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ABSTRACT: We present a theoretical method to study how
changes in pH shape the heterogeneous conformational ensemble
explored by intrinsically disordered proteins (IDPs). The theory is
developed in the context of coarse-grained models, which enable a
fast, accurate, and extensive exploration of conformational space at
a given protonation state. In order to account for pH effects, we
generalize the molecular transfer model (MTM), in which
conformations are re-weighted using the transfer free energy,
which is the free energy necessary for bringing to equilibrium in a
new environment a “frozen” conformation of the system. Using the
semi-grand ensemble, we derive an exact expression of the transfer
free energy, which amounts to the appropriate summation over all the protonation states. Because the exact result is computationally
too demanding to be useful for large polyelectrolytes or IDPs, we introduce a mean-field (MF) approximation of the transfer free
energy. Using a lattice model, we compare the exact and MF results for the transfer free energy and a variety of observables
associated with the model IDP. We find that the precise location of the charged groups (the sequence), and not merely the net
charge, determines the structural properties. We demonstrate that some of the limitations previously noted for MF theory in the
context of globular proteins are mitigated when disordered polymers are studied. The excellent agreement between the exact and MF
results poises us to use the method presented here as a computational tool to study the properties of IDPs and other biological
systems as a function of pH.

■ INTRODUCTION

The cellular environment spans a broad spectrum of solution
acidity/basicity. For instance, the vesicles of the secretory and
endocytic pathways,1 melanosomes,2 and mytochondria3 are
more acidic than the cytosol, with organelle-dependent
differences that are as large as three pH units. In addition,
external stimuli could alter the pH, thereby producing dramatic
changes in the physiology of the cell.4 At a molecular level,
changes in pH alter the structure and solubility of proteins, and
promote the formation of condensates5−7 and fibrils,8,9 and
could be used to tune between these two scenarios.10,11 These
effects are caused by changes in electrostatic interactions.
Titratable groups (the N- and C-termini, and the side chains

of lysine, arginine, histidine, aspartic acid, glutamic acid,
tyrosine, and cysteine) respond to an increase (decrease) in
pH by releasing (binding) protons. Changes in the charge of
the individual groups and the whole protein modulate the
strength of both intramolecular and intermolecular inter-
actions. In order to understand these effects, it is crucial to
estimate the pH “scale” around which the protonation and
deprotonation occur, which is the pKa. This property depends
(i) on the chemistry of the individual titratable groups and (ii)
on the local environment, which is dictated by the protein
conformation. We focus here on the strategies to account for
the effect of the interaction of all the ionizable groups on the

protonation of each one of them, assuming that the properties
of titratable groups in isolation are accurately measured.
Over the years, a number of methods have been introduced

to account for the role of protein structure and flexibility upon
titration. These range from the theoretical model of Tanford
and Kirkwood (TK)12 to a variety of computational strategies
that employ all-atom or coarse-grained description of protein
and the solvent. The challenge in devising an accurate strategy
to investigate the pH effect is clear: for each titratable group,
there are two possible states, protonated and deprotonated. In
sufficiently large proteins, there could be dozens of such amino
acids, making it difficult to account exhaustively for all the
possible protonation states. Because interactions between the
ionized groups affect the titration, whenever the system of
interest explores a heterogeneous set of structures, the
interplay between conformation and protonation exacerbates
the challenge. This is the case for pH-induced unfolding of
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globular proteins or for predicting the conformations of IDPs
with a large number of residues.13 In these cases, successfully
accounting for all the relevant protonation states for each
sampled structure at a given pH becomes prohibitively difficult.
In computational models with all-atom resolution of the

protein, there are two strategies that are used to perform
constant pH (as opposed to constant protonation state)
simulations: the protonation state is described either by a
discrete or by a continuous variable.14−29 In the first case, an
attempt at adding or removing protons from titratable groups
is accomplished by introducing Monte Carlo steps in the
protonation space; in the second case, the “degree of
protonation” of a base or an acid follows a specific time
evolution, which can be biased in order to favor fully ionized or
neutral states as a means to reduce the population of
intermediate “degrees of protonation”, deemed to be
unphysical. These strategies yield a simultaneous exploration
of conformational and protonation space, which enables the
calculation of average properties while retaining dynamic
information. However, often the calculations must be repeated
for each pH value.
An alternative approach, based on the molecular transfer

model (MTM),30,31 was proposed by O’Brien, Brooks, and
Thirumalai (OBT).32 The basis of the theory is rooted in the
studies of Tanford who estimated the differences in the
stability of folded proteins upon a change in solution
conditions. Tanford defined the transfer free energy as the
free energy cost of transferring the residues and the peptide
backbone from one solution condition to another. The free
energy for the whole protein could be taken to be the sum of
the changes in the transfer free energies of the individual
amino acids as well as the peptide backbone upon a change in
the solution conditions. Despite the use of the additivity
assumption, the Tanford method works remarkably well in
obtaining the stability changes of folded proteins as the
denaturant concentration is changed. In the OBT approach,
the protein is described at a coarse-grained (CG) level in order
to extensively sample its conformations, and a model analogous
to Tanford’s was introduced to calculate the free energy
change when each protein conformation is transferred to a
different pH. The OBT theory accounts for the changes in the
solvation of titratable groups upon folding/unfolding, which
results in sizable modification of the pKas of ionizable residues
depending on the overall conformation of the protein. An
advantage of this model is that once an extensive simulation is
conducted at a given pH, features computed in different
solution conditions emerge after a fast re-weighting of the
sampled conformations (the same is true for other
protocols28). Despite the success of MTM in quantitatively
reproducing experimental results for pH-dependent folding
free energy of globular proteins,30 subsequent CG strategies
resorted to implementing pH effects in the mold of all-atom
models, with a “dynamical” instead of a “statistical” approach
to sampling protonation states.33−36

Here, we reprise the MTM approach of OBT32 and modify
it so that it could be used to investigate pH effects on IDPs,
which is the eventual goal of this program. In IDPs, the
presence of a heterogeneous ensemble of globular and
extended states demands a finer sensitivity to the local,
transient conformation around each titratable group. To
overcome this problem while retaining the simplicity of the
MTM, we developed a new method by building on the works
of TK,12 Tanford and Roxby,37 Bashford and Karplus (BK),14

Gilson,15 and Baptista et al.18 In a nutshell, we assume that the
changes in pKa of each group emerge from a combination of
given chemical properties and electrostatic interactions with
other charged groups and neglect the effect of other
interactions such as hydrogen bonds, as is commonly done
(see for instance the work of TK12). With this assumption, we
use the semi-grand ensemble18,38 to derive a transfer free
energy. In this way, we recover an expression that was
previously reported by BK14 and Gilson15 on the basis of
thermodynamic considerations, starting from either a fully
deprotonated or fully uncharged protein (see the Supporting
Information). The exact calculation of the pH-dependent
transfer free energy is not feasible for systems with more than a
dozen titratable groups. Therefore, it is tempting to adopt a
mean-field (MF) approximation.14 However, BK14 and
Gilson15 argued that the MF approximation is inaccurate
when there are strong interactions between nearby titratable
groups. Therefore, they attempted to account for the large
number of protonation states by introducing alternative
strategies, such as the reduced-site method, in which only a
subset of titratable groups can be protonated/deprotonated at
a given pH,14 or a technique based on clustering in order to
separate local interactions (treated exactly) from long-range
interactions (approximated using MF).15 Notably, in these
influential works, BK and Gilson did not explore the effect of
different conformations to address the accuracy of the MF
approximation. The protein conformation was quenched to the
native structure. Of course, fixing the conformation in IDPs
would produce qualitatively incorrect results.
We hypothesized that the inaccuracies in the MF theory

would be less prominent for IDPs, which do not have
persistent and stable globular structures. We expect titratable
groups of the IDPs to be well solvated, and consequently
interactions between the charged residues are weakened by the
ionic strength and high dielectric permittivity of the solution.
To test our conjecture, which has similarities with ideas
proposed in the context of the unfolded state,17 we constructed
a simple and precisely solvable cubic lattice model of an IDP.
The simplicity of the model permits exhaustive enumeration of
all the conformations and protonation states, thereby allowing
us to test the validity of the MF approximation without
worrying about sampling issues. We show that the agreement
between the numerically exact results and those obtained using
the MF approximation is excellent. As we show in the
Supporting Information, the error in the free energy increases
if the sequence has more titratable groups in the lattice model,
which does not treat the amino and carboxyl groups in any
realistic manner. Even in this case, the problem is mitigated at
realistic values of the ionic strength. Finally, we show that the
transfer free energy of OBT32 used to investigate pH effects on
folding of globular proteins is recovered with the aid of a
simple argument (see the Supporting Information). Our
findings pave the way to use the MTM for IDPs (MTM-
IDP) to probe pH effects in a variety of problems including,
but not limited to, the study of the conformational ensemble
explored by IDPs.

■ METHODS

Anions, Cations, Protonation, and Notation. We first
introduce some notation in order to make the rest of the
Methods section easier to understand. As we discuss the
nomenclature, we focus on proteins, especially IDPs. However,

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c01316
J. Chem. Theory Comput. 2021, 17, 1944−1954

1945



the general scheme holds for RNA, DNA, polyelectrolytes, and
polyampholytes as well as small molecules.
Let a protein have NT titratable groups, which are capable of

binding or releasing protons according to the following
reaction

+ + FR H R Hi i

where Ri is the ith titratable chemical species and H+ refers to
the proton. We divide these species into two classes. We refer
to the N-terminal amino group and the side chains of histidine,
lysine, and arginine as “cationic groups” because, in their
ionized form, they are positively charged. In contrast, “anionic
groups” such as the carboxyl C-terminal end and the side
chains of the aspartic acid, glutamic acid, tyrosine, and cysteine
are negatively charged when ionized. Cationic groups become
positively charged in the protonated state; in contrast, anionic
groups are neutral when they bind a proton.
In order to distinguish between the protonated (RiH) and

deprotonated (Ri) forms of the titratable group, we introduce
the following set of labels: (i) the ionization state xi, which is
=1 if the ith group bears a charge and =0 otherwise. (ii) The
protonation state, pi, is =1 (=0) when the group is protonated
(deprotonated). (iii) The charge of a group, qi, which is equal
to zi · xi, where zi = 1 for cationic groups, and zi = − 1 for
anionic groups. The values assumed by the labels in the

different scenarios are illustrated in Figure 1. The relationship
between protonation states and ionization states is given by

α α α

α α

= − = [ − ]

= +

p q q z x x

x z p x

( ) ( ) ( )

( ) ( )

i i i i i i

i i i i

unp unp

unp
(1)

where qi
unp (xi

unp) is the charge (ionization state) of the ith
group in the unprotonated state. For an anionic group, the
charge in the unprotonated state is −1 and the ionization state
value is 1, whereas these values are 0 for a cationic group (see
Figure 1).
A protein with NT titratable groups (NT = 2 in the example

of Figure 1) has 2NT ionization or protonation states (in Figure
1, 2NT = 4), each of which is identified by vectors p⃗ and x ⃗ of 0s
and 1s. We introduce an index α which goes from α = 1 to α =
2NT. This index corresponds to a unique protonation or
ionization state, so that, for instance, p⃗(α = 1) = (0, ···,0) and
p⃗(α = 2NT) = (1, ···,1), with the corresponding ionization states
obtained using the transformation in eq 1. The total number of
titratable states that are protonated is given by

∑ν α α=
=

p( ) ( )
i

N

i
1

T

(2)

At equilibrium, the dissociation constant in molar (M) units,
Kai, for protonating a Ri is

=
[ ][ ]

[ ]
= =β μ μ μ β

+
− + − −

ikjjjjj y{zzzzzK

M

R H

R H M
e ei i

i

k Ta

eq

( ) ln(10)pKa
i i iR
0

H
0

R H
0

B

(3)

where the symbol [X] refers to the concentration of species X
in molar units, and the standard free energies of RiH, Ri, and
the proton are given by μRiH

0 , μRi

0 , and μH
0 , respectively. In eq 3,

we have also used the definition of pKa of the ith titratable
group, which is given by pKai = − log10Kai/M. The value of this
pKa is an intrinsic measurable property of a chemical species
measured in isolation and in solution. We assume these values
to be given.39

Exact Formulation. We present a general method to
compute the transfer free energy, following Tanford’s studies
in estimating the stability of globular proteins as a function of
denaturant concentration. In order to complete this task, it
proves convenient to use the semi-grand canonical ensemble.38

The partition function in this ensemble is

∑ ∑μ =
α

β α α βμ ν α

=

− [ + + ]Q T( , ) e e
c

E c E E c
H

1

2
( ) ( ) ( , ) ( )

NT

0 1 2 H

(4)

In the above equation, c labels the spatial conformation (it
could be replaced by a continuous index, but we keep it
discrete without loss of generality), E0(c) is an energy term
that depends only on the conformation, E1(α) is determined
solely by the protonation of titratable groups, and E2(c, α)
couples protonation and spatial conformation. Note that we
did not include in the partition function the interaction
between free protons, which is tantamount to assuming that
their behavior is ideal. Thus, we can approximate the proton
chemical potential, μH, in eq 4 as

μ μ μ= + [ ] = −+k T k Tln H /M ln(10)pHH H
0

B H
0

B (5)

where pH = − log10[H
+]/M. Note that we have excluded

solvent and salt effects from the partition function; in the
coarse-grained representation of the polymer, their contribu-
tion is to modulate the effective energies, E0(c), E1(α), and
E2(c, α), which will become clear later. There is no pressure
(or volume) term in the partition function in eq 4; its
contribution would appear through the energy function and
the standard chemical potential of the proton. Under the

Figure 1. Pictorial representation of ionization and protonation. The
top two boxes show the protonation state pi, ionization state xi, and
charge qi for cationic (blue) and anionic (red) groups. Empty dots
represent deprotonated states, and the gray-filled dots indicates that
the group is protonated. The bottom gray box shows all the
protonation/ionization states for a frozen conformation of a polymer
(black) with two titratable groups: a cationic and an anionic one. Each
of the four conformations is labeled with a value of α that indicates
the distinct protonation/ionization states (4 in this example), and the
corresponding protonation (p) and ionization (x) states are shown,
together with the charge (q).
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reasonable assumption that the fluid is incompressible, the
results would not be affected by the choice of the
thermodynamic variable. In any event, these are standard
assumptions in the CG models of proteins40 and IDPs.13,41,42

They could be relaxed at the cost of increasing the complexity
of the calculations without being able to assess the accuracy.
We introduce a reference protonation state, α★, and recast

the partition function in the following form:

∑ ∑

μ = β α μ ν α

α

β α α

β α α μ ν α ν α

β α

− [ − ]

− [ − ]

− { − − [ − ]}

− [ + ]

★ ★

★

★ ★

★

lmoonoo |}oo~oo

Q T( , ) e

e

e

e

E

c

E c E c

E E

E c E c

H
( ) ( )

( , ) ( , )

( ) ( ) ( ) ( )

( ) ( , )

1 H

2 2

1 1 H

0 2 (6)

We define the transfer free energy to be

∑

α μΔ

= −
α

β α α β α α μ ν α ν α

★

− [ − ] − { − − [ − ]}★ ★ ★
lmooonooo |}ooo~ooo

G c

k T

( , , )

ln e eE c E c E E

tr H

B
( , ) ( , ) ( ) ( ) ( ) ( )2 2 1 1 H

(7)

The above equation is evaluated by choosing a specific
conformation and summing over α, which labels the
protonation state of the polymer. Thus, ΔGtr(c, α★, μH)
depends only on c, pH, and the reference state, α★. Using eq 7,
the partition function becomes

∑

μ = β α μ ν α

β α μ β α

− [ − ]

− Δ − [ + ]

★ ★

★ ★

Q T( , ) e

e e

E

c

G c E c E c

H
( ) ( )

( , , ) ( ) ( , )

1 H

tr H 0 2

(8)

The above expression for Q(T, μH) has a simple operational
interpretation: we perform simulations at a fixed protonation
state, α★, and the resulting trajectory provides an ensemble of
conformations. To appropriately account for the variations in
the protonation state, we re-weight each sampled conformation
(fixed c) with the corresponding transfer free energy given in
eq 7. The constant outside the summation in eq 8 refers to the
titratable groups in state α★. Being a constant, it does not affect
the evaluation of average properties of the system, although it
does contribute to the absolute value of the total free energy.
E1(α): The transfer free energy in eq 7 can be calculated if

E1(α) and E2(c, α) are specified. We model E1(α) as follows.
Because it is by construction independent on the conformation
of the polymer, we assume that it can be written as a sum of
individual contributions from each titratable group. Each
contribution is modeled as the standard free energy of the
protonated or deprotonated form of the ith group isolated in
solution:

∑

∑ ∑

α μ α μ α

μ μ μ α

= { + [ − ]}

= + [ − ]

E p p

p

( ) ( ) 1 ( )

( ) ( )

i
i i

i i
i

1 R H
0

R
0

R
0

R H
0

R
0

i i

i i i
(9)

Therefore, recalling the definition of ν(α) in eq 2, the pKa of
the ith group in eq 3 and the proton chemical potential in eq 5,
we get

∑ ∑

∑ ∑

α μ ν α μ α μ μ μ

μ α

− = + [ − −

+ ]

= −

−

E p

k T

p k T

( ) ( ) ( )

ln(10)pH

( ) ln(10)

(pKa pH)

i
i

i
i i i

i
i

i
i

i

1 H R,
0

RH,
0

R,
0

H
0

B

R,
0

B

(10)

Following the nomenclature of BK14 and Gilson,15 we
introduce bi, defined as

= − −b k Tz ln(10)(pKa pH)i i iB (11)

Finally, using eq 1 to switch from protonation [pi(α)] to
ionization [xi(α)] states, we write

∑ ∑α μ ν α μ α− = + [ − ]E b x x( ) ( ) ( )
i

i
i

i i i1 H R,
0 unp

(12)

E2(c, α): In order to model to coupling between
conformations and protonation states, we assume that the
only contribution to E2(c, α) comes from pairwise, electrostatic
interactions,12 which we write as

∑ ∑

∑ ∑

α α α

α α

=

=

E c q q W c

x x V c

( , )
1

2
( ) ( ) ( )

1

2
( ) ( ) ( )

i j
i j ij

i j

i j ij

2

(13)

where zizjWij(c) = Vij(c) is an electrostatic interaction
depending on the distance between two beads; the functional
form will be discussed later. By combining all the terms in the
exponent for the transfer free energy (eq 7), we get

∑ ∑

∑ ∑

α α α α

μ ν α ν α

α α

α α

− + −

− [ − ]

= +

− +

★ ★

★

★ ★

Ä
Ç
ÅÅÅÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑÑÑÑÑÄ

Ç
ÅÅÅÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑÑÑÑÑ

E c E c E E

x b V c x

x b V c x

( , ) ( , ) ( ) ( )

( ) ( )

( )
1

2
( ) ( )

( )
1

2
( ) ( )

i

i i

j

ij j

i

i i

j

ij j

2 2 1 1

H

(14)

The transfer free energy becomes

∑

∑ ∑

α

α α

Δ

= − −

+

α

β α α

★

− ∑ [ + ∑ ]

★ ★

lmoonoo |}oo~ooÄ
Ç
ÅÅÅÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑÑÑÑÑ

G c

k T

x b V c x

( , , pH)

ln e

( )
1

2
( ) ( )

x b x V c

i

i i

j

ij j

tr

B
( ) (1/2) ( ) ( )

i i i j j ij

(15)

(Note that we changed the argument of the transfer free
energy from the chemical potential to the pH). BK14 and
Gilson15 derived results similar to eq 15 using two special
reference states: the fully deprotonated and the fully de-ionized
(no charges) states, respectively. In the Supporting Informa-
tion, we show that we can recover the previous results by
selecting xi(α

★) = xi
unp and xi(α

★) = 0, respectively.
Mean-Field Approximation. The transfer free energy (eq

15) is exact for the coarse-grained model provided the effective
energies can be decomposed as in eq 6, and that they can be
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accurately accounted for by the expressions that we have
chosen for E1(α) and E2(c, α). At this juncture, we need not
specify the form of E0(c), which is required only if the method
is applied to a specific problem. The calculation of transfer free
energy still requires that we explicitly account for all the
possible protonation states, a daunting computational task for a
protein with a large number of titratable groups.
The computational challenge can be overcome using a MF

approximation14 to estimate the value of

∑Δ = −
α

β α α− ∑ [ + ∑ ]
lmoonoo |}oo~ooG c k T( , pH) ln e x b x V c

tr,0 B
( ) (1/2) ( ) ( )

i i i j j ij

(16)

The details of the calculation are the same as those discussed
by BK.14 The only difference is that BK use protonation
instead of ionization states. As a consequence, the final result is
the same as the one already provided by Gilson15

∑

∑ ∑ θθ

Δ = − +

−

β θ

=

− +∑

= =

=

ÄÇÅÅÅÅÅÅÅ ÉÖÑÑÑÑÑÑÑG c k T

V c

( , pH) ln 1 e

1

2
( )

i

N
b V c

i

N

j

N

ij i j

tr ,0
MF

1
B

( ( ) )

1 1

i j

N
ij j1

(17)

where θi, the average ionization state of group i at a given pH
and at a given conformation, and it is equal to

θ = ⟨ ⟩ =
+

β θ

β θ

− [ +∑ ]

− [ +∑ ]

=

=

x
e

1 e
i i c

b V c

b V c
,pH

( )

( )

i j

N
ij j

i j

N
ij j

1

1 (18)

The above equation can be solved using a self-consistent
iterative process.14 Finally, the MF approximation for the
transfer free energy is

{ }∑ ∑

∑ ∑

α

α

θθ α α

Δ

= − + −

− [ + ]

β θ

★

=

− [ +∑ ] ★

= =

★ ★

=

G c

k T bx

V c x x

( , pH, )

ln 1 e ( )

1

2
( ) ( ) ( )

i

N
b V c

i

i i

i

N

j

N

i j i j

tr
MF

1
B

( )

1 1
ij

i j

N
ij j1

(19)

It is easy to show that this result is the same as Gilson’s if the
fully deionized state [xi(α

★) = 0 for all titratable groups]15 is
chosen as the reference state. Similarly, it is possible to recover
the result of BK14 if the fully deprotonated [xi(α

★) = ziqi
unp]

state as the reference.
Fixed-Charge Approximation. An alternative to the MF

approximation is to use fixed charges (FC) on each titratable
group, which are given by qi

† = zixi
†, where xi

† = ⟨xi⟩pH =
10−zi(pH − pKai)/[1 + 10−zi(pH − pKai)]. These would be the
average charges on each group in isolation, which is in the
absence of the other ionizable groups. Note that 0 ≤ xi

† ≤ 1,
whereas xi = 0 or =1. The transfer free energy in this case is
given by

∑ ∑ ∑

α

α

α α

Δ

= [ − ] +

[ − ]

★

† ★

† † ★ ★

G c

b x x V c

x x x x

( , , pH)

( )
1

2
( )

( ) ( )

FC

i

i i i

i j

ij

i j i j

tr

(20)

The expression given above is obtained from eq 15 by
assuming that there is only one ionization state given by x ⃗†.
There is a key difference between the MF and FC

approximation. While, in MF, the charge on a group depends
on the conformation of the whole polymer, in the FC model,
the charge depends only on pH and pKa, and it is completely
unaffected by the interaction with other ionizable groups.

Lattice Simulations. In enunciating the principles of
protein folding, lattice models with small polymer lengths for
which all allowed conformations could be exactly enumerated
played a vital role.43 Here, we tested the accuracy of the MF
approximation using a polymer model of length 10 on a simple
cubic lattice with spacing, a = 3.8 Å. We consider a self-
avoiding polymer, for which E0(c) is given by a combination of
bonded interactions ensuring that consecutive beads in the
sequence occupy nearest-neighbors vertices in the lattice and
excluded volume interactions that forbid two beads from
occupying the same lattice site. The functional form of E0(c) is
assumed to be such that the energy is zero if these constraints
are satisfied (consecutive beads on nearby sites, and the chain
does not cross itself) and infinity if they are violated. The total
number of allowed conformations is N10mer = 1,853,886.44 To
count the conformations, we fixed the first bead and
considered conformations related by rotation and specular
reflections to be different (more on this later).
The energy E2(c, α) is modeled as the sum of pairwise

Debye−Hückle (DH) electrostatic interactions between
charged groups,38 where Vij(c) is
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Here, e is the unit charge, ε0 is the vacuum permittivity, εr is
the relative permittivity of the solvent (assumed to be =78,
which is appropriate for an expanded IDP in water). The step
function Θ(x) (=1 if x>0 and =0 otherwise) ensures that only
beads that are not consecutive in the chain engage in
electrostatic interactions. The inverse of the Debye screening
length (κ) depends on the Bjerrum length (lB) and on the
concentration of screening ions (ρn), with zn being the unitless
charge on the nth species ion. Finally, I = 0.5∑n ∈ ion ρnzn

2 is the
ionic strength of the solution. We assume that the solution
contains only monovalent ions so that

κ π ρ π= =l l I8 82
B salt B (22)

where ρsalt = I is the sum of the concentrations of dissociated
salts.
The pH itself is a measure of the concentration of ions in

solution and must be accounted for when the Debye length is
computed. In practice, this means that the sum of the
concentration of dissolved salts (monovalent ions), ρsalt, has
two contributions: at low pH (<7), ρsalt = ρsalt,0 + 10−pHM,
whereas for high pH (>7), ρsalt = ρsalt,0 + 10pH − 14M. Here,
10−pHM is the concentration of hydronium ion and a
neutralizing (monovalent) anion, 10pH − 14M is the concen-
tration of hydroxide ion and a neutralizing (monovalent)
cation, and ρsalt,0 is the concentration of any other salt (e.g.,
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NaCl or KCl) such that the ionic strength is set at the value
used for sampling. As a result, given a salt concentration in the
DH potential, ρsalt, the minimum and maximum values of the
pH consistent with the simulations are pH = − log10(ρsalt/M)
and pH = 14 + log10(ρsalt/M), respectively, where ρsalt,0 = 0 M.
In the following, we assume that the DH theory is exact, and

we use it to compute all the transfer free energies: exact, MF,
and fixed charged. Therefore, our objective is not to test the
validity of the DH approximation; our intention is to examine
the accuracy of the approximate form of the transfer free
energy under the premise that the DH model for electrostatic
interaction is valid.
Ensemble Averages. Because the energy function of the

polymer on the lattice is invariant upon rotations and
reflections, we can combine conformations depending on
their geometrical properties. There is one 1D conformation
with degeneracy 6; there are 2033 arrangements of the
polymer restricted on a plane with degeneracy 24, and the
remaining 3D conformations are 37,606 with degeneracy 48,
for a total of N10mer

symm = 39640 distinguishable conformations
(unrelated by symmetry operations), each of which with a
weight (w) given by the appropriate degeneracy. Using these
considerations, the constant-pH average of any observable,
Ô(c), depending solely on the polymer conformation is
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The exact, MF, or FC evaluation of the average of the
observable depends on whether we use the exact (eq 15), MF
(eq 19), or FC (eq 20) expression for the transfer free energy.
The average of an observable, Ô(α), which depends on the

ionization state alone (for instance the charge on a titratable
group) can be written in the following way
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where ⟨Ô(α)⟩c is the average over the ionization computed for
a given conformation, that is
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If Ô(α) is the charge on the ith titratable group, the MF
approximation of eq 25 is ziθi, where θi is given in eq 18. The
correlation between charges is given by
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where we used the identities zi
2 = 1 and xi

2 = xi.
Hellinger Distance. In the Results section, we compare

distributions obtained with different approximations for the
transfer free energy. In order to quantify the difference

between two distributions q and p, we use the so-called
Hellinger distance H(p, q), given by

∫
∫

∑

∑
=

[ − ]

= −

[ − ]

= −

l
m
ooooooooooooooooo
n
ooooooooooooooooo

H p q

p c q c

p c q c

x p x q x

x p x q x

( , )

1

2
( ) ( )

1 ( ) ( )

discrete distribution

1

2
d ( ) ( )

1 d ( ) ( )

continuous distribution

c

c2

2

2

(27)

It can be shown that 0 ≤ H(p, q) ≤ 1, where H(p, q) = 0 for
identical distributions and H(p, q) = 1 if the distributions have
no overlap.

■ RESULTS

We tested the MF (and FC) scheme for the model IDP with
the sequence DADAADAAAD, where D stands for aspartic
acid (pKa = 4.039) and A is alanine. The purpose is to assess
the accuracy of the MF theory. We chose this sequence
because it has a high but not unrealistic density of charged
beads. We also distributed the acidic residues along the
sequence in such a way that each one of them has a different
environment, that is, each one of them is followed or preceded
by a different number of As. Figure S1 reports the spectrum of
the lowest 20 energy levels and the associated degeneracies as
well as the structure of the ground state and a few of the
excited states. The ground state for the fully ionized polymer at
all salt concentrations is fully extended. Note that the lowest 20
energy levels are within a kBT of each other, indicating that, at
room temperature, they are all populated.

Transfer Free Energy. We computed the exact and MF
transfer free energies for all the conformations over a pH range
from 2 to 8, and an ionic strength from 1 mM to 1 M (see
Figure 2 and Figure S2). As expected, the difference between
the transfer free energies is reduced as the ionic strength
increases: strong correlations between charged groups make
the MF approximation less accurate. As a corollary, increasing
the screening is expected to weaken the correlation between
charged groups, thus making the MF approximation more
accurate. The lowest ionic strength yields the worst results and
presents the only instance in which the MF transfer free energy
is smaller (larger in absolute value) than the exact value. Even
in this case, the differences are less than about 15% (Figure
2a). At 100 mM, which is closer to the physiological
concentration, the deviation is no more than 6% at all pH
values (Figure 2b). We also noticed that at low ionic strengths
the recursive algorithm necessary to compute the average
charges (eq 18) does not converge for certain conformations
and leads to an oscillatory solution. We picked the θ values
resulting in a smaller ΔGtr; the rationale is that the MF
approximation results from a minimization of the free energy
functional in eq 16.

Probability of Each Conformation. The probability P(k)
a conformation k, the mean of any observable Ô(c) = δc, k,
where δ is the Kronecker delta, is calculated using eq 23. We
computed P(k) using the exact, MF, and FC ionization states.
In Figure S3, we use the Hellinger distance for discrete
distributions (eq 27) to show that the MF distribution
reproduces the exact result more accurately than the FC. The
accuracy increases if pH>pKa or pH<pKa; when pH ≈ pKa
there is a peak. The Hellinger distance decreases with the ionic
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strength of the solution for both MF and FC, indicating that
the MF and FC approximations become more reliable as the
screening of the electrostatic interaction between the titratable
groups increases.
Average Radius of Gyration. The radius of gyration for a

given conformation, c, is R̂g(c)
2 = 1/(2N2)∑i = 1

N ∑j = 1
N rij(c)

2,
where rij(c) is the distance between two of the N( = 10) beads
in c. The average radius of gyration (Rg) is obtained by taking
the square root of eq 23, where Ô(c) = R̂g

2(c). As shown in
Figure 3a, the radii of gyration obtained with the exact and MF
evaluations of the transfer free energy are essentially identical.
The relative error is less than 1% of the exact value. As the salt
concentration increases, the relative discrepancy diminishes,
making the MF approximation even more accurate. At strongly
acidic pH values, the results are insensitive to salt
concentrations: the titratable groups are neutral and the 10-
mer is essentially a self-avoiding walk (SAW). The size of the
fully charged polymer (high pH, see below) depends on the
ionic strength of the solution: as the screening between charges
increases, the swelling is less prominent due to the weakening
of the repulsion between the ionized groups. Interestingly, the
collapse of the polymer, driven by acidification of the solution,
is sharper at high ionic strengths: repulsive interactions tend to
make the transition less cooperative, likely because they
oppose the titration of neighboring anions, which is a
correlation effect. At those pH values corresponding to the
swelling of the polymer, the FC approximation fails: it
underestimates the mid-point of the transition and over-
estimates the steepness. The error is somewhat reduced only
for the largest ionic strength considered.

Average Charge. The average charge on each titratable
group is given by ⟨qi⟩pH = ⟨zixi(α)⟩pH, where the average is
calculated using eq 24. The total charge is the sum of the
average charge of each group. The average total charge as a
function of pH and ionic strength is in Figure 3b. The
maximum relative difference between the exact and MF results
is ≲5% of the exact value, the discrepancy is peaked around pH
values at which the transition occurs, and it diminishes as the
ionic strength increases. Notably, the mid-point of the
transition increases as the salt concentration is diminished,
owing to the stronger repulsion between charged groups,
which results in an anti-cooperative collective titration (see
next section). The increase in the sharpness of the transition
with salt concentration confirms this observation. The FC
results resemble those obtained for the largest ionic strength
and by construction they are independent of salt concen-
tration, thereby failing to reproduce the exact results within an
acceptable error.

Charge Variance. The correlation between titrating groups
is given in eq 26. In Figure 4 and Figure S4, we compare the
results of the MF and FC approximations to the exact
calculations. The MF approximation is excellent in estimating
the diagonal terms of the charge correlations: the location and
width of the peaks are correctly identified, with an error that is
small at low ionic strength and diminishes at high salt
concentrations. At low salt concentrations, the shift of the peak
depends on the location of the aspartic acid along the
sequence, a feature that is lost with the increase of the ionic
strength. In contrast, FC calculations become reliable only at

Figure 2. Comparison of the MF and exact calculations of the transfer
free energy. The figures show (ΔGtr

EX − ΔGtr
MF)/ΔGtr

EX as a function of
pH for all sampled conformations unrelated by symmetry operations.
The red lines indicate the full range of the distribution, the blue star is
the average, and the blue bars refer to the standard deviation. The two
panels indicate different ionic strengths: (a) 1 mM and (b) 100 mM.

Figure 3. Comparison of the MF, FC, and exact calculations of
average titration and radius of gyration. The figure shows Rg (a) and
total charge (b) as a function of pH. In the upper panels, lines refer to
the exact evaluation of the transfer free energy, dots indicate the
results from the MF approximation, and empty dots show the FC
results. The bottom panels show the changes of the observables in the
exact and MF calculation relative to the exact results. Colors indicate
different ionic strengths: green is 1 mM, orange is 10 mM, blue is 100
mM, and pink is 1 M.
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very high salt concentrations, with the four aspartic acids
titrating almost independently. The exact off-diagonal terms
are all negative: all charged groups are anionic, thus, there is an
energetic penalty in charging two aspartic acids simultaneously.
The size of the peak of Cij depends on the distance along the
sequence between i and j: the closer they are, the more they
interfere, which results in a larger anti-correlation. The effect is
reduced at higher salt concentrations. The MF off-diagonal
term is always much smaller than the exact results; thus, MF
fails in capturing this feature.
Aspartic Acids Are Not All Identical. At a given pH, the

ionization of each titratable group depends on the con-
formation, resulting in a distribution of charges. In Figure 5
and Figure S5, we show the distribution of charges on the 4
anionic residues as a function of pH and ionic strength. First,
we note that although similar, the distributions for the 4
aspartic acids differ: the location along the chain matters.
Second, the distributions are sharp at low and high pH values,
whereas if the solution pH is in the vicinity of the transition
point, the distributions become wider. As the solution becomes
more acidic, the average of the distribution shifts continuously
from −1 to 0. As we observed before, the MF approximation is
accurate: the locations and shapes of the exact distributions are
captured, and the recovery improves as the salt concentration
increases. To make the observations more quantitative, in the
insets, we report the values of the Hellinger distances, H,
between the exact and MF distributions (see the caption of
Figure 5 for a full explanation). In all cases, the values obtained

are well below H = 0.34, which is an intuitive reference point
corresponding to the Hellinger distance between two Gaussian
distributions of identical variance, σ2, and difference in mean
given by Δμ = σ.
The comparison with the FC results is instructive: not only

the breadth of the distribution but also its location are
significantly altered by electrostatic interactions. Even at the
largest ionic strength considered, the comparison with the FC
results showcases the different distributions on the 4 aspartic
acids, which are distinguished by the structure of the chain
around them.

■ DISCUSSION

We have developed a practical method, based on theoretical
considerations, to examine the pH effects not only on IDPs but
also any molecule (for example polyelectrolyte) with many
titratable groups. The theory, which utilizes a MF approx-
imation for treating titratable groups and the molecular transfer
model for summing over conformations, is tested using a
lattice model for which numerically exact computations can be
performed. The results show that, except at very low salt
concentrations, the MF and MTM combination produces very
accurate results. We close with a few pertinent comments.

• Although it has been suspected that the MF approx-
imation leads to systematic errors in the estimate of the
titration of acidic and basic groups in folded globular
proteins with a fixed native structure,14,15 the accuracy of
the MF for IDPs had not been previously studied. Our

Figure 4. Comparison of the charge−charge correlation as a function of pH. Panels (a) and (b) show the diagonal term of the correlation matrix Cii

in eq 26, and panels (c) and (d) refer to the off-diagonal terms. Different colors indicate different aspartic acids, as shown in the legends, with
empty symbols and lines referring to the exact results, the MF values reported as full circles, and the FC approximation shown as black stars
connected by dotted lines. In (a) and (b), the top panels show the correlations, and the bottom ones report the error resulting from the MF
approximation (MF minus exact). Panels (a) and (c) report the correlations at 1 mM salt concentration, and the results at near-physiological ionic
strength (100 mM) are shown in panels (b) and (d). Note that, in the MF (Hartree-like) approximation, Cij in eq 26 is nearly zero if i ≠ j. The
results in (c) and (d) are numerically exact values for the lattice.
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premise is that the MF approximation would be not be
severe in disordered polymers that undergo large
conformational fluctuations. Two arguments support
this assertion. First, the lack of a fixed structure reduces
the correlation between two titratable groups: for all
conformations in which these two residues are close
enough to affect each other’s ionization, there are many
other structures explored by the polymer in which the
groups are further apart and are likely to undergo
titration independently. Second, in contrast to globular
proteins, which present fully desolvated anionic and
cationic groups (for instance, in the vicinity of the active
sites), IDPs are expanded, and it is reasonable to expect
that all the ionizable groups are at least partially solvated
in the majority of the conformations. As a consequence,
electrostatic interactions in the IDPs are likely to be
weakened by the dielectric permittivity of water and by
ionic screening. Ultimately, both of these arguments
stem from the idea that the presence of a heterogeneous
ensemble of conformations mitigates the effects on
average properties of approximations, which may not be
suitable for a subset of conformations.
In order to test our assertion, we constructed an IDP-

like polymer on a lattice, whose conformations can be
enumerated exhaustively, thus avoiding sampling issues.
We used a sequence with 40% of charged beads, which is
high but not unrealistic for many IDPs. The small
number of ionizable groups enables the exact evaluation
of the model partition function, which can be used to
assess the accuracy of the MF estimate of the transfer
free energy. We considered observables that depend on

either the structure (radius of gyration and contact map)
or the ionization state (average charge and charge
correlation) of the polymer. We found that, for all of
these observables, the MF MTM-IDP method recovers
the exact results accurately. The discrepancies do not
deviate from the exact value by more than a few
percentage points, with the exception of the off-diagonal
charge fluctuations.

• The inconsistencies between the MF and exact results
are larger for pH values corresponding to the swelling
(collapse) or charging (uncharging) of the polymer;
when the pH is much larger or much smaller than the
pKa of the titrating group, a single protonation state is
effectively dominant. In agreement with our conjectures,
as the salt concentration is increased the agreement
between the MF and exact results gets better. At very
low salt concentrations, the MF approximation of the
transfer free energy breaks down, as shown in Figure 2.
The problem is exacerbated when the charge density
along the chain is increased. In the Supporting
Information, we report the analysis of a slightly different
sequence: DADAADADAD, with one extra aspartic acid.
In Figure S6, we show that the error in the evaluation of
the transfer free energy is larger for the new sequence.
Even in this case, it diminishes as the ionic strength of
the solution is increased, especially at physiological
concentrations. As a result, only at the lowest salt
concentration (1 mM) that the MF approximation yields
an inaccurate description of the radius of gyration and
total charge as a function of pH (see Figure S7). We
should note that the lattice model ignores the amino or

Figure 5. Charge distribution on each titratable group. In each figure, colors indicate the pH value: light red is pH =3, pH =4 is in green, blue refers
to pH =5, and purple indicates pH =6. Each figure is broken into four panels referring to the four titratable groups, D1, D3, D6, and D10. Wide,
pale bars refer to the exact distribution; thinner, darker lines pertain to the MF approximation; dashed bars refer to FC results. The insets show the
Hellinger distances (see eq 27) between the exact and the MF results (full symbols) and between the exact and FC distributions (empty dots). In
the insets, the dashed lines are to guide intuition: they are the values of H obtained for two Gaussian distributions of identical variance σ, and
different means μ1 − μ2 = σ. The two figures refer to different salt concentrations: (a) 1 mM and (b) 100 mM.
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the carboxyl groups of a polypeptide chain, which is
clearly not correct and could introduce errors as well.
The analysis warrants a few comments. (i) A more
realistic model of the IDP may be obtained using a two-
bead representation of each residue.13 In this case, with
the possible exception of the terminal groups, only the
side chain beads may be charged. This might mitigate
the problem by “diluting” and spatially separating the
number of charged groups. (ii) At physiological salt
concentrations, the MF approximation is excellent even
for the sequence with higher density charge. (iii) The
quality of the MF approximation is likely to depend on
the details of the sequence and not only the average
number of the charged groups. (iv) It is necessary to
quantitatively establish when the breakdown of the MF
approximation occurs in the case of more densely
charged polymers, such as nucleic acids. (v) As
mentioned in the Introduction, the breakdown of the
MF approximation had already been reported by BK14

and Gilson15 for static, globular proteins. Here, we
expand the analysis by reporting on the breakdown for
IDPs exploring a diverse ensemble of conformations. It
is likely that the strategies introduced by BK and Gilson
(in particular the cluster method of Gilson15) could help
in overcoming the shortcomings of the MF approx-
imation for IDPs.

• An important finding of this work is that the precise
sequence of the IDP, especially the location of the
charged residues, affects many observables. Properties of
the IDPs could change drastically depending on charge
correlations along the sequence.45 This is explicitly
demonstrated in a model that does not suffer from
sampling issues, and for which numerically exact results
may be calculated. This finding shows that conclusions
based on the overall net charge or polyampholytic
parameter (charge asymmetry, calculable from charge
composition alone without regard to sequence location
of IDP conformations) cannot correctly produce the
phase behavior of IDPs or how they might change as a
function of pH or denaturants.

• It is important to note that fixing the charges along the
chain at their pH-dependent average value results in a
poor recovery of the exact results at all salt
concentrations, except at high values that far exceed
the physiological value. This is interesting because it
shows that, although the chain is expanded, and the
ionized groups are well solvated, interactions between
charged groups are important. It was already noted that
this simple model lacking structural effects on titration
frequently gives results close to the experimental values
and shows that most dramatic deviations occur when
strongly interacting groups are present.17 Here, we
showed that, although there are no desolvated pairs, the
simple model fails in reproducing properties such as the
slope (cooperativity) and the mid-point of the polymer
swelling as a function of pH.

The theory and applications show that the MTM-IDP
method with MF approximation provides an accurate frame-
work to estimate the change in the structural ensemble of an
IDP as a function of solution pH. The applications of the
method for lattice models for which exact calculations can be
performed, thus allowing us to assess the MF approximation,

demonstrates the success of the theory. The MTM-IDP
method is general that it can be used to investigate pH effects
in a number of biological as well as synthetic systems.
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