with the decrease of the Mn concentra-

tion and reaches the maximum value when the concentration is

2. Then, the value of UTS shows a steady trend. With the

increase of Mn concentration, the value of EL firstly shows a

downward trend and reaches the minimum value at the con-

centration of 2.2. Then, the value of EL shows a rising trend

with the increase of the Mn concentration. In addition, with

the decrease of Mn concentration, the value of the FC shows

a rising trend and reaches the maximum value at the concen-

tration of 4. Based on the principle of the best comprehensive

properties, the optimum concentration range of Mn can be

determined, as shown in Fig. 3(d).

Due to the high solubility of Mn in the Cu matrix, the

strengthening of Cu alloys is mainly solution strengthening.

With the increase of Mn concentration, Mn diffuses continu-

ously in the Cu matrix to form a continuous solid solution.

Here, the atomic radii of Cu and Mn are 1.57 and 1.79 Å,

respectively. The difference between the atomic radii of Cu

and Mn is 14%, leading to the distortion of local crystal lattice

and the strain field. At the same time, there is a strain field

around the dislocation in the solid solutions. According to

the electronic theory of solid solution, the Cu atoms around

Mn atoms undergo hetero step transition under the effect of

the compressive stress and result in more valence electrons

[40, 41, 42], because the single-bond half-distance of Mn is

larger than that of Cu. In the process of solid solution, Mn

can provide more valence electrons. In other word, more cova-

lence electron pairs can be formed between Cu and Mn, result-

ing in the increase of bond strength in the solid solution. This

trend effectively improves the strength and hardness of the Cu

alloys. However, when the concentration of Mn is too high, it

may lead to the formation of MnO. This trend greatly hinders

the diffusion of Mn into the Cu matrix and reduces the

strength and hardness [40, 41, 42, 43]. Therefore, the concen-

tration of Mn should be in a suitable range.

The first-best range of elemental concentrations is listed in

Table 2, to design the new Cu–Zn alloys. In Table 3, the pre-

dicted copper alloy shows the better comprehensive perfor-

mance compared to the original data set. Due to the

limitation of time and resources, the experimental method

can not traverse all Cu alloy systems in a wide range at the

same processing route. The MLFFANN models can predict

the alloy system quickly and accurately. Therefore, the new

alloy system proposed in Table 3 is optimal. It can be seen

that based on the MLFFANN algorithm, a “composition-ori-

ented” design method for high performance wear-resistant

Cu–Zn alloys achieves good results. In the future, to develop

the high-performance Cu alloy system, the experimental initial

value can be selected from our prediction results from Tables 2

and 3.

Conclusion
The “composition-oriented” method combined with machine

learning is used to predict the Cu–Zn alloys with the great

strengths, high ductility, and low friction coefficient. The

effects of elemental concentrations on the mechanical

TABLE 2: The best range of elemental concentration or ratio.

Element (Ni + Co)/Si P Mn Al/(Ti + Zr + V)

Lower limits 1.7 0.18 0.3 3.2
Upper limits 2.4 0.38 1 5

TABLE 3: Comparison of the performance of Cu–Zn alloys designed by machine learning with the best comprehensive performance of the original data set of Cu–
Zn alloy.

Samples UTS (kg/mm2) EL (%) FC

Cu–29.3Zn–5.5Al–1.74Ti–0.0053Si [21] 83 19 0.11
Cu–29Zn–10Al–1.2Ti–1.2Zr–1.05V–1.6Ni–1Co–0.24P–1.8Si–1Mn 91.3 22.4 0.15
Cu–29Zn–10Al–1.4Ti–1Zr–1.05V–1Ni–1.6Co–0.24P–1.8Si–1Mn 91.9 21.9 0.14
Cu–29Zn–10Al–0.8Ti–1.6Zr–1.05V–0.9Ni–1.7Co–0.24P–1.8Si–1Mn 90.5 22.2 0.14
Cu–29Zn–10Al–0.9Ti–1.5Zr–1.05V–0.7Ni–1.9Co–0.24P–1.8Si–1Mn 90.9 21.9 0.137
Cu–29Zn–10Al–0.9Ti–1.2Zr–1.35V–0.7Ni–1.9Co–0.24P–1.8Si–1Mn 91.3 22 0.128
Cu–29Zn–10Al–0.9Ti–1.1Zr–1.45V–0.8Ni–1.8Co–0.24P–1.8Si–1Mn 91.4 22.2 0.127
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properties are analyzed, and the optimal ranges of elemental

concentrations are determined. Here, the predicted results of

Cu–Zn alloys with the optimal concentrations have better com-

prehensive mechanical performance. The present work indi-

cates a great potential of the composition-oriented method

combined with machine learning to design the advanced mate-

rials with high performance.

Methodology
Data preparation

For decades, the development of high-performance Cu alloys

has always experienced a surge in popularity, and a lot of

data about mechanical properties has been accumulated. The

detailed process parameters and relatively rich data from the

previous work [22, 44] would be used as the original data set

for the machine learning. The data includes the ultimate tensile

strength (UTS), elongation (EL), and friction coefficient (FC),

and the corresponding material compositions. Here, a database

of 179 well-labeled samples is built for the machine learning.

Table 4 lists the upper and lower limits of various elements.

Table 5 shows the range of properties of UTS, EL, and FC in

the database.

Machine learning

Multi-layer feed-forward artificial neural network (MLFFANN)

algorithm [45] is adopted to develop a machine learning

model. The construction and efficiency of the MLFFANN

model are mainly to determine six parameters, including the

number of the hidden layers and neurons, training epochs, acti-

vation functions, optimizer, and learning rate. Using the “trial

and error” method, these parameters are determined. In addi-

tion, the determination of descriptor has a crucial effect on the

construction of the MLFFANN model [46]. In the present

work, the ratios between different elements, such as (Ni +

Co)/Si, can not be used as the descriptor in training.

Elemental ratio neither directly evaluate the effect of a certain

element on the property nor adjust directly the composition.

The MLFFANN model in the current work is composed of

an input layer, two hidden layers, and one output layer

(Fig. 4). At the stage of model evaluation (see Fig. 5), under

the same optimal parameters of neural network, the

TABLE 4: The lower and upper limits of various elements in the original data, where the content of alloy element is weight percent (wt%), and content of O2 is
ppm.

Element Cu Zn Al O2 Ti Zr V Fe Ni Co P Mg Ca Mn Sn Si Pb

Lower limit 51.56 17.2 2.1 51 0 0 0 0 0 0 0 0 0 0 0 0 0
Upper limit 76.23 39.8 10.9 2980 3.47 3.47 3.42 2.96 2.96 2.94 0.29 0.29 0.27 3.96 2.46 1.33 1.47

TABLE 5: The range of ultimate tensile strength, elongation, and friction
coefficient.

Properties
Ultimate tensile strength
(kg/mm2)

Elongation
(%)

Friction
coefficient

Lower limit
alloy

69 9.5 0.014

Upper limit
alloy

95 20 0.145

Figure 4: An architecture of an
MLFFANN for composition-UTS
model, consisting of an input layer,
two hidden layers, and one output
layer.
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construction of training set becomes the key factor to affect the

accuracy of the MLFFANN model. At present, the common

way for constructing the training set is to select a certain num-

ber of samples randomly from the original data set [22]. In this

work, considering the number of samples in the original data

set, we randomly select 100 times in the original data set and

calculate the accuracy of these MLFFANN models. The optimal

MLFFANN model presents higher accuracy among the 100

random selections.

There are three attribute labels in the original data set; how-

ever, the MLFFANN models in the current work can only pre-

dict one of them at one time. To this end, the MLFFANN

algorithm with the same parameters is used to train three attri-

bute labels separately. Here, three MLFFANN models, includ-

ing composition-UTS model, composition-EL model, and

composition-FC model, are built. The machine-learning design

system consists of five major processes (Fig. 5), including build-

ing of the data set, machine learning, model evaluation, export

model, and prediction.

Here, we need to point out that the predicted result of the

MLFFANN model relies heavily on experimental data. The ref-

erenced experiments only give the effect of elemental composi-

tion on the performance at the same processing conditions. On

the other hand, the microstructure is not mentioned in the

experiment [22], thus the current MLFFANN model does not

consider the effect of microstructure on UTS, EL, and FC.
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