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Figure 1: SoundWatch uses a deep-CNN based sound classifier to classify and provide feedback about environmental sounds on
a smartwatch in real-time. Images show different use cases of the app and one of the four architectures we built (watch+phone).

ABSTRACT

Smartwatches have the potential to provide glanceable, always-
available sound feedback to people who are deaf or hard of hear-
ing. In this paper, we present a performance evaluation of four
low-resource deep learning sound classification models: MobileNet,
Inception, ResNet-lite, and VGG-lite across four device architectures:
watch-only, watch+phone, watch+phone+cloud, and watch+cloud.
While direct comparison with prior work is challenging, our results
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show that the best model, VGG-lite, performed similar to the state of
the art for non-portable devices with an average accuracy of 81.2%
(SD=5.8%) across 20 sound classes and 97.6% (SD=1.7%) across the
three highest-priority sounds. For device architectures, we found
that the watch+phone architecture provided the best balance be-
tween CPU, memory, network usage, and classification latency.
Based on these experimental results, we built and conducted a
qualitative lab evaluation of a smartwatch-based sound awareness
app, called SoundWatch (Figure 1), with eight DHH participants.
Qualitative findings show support for our sound awareness app
but also uncover issues with misclassifications, latency, and privacy
concerns. We close by offering design considerations for future
wearable sound awareness technology.
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1 INTRODUCTION

Smartwatches have the potential to provide glanceable, always-
available sound feedback to people who are deaf or hard of hearing
(DHH) in multiple contexts [4, 8, 31]. A recent survey with 201
DHH participants [4] showed that, compared to smartphones and
head-mounted displays, a smartwatch is the most preferred device
for non-speech sound awareness. Reasons included improved pri-
vacy, social acceptability, and integrated support for both visual
and haptic feedback. Most prior work in wearable sound awareness,
however, has focused on smartphones [3, 32, 40], head-mounted
displays [9, 13, 18], and custom wearable devices [22, 34] that pro-
vide limited information (e.g., loudness) through a single modality
(e.g., vision). A few Wizard-of-Oz studies have explored using visual
and vibrational feedback on smartwatches for sound awareness
[8, 31, 32]; however, the evaluations of the prototypes were prelim-
inary. One exception includes Goodman et al. [8], who conducted a
Wizard-of-Oz evaluation of smartwatch-based designs, gathering
user reactions in different audio contexts (a student lounge, a bus
stop, and a cafe). However, this work was intentionally formative
with no functioning implementations.

Furthermore, recent deep-learning research has investigated
multi-class sound classification models, including for DHH users
[21, 40]. For example, Jain et al. [21] used deep convolutional neural
networks to classify sounds in the homes of DHH users, achieving
an overall accuracy of 85.9%. While accurate, these cloud or laptop-
based models utilize a high memory and processing power and are
unsuitable for low-resource portable devices.

Building on the above research, in this paper we present two
smartwatch-based studies. First, we quantitatively examine four
state-of-the-art low-resource deep learning models for sound classi-
fications: MobileNet [15], Inception [41], ResNet-lite [42], and a quan-
tized version of HomeSound [21], which we call VGG-lite, across four
device architectures: watch-only, watch+phone, watch+phone+cloud,
and watch+cloud. These approaches were intentionally selected to
examine tradeoffs in computational and network requirements,
power efficiency, data privacy, and latency. While direct compar-
ison to prior work is challenging, our experiments show that the
best classification model (VGG-lite) performed similarly to the
state of the art for non-portable devices while requiring substan-
tially less memory (~1/3rd). We also observed a strict accuracy-
latency trade-off: the most accurate model was also the slowest (avg.
accuracy==81.2%, SD=5.8%; avg. latency=3397ms, SD=42ms). Finally,
we found that the two phone-based architectures (watch+phone
and watch+phone+cloud) outperformed the watch-centric designs
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(watch-only, watch+cloud) in terms of CPU, memory, battery usage,
and end-to-end latency.

To complement these quantitative experiments, we built and con-
ducted a qualitative lab evaluation of a smartwatch-based sound
awareness app, called SoundWatch (Figure 1), with eight DHH par-
ticipants. SoundWatch incorporates the best performing classifica-
tion model from our system experiments (VGG-lite) and, for the
purposes of evaluation, can be switched between all four device ar-
chitectures. During the 90-min study session, participants used our
prototype in three locations on a university campus (a home-like
lounge, an office, and outdoors) and took part in a semi-structured
interview about their experiences, their views regarding accuracy-
latency tradeoffs and privacy, and ideas and concerns for future
wearable sound awareness technology. We found that all partici-
pants generally appreciated SoundWatch across all three contexts,
reaffirming past sound awareness work [4, 8]. However, misclassi-
fications were concerning, especially outdoors due to background
noise. For accuracy-latency tradeoffs, participants wanted mini-
mum delay for urgent sounds (e.g., car honk, fire alarms)—to take
any required action—but maximum accuracy for non-urgent sounds
(e.g., speech, background noise) to not be unnecessarily disturbed.
Finally, participants selected watch+phone as the most preferred
architecture because of privacy concerns with the cloud, versa-
tility (no Internet connection required), and speed (watch+phone
classified faster than watch only).

In summary, our work contributes: (1) a comparison of four deep
learning models for sound classification on mobile devices, includ-
ing accuracy-latency results, (2) a new smartwatch-based sound
identification system, called SoundWatch, with support for four dif-
ferent device architectures, and (3) qualitative insights from in-situ
evaluation with eight DHH users, including reactions to our designs,
architecture preferences, and ideas for future implementations.

2 RELATED WORK

We contextualize our work within sound awareness needs and tools
of DHH people as well as prior sound classification research.

2.1 Sound Awareness Needs

Prior formative studies have investigated the sounds, audio charac-
teristics, and feedback modalities desired by DHH users. In terms
of sounds of interest, two large-scale surveys by Findlater et al.
[4] and Bragg et al. [3] with 201 and 87 participants respectively
showed that DHH people prefer urgent and safety-related sounds
(e.g., alarms, sirens) followed by appliance alerts (e.g., microwave
beep, kettle whistle) and sounds about the presence of people (e.g.,
door knock, name calls). These preferences may be modulated by
cultural factors: participants who prefer oral communication were
more interested in some sounds (e.g., phone ring, conversations)
than those who prefer sign language [3, 4].

In addition to desired sounds, prior work has shown DHH users
desire certain characteristics of sound (e.g., identity, location, time of
occurrence) more than others (e.g., loudness, duration, pitch) [8, 27].
However, the utility of these characteristics may vary by physical
location. For example, at home, awareness of a sound’s identity and
location may be sufficient [20, 21], but directional indicators may
be more important when mobile [32]. Besides location, Findlater et
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al. [4] showed that social context (e.g., friends vs. strangers) could
influence the use of the sound awareness tool and thus customiza-
tion (e.g., using sound filtering) is essential. Informed by this work,
Goodman et al. [8] explored using smartwatch designs in different
locations (e.g., bus stop, coffee shop), including the sound filtering
options (e.g., using identity, direction, or loudness).

In terms of feedback modalities, several studies recommend com-
bining visual and vibrational information for sound awareness
[8, 31, 32]; a smartwatch can provide both. To help users consume
sound feedback information, past work recommends using vibra-
tion to notify about sound occurrence and a visual display for
showing additional information [3, 20]—which we also explore—
although a recent study also showed promise in using vibration
patterns (tactons) to convey richer feedback (e.g., direction) [8].
In the same study, participants valued the role of smartwatch as a
glanceable, private, and portable display that can be used in multiple
contexts.

We build on the above studies by examining the use of working
smartwatch prototypes in three contexts, revealing qualitative reac-
tions, system design suggestions, and location-based customization
options.

2.2 Sound Awareness Technologies

Early research in sound awareness studied vibrotactile wrist-worn
solutions, mainly to aid speech therapy by conveying voice tone
[45] or frequency [44]; that work is complementary to our non-
speech sound awareness. Researchers have also tried methods to
completely substitute hearing with tactile sensation using more
larger, more obtrusive form factors such as waist-mounted [36] or
neck-worn [7], but this has shown little promise.

More recent work has examined stationary displays for sound
awareness [14, 27, 28, 43], such as on desktops [14, 27]. Though use-
ful for their specific applications, these solutions are not conducive
to multiple contexts. Towards portable solutions, Bragg et al. [6]
and Sicong et al. [31] used smartphones to recognize and display
sound identity (e.g., phone ringing, sirens). However, they evalu-
ated their app in a single context (office [3], a deaf school [40]) and
focused on user interface rather than system performance—both
are critical to user experience, especially given the constraints of
low-resource devices [11, 23].

Besides smartphones, wearable solutions such as head-mounted
displays [9, 13, 18] and wrist-worn devices [22, 34] have been ex-
amined. For example, Gorman [9] and Kaneko et al. [22] displayed
the direction of sound sources using a head-mounted display and a
custom wrist-worn device, respectively. We explore smartwatches
to provide sound identity, the most desired sound property by DHH
users [3, 19, 27]. While not specifically focused on smartwatches,
Jain et al. [21] examined smartwatches as complementary alerting
devices to smarthome displays deployed that sensed and processed
sound information locally and broadcasted it to the smartwatches;
we examine a self-contained smartwatch solution for multiple con-
texts.

In summary, while prior work has explored sound awareness
tools for DHH people, including on portable devices [10, 18, 22, 34],
this work has not yet built and evaluated a working smartwatch-
based system—a gap which we address in our work.
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2.3 Sound Classification Research

Early efforts in classifying sounds relied on hand-crafted features
such as zero-crossing rate, frame power, and pitch [33, 37, 38].
Though they performed reasonably well on clean sound files with
a small number of classes, these features fail to account for acous-
tic variations in the field (e.g., background noise) [26]. More re-
cently, machine learning based classification has shown promise
for specific field tasks such as gunshot detection [5] or intruder
alert systems [2]. Specifically for DHH users, Bragg et al. [3] ex-
plored a preliminary GMM-based sound detection algorithm to
classify two sounds (alarm clock, door knock) in an office setting.
For more broad use cases, deep learning-based solutions have been
investigated [21, 40]. For example, Sicong et al. [40] explored a
lightweight CNN-based architecture on smartphones to classify
nine sounds preferred by DHH users (e.g., fire alarm, doorbell) in
a school setting. Jain et al. [21] used deep convolutional neural
networks running on a tablet to classify sounds in the homes of
DHH users, achieving an overall accuracy of 85.9%. We closely
follow the latter approach in our work but use embedded devices
(phone, watch) and perform evaluations in varying contexts (home,
work, outdoors). We also train and evaluate four low-resource deep
learning models and possible watch-based architectures, as well as
collect user preferences.

3 THE SOUNDWATCH SYSTEM

SoundWatch is an Android-based app designed for commercially
available smartwatches to provide glanceable, always-available,
and private sound feedback in multiple contexts. Building from
previous work [8, 21], SoundWatch informs users about three key
sound properties: sound identity, loudness, and time of occurrence
through customizable sound alerts using visual and vibrational
feedback (Figures 1 and 3). We use a deep learning-based sound
classification engine (running on either the watch or on the paired
phone or cloud) to continually sense and process sound events in
real-time. Below, we describe our sound classification engine, our
privacy-preserving sound sensing pipeline, system architectures,
and implementation. The SoundWatch system is open sourced on
GitHub: https://github.com/makeabilitylab/SoundWatch.

3.1 Sound Classification Engine

To create a robust, real-time sound classification engine, we fol-
lowed an approach similar to HomeSound [21], which uses transfer
learning to adapt a deep CNN-based image classification model
(VGQG) for sound classification. We downloaded four recently re-
leased (in Jan 2020 [46]) TensorFlow-based image-classification
models for small devices: MobileNet, 3.4MB [15], Inception, 41MB
[41], ResNet-lite, 178.3MB [42], and a quantized version of model
used in HomeSound [21], which we call VGG-lite, 281.8MB. Since
the size of four models differ considerably, we hypothesized that
they would offer different tradeoffs in terms of accuracy and latency.

To perform transfer learning, similar to Jain et al. [21], we used
a large corpus of sound effect libraries—each of which provide a
collection of high-quality, pre-labeled sounds. We downloaded 20
common sounds preferred by DHH people (e.g., dog bark, door
knock, speech) [3, 20] from six libraries—BBC [47], Freesound [6],
Network Sound [48], UPC [49], TUT [30] and TAU [1]. All sound
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Table 1: The sounds and categories used to train our sound classification models

All sounds

Fire/smoke alarm, Alarm clock, Door knock, Doorbell, Door-in-use, Microwave, Washer/dryer, Phone

(N=20) ringing, Speech, Laughing, Dog bark, Cat meow, Baby crying, Vehicle running, Car horn, Siren, Bird chirp,

Water running, Hammering, Drilling
Fire/smoke alarm, Alarm clock, Door knock

High priority
(N=3)

Medium priority Fire/smoke alarm, Alarm clock, Door knock, Doorbell, Microwave, Washer/dryer, Phone ringing, Car horn,

(N=10) Siren, Water running

Home context Fire/smoke alarm, Alarm clock, Door knock, Doorbell, Door-in-use, Microwave, Washer/dryer, Speech, Dog

(N=11) bark, Cat meow, Baby crying

Office context Fire/smoke alarm, Door knock, Door-in-use, Phone ringing, Speech, Laughing

(N=6)

Outdoor context Dog bark, Cat meow, Vehicle running, Car horn, Siren, Bird chirp, Water running, Hammering, Drilling

(N=9)

clips were converted to a single format (16KHz, 16-bit, mono) and
silences greater than one second were removed, which resulted in
35.6 hours of recordings. We then divided the sounds into three
categories based on prior work [3, 27]: high priority (containing the
3 most desired sounds by DHH people), medium-priority sounds
(10 sounds), and all sounds (20 sounds) (see Table 1). We used the
method in Hershey et al. [12] to compute the log mel-spectrogram
features in each category, which were then fed to the four models,
generating three models of each architecture (12 in total).

3.2 Sound Sensing Pipeline

For always-listening apps, privacy is a key concern. While Sound-
Watch relies on a live microphone, we designed our sensing pipeline
to protect user privacy. The system processes the sound locally on
the watch or phone and, in the case of the cloud-based architectures,
only uploads non-reconstructable mel-spectrogram features. While
the uploaded features can be used to identify the kind of activity a
user is engaged in (e.g., speaking, cooking), conversational infor-
mation is not retrievable. For signal processing, we take a sliding
window approach: the watch samples the microphone at 16KHz
and segments data into 1-second buffers (16,000 samples), which
are fed to the sound classification engine. To extract loudness, we

7 1

SoundWatch

Record audio

Compute features

compute the average amplitude in the window. All sounds at or
above 50% confidence and 45dB loudness are notified to the user,
the others are ignored.

3.3 System Architectures

We implemented four device architectures for SoundWatch: watch-
only, watch+phone, watch+cloud, and watch+phone+cloud (Figure
2). Because the sound classification engine (computing features and
predicting sound) is resource intensive, the latter three architectures
use a more powerful device (phone or cloud) for classification. For
only the cloud-based architectures, to protect user privacy, non-
reconstructable sound features are computed before being sent to
the cloud—that is, on the watch (watch+cloud) or on the phone
(watch+phone+cloud). We use Bluetooth Low Energy (BLE) for
watch-phone communication and WiFi or a cellular network for
watch-cloud or phone-cloud communication.

3.4 User Interface

To increase glanceability, we designed the SoundWatch app as a
push notification; when a classified sound event occurs, the watch
displays a notification along with a vibration alert. The display
includes sound identity, classification confidence, loudness, and

Predict sound

Display notification

Figure 2: A diagram of the four SoundWatch architectures and a breakdown of their sensing pipelines. Block widths are for
illustration only and are not indicative of actual computation time.
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SoundWatch

Press the button to
begin recording

Speech, 75%

Loud (71 dB)

X 10 min

(b)
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10:09

SoundWatch

+~ Hazard alarm
Alarm clock

Speech, 75%
X 1 min
X 10 min

~/ Doorbell
~/ Door knock
~ Microwave
~ Speech
Car horn

X 1 hour

Figure 3: The SoundWatch user interface showing the opening screen with a button to begin recording the audio for classifi-
cation (a), the notification screen with a “10-min” mute button (b), and the main app screen with more mute options (c). (d)
shows a partial view of the paired phone app to customize the list of enabled sounds.

time of occurrence (Figure 3). Importantly, each user can mute
an alerted sound by clicking on the “10-min” mute button, or by
clicking on the “open” button and selecting from a scroll list of mute
options (1 min, 5 min, 10 min, 1 hour, 1 day, or forever). Additionally,
the user can select which sounds to receive alerts for by using the
paired phone app, which displays a customization menu (Figure 3d).
While future versions should run as an always-available service in
Android, currently the app must be explicitly opened on the watch
to run (Figure 3a). Once the app is opened, it continuously runs in
the background.

4 SYSTEM EVALUATION

To assess the performance of our SoundWatch system, we perform
two sets of evaluations: (1) a comparison of the four state-of-the-
art sound classification models for embedded devices and (2) a
comparison of the four architectures: watch-only, watch+phone,
watch+cloud, and watch+phone+cloud. For all experiments, we used
the Android Ticwatch Pro watch (4x1.2GHz, 1GB RAM) [50] and the
Honor 7x Android phone (8x2GHz, 3GB RAM) [51]. For emulating
the cloud, we used an Intel i7 desktop running Windows 10.

4.1 Model Comparison

To determine how different models perform on the watch and
phone, we trained and evaluated the classification accuracy and
speed of our four model architectures. To compare with prior ap-
proaches in sound classification, we also evaluated the full-VGG
model (281.8MB) on a non-portable device. Below we detail the
experiments and results.

4.1.1  Accuracy. To calculate the “in-the-wild” inference accuracy
[52] of the models, we collected our own ‘naturalistic’ sound dataset
similar to HomeSound [21]. We recorded 20 sound classes from nine
locations (three homes, three offices, three outdoors) using the
same hardware as SoundWatch: the TicWatch Pro with a built-in
microphone. For each sound class, we recorded three 10-second
samples at three distances (5, 10, and 15 feet). We attempted to
produce sounds naturally (e.g., using a microwave or opening the
door). For certain difficult-to-produce sounds—like a fire alarm—we
played snippets of predefined videos on a laptop or phone with

external speakers (54 total videos were used). In total, we collected
540 recordings (~1.5 hours).

Before testing our model, we divided our recordings into the
three categories (all sounds, high priority, medium priority) simi-
lar to our training set (Table 1). For the medium and high priority
testsets, 20% of the sound data that we added was from excluded cat-
egories that our models should ignore (called the “unknown” class).
For example, 20% of the high priority testset included recordings
from outside of the three high priority sound classes (fire/smoke
alarm, alarm clock, door knock).

For this experiment, we classified data in each category using the
models. The results are shown in Figure 4. Overall, VGG-lite per-
formed best (avg. inference accuracy=381.2%, SD=5.8%) followed by
ResNet-lite (65.1%, SD=10.7%), Inception (38.3%, SD=17.1%) and Mo-
bileNet (26.5%, SD=12.3%); a post hoc one-way repeated measures
ANOVA on all sounds yielded a significant effect of models on the
accuracy (F3 2156 = 683.9, p <.001). As expected, the inference accu-
racy increased as the number sounds decreased from all (20 sounds)
to medium (10 sounds) and high priority (3 sounds). For example, if
we only classify the three highest-priority sounds, our average accu-
racies increase from 81.2% (SD=5.8%) to 97.6% (SD=1.7%) for VGG-
lite and from 65.1% (SD=10.7%) to 78.1% (SD=11.9%) for ResNet-lite.
Finally, in analyzing performance as a function of location con-
text, home and office outperformed outdoors for all models. With
VGG-lite, for example, average accuracies were 88.6% (SD=3.1%) for
home, 86.4% (SD=4.3%) for office, and 71.2% (SD=28.2%) for outdoors.
A post hoc inspection revealed that outdoor sound recordings may
have incurred interference due to the background noise.

To further assess model performance, we computed a confusion
matrix for medium-priority sounds, which helps highlight inter-
class errors (Figure 5). While per-class accuracies varied across
models, microwave, door knock, and washer/dryer were consistently
the best performing classes with VGG-lite achieving average accura-
cies of 100% (SD=0), 100% (SD=0), and 96.3% (SD=2.3%) respectively.
The worst performing classes were more model dependent but gen-
erally included alarm clock, phone ring, and siren with VGG-lite
achieving 77.8% (SD=8.2%), 81.5% (SD=4.4%), and 88.9% (SD=3.8%)
respectively. For these poorer performing classes, understandable
mix-ups occurred—for example, alarm clocks and phones rings,
which are similar sounding, were commonly confused.
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MobileNet Inception ResNet-lite VGG-lite

NPTl 26.5(12.3) 38.3(17.1)  65.1(10.7) 81.2(5.8)

YRRl 41.8(116) 59.0(20.8) 78.1(11.9)  89.6 (8.7)

TR @ 63.0(85) 829(7.6) 91.1(34)  97.6(1.7)

Home

30.5 (6.4)

41.7(139) 713(64)  88.6(3.1)

i) 31.2(89) 439(11.7) 705(64)  86.4 (4.3)

Outdoors 320(232) 563(153) 712(8.2)

Avg. Accuracy (%)
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Figure 4: Average accuracy (and SD) of the four models for three sound categories and three contexts. Error bars in the graph

show 95% confidence intervals.

4.1.2 Latency. In addition to accuracy, the speed with which a
model performs classifications is crucial to achieving a real-time
sound identification system. To evaluate model latency, we mea-
sured the time required to classify sounds from the input features
on both the watch and the phone. We wrote a script to loop through
the sound recordings in our dataset for three hours (1080 sounds)
and measured the time taken for each classification. Understand-
ably, the latency increased with the model size: the smallest model,
MobileNet, performed the fastest on both devices (avg. latency
on watch: 256ms, SD=17ms; phone: 52ms, SD=8ms), followed by
Inception (avg. latency on watch: 466ms, SD=15ms; phone: 94ms,
SD=4ms), and ResNet-lite (avg. latency on watch: 1615ms, SD=30ms;
phone: 292ms, SD=13ms). VGG-lite, the largest model, was the
slowest (avg. latency on watch: 3397ms, SD=42ms; phone: 610ms,
SD=15ms).

In summary, for phone and watch models, we observed a strict
accuracy-latency tradeoff—for example, the most accurate model
VGG-lite (avg. accuracy=381.2%, SD=5.8%) was the slowest (avg. la-
tency on watch: 3397ms, SD=42ms). Further, the models MobileNet
and Inception performed too poorly for practical use (avg. accu-
racy < 40%). ResNet-lite was in the middle (avg. accuracy=65.1%,
SD=10.7%; avg. latency on watch: 1615ms, SD=30ms).

4.1.3  Cloud model (VGG-16). To attempt comparison with past
work, we also evaluated the performance of the full VGG model [25]

HA AC DB DKMWWOD PR CH S WR @

HA AC DB DKWWWO PR CH S WR @

o weo o o oA o

VGG-lite ResNet-lite

on the cloud. On average, the inference accuracy (84.4%, SD=5.5%)
was only slightly better than our best mobile-optimized model
(VGG-lite, avg.=81.2%, SD=5.8%). This result is promising because
our VGG-lite model is more than three times smaller than VGG
(281.8MB vs. 845.5MB). However, the full model on the cloud per-
formed much faster (avg. latency=80ms, SD=5ms) than our models
on phone or watch.

4.2 Architecture Evaluation

Besides model evaluation, we also compared the performance of
four different architecture designs for the SoundWatch system:
watch-only, watch+phone, watch+cloud, and watch+phone+cloud.
These architectures differ in terms of where classification compu-
tations occur, battery usage, classification speed, network require-
ments, and privacy—which impacts both technical performance
and usability.

For our architecture evaluation, we used the most accurate model
on the watch and phone: VGG-lite; the cloud used the full VGG
model. Informed by prior work [11, 23, 29], we measured CPU,
memory, and network usage, end-to-end latency, and battery con-
sumption. For the test, we used a script running on a laptop that
looped through the sound recordings for three hours to generate
sufficient sound samples (1080). For the battery experiment only,
the script ran until the watch battery reached 30% or less (i.e., just

HA AC DB DK WWWD PR CH S WR o HA AC DB DEKWWWD PR CH S WR @
HA, [l 1] 0.4 0 0
P 0.1 0.1 0.2 g I]WI]I[I"‘I]I
DB O ek O O 0 0 DB 0. 0
DK 0 0 0 [k 0 0 DK
[y 0 Ty
wbh o 0o 00 WDho
PR O 0 PR

WR
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Figure 5: Confusion matrices for the four models when classifying 10 sounds in the medium-priority category. Darker
blue indicates higher accuracy. HA=Hazard Alarm, AC=Alarm Clock, DB=Doorbell, DK=Door Knock, MW=Microwave,
WD=Washer/Dryer, PR=Phone Ringing, CH=Car Horn, S=Siren, WR=Water Running, @=Unknown.



SoundWatch: Exploring Smartwatch-based Deep Learning Approaches to Support Sound Awareness for Deaf and

Hard of Hearing Users

(a) CPU
99 b
Watch

223
23

Phone 149

0 20 40 60 80 100
Avg. CPU Usage (%)

ASSETS ’20, October 26-28, 2020, Virtual Event, Greece

(b) Memory

W-Only

W-C
Bl w-P
Il W-P-C

60 120 180 240 300 360
Avg. Memory Usage (MB)

Figure 6: Average CPU (a) and memory (b) usage of the four architectures (using the VGG-lite model). Error bars show 95%

confidence intervals.

above the 25% trigger for low-power mode), a common evaluation
approach (e.g., see [29]).

To determine CPU, memory, and network usage, we used Android
Profiler [53], a commonly used tool in the literature [16]. For the
battery, we used Battery Historian [54]. Finally, to determine end-
to-end latency, we measured the elapsed time (in milliseconds)
between the start of the sound recording window to when the
notification is shown. Below, we detail the results.

4.2.1 CPU Utilization. Minimizing CPU utilization is crucial to
maximizing the smartwatch’s battery performance and lowering
the impact on other running apps. Our results for CPU usage on the
watch and phone are shown in Figure 6a. As expected, the watch’s
CPU utilization was lowest when classifications were performed on
the phone (watch+phone; avg.=22.3%, SD=11.5%, max=42.3%) or in
the cloud (watch+phone+cloud; avg.=23.0%, SD=10.8%, max=39.8%).
Here, the watch is used only for recording sounds, transmitting data
via Bluetooth, and displaying sound feedback. For watch+cloud, the
watch is computing the sound features and communicating directly
with the cloud via WiFi for classification, which resulted in signifi-
cantly higher CPU utilization (avg.=51.1%, SD=14.9%, max=76.1%).
Finally, if the entire classification model runs on the watch directly,
the CPU utilization is nearly maxed out (avg.=99.0%, SD=2.1%,
max=100%) and is thus not practical for real-world use.

4.2.2 Memory usage. A smartwatch app must also be memory
efficient. We found that the memory usage was primarily de-
pendent on where the model (281.8MB) was running, hence,
watch-only and watch+phone consumed the highest memory on
the watch (avg.=344.3MB, SD=2.3MB, max=346.1MB) and phone
(avg.=341.5MB, SD=3.0MB, max=344.1MB) respectively (Figure 6b).
This indicates that running a large model like VGG-lite on the
watch could exceed the memory capacity of some modern watches
(e.g., [55]). The other app processes (e.g., Ul computing features,
network) required less than 50MB of memory.

4.2.3 Network usage. Having a low network requirement increases
the portability of an app, especially for low-signal areas. Addition-
ally, some users may feel uncomfortable with their data being up-
loaded to the cloud, even with privacy and security measures in
place. For our cloud-based architectures, we found minimal net-
work consumption: for watch+cloud, the average was 486.8B/s
(SD=0.5B/s, max=487.6B/s) and for watch+phone+cloud, it was
486.5B/s (SD=0.5B/s, max=487.2B/s); both are negligible compared
to the network bandwidth of modern IoT devices. The non-cloud

architectures used no network bandwidth as they perform all classi-
fications locally on the device(s): either the watch or watch+phone.

4.2.4  Battery consumption. A fully mobile app needs to be energy
efficient. We measured the battery drain from full charge until
30% (Figure 7). First considering the watch-based architectures, the
watch-only architecture used a large amount of battery: 30% at 3.3
hours, a 6.3x increase over the baseline (without our app). Within
the remaining three architectures, both watch+phone (30% at 15.2
hours, 1.4x over baseline) and watch+phone+cloud (30% at 16.1
hours, 1.3x over baseline) were more efficient than watch+cloud
(30% at 12.5 hours, 1.7x over baseline), because the latter used WiFi
which is less energy efficient than BLE [39].

Similar trends were observed on the phone; however, running
the model on the phone (watch+phone) was still tolerable (1.3x
over baseline) as compared to the watch (6.3x over baseline). In
summary, we expect that the watch-only architecture would be
impractical for daily use, while the other architectures are usable.

4.2.5 End-to-end latency. Finally, a real-time sound awareness
feedback system needs to be performant. Figure 8 shows a com-
putational breakdown of end-to-end latency, that is, the total time
spent in obtaining a notification for a produced sound. On aver-
age, watch+phone+cloud performed the fastest (avg. latency=1.8s,
SD=0.2s). This was followed by watch+phone (avg.=2.2s, SD=0.1s),
which needed more time for running the model on the phone
(vs. cloud), and watch+cloud (avg.=2.4s, SD=0.0s) which required
more time to compute features on the watch (vs. phone in
watch+phone+cloud). As expected, watch-only was significantly
slower (avg.=5.9s, SD=0.1s) and is thus, currently unusable (though
future smartwatch generations will be more capable). In summary,
except for watch-only, all architectures had a latency of ~2s; we
evaluate whether this is acceptable in the user study.

4.2.6 Summary. Overall, we found that watch+phone and
watch+phone+cloud outperformed the watch+cloud architecture
for all system parameters. Additionally, the watch-only architec-
ture was impractical for real-life use due to high CPU, memory,
and battery usage, as well as a large end-to-end latency. Within
the phone-based architectures, the watch+phone+cloud performed
better than the watch+phone.
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Figure 8: Breakdown of end-to-end latency for the four architectures.

5 USER STUDY

To gather qualitative feedback on our system results and general re-
actions to smartwatch-based sound awareness in multiple contexts,
we performed a lab and campus walkthrough evaluation of our
SoundWatch app with eight DHH participants. SoundWatch is de-
signed to support all four device architectures and can be switched
between them; however, based on our system experiments above,
we used the best performing architecture (watch+phone) and model
(VGG-lite) for the user study.

5.1 Participants

We recruited eight DHH participants (3 women, 3 men, 2 non-
binary) using email, social media and snowball sampling (Table 2).
Participants were on average 34.8 years old (SD=16.8, range=20—
63). Four had profound hearing loss, three had severe, and one had
moderate. Seven reported onset as congenital and one reported one
year of age. Seven participants reported using hearing devices: three
participants used cochlear implants, one used hearing aids, and
three used both. For communication, five participants preferred sign
language, and three preferred to speak verbally. All reported fluency
with reading English (5/5 on rating scale, 5 is best). Participants
received $40 as compensation.

Table 2: Demographics of the DHH participants.

ID Age Gender Identity Hearing loss Onset age Hearing device
P1 31 Male hard of hearing Moderate Birth Hearing aids

P2 26 Female deaf Profound 1 year Cochlear implants
P3 20 Non-binary deaf Profound Birth Cochlear implants
P4 20 Female hard of hearing Severe Birth Both

P5 57 Male deaf Severe Birth Both

P6 23 Female Deaf Profound Birth Both

P7 38 Non-binary Deaf Severe Birth None

P8 63 Male Deaf Profound Birth Cochlear implants
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5.2 Procedure

The in-person procedure took place on a university campus and
lasted up to 90 minutes. Sessions were led by the first author who
is hard of hearing and knows level-2 ASL. A real-time transcrip-
tionist attended all sessions, and five participants opted to addition-
ally have a sign language interpreter. Instructions and interview
questions were presented visually on an iPad (see supplementary
materials), while responses and follow-up discussion were spoken
or translated to/from ASL. The session began with a demographic
and background questionnaire, followed by a three-part protocol,
the first and third of which took place in a quiet conference room:

5.2.1 Part 1: Introduction of SoundWatch prototype (5-10 mins). In
the first phase, we asked about general thoughts on using smart-
watches for sound awareness. Participants were then asked to wear
the watch running SoundWatch. To demonstrate the app, a re-
searcher made three example sounds (speech, door knock, and
phone ring) while explaining the watch and the phone UL Partici-
pants were also encouraged to make their own sounds such as by
speaking or knocking to examine SoundWatch’s behavior.

5.2.2  Part 2: Campus walk (20-25 mins). For Part 2, the researcher
and the participant (with the watch and phone) visited three loca-
tions on campus in a randomized order: (1) a home-like location
(lounge of our building), (2) an office-like location (a grad student
office), and (3) an outdoor location (a bus stop). These locations
enabled the participants to experience SoundWatch in different
contexts and soundscapes. In each location, participants used the
watch naturally for about five minutes (e.g., by sitting on a chair
in an office, or walking and conversing outdoors). In locations
with insufficient sound activity (e.g., if the lounge was empty on
weekends), the researcher produced some sounds (e.g., by running
the microwave, or washing hands). Participants were also encour-
aged to use the sound customization options (mute on watch and
checklist on phone) if they desired. Before exiting each location,
participants filled a short feedback form to rate their experience on
a 5-point scale and document any open-ended comments.

5.2.3  Part 3: Post-trial interview (45-50 mins). After completing the
three locations, participants returned to the lab for Part 3. Here, we
conducted a semi-structured interview inquiring about the partici-
pant’s overall experience and perceptions of SoundWatch across
the different locations, reactions to the UI, privacy concerns, and
future design ideas. We then transitioned to asking about specific
technical considerations, including accuracy-latency tradeoffs and
the four possible SoundWatch architectures. For accuracy-latency,
we explained the concept and then asked about their expectations
for minimum accuracy, maximum delay, and whether their per-
spectives changed based on sound type (e.g., urgent vs. non-urgent
sounds) or context (e.g., home, office). To help discuss the four
SoundWatch architectures—and to more easily allow our partici-
pants to understand and track differences—we prepared a chart (see
supplementary materials) enumerating key characteristics such as
battery or network usage and a HIGH, MEDIUM, or LOW rating
based on our system experiment findings. Finally, we asked partici-
pants to rate the “ease-of-use” of each architecture (high, med, or
low) by weighing factors such as the Internet requirement, number
of devices to carry (e.g., 1 for watch-only vs. 2 for watch+phone),
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and the size of visual display (e.g., small for watch vs. medium for
phone), and to specify reasons for their rating.

5.3 Data Analysis

The interview transcripts and the in-situ form responses were ana-
lyzed using an iterative coding approach [7]. To begin, we randomly
selected three out of eight transcripts; two researchers indepen-
dently read these transcripts and identified a small set of potential
codes. These codes were used to develop a mutually agreeable initial
codebook to apply holistically to the data. The two researchers then
used a copy of the codebook to independently code the three tran-
scripts, while simultaneously refining their own codebook (adding,
merging or deleting codes). After this step, the researchers met
again to discuss and refine the codebook, and resolve any disagree-
ments on the code assignments. The final codebook contained a
two-level hierarchy (12 level-1 codes, 41 level 2- codes), of which
the level-1 codes form the high-level themes. This codebook was
then used to independently code the remaining five transcripts.
For this last step, interrater agreement between the two coders,
measured using Krippendorff’s alpha [24], was on average 0.79
(SD=0.14, range=0.62-1) and the raw agreement 93.8% (SD=6.1%,
range==84.4%-100). Again, the conflicting code assignments were
resolved through consensus.

5.4 Findings

We detail experience with SoundWatch during the campus walk
as well as comments on model accuracy-latency, different system
architectures, and the user interface. Quotes are drawn verbatim
from the post-trial interview transcripts and in-situ form responses.

5.4.1 Campus walk experience. For the campus walk with Sound-
Watch, we describe the participants’ thoughts on the overall use-
fulness of the prototype and the variation with contexts. All par-
ticipants found the watch generally useful in all three contexts (a
home-like lounge, office, and outdoors) to help with the everyday
activities. For example,

“My wife and I tend to leave the water running all the
time so this app could be beneficial and save on water
bills. It was helpful to know when the microwave

beeps instead of having to stare at the time [display].
(P6)

“This is very useful for desk type work situations.
I can use the watch to help alert me if someone is
knocking the door, or coming into the room from
behind me.“ (P7)

However, participants (8/8) also noticed problems with Sound-
Watch, the most notable being delay and misclassifications; the
latter were higher in outdoor contexts than in others. For example,

“Delay might be a problem. When a person came into
a room, that person surprised me before the watch
notified me [about door-in-use]” (P5)

“It doesn’t feel refined enough with outside sounds
and background noises. The app is perfect for quiet
settings such as home and outdoor activities (e.g.,
hiking in the woods). [While outdoors,] some sounds
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were misinterpreted, such as cars were recognized as
water running” (P3)

In-situ feedback form ratings reflect these comments, with aver-
age usefulness for lounge (4.8/5, SD=0.4) and office (4.6/5, SD=0.5)
being higher than for outdoors (3.5/5, SD=0.5). Even with a low
usefulness rating, all participants wanted to use SoundWatch for
outdoor settings, mentioning that they can use context to supple-
ment the inaccurate feedback (5/8):

“Sure there were some errors outdoors, but it tells me
sounds are happening that I might need to be aware
of, so I can [visually] check my environment..” (P7)

Besides usefulness, the app usage also changed with location.
As expected, all participants chose to enable different sounds for
each location; the obvious common choices were fire/smoke alarm,
microwave, water running, and speech for lounge; door knock,
door-in-use, and speech for office; and bird chirp, car horn, and
vehicle running for outdoors, as determined from the system logs.
The total number of enabled sounds were also different for each
location (avg. 8.3 for lounge, SD=1.2; 7.5 for office, SD=1.5; and 4.2
for outdoors, SD=2.6)—for outdoors specifically, 5/8 participants
speculated that the app accuracy may decrease with background
noise, and thus deselected all un-important sounds to compensate.
For example,

“I deselected ‘Speech’ for outside because I didn’t
want to know someone was talking outside. It’s noisy.
[...] I only selected ‘car honk’, ‘vehicle running’ and
‘siren’ [as] they are the bare minimum I need. It
seemed to work well then.” (P2)

5.4.2  Model Accuracy-Latency Comparison. Because deep learning-
based sound recognition will likely have some error and latency,
we asked participants about the maximum tolerable delay and the
minimum required accuracy for a future smartwatch app. The most
common general preference was a maximum delay of “five seconds”
(5/8) and a minimum accuracy of 80% (6/8); however, this choice
was additionally modulated by the type of sound. Specifically, for
the urgent sounds (e.g., fire alarms or car horn), participants wanted
the minimum possible delay (but would tolerate inaccuracy) to get
quick information for any required action. For example,

“because I'll at least know something is happening
around me and I can use my eyes to look around and
see if a car is honking at me..” (P2)

“If an important sound is not occurring, I would just
be disturbed for a moment, that’s all [...] But, if it’s an
alarm and if this [watch] misses it, that is a problem.
(P1)
In contrast, for non-urgent sounds (e.g., speech, laughing) more

accuracy was preferred because repeated errors could be annoying
(7/8). For example,

“I don’t care about speech much, so if there is a con-
versation, well fine, doesn’t matter if I know about it
1-2 second later or 5 seconds later, does it? But if it
makes mistakes and I have to get up and check who
is speaking every time it makes a mistake, it can be
really frustrating” (P5)

Dhruv Jain et al.

Finally, if a sound is a medium priority for the participants (e.g.,
microwave for P3), participants wanted a balance, that is, a moder-
ate amount of delay is tolerable for moderate accuracy (7/8).

Besides variation with sound type, we asked if the accuracy-
latency preference would change with the context of use (home vs.
office vs. outdoors). In general, similar to the type of sound prefer-
ences, participants erred towards having less delay in more urgent
contexts and vice versa. For the home, participants (8/8) wanted
high accuracy (more delay is acceptable) because, for example:

“I already know most of what is going on around my
home. And when I am at home, I am generally more
relaxed [so] delay is more acceptable. But, I would not
want to be annoyed by errors in my off time”” (P8)

For the office, participants (6/8) felt they would tolerate a mod-
erate level of accuracy with the advantage of having less delay,
because “something may be needing my attention but it’s likely not
a safety concern” (P8). Finally, preferences for outdoors were split:
four participants wanted less delay overall with outdoor sounds,
but the other four participants did not settle for a single response,
saying that the tradeoff would depend on the urgency of the sound
outdoors, for example:

“if it’s just a vehicle running on the road while I am
walking on the sidewalk, then I would want it to only
tell if it’s sure that it’s a vehicle running, but if a car
is honking say if it behind me, I would want to know
immediately” (P2)

5.4.3  Architecture Comparison. By saliently introducing the per-
formance metrics (e.g., battery usage) and usage requirements
(e.g., Internet connection for cloud), we gathered qualitative prefer-
ences for the four possible SoundWatch architectures: watch-only,
watch+phone, watch+cloud, and watch+phone+cloud during the
interview.

In general, watch+phone was the most preferred architecture for
all participants, because, compared to watch-only, it is faster, re-
quires less battery, and has more visual state available for customiza-
tion. In addition, compared to cloud-based designs, watch+phone is
more private and self-contained (does not need Internet).

However, five participants wanted the option to be able to cus-
tomize the architecture on the go, mentioning that in outdoor set-
tings, they would instead prefer to use watch+phone+cloud because
of additional advantages of speed and accuracy. This is because in
the outdoor context, data privacy was less of a concern for them.
For example, P6 said:

“Whenever the Internet is available, I prefer cloud for
outdoors instead of home/office because of possible
data breach at home/office [...] Accuracy problems
could be more [outdoors] due to background noise
and [thus] I prefer to use cloud if [the] internet is
available”

Watch+cloud was preferred by two participants only for cases
where it is hard to carry a phone, such as in a “gym or running
outdoors” (P1); others did not share this concern as they reported
always carrying the phone—for example: "I can’t really imagine a
situation where I would have my watch and not my phone.” (P4).
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Finally, watch-only was not preferred for any situation because of a
large battery drain, and a small input area (e.g., for customization).

5.4.4  User Interface Suggestions. Overall, participants appreciated
the minimalistic app design, including the information conveyed
(identity, loudness, and time) (8/8) and the customization options
(mute button, checklist on phone) (7/8). When asked about future
improvements, participants suggested three. First, they wanted the
app to indicate the urgency of sounds—for example, using vibration
patterns or visual colors (e.g., one pattern/color for high priority
sounds, and another for low priority sounds). Second, to increase
utility, participants suggested to explore showing multiple over-
lapping sounds (5/8), the most urgent sound (3/8), or the loudest
sound (2/8) instead of the most probable sound as in our design. P4
also said that conveying multiple “possible” sounds could help her
compensate for inaccuracy:

“You could give suggestions for what else sound could

be when it’s not able to recognize. For example, [...]

if it is not able to tell between a microwave and a

dishwasher, it could say “microwave or dishwasher”,

or at least give me an indication of how it sounds like,

you know like a fan or something, so I can see and

tell, oh yeah, the dishwasher is running”

Finally, two participants (P3, P8) wanted the direction of sound

source for outdoor context:

“I need to know if the vehicle is running or honking
behind me or on the side of me. If it’s on the side
on the road, then I don’t have to do anything. If it’s
behind me, I will move away.” (P8)

When asked whether they would need direction for home or
office as well, they replied no, stating that context awareness is
higher for those locations (2/2):

“No, not needed for these contexts [home and office]. I
know the locations of where the sound [source] could
be, if it shows “microwave”, it’s in the kitchen. If it’s
“speech”, I know where [my spouse] is” (P3)

6 DISCUSSION

Our work reaffirms DHH users’ needs and user interface prefer-
ences for smartwatch-based sound awareness [8, 32] but also: (1)
implements and empirically compares state-of-the-art deep learning
approaches for sound classification on smartwatches, (2) contributes
a new smartwatch-based sound identification system with support
for multiple device architectures, and (3) highlights DHH users’
reactions to accuracy-latency tradeoffs, classification architectures,
and potential concerns. Here, we reflect on further implications
and limitations of our work.

6.1 Utility of smartwatch-based sound
classification

How well does a smartwatch-based sound classification tool need
to perform to provide value? As both our systems evaluation and
user study reveal, this is a complex question that requires further
study. While improving overall accuracy, reducing latency, and
supporting a broad range of sound classes is clearly important,
participants felt that urgent sounds should be prioritized. Thus, we
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wonder, would an initial sound awareness app that supports three
to ten urgent sounds be useful? More work is needed here. One way
to explore this question would be by releasing SoundWatch—or
a similar app—to the public with multiple customization options,
then studying actual usage and soliciting feedback. However, this
approach also introduces ethical and safety concerns. Automatic
sound classification will never be 100% accurate. High accuracy on a
limited set of sounds could (incorrectly) gain the user’s trust, and the
app’s failure to recognize a safety sound (e.g., a fire alarm) even once
could be dangerous. In general, a key finding of our research and
of other recent work [8, 32] is that users desire customization (e.g.,
which sounds to classify, notification options, sound priorities) and
transparency (e.g., classification confidence) with sound awareness
tools.

6.2 Towards improving accuracy

Our user study suggests a need to further improve system accuracy
or at least explore other ways to mitigate misclassification costs.
One possibility, as our participants suggested, is to explore showing
multiple “possible” sounds instead of the most probable sound—just
as text autocomplete shows n-best words. Another possibility is
to sequentially cascade two models (e.g., see [35]), using the faster
model to classify a small set of urgent sounds and to employ the
slower model for lower-confidence classifications and less-urgent
sounds. End-user customization should also be examined. While
installing the app, each user could select the desired sounds and
the required accuracies, and the app could dynamically fine-tune
the model (e.g., by using a weighted average accuracy metric based
on the sound urgency). Finally, as proposed by Bragg et al. [3],
researchers should explore end-user interactive training of the
model. Here, guided by the app, participants could record sounds
of interest to either improve existing sound classes or to add new
ones. Of course, this training may be tedious and difficult if the
sound itself is inaccessible to the DHH user.

6.3 Privacy implications

Our participants’ showed concern for cloud-based classification
architectures: they valued their own “sound” privacy and of others
around them. However, uploading and storing data on the cloud
has benefits. These datasets can be used for improving the classifi-
cation model. Indeed, modern sound architectures on IoT devices
(e.g., Alexa, Siri) use the cloud for exchanging valuable data. A key
difference to our approach is that these devices only transmit after
listening to a trigger word. Thus, what are the implications for
future always-on, always-listening sound awareness devices? We
see three. First, the users should have control of their sound data.
Indeed, P3 corroborated this:

"l can see myself potentially using the watch +
phone + cloud, if I can, [...] open my laptop and [se-
lect/deselect] what [sound data] gets uploaded and
who gets to see what. Otherwise I fear that [someone]
may misuse something that I don’t want them to.”

This data upload can also be customized based on context (e.g.,
the office might have more private conversations than outdoors).
Second, future apps will need clear privacy policies such as GDPR
[56] or CCPA [57] that outline how and where the data is stored
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and what guarantees the users have. Finally, users should always
have access to their data and to potentially delete it, in entirety,
from the cloud.

6.4 Future smartwatch applications

In contrast to past wearable sound awareness solutions [9, 18, 22],
we used commercially available smartwatches, a mainstream pop-
ular device that is more socially acceptable than HMDs [9, 18] or
custom hardware-based [22, 34] solutions. A recent survey with
201 DHH participants [4] showed that smartwatch-based sound
awareness was preferred over smartphones as well. So, what are
other compelling applications of a smartwatch for DHH users?
Full speech transcription, a highly preferred feature by DHH users
[4, 17] is difficult to accommodate on the small watch screen, but
future deep learning work could explore highlighting important
keywords or summarizing the conversation topics. Sound localiza-
tion is also highly desired [3, 8] and could be explored by coupling
the watch with a small external microphone array or designing a
custom watch with multiple microphones. But, how best to combine
different features (e.g., topic summarization, direction, identity) on
the watch is an open question. Goodman et al. [8] recently investi-
gated different designs for combining sound identity, direction, and
loudness, however, this study was formative with a focus on user
interface design. Future work should explore the system design of
showing multiple features with classification confidence—a chal-
lenging problem given the smartwatch’s low-resource constraints.

6.5 Limitations

Our lab study included a 20-min out-of-lab component intended to
help participants think about and experience SoundWatch across
“real-world” contexts. While useful as an initial, exploratory study,
important pragmatic issues could not be investigated such as user
perception of battery life, integration of the watch into daily life,
and long-term usage patterns. Future work should perform a de-
ployment study and compare results with our lab findings.

Moreover, our model accuracy results, though performed on real-
life recordings of 20 sounds, do not accurately reflect real-world use
as other sounds beyond those 20 may also occur. Our tests, however,
were enough for our goal to compare the models and contextualize
the user study findings. A more accurate experiment would include
a post hoc analysis of sound data collected from longitudinal watch
use.

Finally, we considered our DHH participants (who identify as
deaf, Deaf or hard of hearing) as a homogenous group while re-
porting user study findings. Indeed, past work [3, 4] shows that
these groups, despite their cultural differences, have synergetic
access needs and preferences. Recruiting cross-culturally allowed
us to explore solutions for a diversity of users. Nevertheless, future
work should examine how preferences may vary with culture and
hearing levels.

7 CONCLUSION

In this paper, we performed a quantitative examination of modern
deep learning-based sound classification models and architectures
as well as a lab exploration of a novel smartwatch sound awareness
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app with eight DHH participants. We found that our best classifica-
tion model performed similar to the state of the art for non-portable
devices while requiring a substantially less memory (~1/3rd), and
that the phone-based architectures outperformed the watch-centric
designs in terms of CPU, memory, battery usage, and end-to-end
latency. Qualitative findings from the user study contextualize our
system experiment results, and also uncover ideas, concerns, and
design suggestions for future wearable sound awareness technol-

ogy.
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