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Figure 1: SoundWatch uses a deep-CNN based sound classifer to classify and provide feedback about environmental sounds on 
a smartwatch in real-time. Images show diferent use cases of the app and one of the four architectures we built (watch+phone). 

ABSTRACT 
Smartwatches have the potential to provide glanceable, always-
available sound feedback to people who are deaf or hard of hear-
ing. In this paper, we present a performance evaluation of four 
low-resource deep learning sound classifcation models: MobileNet, 
Inception, ResNet-lite, and VGG-lite across four device architectures: 
watch-only, watch+phone, watch+phone+cloud, and watch+cloud. 
While direct comparison with prior work is challenging, our results 
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show that the best model, VGG-lite, performed similar to the state of 
the art for non-portable devices with an average accuracy of 81.2% 
(SD=5.8%) across 20 sound classes and 97.6% (SD=1.7%) across the 
three highest-priority sounds. For device architectures, we found 
that the watch+phone architecture provided the best balance be-
tween CPU, memory, network usage, and classifcation latency. 
Based on these experimental results, we built and conducted a 
qualitative lab evaluation of a smartwatch-based sound awareness 
app, called SoundWatch (Figure 1), with eight DHH participants. 
Qualitative fndings show support for our sound awareness app 
but also uncover issues with misclassifcations, latency, and privacy 
concerns. We close by ofering design considerations for future 
wearable sound awareness technology. 
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1 INTRODUCTION 
Smartwatches have the potential to provide glanceable, always-
available sound feedback to people who are deaf or hard of hearing 
(DHH) in multiple contexts [4, 8, 31]. A recent survey with 201 
DHH participants [4] showed that, compared to smartphones and 
head-mounted displays, a smartwatch is the most preferred device 
for non-speech sound awareness. Reasons included improved pri-
vacy, social acceptability, and integrated support for both visual 
and haptic feedback. Most prior work in wearable sound awareness, 
however, has focused on smartphones [3, 32, 40], head-mounted 
displays [9, 13, 18], and custom wearable devices [22, 34] that pro-
vide limited information (e.g., loudness) through a single modality 
(e.g., vision). A few Wizard-of-Oz studies have explored using visual 
and vibrational feedback on smartwatches for sound awareness 
[8, 31, 32]; however, the evaluations of the prototypes were prelim-
inary. One exception includes Goodman et al. [8], who conducted a 
Wizard-of-Oz evaluation of smartwatch-based designs, gathering 
user reactions in diferent audio contexts (a student lounge, a bus 
stop, and a cafe). However, this work was intentionally formative 
with no functioning implementations. 

Furthermore, recent deep-learning research has investigated 
multi-class sound classifcation models, including for DHH users 
[21, 40]. For example, Jain et al. [21] used deep convolutional neural 
networks to classify sounds in the homes of DHH users, achieving 
an overall accuracy of 85.9%. While accurate, these cloud or laptop-
based models utilize a high memory and processing power and are 
unsuitable for low-resource portable devices. 

Building on the above research, in this paper we present two 
smartwatch-based studies. First, we quantitatively examine four 
state-of-the-art low-resource deep learning models for sound classi-
fcations: MobileNet [15], Inception [41], ResNet-lite [42], and a quan-
tized version of HomeSound [21], which we call VGG-lite, across four 
device architectures: watch-only, watch+phone, watch+phone+cloud, 
and watch+cloud. These approaches were intentionally selected to 
examine tradeofs in computational and network requirements, 
power efciency, data privacy, and latency. While direct compar-
ison to prior work is challenging, our experiments show that the 
best classifcation model (VGG-lite) performed similarly to the 
state of the art for non-portable devices while requiring substan-
tially less memory (∼1/3rd). We also observed a strict accuracy-
latency trade-of: the most accurate model was also the slowest (avg. 
accuracy=81.2%, SD=5.8%; avg. latency=3397ms, SD=42ms). Finally, 
we found that the two phone-based architectures (watch+phone 
and watch+phone+cloud) outperformed the watch-centric designs 

(watch-only, watch+cloud) in terms of CPU, memory, battery usage, 
and end-to-end latency. 

To complement these quantitative experiments, we built and con-
ducted a qualitative lab evaluation of a smartwatch-based sound 
awareness app, called SoundWatch (Figure 1), with eight DHH par-
ticipants. SoundWatch incorporates the best performing classifca-
tion model from our system experiments (VGG-lite) and, for the 
purposes of evaluation, can be switched between all four device ar-
chitectures. During the 90-min study session, participants used our 
prototype in three locations on a university campus (a home-like 
lounge, an ofce, and outdoors) and took part in a semi-structured 
interview about their experiences, their views regarding accuracy-
latency tradeofs and privacy, and ideas and concerns for future 
wearable sound awareness technology. We found that all partici-
pants generally appreciated SoundWatch across all three contexts, 
reafrming past sound awareness work [4, 8]. However, misclassi-
fcations were concerning, especially outdoors due to background 
noise. For accuracy-latency tradeofs, participants wanted mini-
mum delay for urgent sounds (e.g., car honk, fre alarms)—to take 
any required action—but maximum accuracy for non-urgent sounds 
(e.g., speech, background noise) to not be unnecessarily disturbed. 
Finally, participants selected watch+phone as the most preferred 
architecture because of privacy concerns with the cloud, versa-
tility (no Internet connection required), and speed (watch+phone 
classifed faster than watch only). 

In summary, our work contributes: (1) a comparison of four deep 
learning models for sound classifcation on mobile devices, includ-
ing accuracy-latency results, (2) a new smartwatch-based sound 
identifcation system, called SoundWatch, with support for four dif-
ferent device architectures, and (3) qualitative insights from in-situ 
evaluation with eight DHH users, including reactions to our designs, 
architecture preferences, and ideas for future implementations. 

2 RELATED WORK 
We contextualize our work within sound awareness needs and tools 
of DHH people as well as prior sound classifcation research. 

2.1 Sound Awareness Needs 
Prior formative studies have investigated the sounds, audio charac-
teristics, and feedback modalities desired by DHH users. In terms 
of sounds of interest, two large-scale surveys by Findlater et al. 
[4] and Bragg et al. [3] with 201 and 87 participants respectively 
showed that DHH people prefer urgent and safety-related sounds 
(e.g., alarms, sirens) followed by appliance alerts (e.g., microwave 
beep, kettle whistle) and sounds about the presence of people (e.g., 
door knock, name calls). These preferences may be modulated by 
cultural factors: participants who prefer oral communication were 
more interested in some sounds (e.g., phone ring, conversations) 
than those who prefer sign language [3, 4]. 

In addition to desired sounds, prior work has shown DHH users 
desire certain characteristics of sound (e.g., identity, location, time of 
occurrence) more than others (e.g., loudness, duration, pitch) [8, 27]. 
However, the utility of these characteristics may vary by physical 
location. For example, at home, awareness of a sound’s identity and 
location may be sufcient [20, 21], but directional indicators may 
be more important when mobile [32]. Besides location, Findlater et 
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al. [4] showed that social context (e.g., friends vs. strangers) could 
infuence the use of the sound awareness tool and thus customiza-
tion (e.g., using sound fltering) is essential. Informed by this work, 
Goodman et al. [8] explored using smartwatch designs in diferent 
locations (e.g., bus stop, cofee shop), including the sound fltering 
options (e.g., using identity, direction, or loudness). 

In terms of feedback modalities, several studies recommend com-
bining visual and vibrational information for sound awareness 
[8, 31, 32]; a smartwatch can provide both. To help users consume 
sound feedback information, past work recommends using vibra-
tion to notify about sound occurrence and a visual display for 
showing additional information [3, 20]—which we also explore— 
although a recent study also showed promise in using vibration 
patterns (tactons) to convey richer feedback (e.g., direction) [8]. 
In the same study, participants valued the role of smartwatch as a 
glanceable, private, and portable display that can be used in multiple 
contexts. 

We build on the above studies by examining the use of working 
smartwatch prototypes in three contexts, revealing qualitative reac-
tions, system design suggestions, and location-based customization 
options. 

2.2 Sound Awareness Technologies 
Early research in sound awareness studied vibrotactile wrist-worn 
solutions, mainly to aid speech therapy by conveying voice tone 
[45] or frequency [44]; that work is complementary to our non-
speech sound awareness. Researchers have also tried methods to 
completely substitute hearing with tactile sensation using more 
larger, more obtrusive form factors such as waist-mounted [36] or 
neck-worn [7], but this has shown little promise. 

More recent work has examined stationary displays for sound 
awareness [14, 27, 28, 43], such as on desktops [14, 27]. Though use-
ful for their specifc applications, these solutions are not conducive 
to multiple contexts. Towards portable solutions, Bragg et al. [6] 
and Sicong et al. [31] used smartphones to recognize and display 
sound identity (e.g., phone ringing, sirens). However, they evalu-
ated their app in a single context (ofce [3], a deaf school [40]) and 
focused on user interface rather than system performance—both 
are critical to user experience, especially given the constraints of 
low-resource devices [11, 23]. 

Besides smartphones, wearable solutions such as head-mounted 
displays [9, 13, 18] and wrist-worn devices [22, 34] have been ex-
amined. For example, Gorman [9] and Kaneko et al. [22] displayed 
the direction of sound sources using a head-mounted display and a 
custom wrist-worn device, respectively. We explore smartwatches 
to provide sound identity, the most desired sound property by DHH 
users [3, 19, 27]. While not specifcally focused on smartwatches, 
Jain et al. [21] examined smartwatches as complementary alerting 
devices to smarthome displays deployed that sensed and processed 
sound information locally and broadcasted it to the smartwatches; 
we examine a self-contained smartwatch solution for multiple con-
texts. 

In summary, while prior work has explored sound awareness 
tools for DHH people, including on portable devices [10, 18, 22, 34], 
this work has not yet built and evaluated a working smartwatch-
based system—a gap which we address in our work. 

2.3 Sound Classifcation Research 
Early eforts in classifying sounds relied on hand-crafted features 
such as zero-crossing rate, frame power, and pitch [33, 37, 38]. 
Though they performed reasonably well on clean sound fles with 
a small number of classes, these features fail to account for acous-
tic variations in the feld (e.g., background noise) [26]. More re-
cently, machine learning based classifcation has shown promise 
for specifc feld tasks such as gunshot detection [5] or intruder 
alert systems [2]. Specifcally for DHH users, Bragg et al. [3] ex-
plored a preliminary GMM-based sound detection algorithm to 
classify two sounds (alarm clock, door knock) in an ofce setting. 
For more broad use cases, deep learning-based solutions have been 
investigated [21, 40]. For example, Sicong et al. [40] explored a 
lightweight CNN-based architecture on smartphones to classify 
nine sounds preferred by DHH users (e.g., fre alarm, doorbell) in 
a school setting. Jain et al. [21] used deep convolutional neural 
networks running on a tablet to classify sounds in the homes of 
DHH users, achieving an overall accuracy of 85.9%. We closely 
follow the latter approach in our work but use embedded devices 
(phone, watch) and perform evaluations in varying contexts (home, 
work, outdoors). We also train and evaluate four low-resource deep 
learning models and possible watch-based architectures, as well as 
collect user preferences. 

3 THE SOUNDWATCH SYSTEM 
SoundWatch is an Android-based app designed for commercially 
available smartwatches to provide glanceable, always-available, 
and private sound feedback in multiple contexts. Building from 
previous work [8, 21], SoundWatch informs users about three key 
sound properties: sound identity, loudness, and time of occurrence 
through customizable sound alerts using visual and vibrational 
feedback (Figures 1 and 3). We use a deep learning-based sound 
classifcation engine (running on either the watch or on the paired 
phone or cloud) to continually sense and process sound events in 
real-time. Below, we describe our sound classifcation engine, our 
privacy-preserving sound sensing pipeline, system architectures, 
and implementation. The SoundWatch system is open sourced on 
GitHub: https://github.com/makeabilitylab/SoundWatch. 

3.1 Sound Classifcation Engine 
To create a robust, real-time sound classifcation engine, we fol-
lowed an approach similar to HomeSound [21], which uses transfer 
learning to adapt a deep CNN-based image classifcation model 
(VGG) for sound classifcation. We downloaded four recently re-
leased (in Jan 2020 [46]) TensorFlow-based image-classifcation 
models for small devices: MobileNet, 3.4MB [15], Inception, 41MB 
[41], ResNet-lite, 178.3MB [42], and a quantized version of model 
used in HomeSound [21], which we call VGG-lite, 281.8MB. Since 
the size of four models difer considerably, we hypothesized that 
they would ofer diferent tradeofs in terms of accuracy and latency. 

To perform transfer learning, similar to Jain et al. [21], we used 
a large corpus of sound efect libraries—each of which provide a 
collection of high-quality, pre-labeled sounds. We downloaded 20 
common sounds preferred by DHH people (e.g., dog bark, door 
knock, speech) [3, 20] from six libraries—BBC [47], Freesound [6], 
Network Sound [48], UPC [49], TUT [30] and TAU [1]. All sound 
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Table 1: The sounds and categories used to train our sound classifcation models 

All sounds 
(N=20) 

High priority 
(N=3) 

Medium priority 
(N=10) 

Home context 
(N=11) 

Ofce context 
(N =6) 

Outdoor context 
(N =9) 

Fire/smoke alarm, Alarm clock, Door knock, Doorbell, Door-in-use, Microwave, Washer/dryer, Phone 
ringing, Speech, Laughing, Dog bark, Cat meow, Baby crying, Vehicle running, Car horn, Siren, Bird chirp, 
Water running, Hammering, Drilling 
Fire/smoke alarm, Alarm clock, Door knock 

Fire/smoke alarm, Alarm clock, Door knock, Doorbell, Microwave, Washer/dryer, Phone ringing, Car horn, 
Siren, Water running 
Fire/smoke alarm, Alarm clock, Door knock, Doorbell, Door-in-use, Microwave, Washer/dryer, Speech, Dog 
bark, Cat meow, Baby crying 
Fire/smoke alarm, Door knock, Door-in-use, Phone ringing, Speech, Laughing 

Dog bark, Cat meow, Vehicle running, Car horn, Siren, Bird chirp, Water running, Hammering, Drilling 

clips were converted to a single format (16KHz, 16-bit, mono) and 
silences greater than one second were removed, which resulted in 
35.6 hours of recordings. We then divided the sounds into three 
categories based on prior work [3, 27]: high priority (containing the 
3 most desired sounds by DHH people), medium-priority sounds 
(10 sounds), and all sounds (20 sounds) (see Table 1). We used the 
method in Hershey et al. [12] to compute the log mel-spectrogram 
features in each category, which were then fed to the four models, 
generating three models of each architecture (12 in total). 

3.2 Sound Sensing Pipeline 
For always-listening apps, privacy is a key concern. While Sound-
Watch relies on a live microphone, we designed our sensing pipeline 
to protect user privacy. The system processes the sound locally on 
the watch or phone and, in the case of the cloud-based architectures, 
only uploads non-reconstructable mel-spectrogram features. While 
the uploaded features can be used to identify the kind of activity a 
user is engaged in (e.g., speaking, cooking), conversational infor-
mation is not retrievable. For signal processing, we take a sliding 
window approach: the watch samples the microphone at 16KHz 
and segments data into 1-second bufers (16,000 samples), which 
are fed to the sound classifcation engine. To extract loudness, we 

compute the average amplitude in the window. All sounds at or 
above 50% confdence and 45dB loudness are notifed to the user, 
the others are ignored. 

3.3 System Architectures 
We implemented four device architectures for SoundWatch: watch-
only, watch+phone, watch+cloud, and watch+phone+cloud (Figure 
2). Because the sound classifcation engine (computing features and 
predicting sound) is resource intensive, the latter three architectures 
use a more powerful device (phone or cloud) for classifcation. For 
only the cloud-based architectures, to protect user privacy, non-
reconstructable sound features are computed before being sent to 
the cloud—that is, on the watch (watch+cloud) or on the phone 
(watch+phone+cloud). We use Bluetooth Low Energy (BLE) for 
watch-phone communication and WiFi or a cellular network for 
watch-cloud or phone-cloud communication. 

3.4 User Interface 
To increase glanceability, we designed the SoundWatch app as a 
push notifcation; when a classifed sound event occurs, the watch 
displays a notifcation along with a vibration alert. The display 
includes sound identity, classifcation confdence, loudness, and 

Figure 2: A diagram of the four SoundWatch architectures and a breakdown of their sensing pipelines. Block widths are for 
illustration only and are not indicative of actual computation time. 
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Figure 3: The SoundWatch user interface showing the opening screen with a button to begin recording the audio for classif-
cation (a), the notifcation screen with a “10-min” mute button (b), and the main app screen with more mute options (c). (d) 
shows a partial view of the paired phone app to customize the list of enabled sounds. 

time of occurrence (Figure 3). Importantly, each user can mute 
an alerted sound by clicking on the “10-min” mute button, or by 
clicking on the “open” button and selecting from a scroll list of mute 
options (1 min, 5 min, 10 min, 1 hour, 1 day, or forever). Additionally, 
the user can select which sounds to receive alerts for by using the 
paired phone app, which displays a customization menu (Figure 3d). 
While future versions should run as an always-available service in 
Android, currently the app must be explicitly opened on the watch 
to run (Figure 3a). Once the app is opened, it continuously runs in 
the background. 

4 SYSTEM EVALUATION 
To assess the performance of our SoundWatch system, we perform 
two sets of evaluations: (1) a comparison of the four state-of-the-
art sound classifcation models for embedded devices and (2) a 
comparison of the four architectures: watch-only, watch+phone, 
watch+cloud, and watch+phone+cloud. For all experiments, we used 
the Android Ticwatch Pro watch (4×1.2GHz, 1GB RAM) [50] and the 
Honor 7x Android phone (8×2GHz, 3GB RAM) [51]. For emulating 
the cloud, we used an Intel i7 desktop running Windows 10. 

4.1 Model Comparison 
To determine how diferent models perform on the watch and 
phone, we trained and evaluated the classifcation accuracy and 
speed of our four model architectures. To compare with prior ap-
proaches in sound classifcation, we also evaluated the full-VGG 
model (281.8MB) on a non-portable device. Below we detail the 
experiments and results. 

4.1.1 Accuracy. To calculate the “in-the-wild” inference accuracy 
[52] of the models, we collected our own ‘naturalistic’ sound dataset 
similar to HomeSound [21]. We recorded 20 sound classes from nine 
locations (three homes, three ofces, three outdoors) using the 
same hardware as SoundWatch: the TicWatch Pro with a built-in 
microphone. For each sound class, we recorded three 10-second 
samples at three distances (5, 10, and 15 feet). We attempted to 
produce sounds naturally (e.g., using a microwave or opening the 
door). For certain difcult-to-produce sounds—like a fre alarm—we 
played snippets of predefned videos on a laptop or phone with 

external speakers (54 total videos were used). In total, we collected 
540 recordings (∼1.5 hours). 

Before testing our model, we divided our recordings into the 
three categories (all sounds, high priority, medium priority) simi-
lar to our training set (Table 1). For the medium and high priority 
testsets, 20% of the sound data that we added was from excluded cat-
egories that our models should ignore (called the “unknown” class). 
For example, 20% of the high priority testset included recordings 
from outside of the three high priority sound classes (fre/smoke 
alarm, alarm clock, door knock). 

For this experiment, we classifed data in each category using the 
models. The results are shown in Figure 4. Overall, VGG-lite per-
formed best (avg. inference accuracy=81.2%, SD=5.8%) followed by 
ResNet-lite (65.1%, SD=10.7%), Inception (38.3%, SD=17.1%) and Mo-
bileNet (26.5%, SD=12.3%); a post hoc one-way repeated measures 
ANOVA on all sounds yielded a signifcant efect of models on the 
accuracy (F3,2156 = 683.9, p < .001). As expected, the inference accu-
racy increased as the number sounds decreased from all (20 sounds) 
to medium (10 sounds) and high priority (3 sounds). For example, if 
we only classify the three highest-priority sounds, our average accu-
racies increase from 81.2% (SD=5.8%) to 97.6% (SD=1.7%) for VGG-
lite and from 65.1% (SD=10.7%) to 78.1% (SD=11.9%) for ResNet-lite. 
Finally, in analyzing performance as a function of location con-
text, home and ofce outperformed outdoors for all models. With 
VGG-lite, for example, average accuracies were 88.6% (SD=3.1%) for 
home, 86.4% (SD=4.3%) for ofce, and 71.2% (SD=8.2%) for outdoors. 
A post hoc inspection revealed that outdoor sound recordings may 
have incurred interference due to the background noise. 

To further assess model performance, we computed a confusion 
matrix for medium-priority sounds, which helps highlight inter-
class errors (Figure 5). While per-class accuracies varied across 
models, microwave, door knock, and washer/dryer were consistently 
the best performing classes with VGG-lite achieving average accura-
cies of 100% (SD=0), 100% (SD=0), and 96.3% (SD=2.3%) respectively. 
The worst performing classes were more model dependent but gen-
erally included alarm clock, phone ring, and siren with VGG-lite 
achieving 77.8% (SD=8.2%), 81.5% (SD=4.4%), and 88.9% (SD=3.8%) 
respectively. For these poorer performing classes, understandable 
mix-ups occurred—for example, alarm clocks and phones rings, 
which are similar sounding, were commonly confused. 
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Figure 4: Average accuracy (and SD) of the four models for three sound categories and three contexts. Error bars in the graph 
show 95% confdence intervals. 

4.1.2 Latency. In addition to accuracy, the speed with which a 
model performs classifcations is crucial to achieving a real-time 
sound identifcation system. To evaluate model latency, we mea-
sured the time required to classify sounds from the input features 
on both the watch and the phone. We wrote a script to loop through 
the sound recordings in our dataset for three hours (1080 sounds) 
and measured the time taken for each classifcation. Understand-
ably, the latency increased with the model size: the smallest model, 
MobileNet, performed the fastest on both devices (avg. latency 
on watch: 256ms, SD=17ms; phone: 52ms, SD=8ms), followed by 
Inception (avg. latency on watch: 466ms, SD=15ms; phone: 94ms, 
SD=4ms), and ResNet-lite (avg. latency on watch: 1615ms, SD=30ms; 
phone: 292ms, SD=13ms). VGG-lite, the largest model, was the 
slowest (avg. latency on watch: 3397ms, SD=42ms; phone: 610ms, 
SD=15ms). 

In summary, for phone and watch models, we observed a strict 
accuracy-latency tradeof—for example, the most accurate model 
VGG-lite (avg. accuracy=81.2%, SD=5.8%) was the slowest (avg. la-
tency on watch: 3397ms, SD=42ms). Further, the models MobileNet 
and Inception performed too poorly for practical use (avg. accu-
racy < 40%). ResNet-lite was in the middle (avg. accuracy=65.1%, 
SD=10.7%; avg. latency on watch: 1615ms, SD=30ms). 

4.1.3 Cloud model (VGG-16). To attempt comparison with past 
work, we also evaluated the performance of the full VGG model [25] 

on the cloud. On average, the inference accuracy (84.4%, SD=5.5%) 
was only slightly better than our best mobile-optimized model 
(VGG-lite, avg.=81.2%, SD=5.8%). This result is promising because 
our VGG-lite model is more than three times smaller than VGG 
(281.8MB vs. 845.5MB). However, the full model on the cloud per-
formed much faster (avg. latency=80ms, SD=5ms) than our models 
on phone or watch. 

4.2 Architecture Evaluation 
Besides model evaluation, we also compared the performance of 
four diferent architecture designs for the SoundWatch system: 
watch-only, watch+phone, watch+cloud, and watch+phone+cloud. 
These architectures difer in terms of where classifcation compu-
tations occur, battery usage, classifcation speed, network require-
ments, and privacy—which impacts both technical performance 
and usability. 

For our architecture evaluation, we used the most accurate model 
on the watch and phone: VGG-lite; the cloud used the full VGG 
model. Informed by prior work [11, 23, 29], we measured CPU, 
memory, and network usage, end-to-end latency, and battery con-
sumption. For the test, we used a script running on a laptop that 
looped through the sound recordings for three hours to generate 
sufcient sound samples (1080). For the battery experiment only, 
the script ran until the watch battery reached 30% or less (i.e., just 

Figure 5: Confusion matrices for the four models when classifying 10 sounds in the medium-priority category. Darker 
blue indicates higher accuracy. HA=Hazard Alarm, AC=Alarm Clock, DB=Doorbell, DK=Door Knock, MW =Microwave, 
WD=Washer/Dryer, PR=Phone Ringing, CH=Car Horn, S=Siren, WR=Water Running, Ø=Unknown. 
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Figure 6: Average CPU (a) and memory (b) usage of the four architectures (using the VGG-lite model). Error bars show 95% 
confdence intervals. 

above the 25% trigger for low-power mode), a common evaluation 
approach (e.g., see [29]). 

To determine CPU, memory, and network usage, we used Android 
Profler [53], a commonly used tool in the literature [16]. For the 
battery, we used Battery Historian [54]. Finally, to determine end-
to-end latency, we measured the elapsed time (in milliseconds) 
between the start of the sound recording window to when the 
notifcation is shown. Below, we detail the results. 

4.2.1 CPU Utilization. Minimizing CPU utilization is crucial to 
maximizing the smartwatch’s battery performance and lowering 
the impact on other running apps. Our results for CPU usage on the 
watch and phone are shown in Figure 6a. As expected, the watch’s 
CPU utilization was lowest when classifcations were performed on 
the phone (watch+phone; avg.=22.3%, SD=11.5%, max=42.3%) or in 
the cloud (watch+phone+cloud; avg.=23.0%, SD=10.8%, max=39.8%). 
Here, the watch is used only for recording sounds, transmitting data 
via Bluetooth, and displaying sound feedback. For watch+cloud, the 
watch is computing the sound features and communicating directly 
with the cloud via WiFi for classifcation, which resulted in signif-
cantly higher CPU utilization (avg.=51.1%, SD=14.9%, max=76.1%). 
Finally, if the entire classifcation model runs on the watch directly, 
the CPU utilization is nearly maxed out (avg.=99.0%, SD=2.1%, 
max=100%) and is thus not practical for real-world use. 

4.2.2 Memory usage. A smartwatch app must also be memory 
efcient. We found that the memory usage was primarily de-
pendent on where the model (281.8MB) was running, hence, 
watch-only and watch+phone consumed the highest memory on 
the watch (avg.=344.3MB, SD=2.3MB, max=346.1MB) and phone 
(avg.=341.5MB, SD=3.0MB, max=344.1MB) respectively (Figure 6b). 
This indicates that running a large model like VGG-lite on the 
watch could exceed the memory capacity of some modern watches 
(e.g., [55]). The other app processes (e.g., UI, computing features, 
network) required less than 50MB of memory. 

4.2.3 Network usage. Having a low network requirement increases 
the portability of an app, especially for low-signal areas. Addition-
ally, some users may feel uncomfortable with their data being up-
loaded to the cloud, even with privacy and security measures in 
place. For our cloud-based architectures, we found minimal net-
work consumption: for watch+cloud, the average was 486.8B/s 
(SD=0.5B/s, max=487.6B/s) and for watch+phone+cloud, it was 
486.5B/s (SD=0.5B/s, max=487.2B/s); both are negligible compared 
to the network bandwidth of modern IoT devices. The non-cloud 

architectures used no network bandwidth as they perform all classi-
fcations locally on the device(s): either the watch or watch+phone. 

4.2.4 Batery consumption. A fully mobile app needs to be energy 
efcient. We measured the battery drain from full charge until 
30% (Figure 7). First considering the watch-based architectures, the 
watch-only architecture used a large amount of battery: 30% at 3.3 
hours, a 6.3x increase over the baseline (without our app). Within 
the remaining three architectures, both watch+phone (30% at 15.2 
hours, 1.4x over baseline) and watch+phone+cloud (30% at 16.1 
hours, 1.3x over baseline) were more efcient than watch+cloud 
(30% at 12.5 hours, 1.7x over baseline), because the latter used WiFi 
which is less energy efcient than BLE [39]. 

Similar trends were observed on the phone; however, running 
the model on the phone (watch+phone) was still tolerable (1.3x 
over baseline) as compared to the watch (6.3x over baseline). In 
summary, we expect that the watch-only architecture would be 
impractical for daily use, while the other architectures are usable. 

4.2.5 End-to-end latency. Finally, a real-time sound awareness 
feedback system needs to be performant. Figure 8 shows a com-
putational breakdown of end-to-end latency, that is, the total time 
spent in obtaining a notifcation for a produced sound. On aver-
age, watch+phone+cloud performed the fastest (avg. latency=1.8s, 
SD=0.2s). This was followed by watch+phone (avg.=2.2s, SD=0.1s), 
which needed more time for running the model on the phone 
(vs. cloud), and watch+cloud (avg.=2.4s, SD=0.0s) which required 
more time to compute features on the watch (vs. phone in 
watch+phone+cloud). As expected, watch-only was signifcantly 
slower (avg.=5.9s, SD=0.1s) and is thus, currently unusable (though 
future smartwatch generations will be more capable). In summary, 
except for watch-only, all architectures had a latency of ∼2s; we 
evaluate whether this is acceptable in the user study. 

4.2.6 Summary. Overall, we found that watch+phone and 
watch+phone+cloud outperformed the watch+cloud architecture 
for all system parameters. Additionally, the watch-only architec-
ture was impractical for real-life use due to high CPU, memory, 
and battery usage, as well as a large end-to-end latency. Within 
the phone-based architectures, the watch+phone+cloud performed 
better than the watch+phone. 

https://avg.=5.9s
https://avg.=2.4s
https://avg.=2.2s
https://latency=1.8s
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Figure 7: Battery level over time for watch (a) and phone (b) for the four architectures. W-only=watch only, W-C=watch+cloud, 
W-P=watch+phone, W-P-C=watch+phone+cloud. Baseline represents the case without the SoundWatch app running 

Figure 8: Breakdown of end-to-end latency for the four architectures. 

5 USER STUDY 5.1 Participants 
To gather qualitative feedback on our system results and general re- We recruited eight DHH participants (3 women, 3 men, 2 non-
actions to smartwatch-based sound awareness in multiple contexts, binary) using email, social media and snowball sampling (Table 2). 
we performed a lab and campus walkthrough evaluation of our Participants were on average 34.8 years old (SD=16.8, range=20– 
SoundWatch app with eight DHH participants. SoundWatch is de- 63). Four had profound hearing loss, three had severe, and one had 
signed to support all four device architectures and can be switched moderate. Seven reported onset as congenital and one reported one 
between them; however, based on our system experiments above, year of age. Seven participants reported using hearing devices: three 
we used the best performing architecture (watch+phone) and model participants used cochlear implants, one used hearing aids, and 
(VGG-lite) for the user study. three used both. For communication, fve participants preferred sign 

language, and three preferred to speak verbally. All reported fuency 
with reading English (5/5 on rating scale, 5 is best). Participants 
received $40 as compensation. 

Table 2: Demographics of the DHH participants. 

ID Age Gender Identity Hearing loss Onset age Hearing device 

P1 31 Male hard of hearing Moderate Birth Hearing aids 
P2 26 Female deaf Profound 1 year Cochlear implants 
P3 20 Non-binary deaf Profound Birth Cochlear implants 
P4 20 Female hard of hearing Severe Birth Both 
P5 57 Male deaf Severe Birth Both 
P6 23 Female Deaf Profound Birth Both 
P7 38 Non-binary Deaf Severe Birth None 
P8 63 Male Deaf Profound Birth Cochlear implants 
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5.2 Procedure 
The in-person procedure took place on a university campus and 
lasted up to 90 minutes. Sessions were led by the frst author who 
is hard of hearing and knows level-2 ASL. A real-time transcrip-
tionist attended all sessions, and fve participants opted to addition-
ally have a sign language interpreter. Instructions and interview 
questions were presented visually on an iPad (see supplementary 
materials), while responses and follow-up discussion were spoken 
or translated to/from ASL. The session began with a demographic 
and background questionnaire, followed by a three-part protocol, 
the frst and third of which took place in a quiet conference room: 

5.2.1 Part 1: Introduction of SoundWatch prototype (5-10 mins). In 
the frst phase, we asked about general thoughts on using smart-
watches for sound awareness. Participants were then asked to wear 
the watch running SoundWatch. To demonstrate the app, a re-
searcher made three example sounds (speech, door knock, and 
phone ring) while explaining the watch and the phone UI. Partici-
pants were also encouraged to make their own sounds such as by 
speaking or knocking to examine SoundWatch’s behavior. 

5.2.2 Part 2: Campus walk (20-25 mins). For Part 2, the researcher 
and the participant (with the watch and phone) visited three loca-
tions on campus in a randomized order: (1) a home-like location 
(lounge of our building), (2) an ofce-like location (a grad student 
ofce), and (3) an outdoor location (a bus stop). These locations 
enabled the participants to experience SoundWatch in diferent 
contexts and soundscapes. In each location, participants used the 
watch naturally for about fve minutes (e.g., by sitting on a chair 
in an ofce, or walking and conversing outdoors). In locations 
with insufcient sound activity (e.g., if the lounge was empty on 
weekends), the researcher produced some sounds (e.g., by running 
the microwave, or washing hands). Participants were also encour-
aged to use the sound customization options (mute on watch and 
checklist on phone) if they desired. Before exiting each location, 
participants flled a short feedback form to rate their experience on 
a 5-point scale and document any open-ended comments. 

5.2.3 Part 3: Post-trial interview (45-50 mins). After completing the 
three locations, participants returned to the lab for Part 3. Here, we 
conducted a semi-structured interview inquiring about the partici-
pant’s overall experience and perceptions of SoundWatch across 
the diferent locations, reactions to the UI, privacy concerns, and 
future design ideas. We then transitioned to asking about specifc 
technical considerations, including accuracy-latency tradeofs and 
the four possible SoundWatch architectures. For accuracy-latency, 
we explained the concept and then asked about their expectations 
for minimum accuracy, maximum delay, and whether their per-
spectives changed based on sound type (e.g., urgent vs. non-urgent 
sounds) or context (e.g., home, ofce). To help discuss the four 
SoundWatch architectures—and to more easily allow our partici-
pants to understand and track diferences—we prepared a chart (see 
supplementary materials) enumerating key characteristics such as 
battery or network usage and a HIGH, MEDIUM, or LOW rating 
based on our system experiment fndings. Finally, we asked partici-
pants to rate the “ease-of-use” of each architecture (high, med, or 
low) by weighing factors such as the Internet requirement, number 
of devices to carry (e.g., 1 for watch-only vs. 2 for watch+phone), 
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and the size of visual display (e.g., small for watch vs. medium for 
phone), and to specify reasons for their rating. 

5.3 Data Analysis 
The interview transcripts and the in-situ form responses were ana-
lyzed using an iterative coding approach [7]. To begin, we randomly 
selected three out of eight transcripts; two researchers indepen-
dently read these transcripts and identifed a small set of potential 
codes. These codes were used to develop a mutually agreeable initial 
codebook to apply holistically to the data. The two researchers then 
used a copy of the codebook to independently code the three tran-
scripts, while simultaneously refning their own codebook (adding, 
merging or deleting codes). After this step, the researchers met 
again to discuss and refne the codebook, and resolve any disagree-
ments on the code assignments. The fnal codebook contained a 
two-level hierarchy (12 level-1 codes, 41 level 2- codes), of which 
the level-1 codes form the high-level themes. This codebook was 
then used to independently code the remaining fve transcripts. 
For this last step, interrater agreement between the two coders, 
measured using Krippendorf’s alpha [24], was on average 0.79 
(SD=0.14, range=0.62-1) and the raw agreement 93.8% (SD=6.1%, 
range=84.4%-100). Again, the conficting code assignments were 
resolved through consensus. 

5.4 Findings 
We detail experience with SoundWatch during the campus walk 
as well as comments on model accuracy-latency, diferent system 
architectures, and the user interface. Quotes are drawn verbatim 
from the post-trial interview transcripts and in-situ form responses. 

5.4.1 Campus walk experience. For the campus walk with Sound-
Watch, we describe the participants’ thoughts on the overall use-
fulness of the prototype and the variation with contexts. All par-
ticipants found the watch generally useful in all three contexts (a 
home-like lounge, ofce, and outdoors) to help with the everyday 
activities. For example, 

“My wife and I tend to leave the water running all the 
time so this app could be benefcial and save on water 
bills. It was helpful to know when the microwave 
beeps instead of having to stare at the time [display].” 
(P6) 
“This is very useful for desk type work situations. 
I can use the watch to help alert me if someone is 
knocking the door, or coming into the room from 
behind me.“ (P7) 

However, participants (8/8) also noticed problems with Sound-
Watch, the most notable being delay and misclassifcations; the 
latter were higher in outdoor contexts than in others. For example, 

“Delay might be a problem. When a person came into 
a room, that person surprised me before the watch 
notifed me [about door-in-use]” (P5) 
“It doesn’t feel refned enough with outside sounds 
and background noises. The app is perfect for quiet 
settings such as home and outdoor activities (e.g., 
hiking in the woods). [While outdoors,] some sounds 
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were misinterpreted, such as cars were recognized as 
water running" (P3) 

In-situ feedback form ratings refect these comments, with aver-
age usefulness for lounge (4.8/5, SD=0.4) and ofce (4.6/5, SD=0.5) 
being higher than for outdoors (3.5/5, SD=0.5). Even with a low 
usefulness rating, all participants wanted to use SoundWatch for 
outdoor settings, mentioning that they can use context to supple-
ment the inaccurate feedback (5/8): 

“Sure there were some errors outdoors, but it tells me 
sounds are happening that I might need to be aware 
of, so I can [visually] check my environment...” (P7) 

Besides usefulness, the app usage also changed with location. 
As expected, all participants chose to enable diferent sounds for 
each location; the obvious common choices were fre/smoke alarm, 
microwave, water running, and speech for lounge; door knock, 
door-in-use, and speech for ofce; and bird chirp, car horn, and 
vehicle running for outdoors, as determined from the system logs. 
The total number of enabled sounds were also diferent for each 
location (avg. 8.3 for lounge, SD=1.2; 7.5 for ofce, SD=1.5; and 4.2 
for outdoors, SD=2.6)—for outdoors specifcally, 5/8 participants 
speculated that the app accuracy may decrease with background 
noise, and thus deselected all un-important sounds to compensate. 
For example, 

“I deselected ‘Speech’ for outside because I didn’t 
want to know someone was talking outside. It’s noisy. 
[...] I only selected ‘car honk’, ‘vehicle running’ and 
‘siren’ [as] they are the bare minimum I need. It 
seemed to work well then.” (P2) 

5.4.2 Model Accuracy-Latency Comparison. Because deep learning-
based sound recognition will likely have some error and latency, 
we asked participants about the maximum tolerable delay and the 
minimum required accuracy for a future smartwatch app. The most 
common general preference was a maximum delay of “fve seconds” 
(5/8) and a minimum accuracy of 80% (6/8); however, this choice 
was additionally modulated by the type of sound. Specifcally, for 
the urgent sounds (e.g., fre alarms or car horn), participants wanted 
the minimum possible delay (but would tolerate inaccuracy) to get 
quick information for any required action. For example, 

“because I’ll at least know something is happening 
around me and I can use my eyes to look around and 
see if a car is honking at me...” (P2) 
“If an important sound is not occurring, I would just 
be disturbed for a moment, that’s all [...] But, if it’s an 
alarm and if this [watch] misses it, that is a problem.” 
(P1) 

In contrast, for non-urgent sounds (e.g., speech, laughing) more 
accuracy was preferred because repeated errors could be annoying 
(7/8). For example, 

“I don’t care about speech much, so if there is a con-
versation, well fne, doesn’t matter if I know about it 
1-2 second later or 5 seconds later, does it? But if it 
makes mistakes and I have to get up and check who 
is speaking every time it makes a mistake, it can be 
really frustrating” (P5) 

Finally, if a sound is a medium priority for the participants (e.g., 
microwave for P3), participants wanted a balance, that is, a moder-
ate amount of delay is tolerable for moderate accuracy (7/8). 

Besides variation with sound type, we asked if the accuracy-
latency preference would change with the context of use (home vs. 
ofce vs. outdoors). In general, similar to the type of sound prefer-
ences, participants erred towards having less delay in more urgent 
contexts and vice versa. For the home, participants (8/8) wanted 
high accuracy (more delay is acceptable) because, for example: 

“I already know most of what is going on around my 
home. And when I am at home, I am generally more 
relaxed [so] delay is more acceptable. But, I would not 
want to be annoyed by errors in my of time.” (P8) 

For the ofce, participants (6/8) felt they would tolerate a mod-
erate level of accuracy with the advantage of having less delay, 
because “something may be needing my attention but it’s likely not 
a safety concern” (P8). Finally, preferences for outdoors were split: 
four participants wanted less delay overall with outdoor sounds, 
but the other four participants did not settle for a single response, 
saying that the tradeof would depend on the urgency of the sound 
outdoors, for example: 

“if it’s just a vehicle running on the road while I am 
walking on the sidewalk, then I would want it to only 
tell if it’s sure that it’s a vehicle running, but if a car 
is honking say if it behind me, I would want to know 
immediately.” (P2) 

5.4.3 Architecture Comparison. By saliently introducing the per-
formance metrics (e.g., battery usage) and usage requirements 
(e.g., Internet connection for cloud), we gathered qualitative prefer-
ences for the four possible SoundWatch architectures: watch-only, 
watch+phone, watch+cloud, and watch+phone+cloud during the 
interview. 

In general, watch+phone was the most preferred architecture for 
all participants, because, compared to watch-only, it is faster, re-
quires less battery, and has more visual state available for customiza-
tion. In addition, compared to cloud-based designs, watch+phone is 
more private and self-contained (does not need Internet). 

However, fve participants wanted the option to be able to cus-
tomize the architecture on the go, mentioning that in outdoor set-
tings, they would instead prefer to use watch+phone+cloud because 
of additional advantages of speed and accuracy. This is because in 
the outdoor context, data privacy was less of a concern for them. 
For example, P6 said: 

“Whenever the Internet is available, I prefer cloud for 
outdoors instead of home/ofce because of possible 
data breach at home/ofce [...] Accuracy problems 
could be more [outdoors] due to background noise 
and [thus] I prefer to use cloud if [the] internet is 
available.” 

Watch+cloud was preferred by two participants only for cases 
where it is hard to carry a phone, such as in a “gym or running 
outdoors” (P1); others did not share this concern as they reported 
always carrying the phone—for example: "I can’t really imagine a 
situation where I would have my watch and not my phone.” (P4). 
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Finally, watch-only was not preferred for any situation because of a 
large battery drain, and a small input area (e.g., for customization). 

5.4.4 User Interface Suggestions. Overall, participants appreciated 
the minimalistic app design, including the information conveyed 
(identity, loudness, and time) (8/8) and the customization options 
(mute button, checklist on phone) (7/8). When asked about future 
improvements, participants suggested three. First, they wanted the 
app to indicate the urgency of sounds—for example, using vibration 
patterns or visual colors (e.g., one pattern/color for high priority 
sounds, and another for low priority sounds). Second, to increase 
utility, participants suggested to explore showing multiple over-
lapping sounds (5/8), the most urgent sound (3/8), or the loudest 
sound (2/8) instead of the most probable sound as in our design. P4 
also said that conveying multiple “possible” sounds could help her 
compensate for inaccuracy: 

“You could give suggestions for what else sound could 
be when it’s not able to recognize. For example, [...] 
if it is not able to tell between a microwave and a 
dishwasher, it could say “microwave or dishwasher”, 
or at least give me an indication of how it sounds like, 
you know like a fan or something, so I can see and 
tell, oh yeah, the dishwasher is running.” 

Finally, two participants (P3, P8) wanted the direction of sound 
source for outdoor context: 

“I need to know if the vehicle is running or honking 
behind me or on the side of me. If it’s on the side 
on the road, then I don’t have to do anything. If it’s 
behind me, I will move away.” (P8) 

When asked whether they would need direction for home or 
ofce as well, they replied no, stating that context awareness is 
higher for those locations (2/2): 

“No, not needed for these contexts [home and ofce]. I 
know the locations of where the sound [source] could 
be, if it shows “microwave”, it’s in the kitchen. If it’s 
“speech”, I know where [my spouse] is.” (P3) 

6 DISCUSSION 
Our work reafrms DHH users’ needs and user interface prefer-
ences for smartwatch-based sound awareness [8, 32] but also: (1) 
implements and empirically compares state-of-the-art deep learning 
approaches for sound classifcation on smartwatches, (2) contributes 
a new smartwatch-based sound identifcation system with support 
for multiple device architectures, and (3) highlights DHH users’ 
reactions to accuracy-latency tradeofs, classifcation architectures, 
and potential concerns. Here, we refect on further implications 
and limitations of our work. 

6.1 Utility of smartwatch-based sound 
classifcation 

How well does a smartwatch-based sound classifcation tool need 
to perform to provide value? As both our systems evaluation and 
user study reveal, this is a complex question that requires further 
study. While improving overall accuracy, reducing latency, and 
supporting a broad range of sound classes is clearly important, 
participants felt that urgent sounds should be prioritized. Thus, we 
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wonder, would an initial sound awareness app that supports three 
to ten urgent sounds be useful? More work is needed here. One way 
to explore this question would be by releasing SoundWatch—or 
a similar app—to the public with multiple customization options, 
then studying actual usage and soliciting feedback. However, this 
approach also introduces ethical and safety concerns. Automatic 
sound classifcation will never be 100% accurate. High accuracy on a 
limited set of sounds could (incorrectly) gain the user’s trust, and the 
app’s failure to recognize a safety sound (e.g., a fre alarm) even once 
could be dangerous. In general, a key fnding of our research and 
of other recent work [8, 32] is that users desire customization (e.g., 
which sounds to classify, notifcation options, sound priorities) and 
transparency (e.g., classifcation confdence) with sound awareness 
tools. 

6.2 Towards improving accuracy 
Our user study suggests a need to further improve system accuracy 
or at least explore other ways to mitigate misclassifcation costs. 
One possibility, as our participants suggested, is to explore showing 
multiple “possible” sounds instead of the most probable sound—just 
as text autocomplete shows n-best words. Another possibility is 
to sequentially cascade two models (e.g., see [35]), using the faster 
model to classify a small set of urgent sounds and to employ the 
slower model for lower-confdence classifcations and less-urgent 
sounds. End-user customization should also be examined. While 
installing the app, each user could select the desired sounds and 
the required accuracies, and the app could dynamically fne-tune 
the model (e.g., by using a weighted average accuracy metric based 
on the sound urgency). Finally, as proposed by Bragg et al. [3], 
researchers should explore end-user interactive training of the 
model. Here, guided by the app, participants could record sounds 
of interest to either improve existing sound classes or to add new 
ones. Of course, this training may be tedious and difcult if the 
sound itself is inaccessible to the DHH user. 

6.3 Privacy implications 
Our participants’ showed concern for cloud-based classifcation 
architectures: they valued their own “sound” privacy and of others 
around them. However, uploading and storing data on the cloud 
has benefts. These datasets can be used for improving the classif-
cation model. Indeed, modern sound architectures on IoT devices 
(e.g., Alexa, Siri) use the cloud for exchanging valuable data. A key 
diference to our approach is that these devices only transmit after 
listening to a trigger word. Thus, what are the implications for 
future always-on, always-listening sound awareness devices? We 
see three. First, the users should have control of their sound data. 
Indeed, P3 corroborated this: 

"I can see myself potentially using the watch + 
phone + cloud, if I can, [...] open my laptop and [se-
lect/deselect] what [sound data] gets uploaded and 
who gets to see what. Otherwise I fear that [someone] 
may misuse something that I don’t want them to.” 

This data upload can also be customized based on context (e.g., 
the ofce might have more private conversations than outdoors). 
Second, future apps will need clear privacy policies such as GDPR 
[56] or CCPA [57] that outline how and where the data is stored 
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and what guarantees the users have. Finally, users should always 
have access to their data and to potentially delete it, in entirety, 
from the cloud. 

6.4 Future smartwatch applications 
In contrast to past wearable sound awareness solutions [9, 18, 22], 
we used commercially available smartwatches, a mainstream pop-
ular device that is more socially acceptable than HMDs [9, 18] or 
custom hardware-based [22, 34] solutions. A recent survey with 
201 DHH participants [4] showed that smartwatch-based sound 
awareness was preferred over smartphones as well. So, what are 
other compelling applications of a smartwatch for DHH users? 
Full speech transcription, a highly preferred feature by DHH users 
[4, 17] is difcult to accommodate on the small watch screen, but 
future deep learning work could explore highlighting important 
keywords or summarizing the conversation topics. Sound localiza-
tion is also highly desired [3, 8] and could be explored by coupling 
the watch with a small external microphone array or designing a 
custom watch with multiple microphones. But, how best to combine 
diferent features (e.g., topic summarization, direction, identity) on 
the watch is an open question. Goodman et al. [8] recently investi-
gated diferent designs for combining sound identity, direction, and 
loudness, however, this study was formative with a focus on user 
interface design. Future work should explore the system design of 
showing multiple features with classifcation confdence—a chal-
lenging problem given the smartwatch’s low-resource constraints. 

6.5 Limitations 
Our lab study included a 20-min out-of-lab component intended to 
help participants think about and experience SoundWatch across 
“real-world” contexts. While useful as an initial, exploratory study, 
important pragmatic issues could not be investigated such as user 
perception of battery life, integration of the watch into daily life, 
and long-term usage patterns. Future work should perform a de-
ployment study and compare results with our lab fndings. 

Moreover, our model accuracy results, though performed on real-
life recordings of 20 sounds, do not accurately refect real-world use 
as other sounds beyond those 20 may also occur. Our tests, however, 
were enough for our goal to compare the models and contextualize 
the user study fndings. A more accurate experiment would include 
a post hoc analysis of sound data collected from longitudinal watch 
use. 

Finally, we considered our DHH participants (who identify as 
deaf, Deaf or hard of hearing) as a homogenous group while re-
porting user study fndings. Indeed, past work [3, 4] shows that 
these groups, despite their cultural diferences, have synergetic 
access needs and preferences. Recruiting cross-culturally allowed 
us to explore solutions for a diversity of users. Nevertheless, future 
work should examine how preferences may vary with culture and 
hearing levels. 

7 CONCLUSION 
In this paper, we performed a quantitative examination of modern 
deep learning-based sound classifcation models and architectures 
as well as a lab exploration of a novel smartwatch sound awareness 
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app with eight DHH participants. We found that our best classifca-
tion model performed similar to the state of the art for non-portable 
devices while requiring a substantially less memory (∼1/3rd), and 
that the phone-based architectures outperformed the watch-centric 
designs in terms of CPU, memory, battery usage, and end-to-end 
latency. Qualitative fndings from the user study contextualize our 
system experiment results, and also uncover ideas, concerns, and 
design suggestions for future wearable sound awareness technol-
ogy. 
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