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ABSTRACT: A framework is presented to extract and understand decision-making informa-
tion from a deep neural network (DNN) classifier of jet substructure tagging techniques.
The general method studied is to provide expert variables that augment inputs (“eXpert
AUGmented” variables, or XAUG variables), then apply layerwise relevance propagation
(LRP) to networks both with and without XAUG variables. The XAUG variables are
concatenated with the intermediate layers after network-specific operations (such as con-
volution or recurrence), and used in the final layers of the network. The results of comparing
networks with and without the addition of XAUG variables show that XAUG variables can
be used to interpret classifier behavior, increase discrimination ability when combined with
low-level features, and in some cases capture the behavior of the classifier completely. The
LRP technique can be used to find relevant information the network is using, and when
combined with the XAUG variables, can be used to rank features, allowing one to find
a reduced set of features that capture part of the network performance. In the studies
presented, adding XAUG variables to low-level DNNs increased the efficiency of classifiers
by as much as 30-40%. In addition to performance improvements, an approach to quantify
numerical uncertainties in the training of these DNNs is presented.
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1 Introduction

Machine learning (ML) has become an extremely prevalent tool in the classification of

hadronically decaying highly Lorentz-boosted objects (“boosted jets”) and to study the

internal structure of hadronic jets (“jet substructure”) [1-7]. In these areas, classification

tasks are common, for which artificial neural networks (ANNs) are well suited. Recent work

in deep neural networks (DNNs) has shown tremendous improvements in identification of

boosted jets over selections based on expert variables (see ref. [5] and references therein).

These algorithms typically make use of classifiers based on convolutional neural networks
(CNNs) and recurrent neural networks (RNNs).



However, these improvements come at a significant cost. The underlying understand-
ing of particular decisions is lost (although it could be argued that this is not a drawback).
This paper provides a method to elucidate classifier decisions in an explainable framework.
This can assist in understanding of systematic uncertainties, as well as to develop bet-
ter expert variables to capture the behavior of the classifier in a simpler way. We will
also demonstrate that combining expert features with low-level information can improve
network performance, similar (but not identical) to the approach in ref. [8].

Collectively, explaining classifiers in artificial intelligence (AI) is referred to as “eX-
plainable AI” (XAI); see refs. [9, 10] for reviews. The classifiers we will investigate are
CNNs and RNNs [11]. CNNs utilize a (usually) fixed-size input vector, processed by con-
volutions with various filters to highlight features such as polarity, divergence, curl, etc.
These higher-level processing features are then combined with a dense output layer, where
the final classification is performed. In this paper, we will only consider binary classification
(“signal” versus “background”), although this is not a restriction. RNNs are ordinarily not
restricted to fixed-size inputs, allowing for arbitrary lengths of inputs. The key element
is that the output of some or all output nodes is then connected back into the inputs,
allowing for a temporal state machine to be naturally implemented. The inputs to RNNs
are not restricted and can be of any length. Traditional multivariate techniques in HEP are
restricted to use so-called “expert” variables, which are high-level features of a dataset that
are able to classify between events. More recent developments utilize lower-level features,
such as measurements of particle momenta and energy, or measurement features from de-
tectors. Our approach will be to combine these features in an attempt to explain classifiers
based on lower-level information.

There are many options to explain individual classifier decisions, mostly based on local
approximations of the classifier function. Examples include Local Interpretable Model-
Agnostic Explanations (LIME) [12], Sparse LInear Subset Explanations (SLISE) [13], Lay-
erwise Relevance Propagation (LRP) [14-16], and explanation vectors [17]. We will utilize
the LRP method in this paper due to simplicity of use and interpretation, although others
could be used as well.

Particle physics has a unique property, in that many of the observables we are interested
in have a full theoretical framework that can predict, or at least describe, their distributions.
In particular, the expert variables provided can often be shown to fully capture available
kinematic information, as is done in refs. [18-21], or even have a theoretical description
of the classifier itself [22]. However, there are other observables for which the theoretical
completion is lower than others. In particular, information that can determine the original
progenitor of the jet (such as flavor information) is sometimes less theoretically developed.
Many new identifiers that show extremely high levels of performance rely on this type
of information, such as track impact parameters, secondary vertex information, lepton
content, and particle multiplicities, for instance as shown in refs. [23-28]. Some of these
observables are not easily calculable, and many are not even infrared/collinear safe (see,
for instance, ref. [29] for a discussion of infrared and collinear safety). As such, further
tools are currently needed to extricate the various sources of discrimination aside from
theoretical calculations.
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Figure 1. A schematic representation of our XAUG variables with LRP method.

Our approach is to augment low-level input information with high-level expert vari-
ables, referred to as “eXpert-AUGmented” (XAUG) variables, and utilize a local approxi-
mation system such as LRP to understand the importance of various pieces of information
as shown in figure 1. The XAUG variable approach is similar to other contexts such as
refs. [8, 30-33], however, our strategies and goals are different. Instead of using expert
variables alongside low-level features in the inputs, we augment the entire low-level net-
work with expert features by concatenating them to the post-processed decisions as a whole
(either after the convolution or recurrent network decisions). This allows a simple network
to investigate and learn high-level (i.e. more abstract) details in the inputs. We also seek
to provide these XAUG variables for dimensionality reduction in the function space of
the DNN classifier, similar in strategy to the analytic tools proposed in [18], but with an
eye toward extrication of the experimentally-available information that may not be eas-
ily captured by theory, such as flavor information. This can assist in explaining individual
classifier decisions. In an ideal case, the DNN classifier can in fact be fully contained within
the XAUG variables in a simple multilayer perceptron (MLP).

We develop a framework that can be applied to any classifier in an attempt to re-
duce the dimensionality of the problem by replacing or augmenting the lower-level /higher-
dimensional features (i.e. many inputs per jet) by higher-level /lower-dimensional XAUG
variables (i.e. one input per jet). We will show that the behavior of the DNN can be
captured robustly by the addition of appropriate XAUG variables, and in some cases can
entirely capture the behavior. This technique is not limited to information that can be

theoretically described or predicted.

Firstly, we develop a trivial “toy” model with only a few features that are fully cap-
tured by XAUG variables. We show that the classifier decisions of such a DNN will be the



same as a simpler classifier based only on XAUG variables themselves. We developed a 2D
CNN based on “images” similar (but not identical) to the approaches in refs. [30, 34, 35],
as well as a 1D CNN and a 1D RNN based on particle lists inspired by the algorithm inputs
in refs. [8, 28].

Secondly, we develop several classifiers to distinguish boosted Z bosons decaying to
closely separated bb pairs (Z — bb) from standard QCD jets based on simulations. Once
again, we investigate several cases, including a 2D jet image-based CNN (using only jet
kinematic and shape information), a 1D particle-list CNN, and a 1D particle-list RNN. The
latter two contain information beyond the kinematics of the jet, such as particle content
and decay impact parameters.

As mentioned above, it has been shown in refs. [18-21] that the kinematic informa-
tion of such classifiers is exhausted by angularity variables. One example “basis” is the
set of N-subjettiness variables [36, 37]. As such, classifier decisions with only kinematic
information should be almost entirely correlated with existing kinematic expert variables
when those variables are used as XAUG variables. Other information is not captured by
these kinematic observables, however, such as the flavor and soft radiation in the jet such
as the “jet pull” [38]. An advantage of the XAUG + LRP approach is that all of these
types of information can be used to gain an understanding of the relevant features. This
work is similar but complementary to ref. [39], which extracts expert information from the
network for kinematic and shape variables, whereas we also investigate flavor information.

It is known that in many cases, complete decorrelation with kinematic variables (such
as transverse momentum pp and mass m) is desirable for many analyses (see an overview in
ref. [5]). However, in the interest of simplicity, for this paper decorrelation is not addressed,
although the general features of using XAUG variables and LRP extend to this case as will
be demonstrated in future work.

In the following sections, we will introduce the layerwise relevance propagation tech-
nique (section 2). We will then describe a toy model for demonstration in section 3 to
highlight how the technique works in a trivial but instructive case. Section 4 will describe
the particle-level model. Explanations of both the toy model and the particle model will
be discussed in section 5. Finally, we will present conclusions in section 6.

2 Layerwise relevance propagation

LRP is a linearized approximation to networks that can be thought of as a “Deep Taylor
decomposition” [40]. To understand this method, take a neural network with a prediction
f(z), based on some inputs z; these inputs can be pixels in an image or input variables.

LRP propagates the prediction backwards through the network, eventually assigning a
(1)
J

the “1” in the superscript indicates the first layer of the DNN. The relevance score indicates

1 . . . .
relevance score Rj to each piece of input =/, where j enumerates the input features and

how much each input pixel or variable contributes to the final prediction.



In an ideal case, the LRP backwards propagation method has an overall relevance
conservation at each layer [ as a sum over features j:

fla) == 30 R Y RO - YR, )
J
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Again, the superscript indicates the layer the relevances are being calculated at, and the
subscript indicates the summation over the relevances within that layer. Relevance conser-
vation means that at every layer of the network, the total relevance sum is the same [16].
Therefore, the backwards propagation process does not alter the prediction. Additionally,
LRP attributes the entirety of the network’s decision to the inputs.
While there are many possible implementations of the LRP propagation rules [16], we
focus on only a few of them in this paper. First, we consider LRP-¢ in which the relevance
score for the jth neuron in layer [ is computed as:

S RY szjwj’“ RV, (2.2)
j

LWk + €

Here, as in the other LRP rules, z; is the activation of the neurons at layer [, R(ZH)
the relevance scores assigned to the layer [ + 1 neurons, and wjj is the weight connecting
neurons j and k [15]. The e term is included for numerical stability. In LRP-¢, two criteria
determine how relevance is propagated from layer [ + 1 to each layer [ neuron. The first
criterion is x;, the neuron activation. Rather intuitively, more relevance goes to more
activated neurons. The second criterion is wj;, where stronger connections (with larger
wj,) receive more relevance. The simple case where € is set to zero is called LRP-z.

In particular, for LRP-¢, especially at large values, ¢ can absorb some of the rele-
vance [14]. Therefore, we also consider LRP-a/3:

o _ (wjwip)t L (wowi)” (1+1)
;Rj _g aZ(xiwik)+ BZ(xiwik)_ By (2:3)

K3 3

where the + and — superscripts indicate the positive and negative contributions to the
relevance, respectively [15]. Positive contributions to the relevance correspond to a con-
tributing activation function, and negative relevance corresponds to an inhibited activation
function. Therefore, choosing different values of o and 3 allows for control over the im-
portance of positive and negative contributions to the network’s decision [14]. Relevance
conservation is enforced by requiring o — 8 = 1. In practice, ML models typically include
a bias in each layer to improve accuracy; however, this violates relevance conservation. In
such cases, the summation of all relevance scores does not equal the total score, although
this is not a significant disadvantage.

In this paper, we implement LRP using the iNNvestigate Python package [41]. To
compute the LRP score for CNN models, we use the “Preset A” mode of iNNuvestigate,
which uses LRP-¢ for dense layers, and LRP-af for the convolution layers. To compute
the LRP score for RNN models, we use LRP-¢ throughout. These more practical LRP
measures unfortunately do not conserve relevance at each layer, but this is not a major
drawback.
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Figure 2. Diagram showing the toy “event” level parameters (left) and the toy “particle” level
parameters (right).

3 Toy model

We first create a toy model to explore the feature exhaustion of networks using XAUG
variables. The toy model is designed to vaguely mimic the salient features of jet images,
to be processed by a 2D convolutional network, and a list of particle level information, to
be processed by an RNN or 1D CNN. We assume there are two populations of inputs for
each network, and design the networks to discriminate between the two populations.

Fach toy event corresponds to one jet consisting of 2 subjets, each comprised of 10
particles. For the toy images, the generated features are based on the substructure features
of a jet with two subjets of radii 1 and ro, an angular distance of § apart, with momentum
fractions z and 1 — z, as shown in figure 2. These parameters are cartoon-level models for
a jet with two subjets, where 6 corresponds to AR for a boosted jet with small angular
separation as described in ref. [42]. The “jet momentum?” is normalized to one, and since we
are limiting the model to events with 2 subjets, the subjet momentum fractions are defined
as z and 1 — z. Using these parameters, particles are randomly generated in each subjet;
these are then pixelized into jet images. Fach jet image is 16 x 16 pixels, representing
calorimeter cells in a detector, with 20 particles in each image or event.

There are two image populations, which we will refer to as signal and background. We
generate 1M images, half signal and half background. The signal is randomly sampled
from normal distributions for z and 6, while the background is sampled from exponential
distributions that are mostly separated from signal in their combined phase space (see
table 1). The radii of the subjets for both cases are sampled from a uniform distribution
in a range that keeps the particles within the 16 x 16 image. These radii enclose the
sampling of the particles coordinates with respect to the subjet axis, which are represented
by variables da and d3. The angular distance from the subjet axis, da is sampled from
an additional exponential distribution with a scale parameter of 0.5 for both signal and
background, limited by the radius of the subjet. The azimuthal angle with respect to the
subjet axis, 0, is sampled from a uniform distribution of [0,27) for both populations.
The momentum fraction of the subjet z is distributed among the 10 particles of the subjet
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Table 1. Parameters used to generate toy model distributions. p and o are the parameters for a

gaussian distribution and § is the parameter for an exponential of the form f(z) = %exp (_71)
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Figure 3. The normalized z, 6 distributions for signal and background events in the Toy Model,
along with the z1, day, 31, and r1 values for those same events.

according to the distributions, denoted z; for the leading subjet and constrained to sum
to z, and z9 for the second subjet, constrained to sum to 1 — z. These can be interpreted
as the momenta of the constituents, and are used as the pixel intensities in the jet image.
We obtain the coordinates of the pixels within the image by transforming da and 65 to an
abstracted n-¢ plane via a simple rotation. In the n-¢ plane, the leading-pt subjet axis is
at (0,0) and the subleading-py subjet axis is at (0, —1). Finally, the image is flipped if the
sum of pixel intensities in the left half of the image is greater than that on the right half.
The input distributions are shown in figure 3, and examples of summed input images are
shown in figure 4.

For use in networks that take 1-dimensional inputs, the data is structured as a list of
the simulated “particle-level” information, i.e., the individual constituent z fractions, and
da and 6 values, as seen in the right diagram of figure 2. Within each event, particles are
sorted by z1, which is the leading subjet’s z value distributed among that subjet’s particles.
We refer to this as a “particle list”, and just like the image data, we generate 1M events,
half signal and half background.

We investigate three network structures: a 2D CNN for jet images, a 1D CNN for
particle lists, and a 1D RNN for particle lists. The datasets were shuffled and split into
testing, training, and validation subsets. In all cases, when XAUG variables are used in
conjunction with low-level inputs, they are concatenated to the post-processed outputs of
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Figure 5. Diagram of 2D CNN for classification of toy model images. When used, XAUG variables
are concatenated to the processed outputs immediately before the final two ReLLlU layers.

the CNN or RNN. This augmented list is then combined in a flattened layer for input to
an MLP that provides the final decision.

3.1 2D CNN for toy model

For the 2D CNN, we build a network consisting of 3 convolutional layers, followed by
a dropout layer that randomly drops 20% of the nodes, and a max-pooling layer that
calculates the maximum value of the feature map, then 2 dense rectified linear unit
(ReLU [43, 44]) layers, with a softmax dense layer making the final classification between
the signal and background populations. This network is based on networks made to analyze
2D jet images, like those in refs. [34, 35]. The network that operates on the toy images has
154,178 trainable parameters. We concatenate the “event” level XAUG variables to the
end of the flattened convolutional output which is then processed through two dense layers
to further find relations in the concatenated input. The final network has 43,073 trainable
parameters, the details of which can be seen in figure 5.

3.2 1D CNN for toy model

For the 1D CNN, we build a network consisting of a set of layers that goes over each set
of information within the particle list separately before the outputs of these layers are
concatenated together and passed through a dense layer before a final decision is made.
Each set of shape (20, 1) input tensors goes through two 1-dimensional convolutional layers
of stride 1 — one with kernel size 3 followed by a layer with kernel size 1 — before being
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Figure 6. Diagram of 1D CNN for classification of toy model particle lists. When used, XAUG
variables are concatenated to the processed outputs immediately before the final two ReLU layers.

fed to a dropout layer that drops 20% of the nodes, and a max pooling layer. This set of
layers is repeated, except the convolutional layers not have half the nodes of their previous
iteration, before the tensors are flattened and concatenated with one another. In the case
where XAUG variables are added, they are concatenated with the particle level information
after they’ve gone through the aforementioned layers. This model has 270,082 trainable
parameters, the details of which can be seen in figure 6.

3.3 1D RNN for toy model

For the toy model RNN, we build a network consisting of recurrent layers that process the
particle level information before being flattened and passed through a dense layer before
the final decision is made. The inputs — which are a size (20, 6) tensor containing the z,
da, and 0 information for the consituents of the subjets and size (1,) tensors for the XAUG
variables — are divided into subsets based on the chosen timestep of the recurrent layers.
In our network there are 10 timesteps per event; this equates to processing information
from 2 particles at a time, with a memory of the previous 2 particles being used to find
patterns within the event.

The particle list information passes through 2 gated recurrent unit layers, then a batch
normalization, one more gated recurrent unit, before being flattened and passed to the
dense layers for decision-making. In the case where XAUG variables are added, they are
concatenated with the particle level information after they’ve gone through their respective
recurrent layers. This model has 248,938 trainable parameters, and the details can be seen
in figure 7.

4 Particle-level model

The more realistic simulation is a set of PYTHIA 8.2.35 [45] events.! To simulate the 2-prong
structure of boosted jets, we produce SM ZZ production with both Z bosons decaying to
bb.2 Both b quarks from the Z decay are required to be within AR < 0.8 of the Z. We

LOur software is outlined here: https://github.com/rappoccio/PythiaGenJets.
2The configuration for SM ZZ production is here:
https://github.com /rappoccio/PythiaGenJets/blob/master/zz_bb_ flatter.cfg.
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Figure 7. Diagram of RNN for classification of toy model particle lists. When used, XAUG
variables are concatenated to the processed outputs immediately before the final dense layer.

use generic QCD multijet events as background.?> We only consider the leading jet in the
simulations, so we refer to these two samples as Zbb and QCD, respectively.

It has been shown in ref. [46] that independence of kinematic variables is a desirable
feature for boosted object tagging, and has been applied in several “decorrelated” versions
of DNNs, with examples in refs. [28, 47, 48]. Examples of approaches taken in other
works have been to train an adversarial network to achieve the desired independence from
kinematic variables, reweighting the samples, or to decorrelate the behavior in a brute force
approach. Our simulated samples have different pt spectra in reality, however we wish to
eliminate such kinematic differences to some extent in our training. As such, we artificially
weight the PYTHIA generation with the bias2Selection parameter in order to have similar
jet pr spectra, which is shown in figure 8a. We therefore partially remove the pr and mass
dependencies of the classifier. The goal of this paper is to explain decisions, so we take this
simpler approach for ease of demonstration. It does not achieve complete decorrelation.
The principles we develop are also applicable to more thoroughly decorrelated taggers,
but become more complicated due to the increased dimensionality of having adversarial
networks and are thus left to future work for investigation.

We then cluster the particles with fastjet 3.3.1 [49, 50] to create anti-kt jets [51]
with a distance parameter of R = 0.8. We then use the RecursiveTools package from
fastjet-contrib 1.036, which implements the modified Mass Drop Tagger (mMDT) [42].
This is the same algorithm as the Soft Drop (SD) algorithm [52] with 8 = 0. We use the
mMDT with 2z, = 0.1, = 0 and a cut to require exactly two subjets within every jet.
We define the groomed or soft dropped jet mass as mgp.

3The configuration for QCD multijet event simulation is here:
https://github.com/rappoccio/PythiaGenJets/blob/master/qcd flat15t07000.cfg.
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We select the leading jet in the event with pp > 200 GeV, |n| < 2.4, and 50 < mgp <
150 GeV. After these selections, there are 552k events in the signal and background cat-
egories (half in each). The distributions for the jet pr, mass, and soft dropped mass are
shown in figure 8.

The information used for each particle in our classifiers are the four-vector information
(pr, n, ¢, mass), the production vertex spatial location (d, dy, d., with transverse distance
denoted by d,y), and the particle PDG ID [53]. In addition, the distance to the center of
the jet, and the distances to each subjet are also stored. The distribution for d, is shown
in figure 8.

4.1 XAUG variables for particle-level model

To encapsulate the kinematic information of jets and their substructure, we will select the
N-subjettiness variables 7 as one set of XAUG variables. We also input the jet four-vector,
and the groomed jet mass.? The angular distance between the two subjets A Rgubjets and
momentum fraction of the leading subjet z are also added.

To add simple flavor identification, we add jet composition variables such as charged
hadron multiplicity (Nen), neutral hadron multiplicity(/NVpeut), photon multiplicity (N),
muon multiplicity (NV,), and electron multiplicity (Ne). A measure of the soft radiation in
the jet is represented by the jet pull angle (¢pun) [38]. Finally, heavy flavor identification
information is encapsulated by an (over)simplified metric of the maximum of the spatial

4Most taggers have historically avoided adding the mass to the classifier inputs, however in our case we
have decided to add it since it can be deduced from the N-subjettiness variables in any case.

- 11 -



locations of the production vertex for each particle in the x —y (d,) and z (d,) directions.
Distributions for 7o/71 and Ng, are shown in figure 8.

4.2 Variable normalization for particle-level model

To ensure that all of the inputs to our networks have comparable numerical magnitude, we
perform preprocessing on each input variable based on the overall distribution in the signal
and background. An equal number of signal and background events are chosen in each
case, and then the distribution of each input variable for the ensemble are calculated. The
mean and standard deviations are computed, and the distribution is truncated between
43 standard deviations of the mean. We then define the minimum to be zero, and the
maximum to be one. These are referred to as “normalized” variables. To clarify, the
underflows and overflows appear at 0 and 1, respectively.

4.3 Classifiers for particle-level model

We consider three types of classifiers. The first is a 2D image-based CNN, with preprocess-
ing inspired by refs. [34, 35]. The second is a 1D CNN that inputs measurements from the
first NV particles in a transverse momentum (pr) ordered list, similar to the DeepAK8 algo-
rithm in ref. [28]. The third is a recurrent neural network (RNN) that inputs an arbitrarily
large list of the same information as the 1D CNN.

We discuss each classifier in turn.

4.4 2D CNN for particle-level model

The first classifier we consider for particle-level simulations is a CNN that is based on 2D
jet images, with preprocessing inspired by refs. [34, 35]. We then use a CNN with the
same architecture shown in figure 5, but with different XAUG variables and the full list
of particle inputs. At this point, if only looking at image data, the network will pass the
flattened images to 2 dense layers before being output. If the network is also passed XAUG
variables, these will be concatenated with the flattened images before going through the
dense and output layers.

The preprocessing is as follows. First, we find exactly two subjets (events with fewer
than two subjets are discarded). We then examine the leading jet in the event, and calculate
the subjet directions. The subjet with the higher pr is used as the center of the jet image
(0,0), and the image is then rotated in local pseudorapidity-azimuth space (n — ¢) such
that the lower-p1 subjet is pointing downward. The radial distances are scaled in units of
the AR between the two subjets, such that the lower-pp subjet is placed at (0,—1). The
pr of all of the constituents are scaled by the total jet pr, and are then pixelated into a
grid of size 16 x 16. The image is then parity flipped so that the largest sum of the pixel
intensities is on the right-hand side of the image. Plots of the aggregated Signal (Zbb) and
background (QCD) are shown in figure 9.

4.5 1D CNN for particle-level model

The second classifier we considered for particle-level simulations is a CNN that is based on
observables from the first N particles in a pp-ordered list of inputs, similar to the DeepAK8
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Figure 9. Aggregated Signal (Zbb) and Background (QCD) Jet Images after preprocessing.

algorithm in ref. [28]. One of the main advantages of DeepAK8 is the use of particle-level
information to have sensitivity to particle content such as hadron flavor, and quark-gluon
discrimination. For this reason, we have two separate particle list taggers, one with only the
four-momentum information of the constituents, and another that adds other observables.
We are interested in general characteristics of a procedure in this paper, so we do not
attempt a realistic flavor definition for our simulated sample. Instead, we directly input
the particle ID of the stable particle, and the x,y, z position of its production vertex.
These are overly simplistic assumptions for a realistic tagger, however it will demonstrate
the procedure of how flavor information could be investigated with our method.

In particular, we have found that N = 20 provides good discrimination between 2-
prong jets and QCD jets. We use a network architecture of 2 convolutional layers, one
with shape (64, 3) and one with shape (64, 1) followed by a max pooling with pool size 2,
followed by a dropout of 20% of the network’s nodes. The inputs tensors have shape (20, 1)
and contain the particle list information of the leading constituents of the leading jet, sorted
by pr. The two convolutional layers and max pooling layer are repeated with shapes (32,
3), (32, 1) and 2 respectively with another 20% dropout following. The convolved values
are then flattened and concatenated with the XAUG input features, which are then fed
through a dense layer with a ReLLU activation. The network’s structure is the same as in
figure 6 with different XAUG variables.

For inputs to the 1D CNN that are similar to those in DeepAK8, 17 variables were
created. The variables are listed in table 2.

4.6 1D RNN for particle-level model

The final classifier is an RNN that uses similar inputs as the CNN from the particle list;
however, we limit the number of particle and expert variables due to the increased training
and processing time of the network. The network architecture we apply is a first input
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Variable

log(pr)
log(pr/jet pr)
log(E)
7|
Ag(jet)
An(jet)
AR(jet)
AR(subjet;)
AR(subjets)
Charge ¢

isMuon
isElectron
isPhoton
isChargedHadron
isNeutralHadron
dyy
dZ

Table 2. Particle list input variables of 1D CNN, properties of the constituents of the leading jet.

layer, followed by 3 recurrent layers, 2 additional input layers, and 2 dense layers at the
end, shown in figure 7.

For the first input, the network takes in the four-vector (pr, n, and ¢) data of the first
20 constituents of the leading jet of each event sorted by pr. This is given to the recurrent
layers. Then, the XAUG variables 19; and charged-hadron multiplicity are added before
the final dense layers.

5 Explanations

In the following section, we will discuss the performance and explanations of both the toy
and particle models described in the previous sections.

5.1 Toy model explanations

The classification of the toy signal and background is trivial, even without the XAUG
variables. The area under curve (AUC) of the ROC curve is close to unity. However,
it is still instructive to investigate the explanations of these decisions to demonstrate the
features of LRP and XAUG variables. The understanding gained can also be applied to
the more realistic particle simulation.

Examples of the classification in the 2D CNN are shown in figure 10. There are
four examples of toy signal and background events in green. Their LRP scores are also
shown as heatmaps in red and blue. The blue LRP scores indicate pixels that contributed
positively to the identification, whereas the red LRP scores indicate pixels that contributed
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Figure 10. Individual Toy Model signal (left two columns) and background (right two columns)
that were correctly predicted (top) and their corresponding LRP score heatmaps (bottom). Features
with positive relevance support the prediction for the event, whereas features with negative relevance
oppose the prediction for the event. Images are plotted in transformed pseudorapidity-azimuth
(n— @) space.

negatively to the identification. It is clear that the signal classifications prefer information
where there is a disjoint subjet near (0,-1), whereas background classifications discourage
that area. Indeed, the input signal images in figure 4 have a well-separated second subjet
near (0,-1), while the background images do not. As such, the network is clearly learning
the appropriate information that was used to create the Toy Model, including the position
(i.e. angle) and intensity (i.e. energy) of the “subjets”.

We then trained a network with the XAUG variables 71, 2, z, and 6 included among
the network input features; these variables are defined and plotted in figures 2 and 3,
respectively. This is an exhaustive list of the entire information content of the toy model.
As such, we expect that the network will be able to (almost) entirely ignore the information
contained in the jet images, because its decision is completely determined by the XAUG
variables. Any residual relevance is an artifact of the optimization, not a distinguishing
feature.

To investigate the optimization dependence, we trained the same 2D CNN with images
and XAUG variables four times, labeled Models 1-4. This allows us to have four separate
optimizations and judge their consistency. The mean normalized LRP scores of the aggre-
gated events are shown in figure 11. To produce these bar plots, for each event we first
found the feature (XAUG or image pixel) with the maximum absolute LRP score. Then,
in order to eliminate the dependence of the relevance on the events with large deviations in
total relevance, we normalized the event by dividing all LRP scores by this maximum value.
For each event, we then summed the absolute values of the normalized pixel LRP scores
to get an image LRP score. After this, we averaged the absolute values of the XAUG and
image LRP scores across all events to produced the mean normalized relevances shown.
This procedure is used for all bar plots.
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Figure 11. LRP scores for all variables in the Toy 2D CNN Model, with 4 separate trained models.

It is clear from these bar plots that the two most important pieces of information are
the XAUG variables z and 6. There is very little information that the network learns
from the “subjet” radii (which is expected, since they are drawn from the same uniform
distributions). Furthermore, the network does not extract many features from the image
itself after the addition of the XAUG variables. The image relevance varies between 0.0
to 0.1, but is always much lower than that of z and 6. This indicates an extremely flat
optimization in the network training in the space of the input image. The network makes
use of subleading features, although the extent varies if the network is retrained.

To study the impact of various features on the decision making, we plot the relative
rank of each feature in figure 12. The annotation on each bubble is the percent of events
for which the variable had a certain rank. The z variable is ordinarily the highest ranked
in all of the four models we used, while the image is ordinarily last. The variables r; and
ro do not carry any discriminatory powers, as can be seen from figure 11.

It is interesting to note that there is some variation within the optimizations, especially
in the subleading domain of the optimization space. Differences in relevance attributed to
features between trainings point toward differences in local optimization of the network.

We plot the predicted score for these 4 models for 6 versus z in figure 13. The orange
distribution is the “background” while the blue distribution is the “signal”. The intensity
of the color indicates the predicted score. The plot in figure 14 shows the same events,
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Figure 12. Ranked LRP scores for all variables in the Toy 2D CNN Model shown here for four
separately trained models.

but this time shading the histograms by the z LRP score. In figure 13, a clear gradient is
shown across the decision boundary between the two populations. This is very consistent
across different trainings of the network. Figure 14 shows high LRP scores along certain
subspaces that correspond to details of decision boundaries, and while the various trainings
are qualitatively similar in their “broad” features, the individual details vary among them.
This indicates that there are subspaces within the classification that are not identical
between different trainings.

Another way to display this information is shown in figure 15. Here, the XAUG
variables z and # are shown as 1D histograms, with their LRP relevance shown in the
panel below. The signal is shown in blue and the background is shown in orange. The

network is placing a high magnitude of relevance on the values that are far from the overlap
region (z > 0.75, and 6 > 0.10).
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Figure 13. Predicted score for Toy Model for four separately trained models. The momentum
fraction z is shown on the x—axis while the angle 6 is shown on the y—axis. The orange distribution
is the background and the blue distribution is the signal. The intensity of the color indicates the
predicted scores.

We performed the same studies shown above on the 1D CNN model. However, for
brevity we show an average over 4 different trainings in our plots, with the RMS of the 4
trainings as the uncertainty. Similar to the 2D CNN model, we can see from figure 16 that
the variables given the most relevance by LRP were those with the greatest separation in
combined phase space: z and #. We can see a clear decision boundary in their combined
phase space in figure 17. The left image again shows a clear gradient in the relevance
of the variables, indicating that the network is unsure how to categorize the event in the
overlap region.

The final model that we investigated was an RNN. This model showed much different
relevance results from the other two, despite having comparable accuracy to the 1D and
2D CNN’s. The RNN gives the greatest relevances to the constituent list variables, driven
by the relevances of z; (the values of z broken up among the leading jet constituents) and
z9 (the values of (1 — z) broken up among the subleading jet constituents), as can be seen
in the right plot of figure 16. Although the CNN and RNN have different variables with
greatest relevance, z; and zy encode the same information as z, just in constituent format.
The RNN and CNN then still have the same leading variable, but the RNN gives more
relevance to the variable in its constituent format rather than its event-level, or XAUG
variable, format.
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Figure 14. Relevance (LRP) scores for Toy Model 1D CNN for four separately trained models.
The momentum fraction z is shown along the horizontal axis while the angle 6 is shown on the
vertical axis. The orange distribution is the background while the blue distribution is the signal.
The intensity of the color indicates the summed LRP score, with darker colors representing more
confident predictions of the model.

For the 2D CNN (figure 14) and the 1D CNN (left image in figure 17), the combined
z — 0 phase space shows a clear decision boundary. The RNN, on the other hand, has a
less apparent gradient (right image in figure 17), with most of the relevance apparent in
the background. The unclear decision boundary, in addition to the greater variation in the
mean normalized relevance score, is most likely due to the implementation of the RNN’s
time axis, which currently couples all low-level features of two particles at a time. A possibly
better alternative would be to couple one feature at a time for many particles; however,
this would have been much more computationally intensive, and the RNN is already a
factor of ten less computationally performant than its convolutional counterparts.

The figures in this section provide two important pieces of information. Firstly, in
the case where there are XAUG variables that dominantly capture the information in
the system, the LRP accurately selects the most important variables, rendering the image
redundant, as seen in figure 11. Secondly, the network can arrive at different optimizations,
each with different subleading relevance, which can impact the confidence of the prediction
in regions of confusion. However, these separately trained models have nearly identical
performance (see figure 13), despite clearly arriving at different minima (see figure 14).
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Figure 16. Mean normalized relevance score for 4 trainings of the toy 1D CNN (toy 1D RNN) on
the left(right), where the relevance scores of constituent variables List (dav, §51, daa, dae, Zeonst.1,
Zeonst,2) are summed.

These are not related to insufficient training data, as we have checked this with both
low-and high-statistics samples and the features persist. This leads to a recommendation
about numerical uncertainty in the classifier.

5.2 Numerical uncertainty in the classifier

In the above studies, the LRP distributions of the various XAUG variables show that
the main decision boundaries made by the classifier are relatively stable. However, there
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Figure 17. Mean LRP scores for z and 6 variables in the Toy 1D CNN Model (left), and RNN
(right).

are details in the local approximation (LRP) boundaries that are caused by differences in
relevance among subleading features.

The LRP score is a reliable way to quantify the most relevant variables. However,
this also means that the optimization with respect to less relevant variables is not easily
determined, with very different local behavior for different trainings. This points to the
need for a numerical uncertainty of classifiers that is not easily visible in the final classifier
output, since the latter is primarily sensitive to the most relevant variables. Decisions based
on less relevant variables can vary depending on the training. Optimizers like ADAM [54]
have a difficult time optimizing [55] along these axes because they are so shallow, and the
optimizer loss functions are dominated by the most relevant variables.

A consequence of this study is that it is very important to perform multiple different
trainings for networks, especially if the decisions are made on subdominant features. The
trustworthiness of individual classifier decisions is very high in the case of differences in
features with high relevance, but is considerably lower for features with low relevance.

In the remaining study, we will therefore train the network 4 times and take the
average response. The RMS of the predictions can then be used also for an uncertainty
quantification, which we add for the relevance scores. These have similar interpretations to
other systematic uncertainties, inasmuch as differences that exist, but are covered within
the uncertainty, are not trustworthy differences.

5.3 Particle model explanations

The Toy Model introduced previously is intended as a highly simplified “cartoon” of jet
substructure. The angle # and momentum fraction z of the “subjets” in the Toy Model are
analogous to the AR and momentum fraction z of the actual subjets from the soft drop
algorithm. The drastic separation observed in the Toy Model will be reduced, although we
can use the insight and techniques developed to apply to the particle-level simulation. As
seen in the previous section, the toy model information can be completely exhausted by
XAUG variables. However, for the more realistic particle model, as will be shown below,

- 21 —



0.14 0.14

A Signal A Signal
0.12 X7 Background 0.12 X7 Background
0.10 0.10
§o.08 §o.08
= =
] ]
& 0.06 & 0.06

0.04 0.04

0.02 0.02

0.00 - 0.00 -

T —————
\odf”

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Rescaled mjet Rescaled mjet,sa

Relevance
o
Relevance
o

|
—
|
—

Z=2 Signal E=A Signal
3 Background 10° =N Background

101

£ 102
B

Fraction
o
o
w

©
£ 1073
104

107

Relevance
o
Relevance
o

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Rescaled ti°.3) Rescaled dyxy, max

Figure 18. Histograms with profiles of LRP relevances normalized per event and averaged over
four models. Signal and background are the Zbb and QCD samples, respectively.

the XAUG variables do not fully exhaust the discrimination ability, but can be used to
augment the performance of the low-level features.

Distributions of the normalized variables are shown in the upper portions of some
variables in figure 18 and in the appendix for all variables in 26-31. The jet images from
a few individual events, along with their LRP heatmaps, are shown in figure 19. The
background events are more spread out than the signal events, which tend to be clustered
among one or two subjets. This is exploited by the network, as can be observed in the
bottom panes. The network identifies signal by weighting toward the central two subjets,
while the network identifies background using pixels away from the two subjets. These
images provide similar information to those in ref. [35], which show the Pearson Correlation
Coefficient.

The predicted scores and LRP scores for the 2D CNN trained on the Particle Model
are shown in figure 20 for the rescaled angular separation ARg,pjers versus the rescaled
momentum fraction of the subjets z. These are the analogous plots to our cartoon toy
model, shown in figure 20. It is clear that the separation between signal and background
is reduced and the separation in these geometric variables is not as clear to the eye.

The simple intuition from viewing XAUG variable distributions can be translated into
a choice of more appropriate variables. In particular, figure 21 shows the analogous distri-
bution for two XAUG variables, the rescaled groomed jet mass mgp and the rescaled T§7SD.
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Figure 19. Individual Particle Model signal (left two columns) and background (right two columns)
images (top) and their corresponding LRP score heatmaps (bottom).
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Figure 20. Averaged relevance score of 5 models for the particle list CNN for AR, upjets VS 2
for the Zbb and QCD samples. Analogous to the gradient plots of 6 vs z in figure 13 for the Toy
1DCNN.

It is clear that there are separations between the signal and background populations. The
region for the rescaled mgp between 0.35 and 0.4 (corresponding to the Z mass window)
tends to be preferred as a signal region, and just outside that region is preferred as back-
ground. In addition, there is a clear correlation between mgp and T%}SD that the network
utilizes to identify background in the upper left and lower right portions of the plot (low 7
at high mass, or high 7 at low mass). Furthermore, figure 22 shows the groomed versus un-
groomed jet mass. This gives information about the fraction of the jet that is groomed away
compared to the original, which can disentangle the hard and soft parts of the jet. The net-
work clearly makes use of this information. In both of these plots, the network has regions
of extremely high confidence that offer clear distinction between signal and background.

Another way to see the same information is to look at the individual variables from
the 2D CNN trained on the Particle Model in figure 18 for highly relevant variables, and
in figures 2631 in the appendix for all variables. These plots show the distribution of the
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Figure 22. Averaged relevance score over 5 models for particle list CNN for ungroomed mass mjet
vs groomed mass Mmjet,sp for the Z bb and QCD samples.

XAUG variables in the top pane, as well as a profile distribution of their relevance scores in
the bottom pane. The relevance score shows the contribution to the correct classification
of either signal or background.

It is possible to use the information gathered by the LRP procedure to quantify the
impact of each individual variable on the decision of the network. Figures 23 and 24 show
the mean relevance score over four models for each input in the 2D CNN and 1D CNN,
respectively. In these cases, the relevance scores from the image and list are summed and
displayed as a single bar in the histogram. The uncertainties on the scores are drawn from
the RMS of four separate training iterations of the CNN. It is clear that there is a hierarchy
of variables, with 56 very important ones with relevances above 0.3, around a dozen with
moderate importance between 0.1 to 0.3, and around 5—6 with low relevances below 0.1.

In order to understand how much information is being used for the decision making,
we can investigate the performance of our networks in several cases, shown in figure 25.
Due to the fact that we are using a highly simplified model at the particle level only (for
demonstration), the ROC curves are (over)optimistic about performance, although it is
still instructive to investigate differences to understand relevant features.

First, as a baseline, we can look at the simplest case of MLPs using only the XAUG
variables as inputs. We will look at two such cases, one where we do not use flavor
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Figure 23. Input features with the greatest mean normalized relevance after averaging the rele-
vance scores of four models for the 2D CNN. These models use Zbb and QCD simulation as signal
and background, respectively. The relevance of the image is the summed relevance of all the pixels
in the image.

information (particle content, d;,, and d.), and then when this information is added.
These are labeled “XAUGs only (no flavor)” and “XAUGs only”).

Next, we can investigate the 2D CNN with only the jet images as input (labeled as
“Images only” in the figure). We then combine the information together from the image
and the 5 XAUG variables with highest relevance (“Images + 5 XAUGSs”) or with all
XAUG variables (“Images + XAUGs”).

We can repeat the above cases with the particle list for the 1D CNN (“Particle List”),
and then add the top 5 XAUG variables (“Particle List + 5 XAUGs”) and all XAUG
variables (“Particle List + XAUGs”). The RNN can also be similarly investigated with
and without XAUG variables, shown in “RNN - Particle List” and “RNN - Particle List +
XAUGSs”.

We see that the image-only NN performs the worst, with an AUC of 0.932. The XAUG
variables perform better, achieving AUC of 0.957 (0.976) without (with) flavor information.
Combining the image with the XAUG variables achieves an AUC of 0.984. Combining the
particle list with the XAUG variables achieves AUCs of 0.994 and 0.995 for the top 5, and
all XAUG variables, respectively. Similarly, the RNN achieves an AUC=0.975 regardless
of whether the XAUG variables are used.

These results demonstrate that adding XAUG variables can considerably improve net-
work performance. In fact, the XAUG-only performance is already fairly good at distin-
guishing between Z — bb and QCD. It may be quite useful for some simplistic cases to
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Figure 24. Input features with the greatest mean normalized relevance after averaging the rel-
evance scores of four models for the particle list CNN. “List” is the summed relevance of the 20
particle inputs per event and the 17 particle list inputs.
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Figure 25. ROC curves from Image CNN, Particle List CNN, DNN with XAUG variables only,
and RNN, with mass window cut of 50 < mjer,sp < 150 GeV.
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consider these simple networks, guided by what DNNs find important. In cases where more
discrimination is necessary, combining XAUG variables with the network can act as a sort
of guide for the optimization, achieving better performance together than either achieves
individually. It also gives a robust method for investigation of subspaces of relevance that
can be understood easily by analyzers. Furthermore, the cases where we add only the 5
XAUG variables with the highest relevance scores are almost identical to using all XAUG
variables. We can therefore conclude that the XAUG variables with the highest relevance
scores encompass the primary decision factors that the network is making, and could be
used by analysts to audit and understand network behavior. In addition, only these few
XAUG variables would be needed to greatly improve performance.

As can be seen in figure 23, the LRP relevance of the image is greater than that of any
one XAUG variable. This is a noticeable change from the toy model results in figure 11,
where the image ranks lower in relevance than the top XAUG variables. There, the XAUG
variables capture all of the information in the event, and a single XAUG variable has
greater relevance than the image alone. For the particle level model, the total information
of the event can be captured by a subset of the XAUG inputs, since a subset’s combined
relevance score is greater than the image’s score alone. The same conclusions can be drawn
for the particle list CNN by comparing figure 16 and figure 24.

In addition to the above observations, figure 23 shows considerable variation from one
training to another in the local behavior of networks. The local network optimization
depends weakly on features with low relevance, so decisions based on these features should
be trusted to a somewhat lesser degree. These findings suggest that networks should be
trained multiple times, with the average taken and variations counted as uncertainties. In
our case, the networks tend to be strongly affected by dominant, smaller subspaces related
to a few shape-based variables, jet mass with and without grooming, and the lifetime
information. Such an analysis combining LRP and XAUG variables could also be applied
in other use cases to rank salient features.

6 Conclusion

We have presented a scheme to systematically explain jet identification decisions from a
deep neural network (DNN) using eXpert AUGmented variables (XAUG) and layerwise
relevance propagation (LRP). The combination of these two techniques can shed light on
network decisions that would otherwise be difficult to ascertain. The XAUG variables can
also be used alone for classification, or can be used in conjunction with lower-level / higher-
dimensional classifiers to “guide” the network decisions, resulting in better performance.
In some cases, such as with the toy model presented, XAUG variables can even capture
the information of the lower-level networks entirely if there are subspaces of the network
optimization that are correlated with the XAUG variables themselves. In other cases, such
as the more realistic particle model presented, the low-level information sometimes provide
additional discrimination power over the XAUG variables alone. Both have comparable
performance in the studies presented. However, the best performance was observed when
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the two approaches were combined. The ranked relevance scores of inputs can give insight
into which XAUG variables are best to replace or accompany the original input.

An additional benefit to using LRP and XAUG variables is the ability to investigate
relevant subspaces of the training. This can highlight when there are very shallow opti-
mizations, where training multiple times could lead to slightly different subspaces. In such
cases, it is recommended to train multiple times and take the mean of the predictions. This
provides a framework to compute numerical systematic uncertainties in the training.
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A Software versions

We used PYTHIA v8.2.35 [45] with the default parameters, with events stored in the ROOT [56]
format. Both the toy model and particle-level simulations were processed with coffea
v0.6 [57] using uproot v3.11 [58] and AwkwardArray v0.12.0rcl [59]. We used tensorflow
v1.13 [60] and iNNvestigate [41] for the DNNs and LRP, respectively.

Our software can be found here https://github.com/ubcms-xai/XAICoffea on github.

~ 98 —


https://github.com/ubcms-xai/XAICoffea

B Relevance scores for all XAUG variables

80C(TC0C) SOdHHL

0.06 0.06
Z=3 signal Z=3 signal Z=3 signal
[XJ Background 0.05 X1 Background X1 Background
0.04
c
S
£ 0.03
@
r
0.02
0.01
0.00
1
o o o
3 3 3
5 o | § ol—— 5 o
s mm—— s
& & &
-1 | | -1 | | -1 | |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Normalized pr, jet Normalized n(jet) Normalized ¢(jet)
0.040
Z=3 signal
X1 Background
1
o
3
2
S o0
L
&
-1 | |
0.0 0.2 0.4 0.6 0.8 1.0
Normalized ¢pui
. . . .
Figure 26. Histograms with profiles of normalized LRP relevances.
0.06 0.06 0.06
Z=3 signal Z=3 signal Z=3 signal
0.05 X3 Background 0.05 X3 Background 0.05 X3 Background
0.04 0.04 0.04
c c c
S S S
£ 0.03 £ 0.03 £ 0.03
@ @ @
r r r
0.02 0.02 0.02
0.01 0.01 0.01
0.00 0.00 0.00
1 1 1
o o o
3 3 3
g w - : N
g ° : ' g ° ! ' ] g °
2 I — K7 T 2
g g ! g
-1 | | -1 | | | |
0.0 0.2 0.4 0.6 0.8 1.0 .0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Normalized {> Normalized {05 Normalized {5
0.08 0.06 0.06
0.07 Z=3 signal Z=3 signal Z=3 signal
: [XJ Background 0.05 X1 Background X1 Background
0.04
c
S
£ 0.03
@
r
0.02
0.01
0.00 0.00
1
o o o
2 2 2
g o i S o0 S o=
L @ i @
& & &
-1 | | -1 | | -1 | |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8

Normalized t{°;)

Normalized 4

Normalized i)
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Figure 31. Histograms with profiles of normalized LRP relevances.
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