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Abstract. Traditional super-resolution techniques are generally presented as optimization prob-
lems with variations in the choice of optimization methods and cost functions. Even for the
overdetermined cases, the problem is ill-conditioned. The situation is worsened when consid-
ering underdetermined cases with unknown regions due to occlusions or lack of data. Deep
learning-based methods have shown promise in solving a similar problem. One recent advance-
ment has come in the form of partial convolutions, which were developed to perform infilling of
holes in images. When used in an appropriate deep neural network, this particular variant of the
convolutional filter has shown great promise in approximating missing spatial information. The
method described is formulated as a two-stage process. Lower resolution images are first regis-
tered and placed on a high-resolution grid. The problem is then treated as an in-painting task
where the missing regions are reconstructed using a deep neural network with partial convolu-
tional filters. We compare our method against deep learning-based single image super-resolution
methods and classical multi-image super-resolution techniques using two similarity metrics and
show that our method is more robust to occlusions and errors in registration while also producing
higher quality outputs. © 2021 SPIE and IS&T [DOI: 10.1117/1.JEI.30.1.013005]
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1 Introduction

For any imaging system, there exist constraints that limit the spatial resolution of the device. For
example, restrictions may be placed on the telecommunications bandwidth or the physical
dimensions of components of the imaging device, such as lens size and device mass. A more
obvious constraint may be cost, limiting the size, and/or resolution of the sensor. Even without
constraints on the imaging device itself, the process of capturing a scene with an imaging device
is typically idealized with the assumption that targets can be resolved to the maximum resolution
of the imaging sensor. However, due to the distortions and noise from atmospheric turbulence,1

motion blur, camera blur, and other causes, the theoretical maximum resolving power of an
imaging device is never reached using a single image.

It is of course desirable to have higher spatial resolution images to perform analysis with. By
combining multiple low-resolution (LR) noisy images, the high-resolution (HR) image can be
approximated. This process, called super-resolution (SR) restoration or reconstruction, was first
described in the seminal work by Ref. 2 in the frequency domain. Multi-image SR (MISR) has
been a well-researched topic since that time and has great use in fields where obtaining multiple
LR images may be easier than a single HR image, such as remote sensing, medical imaging,
microscopy, and from video sources such as in computer vision. Reference 2 describes the alias-
ing relationship that exists between the discrete Fourier transform (DFT) of the LR images and
the continuous Fourier transform of the HR image. References 3 and 4 consider when the LR
images are blurred and use a weighted least squares method and Tikhonov regularization.

More recently, the spatial-domain variants, such as Refs. 5 and 6, have been preferred almost
exclusively as they are applicable to a wider range of observational models. For a thorough
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review of the problem and proposed methods, see Refs. 7 and 8. In general, the spatial SR tech-
niques can be broadly categorized into two types. The first are methods which form a sparse
linear system relating the LR images to an HR representation. The system represents an obser-
vational model that can be solved using methods such as constrained least squares, maximum
a posteriori,9,10 maximum likelihood, projection onto convex sets,11 and iterative backprojection.12

Regularizers such as total variance (TV)6 are commonly implemented as the problem is generally
ill-posed.Wewill refer to this method class as classical super-resolution (CSR) for the remainder of
the text.

The second type is example-based methods, which use machine learning. The rapid growth
in the availability of high-performance GPUs led to an exponential increase in research into deep
learning. Deep neural networks (DNN) such as convolutional neural networks (CNN)13 have
been used extensively in various image-based tasks, such as classification, object detection, and
segmentation. For the SR problem, some researchers attempted to learn the end-to-end mapping
from the LR image space to the HR image space, such as SRCNN.14 State-of-the-art results for
single images have been achieved with generative adversarial networks (GAN) such as with
SRGAN15 and later ESRGAN.16 Reference 15 also presents SRResNet, which is a 16-block
ResNet.17 These techniques can be viewed as the image upscalers as they take a single LR image
input to generate an HR output. For multi-image approaches, there have been several differing
approaches. Reference 18 has a two-stage process: a traditional SR reconstruction method and a
CNN to perform noise removal. EvoNet19 also uses a two-step process. The input images are first
upscaled using a ResNet network, then the upscaled images are registered and combined into
an intermediate HR image. A separate CNN is then applied to denoise the final image. The
MAGiGAN20 system is a very involved algorithm that uses several specialized processes that
achieve state-of-the-art performance in remote sensing images. The process can be coarsely
summarized as preprocessing, upscaling to an HR grid, refining the HR image with an image
degradation model, and finally refine the HR image with a GAN network.

The work here differs from other approaches as it is designed to handle underdetermined
problems with multiple LR images. For example, in Earth observation (EO) images, imaging
satellites make multiple passes over the same patch. However, due to dust or clouds and the
shadows they cast, parts of the patch are occluded. This makes the already ill-posed problem
even more so. Unlike the single image-based methods, the multiple passes provide more infor-
mation to reconstruct the SR representation. Using a data-based approach to infilling, more plau-
sible image data can be generated than the interpolation-based CSR methods. The procedure can
be divided into two stages. First, the LR images are registered to a HR grid to form a partial SR
reconstruction. This intermediate SR image can be at a resolution higher than the intended output
and is likely very sparse. Then, a deep learning model with partial convolutional layers (PConv)
developed in Ref. 21 is used to solve for the regions not present in the LR images and remove
noise. Reference 21 proposes an upscaling method where the HR images are generated using a
single LR image whose pixels are placed on a subpixel corner of an HR grid. This work extends
that idea using multiple LR images.

2 Proposed Method

2.1 Image Observation Model

Although an image observation model is not explicitly defined in our method, a brief overview is
useful to understand what the DNN is attempting to replicate. An observation model describes
the relationship between a continuous natural scene that is captured as bandlimited signals, rep-
resented as LR raster images. It is not possible to recover the continuous signal, the aim is to
recover a high-resolution representation at a sampling rate higher than the Nyquist rate of the
imaging device. We are primarily interested in the relationship between the set of LR images and
the ideal HR image. A more detailed model may include several properties that negatively affect
the quality of the sampled image, such as noise and blur. Typical features of the standard
observation model will be detailed here, outlining the path from a continuous image to the
LR representations. To relate all the LR images to the ideal HR image, the LR images must

Yau and Du: Robust deep learning-based multi-image super-resolution using inpainting

Journal of Electronic Imaging 013005-2 Jan∕Feb 2021 • Vol. 30(1)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 02 Jul 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



be transformed to the same space because the camera or target is in different positions for each
LR frame. This is communicated via a warping matrix F, which we assume to contain only
translations but in general can represent rigid body motions and skew.

Different types of blur can be accounted for with a blur matrix H. The imaging sensor (e.g.,
CMOS or CCD) discretizes the scene by capturing the integral of the scene at each sensing
element. From the viewpoint of transforming the idealized HR image to a lower resolution, this
can be envisioned with a discretization matrix D, which samples a subset of pixels in the HR
image to a single LR pixel. Finally, an additive noise term Vk is included to represent the image
sensor noise.

The notation used here follows Refs. 5 and 6, where the images are represented as the column
vectors written in a lexicographical order. The k’th observed LR images are given as Ȳk for
1 ≤ k ≤ N, where N is the total number of LR observations and Ȳk is represented as a column
vector. The desired HR image X̄ is also written as a column vector. The observation model to
solve for can then be written as follows:

EQ-TARGET;temp:intralink-;e001;116;566Ȳk ¼ DkHkFkX̄ þ V̄k for 1 ≤ k ≤ N; (1)

where V̄k is the nonhomogeneous additive Gaussian noise, Fk is the warping matrix with dimen-
sions, Hk is the blur matrix, and Dk is the decimation or discretization matrix. In most circum-
stances, Eq. (1) is an ill-posed problem.

In the set of LR images, there may be pixels that are not usable and should not contribute to
the SR reconstruction. This can exist in the form of shadows, occluders, such as dust and clouds,
or corrupted pixels. To account for this, a binary mask Mk of the appropriate size is included in
the observation model for each LR image. For each pixel in the LR image, the corresponding
value in Mk is either one or zero depending on whether the pixel should be used or ignored,
respectively:

EQ-TARGET;temp:intralink-;e002;116;426Ȳobs
k ¼ Mk ∘ ðDkHkFkX̄ þ V̄kÞ for 1 ≤ k ≤ N; (2)

where “∘” is the Hadamard product operator given as

EQ-TARGET;temp:intralink-;e003;116;381ðA ∘ BÞij ¼ AijBij: (3)

Rather than solving for the HR image through the aforementioned optimization techniques,
we reformulate the problem so the HR image can be approximated using a DNN. This is done by
explicitly computing the inputs for the DNN using the observation model in to produce an inter-
mediate HR image Xint and using the set of LR occlusion masksMk to produce the intermediate
occlusion map Mhr:

EQ-TARGET;temp:intralink-;e004;116;288Xint ¼ Median
1≤k≤N

½DkFkðMk ∘ YkÞ�; (4)

EQ-TARGET;temp:intralink-;e005;116;240Mhr ¼
�
1 if

P
1≤k≤N

DkFkMk > 0

0
; (5)

where Fk and Dk can be computed using an image registration and the desired upscaling factor.
By training a deep learning model to relate Xint andMhr to the HR representation of X̄, the model
learns not only the noise and blur but also to approximate the absent information. Creating Xint

and Mhr and the DNN is discussed in the following section.

2.2 Proposed Super-Resolution Method

Our SR method can be divided into two main procedures: image registration and reconstruction.
In image registration, the subpixel shifts between LR images are computed so they can be rep-
resented in the same spatial domain. As all possible shift values are possible, the registered HR
image will not necessarily align with a regular HR grid. Therefore, a nonuniform grid is typically
used and the shifted LR images are interpolated onto this grid. However, the input to the
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reconstruction stage requires information to exist in discrete pixel locations, so we generate an
intermediate HR image on a grid at a higher resolution than the desired output. For the recon-
struction step, we propose using a deep learning network with PConv layers, which performs
infilling and noise reduction on the intermediate HR image. The entire procedure is shown in
Fig. 1 with the following sections detailing the steps in the proposed SR method.

2.2.1 Image registration

In the observational model described in Eq. (2), it is necessary to relate the LR images in the
same domain by computing the warping matrix Fk. This process called image registration, trans-
forms an image to the same spatial domain of a target image. Researchers developed several
dozens methods for image registration such as pyramid iterative back-projection (PIBP),12

SIFT,22 and cross-correlation methods. A more general mapping that considers all affine trans-
formations may be valuable for certain tasks, such as refining a target moving through the field of
view in a video, e.g., reconstructing an SR image of moving product in a roll-to-roll process.23

In this work, we limit our focus to LR image transforms with only in-plane translations. With
this restriction, we adopt a phase correlation method, which is robust to noise. The phase shift
between two signals can be computed by finding the maximum cross-correlation between the
reference signal and the signal of interest. From the convolution theorem, the Fourier transform
of the cross-correlation is equal to the product of the Fourier transform of the reference signal
with the complex conjugate of the Fourier transform of the target signal. The cross-correlation
between images fðx; yÞ and gðx; yÞ is described as

EQ-TARGET;temp:intralink-;e006;116;213½H�rðf; gÞ ¼ F−1
�

Fffg ∘ Ffgg�
jFffg ∘ Ffgg�j

�
; (6)

where F is the Fourier transform and A� is the complex conjugate of the matrix A. The peak of
rðf; gÞ then gives the location of the phase difference between the two images:

EQ-TARGET;temp:intralink-;e007;116;144ðΔx;ΔyÞ ¼ arg max
ðx;yÞ

frðf; gÞg: (7)

To compute the Fourier transform, one could use the fast Fourier transform (FFT), however,
to obtain subpixel registration, one would need to upscale the result of the product
Fffg ∘ Ffgg� using zero padding. This can become computationally wasteful. For example,

Fig. 1 Workflow of our procedure. A set of low-resolution images and their quality masks are reg-
istered and are used to form an intermediate image X int and its maskM , which are used as inputs
to the DNN to produce the output X out.
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to achieve subpixel accuracy within 1/10th of a pixel, an FFT representation 10 times larger than
the original is required. Therefore, a matrix product must be computed with matrices 10 times
larger than the initial image. The 10 times increase in image size leads to a 1000 times increase in
computation time and a 200 times increase in memory use.

Other more efficient techniques have already been developed in Ref. 24 and others. In
Ref. 24, rather than upscaling the representation, three methods are developed that exploit a
feature of the frequency domain allowing for the same accuracy at a fraction of the computational
and memory cost. In these methods, a DFT matrix of an equivalent upscaling factor is con-
structed to locally shift about an initial estimate to determine the peak cross-correlation.

An initial estimate of the phase difference is first computed using the standard FFT methods
with a two-times upscaling factor, which is performed using zero padding. The true peak is
therefore within a 1.5 × 1.5 pixel region. Using two-dimensional DFT matrices, the Fourier
transform within that neighborhood can be computed without the zero padding upscaling.
For two images whose dimensions are ðN;NÞ, and with an integer κ upsampling factor,
the cross-correlation within the 1.5 × 1.5 pixel neighborhood can be computed through matrix
multiplication of three matrices. The product, DrðFffg ∘ Ffgg�ÞDc, where Dr and Dc of DFT
matrices of dimensions ð1.5κ; NÞ and ðN; 1.5κÞ, respectively. The computed subpixel transla-
tions can then be used to generate the warping matrix Fk in Eq. (2).

Instead of applying a transformation that interpolates LR data, a larger HR grid is created and
filled with the median value of the LR data for each subpixel. The median is chosen here as it
rejects extrema while directly using actual observed data. This reasoning will also be used in
choosing the norm for the loss function. Using a larger grid size, potentially more LR samples are
used as inputs to the deep learning network. The examples in the results section use an LR image
size of (128,128) and a partial reconstruction is formed by placing the LR data into a uniform HR
grid six times larger than the LR data (768,768) though the final output image is a 3× recon-
structions of dimension (384,384).

In Fig. 2, the left image shows a 3 × 3 pixel path from an LR image whose data is inserted
into a uniform HR grid six times the density (18 × 18) of the LR grid on the right. Each num-
bered square on the left represents a pixel with an area of 300 m × 300 m. Each pixel on the left
is represented by 6 × 6 subpixels on the right with each subpixel representing an area of
50 m × 50 m. If the LR pixel has a registration shift of between 0 and 1/6 pixel in both direc-
tions, its value would be copied to the bottom left subpixel of the corresponding numbered
square in the HR grid. The range for each subpixel is needed as we wish to avoid interpolation.
In Fig. 2, the pixels of the LR image that contain data (1,4,7) are shifted according to the regis-
tration and placed in the upper left corner of the corresponding HR grid. The white squares
represent regions where no data are available. These portions of the image will be reconstructed
with the deep learning network. The right figure illustrates at least seven LR images used to
construct the intermediate HR image.

2.2.2 Reconstruction model

If feed forward mapping from HR to LR of the observational model is interpreted as a low pass
filter, solving the inverse problem can be interpreted as a high pass filter with the result that noise

(a) (b)

Fig. 2 (a) Low-resolution 3 × 3 pixel grid. (b) Intermediate 6× high-resolution image after subpixel
registration. Pixels of the left image are shifted according to registration and placed in the corre-
sponding subpixels, indicated with red/bold outline.
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becomes amplified. This is typically done through optimization and then the application of
a noise filter but is not suitable for the underdetermined case. A DNN solution provides a better
alternative by incorporating information from a number of training examples. The work pre-
sented here utilizes the PConv layer developed in Ref. 21. The PConv layer can be seen as
an extension of the convolutional layer that uses a mask to limit regions of the output. Like
a traditional convolutional filter, the PConv is a set of weights W and biases b applied to a
sliding window. For the current patch of pixels X, there is also a corresponding binary mask
M that indicates the empty regions. A zero output is produced when the mask contains only
zero values, otherwise a weighted convolution is performed. The output of a PConv kernel is

EQ-TARGET;temp:intralink-;e008;116;628½H�x ¼
8<
:

D
W; ðX ∘ MÞ sumðUÞ

sumðMÞ þ b
E
F

if sumðMÞ > 0

0
; (8)

whereU is a matrix of all ones with the dimensions ofM and h; iF is the Frobenius inner product.
The mask is then updated such that if the mask contains at only zero values (in the sliding
window), the corresponding mask output is zero, otherwise it is set to one. This simple update
to the convolutional layer creates a powerful tool to synthesize data. Each subsequent application
of PConv layers reduces the masked area until the entire voided area is filled.

As described in a section of Ref. 21, we use the U-Net architecture as the general framework
for the DNN model. The U-Net structure was introduced by Ref. 25 for the end-to-end biomedi-
cal image segmentation. The network consists of a contraction path, which encodes features in
feature maps, and an expansive path, which reconstructs an output image. The contraction path is
essentially a traditional CNN with convolutional layers with rectilinear linear unit (ReLU) acti-
vation functions and max pooling layers. Rather than traditional convolutional layers, the PConv
layer is used. Moving along the contraction path, the pooling layers halve the spatial dimensions
of the outputs while the number of the PConv layers increases. The expansive path consists of
the so-called “up-convolutions”, which upsample the input and apply convolutional filters. The
innovation of U-Net is the skip connections that carry information from the contraction path to
the expansive path.

This can be implemented by concatenating the outputs at each depth of the contraction path
with the corresponding upconvolution outputs of the expansive path. A PConv layer with a leaky
ReLU activation function is applied to generate the output for each layer of the expansive path.
The DNN model follows the one described in Ref. 21 with slight modifications. First, the output
dimensions are smaller than the input dimensions. To address this, one could decide not to use
upscaling on the final expansion layer and concatenate a downsampled first contraction layer
output. One may also keep the original structure and add an additional convolutional layer,
which acts as a downsampler. From our experience, this produced noticably noisier images with
longer training times. We therefore chose to simply reduce the number of expansion layers. An
additional change was to use a 1 × 1 × 1 convolutional layer with a sigmoid activation function
appended at the output to produce a single channel grayscale image. The kernel dimension and
activation functions are shown in Table 1. An input image is fed into the network starting at
PConv1, and the SR image is produced as the output of the final convolutional layer labeled
Conv2D.

Other network structures can be used by replacing any convolutional filter with the Pconv
filter, including the specialized SR networks described in Sec. 1. However, swapping the filters
will double the memory requirements as each filter also includes an equivalent sized mask.

2.2.3 Cost functions and regularization

Given a set of LR input images, after registration the intermediate SR input Xint and its associate
mask Mhr are fed into the DNN to produce the output image Xout. An appropriate cost function
must be prescribed to recover the HR image. In the classical SR literature, the most common loss
function is one based on minimizing the L2 norm between the set of low-resolution images Yk

and Mk ∘ ðDkHkFkX̄ þ V̄kÞ from Eq. (2).26
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The authors in Ref. 6 show that an L2 loss exacerbates the effects of outliers, which is not
desirable and suggest instead using the L1 norm for the loss. The authors also show that the L2

loss performs better than the L1 loss only in the uncommon situation when an image registration
is very accurate and the noise is only pure additive Gaussian. Using an L1 norm will yield the
median solution whereas the L2 norm would yield the mean solution. This reasoning was applied
to the image registration step where the median pixel value is used as opposed to the mean pixel
value. The L1 loss is also used in this work. Two loss functions related to the available pixel
information and the holes are described by Eqs. (9) and (10), respectively,

EQ-TARGET;temp:intralink-;e009;116;270Lpresent ¼
1

NGT

kM ∘ ðXout − XGTÞk1; (9)

EQ-TARGET;temp:intralink-;e010;116;214Lhole ¼
1

NGT

kð1 −MÞ ∘ ðXout − XGTÞk1; (10)

where Xout is the output of the DNN, XGT is the ground truth image, and NGT is the number of
elements in XGT. These two loss functions are intended to maximize the peak signal-to-noise
ratio (PSNR). To improve the perceptual quality of another metric such as structural similarity
index measure (SSIM), we may also include a perceptual term.

The SR problem is ill-posed even for the square and over-determined cases. If the problem is
underdetermined, when there is not sufficient data in the LR images, then there exist an infinite
number of solutions. In the square and overdetermined cases, a small noise in the input LR
images will lead to large changes in the output HR image.6 To address this, traditionally a regu-
larization term is added to the cost function. Tikhonov regularization, also known as a ridge
regression, is commonly used. A criticism of this type of regularization is that sharp edges can
become smoothed thus removing detail.

Table 1 PConv Unet model. PConv1 indicates the first PConv filter followed by a max pooling
layer. PConv1c is the corresponding module consisting of upsampling, concatenation with the
output of PConv1 followed by a PConv filter.

Layer type Kernel dimension Activation

Expansive path PConv1 7 × 7 × 64 ReLU

PConv2 5 × 5 × 128 ReLU

PConv3 3 × 3 × 256 ReLU

PConv4 3 × 3 × 512 ReLU

PConv5 3 × 3 × 512 ReLU

PConv6 3 × 3 × 512 ReLU

PConv7 3 × 3 × 512 ReLU

PConv8 3 × 3 × 512 ReLU

Contraction path PConv7c 3 × 3 × 512 LeakyReLU

PConv6c 3 × 3 × 512 LeakyReLU

PConv5c 3 × 3 × 512 LeakyReLU

PConv4c 3 × 3 × 512 LeakyReLU

PConv3c 3 × 3 × 256 LeakyReLU

PConv2c 3 × 3 × 128 LeakyReLU

PConv1c 3 × 3 × 64 LeakyReLU

Conv2D 1 × 1 × 1 Sigmoid
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An alternative that addresses this problem is called TV regularization, which was proposed in
Ref. 27, applied to SR in Refs. 6 and 26, and infilling in Ref. 21. TV can be defined as a criterion
that penalizes the total energy change in the image, which prevents oversmoothing and preserves
edges. This can be implemented as an L1 norm on magnitude of the gradient. A discretized TV
regularizer can be approximated using a 1-pixel neighborhood with

EQ-TARGET;temp:intralink-;e011;116;675LTV ¼
X
i

X
j

ðkXout½iþ 1; j� − Xout½i; j�k1 þ kXout½i; jþ 1� − Xout½i; j�k1Þ: (11)

The original work on PConv for infilling in Ref. 21 uses a perceptual loss function described
in Ref. 28 (called content loss). The perceptual loss function uses the feature maps of the images
when projected into the feature spaces of a VGG-1629 pretrained on ImageNet. Due to being
trained for classification, the higher layers in the network have feature spaces that represent the
high level content of an image while the lower layers relate more closely to per pixel represen-
tation. Our perceptual loss can then be written as a weighted sum of the L1 norms between the
feature maps of the output and ground truth image as

EQ-TARGET;temp:intralink-;e012;116;547Lperceptual ¼
X

0<p<P−1
ωpkΨXout

p − ΨXGT
p k1; (12)

where P is the number of layers in the classification CNN, ΨXout
p is the feature map of layer p of

the CNN for the output image Xout, and wp is the weight of the layer. The complete loss function
is then a weighted sum of the individual components as

EQ-TARGET;temp:intralink-;e013;116;464Ltot ¼ α0LTV þ α1Lperceptual þ α2Lpresent þ α3Lhole: (13)

2.3 Data

The results presented in the next section use the PROBA-V image dataset from Ref. 30. The
dataset includes RED and NIR spectral bands at 100 and 300 m resolutions. The LR 300-m
resolution images are 128 × 128, and the HR 100-m resolution images are 384 × 384. Both sets
of images are provided at 14-bits with each image accompanied by a 1-bit quality mask, which
marks occlusions such as clouds and dust. These quality masks are also used to construct the
cleared mask used in computing the clear PSNR (cPSNR) score. The data set consists of 1160
samples with multiple LR images for each HR image. The number of LR images varies for each
HR example from 14 to 30. This dataset is split 80/10/10 for training, validation, and testing,
respectively. The training set is augmented using the flips and orthogonal rotations. The vali-
dation images are used to evaluate the performance of the proposed method during the training.
Our PConv U-Net model is implemented with the Pytorch31 framework and is trained until the
total loss on the validation set stops decreasing. The remaining testing images are used to evalu-
ate the performance of all methods, which will be discussed in the following section.

2.4 Performance Metrics

PSNR is a metric based on the mean squared error (MSE) of a subject and target given in dB. The
PSNR is important when the actual pixel value is of scientific importance such as in the test EO
data. A higher score indicates better performance. The high-resolution ground truth images used
may also exhibit occlusions. These are marked with a binary quality mask discussed in the pre-
vious section. The mask allows us to compute the PSNR for only clear pixels or a cPSNR. The
SSIM is a metric that measures perceptual similarity. As with PSNR, a higher score indicates
better performance with a maximum score of 1 indicating identical data with perfect structural
similarity. The images are brightness equalized to the reference and cropped.
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3 Results

We compare our method against other methods including a number of DNN-based techniques.
Baseline performance is provided using bicubic interpolation (BC) of a single image constructed
with the median clear pixels for every point on the LR image space. This is also the input used on
all tested single image SR methods. Reference 15 proposed the SRResNet network, a ResNet-
based method that minimizes the MSE. Those authors also introduced SRGAN, a GAN-based
single image SR method. ESRGAN16 is considered to be the current state-of-the-art single image
SR method. We also compare our method to the classical SR approach motivated by the works of
Refs. 5 and 6. We will refer this generically as the CSR method in the remainder of the paper.

Input for the CSR method is the same as that for our method, an image twice as large as the
ground truth with partial data. This is then treated as an inpainting problem, solving the holes
using least squares with a TV regularizer. Only partial results for CSR are provided as the mean
cPSNR score is well below even the BC method, likely due to poor registration. We attempted
using a more accurate affine registration method with the build-in MATLAB®32 function
“imregtform”; however, for this intensity-based method, the majority of test cases the registration
was poor and a valid least squares solution could not be found. In the few cases where the LR
images were able to be registered, the results were on par or better than our method as seen
in Fig. 4.

The average cPSNR and SSIM scores for the test set are presented in Table 2. We see that our
proposed method has the highest cPSNR and SSIM scores by a fair margin. Scatter plots are
shown in Fig. 3 comparing our method with a other methods with a single cross representing the
scores of one test image and the red line indicating equal scores. We see there are a few outliers
with much higher scores using our method, but for the majority our method is only slightly
better. 109 out of 117 examples (93.16%) have a better cPSNR score using our method versus
the BC. 105 out of 117 examples (89.74%) have a better SSIM score than the BC method.
A slightly lower rate is found when comparing our method to ESRGAN with our method

Fig. 3 Scatter plots of the performance metrics of test examples for our method (vertical axes)
compared with others methods (horizontal axes). Diagonal line shows the same scores. Our
method outperforms (above line) other methods in the majority of test cases, with a few significant
outliers.

Table 2 Average performance scores of our method compared with other methods. Best scores
are highlighted in bold.

Bicubica ESRGANb SRGANb SRResNetb CSRc Our method

cPSNR 32.9980 33.9187 33.2359 33.9217 30.6262 35.4724

SSIM 0.8384 0.8572 0.8280 0.8568 0.7881 0.8703

aAs implemented in MATLAB® 2018.
bAs implemented by Github repository: https://github.com/open-mmlab/mmediting.
cAs implemented by Ref. 33.
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achieving better performance for cPSNR in 100 out of 117 samples (85.47%) and for SSIM in
90 out of 117 samples (76.92%). It is somewhat surprising the cPSNR scores for the single image
DNN methods are much better than BC as they use the same input with no additional data given.

Figure 4 shows how holes data are treated by DNN without using the partial convolutional
filters. The holes expand into areas defined by the cleared mask leading to poorer cPSNR scores.
As stated earlier, the CSR method uses a more accurate registration method and the end result is
better than our method.

The SRGAN method generates a more noisy image than ESRGAN or SRResNet. Figure 5
shows block artifacts when using classical SR with our partially constructed input.

Fig. 4 Example outputs of multiple methods. Top row shows full images, bottom row shows
details. With holes in the input data, other deep learning methods may extend the holes beyond
the quality mask. (a) Bicubic interpolation of a single image, (b) ESRGAN result of a single image,
(c) SRResNet result of a single image, (d) SRGAN result of a single image, (e) Zoom-in highlighted
holes of image (a), (f) Zoom-in highlighted holes of image (b), (g) Zoom-in highlighted holes of
image (c), (h) Zoom-in highlighted holes of image (d), (i) CSR result of multiple images, (j) Our
method result of multiple images, (k) Ground truth of the high resolution image, (l) Zoom-in
highlighted holes of image (i), (m) Zoom-in highlighted holes of image (j), and (n) Zoom-in high-
lighted holes of image (k). Note (l) shows that with manually selected LR images registered with
affine transformations CSR perform well.
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4 Discussion

The referenceless metrics such as PIQUE and BRISQUE scores indicate that ESRGAN produces
the most natural looking images; however, though they may not be very accurate. An illustration
of this is shown in Fig. 6. The figure shows a field with center pivot irrigation. This is clearly seen
in the HR image; however, in the ESRGAN result, the field is transformed into a series of vertical

Fig. 6 SR results of a field with center pivot irrigation. Top row shows full images, bottom row
shows details. (a) Bicubic interpolation of the field, (b) ESRGAN result of the field, (c) our method
result of the field, (d) ground truth of the field, (e) zoom-in highlighted center pivot irrigation of
image (a), (f) zoom-in highlighted center pivot irrigation of image (b), (g) Zoom-in highlighted center
pivot irrigation of image (c), and (h) zoom-in highlighted center pivot irrigation of image (d). Note
that GAN methods such as ESRGAN may add extraneous false detail as shown in (f).

Fig. 5 Details of various methods and ground truth. (a) Bicubic interpolation of a partially con-
structed image, (b) ESRGAN result of the partially constructed image, (c) SRResNet result of the
partially constructed image, (d) SRGAN result of the partially constructed image, (e) CSR result of
the partially constructed input, (f) our method result of the partially constructed input, and
(g) ground truth of the constructed input. Note the blocking pattern on (d) and noise and (c).
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and horizontal lines. Our result, while not as clear as the ground truth image, at least indicates the
circular structures. This also indicates that methods that use DNN-based upscaling on LR images
prior to reconstruction may in fact be introducing fallacious data into the image.

Although the same image database was used, we did not use the same images for validation
as Ref. 30 so a direct comparison between cPSNR scores cannot be made. However, we may
compare the improvement of the methods for the average cPSNR score over the BC method.
Reference 30 has a 1.7% increase in mean cPSNR score from BC to their multi-image
deep learning method. Our method has a roughly 4.9% increase in mean cPSNR score
from BC.

The seemingly poor performance of the CSR methods for the test cases is due to poor regis-
tration. With LR images containing occlusions or with entire regions missing, the MATLAB®

function imregtform fails for many of the test cases. Using the constructed images as the inputs
for the SISR methods and performing the inpainting optimization leads to results better than the
BC but below the DNN methods. Results were not shown as they did not reflect multi-image
input intended for the method. By manually selecting the LR input images, results on par with
our method can be obtained. However, manually determining which LR input images to use is
laborious and was not performed for the entire test set.

When using a DNN structure that maintains the same input dimension to output dimension
then applies a downsampling layer, we obtain outputs similar to the CSR outputs shown in Fig. 6.
This is likely due to the final concatenation of the contraction path, maintaining more informa-
tion from the initial image. This final concatenation was skipped for our proposed network and
produced a much lower loss. This can be interpreted as the network learning the essential rep-
resentation of the image and ignoring high spatial dimensional information from the input.
A consequence is a much softer image, however, a more accurate image as the registration errors
from the input are ignored.

In this work, we have proposed using a U-Net DNN with PConv layers to perform SR recon-
struction on an intermediate image constructed using multiple LR image with quality masks. We
demonstrate the method outperforms the state-of-the-art single image SR algorithms in terms of
cPSNR and SSIM scores for satellite imagery and also outperforms an MISR method that uses a
traditional CNN. Using the intermediate image as an input to the CSR inpainting problem pro-
duces poor results. This indicates our DNN is able to compensate for poorly registered LR
images. This also suggests that an improved registration algorithm for our method would also
yield better results. Affine transformations are more realistic than assuming the registration to be
strictly translational. The greatest potential gain in performance will likely come an improved
registration method. The method described herein may be very robust; however, using a human-
curated set of LR images and classical methods is likely better. Therefore, creating a method for
choosing whether or not an LR image is viable to be registered or better yet creating a robust and
accurate affine or potentially homographic registration method would likely yield impressive
results.

The image quality of our method appears slightly soft when compared with the ground truth
and ESRGAN. This is reflected in the poorer PIQUE and BRISQUE scores. Incorporating a style
loss likely produce more natural looking images; however, this would come at the cost of PSNR
score. Future work in this area includes examining performance on other domains such as
machine vision and medical images. Tailoring a DNN specifically for the SR problem would
likely be beneficial as the missing information is much less than the traditional in-painting
task, so fewer PConv layers are needed and more convolutional layers can be used for a noise
reduction. The field of a deep learning-based image registration is still in its infancy and much
more work can be done. It is also worth investigating other network architectures in addition
to U-Net. A single DNN end-to-end solution is possible if image registration can be done using
part of the DNN. This would address the major flaw in the current system of having poor
registration.
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