Demystifying Dependence

James Koppel
MIT
Cambridge, MA, USA
jkoppel@mit.edu

Abstract

Programmers are told “depend on interfaces, not implemen-
tations." But, given a program, is it possible even to assess
objectively whether such advice has been followed?

Programmers frequently talk in ways like this about de-
pendence, but the very term, like many used in software
engineering, has hitherto eluded precise definition. In this
work, we resolve a variety of confusions about dependence,
and present a formal definition unifying multiple varieties of
software dependence, grounded in Halpern and Pearl’s the-
ory of actual causation. This definition is parameterized by
the formal system characterizing the property of interest, and
by constraints on “reasonable changes" to the program. By
picking different choices of formal system, one can specialize
the definition to characterize several notions of dependence,
including build, correctness, and performance dependences.
Overall, our work provides a path to making conversations
about software dependence fully objective, and might serve
as a basis for future work that automatically checks forms of
dependence that were previously too abstract or high-level
to be candidates for tools.

CCS Concepts: « Theory of computation — Program spec-
ifications; « Mathematics of computing — Causal net-
works.

Keywords: dependence, modularity

ACM Reference Format:

James Koppel and Daniel Jackson. 2020. Demystifying Dependence.
In Proceedings of the 2020 ACM SIGPLAN International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and Soft-
ware (Onward! "20), November 18-20, 2020, Virtual, USA. ACM, New
York, NY, USA, 17 pages. https://doi.org/10.1145/3426428.3426916

1 Introduction

The greatest gift research can give to industry—perhaps even
more than new technology—is clarity, by offering simple and
clear formulations of troubling challenges. Thanks to Floyd

(Ol

This work is licensed under a Creative Commons Attribution International 4.0 License.

Onward! ’20, November 18-20, 2020, Virtual, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8178-9/20/11.
https://doi.org/10.1145/3426428.3426916

48

Daniel Jackson
MIT
Cambridge, MA, USA
dnj@csail.mit.edu

and Hoare, we can say what it means for a program to be
incorrect, down to a single line. Thanks to researchers such
as Abadi, Cardelli, Cook, and Aldrich, we can definitively
explain why every plugin system must use something akin
to objects [2, 3, 6]. Yet it seems that as soon as the topic of
code quality comes up, discussion becomes murky, and the
scene shifts from a scientist analyzing an artifact to an artist
giving feedback in a studio.

Enter any corporate code review, and you’ll find decisions
justified by reference to “coupling,’ “modularity, “knowing
about,' and, the subject of this paper, “dependence.” These
terms all evade meaning, enough that, 40 years after Parnas’s
pioneering papers on encapsulation [35] and dependences
[36], Richard Gabriel could not coax experts to give a de-
cisive definition of “modularity” [10]. This lack of precise
definitions yields what the first author has named “citrus
advice" [26], advice that is potentially useful but can backfire
in the absence of a deeper understanding.!

With that in mind, consider these mentions of dependence
from two popular writers:

If something logical depends on the implemen-
tation, then something physical should too.
—Robert C. Martin, Clean Code[31]

I can remove this dependency by placing a sim-
ple delegating method on the server that hides
the delegate.

—Martin Fowler, Refactoring (2nd edition) [9]

In a town of software engineering sages, Fowler and Martin—
co-authors of The Agile Manifesto—would be sitting on the
same porch. Yet it is easy to read the two quotes as giving
opposite advice about interposing a delegating method. Per-
haps Martin would counter that doing so does not actually
remove the dependence, in which case it becomes clear that
they are talking about different things.

The confusion continues as we consider comments by
other authors:

Objects that depend on an algorithm will have
to change when the algorithm changes.
—Erich Gamma et al, Design Patterns [11]

IThe term “citrus advice" comes from the story of how the Royal Navy
saved thousands of sailors from scurvy by feeding them citrus fruits, but,
by virtue of not understanding Vitamin C, they then failed to notice that
supply-chain changes had caused the citrus to lose its scurvy protection
qualities, resulting in a resurgence during 20th century Arctic expeditions.

https://doi.org/10.1145/3426428.3426916
https://doi.org/10.1145/3426428.3426916
https://creativecommons.org/licenses/by/4.0/

Onward! ’20, November 18-20, 2020, Virtual, USA

In the old Web site with the background speci-
fied separately on each page, all of the Web pages
were dependent on each other.

—John Ousterhout, A Philosophy of Software De-
sign [33]

From the popular press, then, we gather that depending on
something that changes is problematic because it breaks
code—but it can also involve webpage backgrounds, which
are not even executable. Interpreting all these writers in con-
text requires a deeper understanding of dependence. Without
it, their pronouncements risk being citrus advice.

Our aim in this paper is to provide an objective definition
of dependence for software engineering that captures and
clarifies programmers’ intuitions in the multiple contexts
in which the notion appears, and is sufficiently formal to
be mechanically checkable. Our definition builds on the old
idea that “A depends on B if changing B can change A," but
refines it using recent developments in the theory of causal-
ity and its application to programming [14, 42]. Further, it
gives a classification of the different varieties of dependence
discussed by software engineers by varying the language
of properties and the space of allowed changes. For example,
when applied to a language’s dynamic (execution) semantics,
and specialized to checking specific values of variables and
allowing intervention on any variable value, the definition
becomes the familiar notion of dependence used in dynamic
program-slicing. When applied to a language’s static (compi-
lation) semantics, and specialized to checking the property
“Does it compile?" the definition becomes the notion of de-
pendence used in discussions of package management.

Mechanical does not mean easy, nor even automatic. Sev-
eral instantiations will require information typically not
present in code, but only in proofs. Answers may differ
depending on some arbitrary modeling assumptions about
reasonable counterfactuals, and showing dependence may
require finding a unique witness in an infinite space of coun-
terfactuals.

Nonetheless, despite some unresolved difficulties and the
challenges of full automation, we hope that our work will
contribute to a clearer understanding of an idea that plays a
central and fundamental role in programming and software
design; that by demystifying dependence we will encourage
more precise and effective usage of the idea, and that our
framework will prove to be a fruitful basis for subsequent
research.

2 Nine Dependency Puzzles

If you open a popular software engineering book, you’ll
be sure to find lots of advice about avoiding and reducing
dependencies—in the context of design patterns, package
management, use of third-party software, and so on. Yet,
viewed under a microscope, contradictions emerge. Drawing

James Koppel and Daniel Jackson

on this folk understanding of dependence, we’ve identified a
variety of puzzles:

1. If a call from procedure A to procedure B generally implies
that A depends on B, then does a round-robin scheduler—
which invokes a collection of tasks—in turn depend on
each of the tasks?

2. If A writes a file and B reads it, there is clearly a coupling
between the two induced by the assumption of a shared
format. But which depends on which? Similarly: a client
serializes messages received by a server. If either the se-
rializer or the deserializer changes, the other will break.
Do they both depend on each other?

3. If the lack of dependence of A on B means that a change
to B cannot affect A, what about a change to B that in-
troduces a new dependence, for example by modifying a
previously unreferenced global variable used by A?

4. Furthermore: If A depends on B when a failure of B can
lead to a failure of A, but any module may crash the pro-
gram (e.g.: by stack overflow), then does every module
depend on every other module?

5. On the other hand: If A depends on a module B, but checks
the result and uses a slower and more reliable service C
if B fails, then failure of B no longer implies failure of A.
Does that mean that A does not depend on B?

6. Dependency inversion supposedly eliminates a depen-
dence of A on B by passing B to A at runtime. But A will
still fail if B fails. Then so why doesn’t A still depend on
B?

7. The dependency relation is usually treated as transitive,
with cycles evidence of poor design. But if dependence
of A on B means that A cannot function without B, what
does a self-dependence mean?

8. Libraries are built independently and thus should not
depend on application code. But a hash table implementa-
tion will give incorrect output if keys have inconsistent
implementations of equals() and hashcode() methods.
Does that mean that such library classes depend on their
callers?

9. A robot controller is written using n-version program-
ming. At each timestep, the robot turns left or right based
on a majority vote of 5 different controller implementa-
tions. Suppose all 5 implementations implement different
algorithms which somehow always give the same answer.
Then no change to any single implementation can alter
the robot. Does this mean the robot does not depend on
any of them.

The simple solution to most of these puzzles is that questions
like “Does module A depend on module B?" are malformed.
Rather, each module has a variety of properties that can be

Demystifying Dependence

impacted and changes that can be made, leading to different
kinds of dependence. The next section introduces the main
concepts needed to frame dependence properly. Later, after
developing our new definition, nwe resolve all these puzzles
in §8.

3 What’s in a Dependence Query?
3.1 Dependence Is about Properties, Not Programs

A company wants to add analytics to their mobile app to
track user engagement. But they don’t want to be tied to any
one vendor, so they build a wrapper around the analytics
library, so as not to depend on it. This pays off because, one
day, they decide this analytics library is using too much
bandwidth, so they switch to a different one that promises
to be more lightweight. Only the wrapper code needs to be
changed.

But, if the application didn’t depend on the analytics li-
brary, how could changing the library make a difference?

We have previously argued that the concept of depen-
dence only makes sense relative to some correctness prop-
erty [24, 25]. For example, while the company may have
successfully shielded the functional correctness of the app
from the functional properties of the analytics framework, it
did not block the app’s resource requirements from those of
the library. We extend this insight: there is no dependence
of a code fragment A (on some other code fragment B), but
rather a dependence of some property ¢ of A.

As a corollary, questions of dependence cannot be re-
solved without determining the property of interest, and
so in general cannot be answered from the source code
alone. For example, imagine an app that runs showPopup ("No
connection") when it tries to download an update and finds
no Internet connection. If the correctness of the system
merely requires that it show a popup with this message
in this event, then there is no dependence on code that sets
the default formatting of popups. But if there are specific
requirements on the visual design of this particular popup,
then it does.

Observing software writing in the wild, the most common
translation of “A depends on B" seems to be “some relevant
correctness property of A depends on the code of B", followed
by a substantial minority of cases in which A’s property is
instead “successful compilation.” We explore the landscape
of such static vs. dynamic properties in the next section.
When people disagree about whether a module depends on
something, we hypothesize that the most common cause is
this ambiguity over which property is being discussed.

3.2 Dependence Is Relative to a Semantics

According to many writers on software, the moment you
import a new package into your project, it becomes a “de-
pendency," yet the project does not “depend” on it until it’s
used. If the dependency in question is PostgreSQL, but the

50

Onward! ’20, November 18-20, 2020, Virtual, USA

app would work with MySQL without any changes, then the
code “does not depend" on PostgreSQL.

Software writers effortlessly flit between different vari-
eties of dependence. The differences between these can be
exposed by asking the question “What change in the depen-
dency is relevant to the dependence?" For the first implied
definition, that would be introducing any kind of build error.
But for the second, it would be any change that alters the
behavior of the dependee, and for the third, it would only be
changes that cause it to differ from the SQL standard.

These varieties of dependence differ not just in the prop-
erty being queried, but in the semantic relation being consid-
ered. Thus dependence in dynamic slicing may be formulated
in terms of some execution relation (), yet the question
“Does it compile?" is not even askable in terms of (~»). Yet
that question would make sense in terms of some relation
that models compilation, perhaps a composition of systems
for parsing, typing, and linking.

Let us give rough definitions of the three varieties of de-
pendence implied by the paragraph above. We see that each
corresponds to a different formal system and property:

1. Package A depends on package B if A would not compile
without B. This is dependence in the static semantics
of the language.

2. Package A depends on package B if the execution of code
in B is required for A to obtain its result. This is depen-
dence in the dynamic semantics of the language.

3. Package A depends on package B if some special property
of package B, not guaranteed by some broader spec (e.g.:
the SQL standard), is needed for A to meet its require-
ments. This is dependence in a correctness logic.

In the example from the start of this section, a program that
uses PostgreSQL, but only through queries that would work
equivalently in any other database engine, depends on Post-
greSQL in sense #2 but not sense #3. And returning to the
Martin Fowler and Robert Martin quotes from §1, Fowler’s
“removing a dependency by adding a delegation method" ap-
pears to be referring to a dependence in the static semantics,
as does Martin’s “physical dependence." Martin’s “logical
dependence,’ on the other hand, appears to refer to depen-
dence in either the dynamic semantics or correctness logic.
(Additional context makes clear that the latter is intended.)
These parameters—of the language of properties and the
relevant semantics—promise, less straightforwardly, to en-
able precise questions about the dependence of non-functional
properties. For example, in the three systems above, ques-
tions like “Does this web page depend on the background
color of another web page,’ from Ousterhout’s example in
§1, could not even be meaningfully asked. But now one can
imagine a semantics encoding properties such as “visual
consistency," or “usability" that might be evaluated in user
studies or perhaps in the context of probabilistic models.
Now questions such as “Does the usability requirement ¢

Onward! ’20, November 18-20, 2020, Virtual, USA

of Pagel.html depend on the background-color attribute in
Page2.html" become well-posed. And there are already exam-
ples of using formal semantics to check similar properties; in
particular, visual logic [34] has been used to check properties
such as “good contrast” between text and background.

A more tractable kind of non-functional requirement is
performance. Imagine a program using one of these two
versions of the max function over an array:

public int maxl(int[] arr) {
assert(arr.length > 0);
int result = arr[0];
for (int i = 0; i < arr.length; i++) {
if (arr[i] > result) result = arr[i];
}

return result

public int max2(int[] arr) {
assert(arr.length > 0);
int[] arr2 = copy(arr);
while (!isSorted(arr2))
arr2 = randomPermutation(arr2);

return getlLast(arr2);

Under most logics, there would be no way to distinguish
max1 from max2, even though the latter’s unbounded run-
ning time is sure to upset many programmers. However, in
a semantics that considers timing, such as Resource-Aware
ML [21] or Timed ML [43], a question like “Does this ap-
plication’s performance spec rely on this other module’s
performance?” becomes well-posed.

3.3 Dependence is Relative to Permitted Changes

Depending on something means relying on a thing being
what it is and not something else. So a dependence of A on
B must be witnessed by a potential change to B that would
impact A.

When a change may alter the dependence structure, or
have global effects such as crashing the program, then the
graph of susceptibility is the standard hairball: everything
depends on everything else. This is the question raised by
our third and fourth puzzles. For a dependence analysis to
be useful, there must be some limits on what changes may
be considered.

And it is not enough to have only broad restrictions such
as “no changes that add new dependences." Consider the
Observer pattern, where an object maintains a dynamic list
of observer callbacks and invokes them upon certain events.
The common justification is that doing so removes the de-
pendence of the object on its observers. Yet there are count-
less ways an observer may interfere with an observee, from
competing for shared resources such as locks and files, to

51

James Koppel and Daniel Jackson

raising an uncaught exception, to manipulating the run-
time stack at the binary level. The intuitive justification—
of non-dependence, and hence non-interference—can hold
weight, but only under assumptions about permissible be-
havior which are not universally applicable.

Thus, dependence is defined relative to what changes
are under consideration. Dependence queries about com-
pilation consider changes in well-formedness; dependence
queries about execution consider changes in runtime state;
and dependence queries about modular correctness consider
changes to the specs and guarantees of components. Within
each of these categories, there must be some additional con-
straint on what changes are permitted, which we deem a
super-spec.

Super-specs are discussed more in §5.2.

3.4 Dependence Is Causality

The semantics of dependence must differ from traditional
program semantics in at least one fundamental respect. Tra-
ditionally, formal semantics aims to explain what the result
will be of taking a program in its given form, and executing
it (in terms of the values returned and effects produced). Ver-
ification, for example, is then about whether these results
comport with expectation, as expressed in a specification.

The semantics of dependence must be different, because
the concern is not what the result of executing this given
program will be, but rather what the result will be of execut-
ing another program—albeit one closely related to this one.
This other program may be the program that this program
will evolve to as the design changes; or perhaps it’s the pro-
gram after an unwanted perturbation (such as an attack by
an adversary); or perhaps it’s simply the program that this
program might have been had it been incorrect.

Central to dependence, therefore, is the concept of a coun-
terfactual hypothetical. This leads to a startling observation:
every one of the examples from §2 has an isomorphic
example in the domain of causality in the physical
world. In fact, two of these examples were directly based on
examples from the causality literature (more on this in §8).
We give translations of Examples 1-4 below, and leave the
rest as an exercise to the reader.

1. A worker is packing boxes into a shipping container. Can
the contents of any particular box cause the worker to
succeed or fail?

2. An engineer designs a socket. Do the engineer’s decisions
cause the design of the corresponding plug, or vice-versa?

3. If Beatrice did not cause Bob’s death, does that mean
Beatrice could have done nothing to save Billy?

4. If any neighbor could have cut electricity and gas to your
house, does that mean that every neighbor’s actions are a
cause of your being able to cook dinner at home?

These examples suggest that any advances in the theory
and definition of causality might be translated into a better

Demystifying Dependence

understanding of software dependence. And so, in the next
section, we introduce some of the concepts that, in the past 30
years, have transformed causality from a field of philosophy
to a field of computer science.

4 Background: Actual Causation

In this section, we explain the recent work on the defini-
tion of actual causation, before we discuss how to apply the
underlying ideas to the question of software dependence.

Theorists categorize causality into two categories. “Type
causality" (also called “general causality") deals with general
statements about categories such as “A stray spark causes
fire" “Actual causality" deals with statements about specific
events, such as “A stray spark in Thomas Farriner’s bakery on
Pudding Lane caused the Great Fire of London on September
2nd, 1666." As dependence deals with questions about specific
programs and specific scenarios, actual causation is the one
relevant here.

There have been several proposed formal definitions of ac-
tual cause, and there is no standard for determining whether
a definition is correct—only arguments that it is is useful
and produces answers that match intuition. In the remainder
of this section, we give a crash course in actual causation,
in preparation for developing a definition suitable for soft-
ware. All of these details appear in the first two chapters of
Halpern’s book [14].

4.1 Structural Causal Models

In this section, we explain structural causal models, also
known as causal graphs, the main objects of study in the
Pearl school of causal inference. More detailed introductions
can be found in either Pearl’s [38] or Halpern’s [14] books, as
well as in many self-contained papers on causality [4, 13, 15].

Structural causal models view the world as a determinis-
tic program on non-deterministic inputs. For instance,
consider the classic example of a system where grass may be
wet or not (W =1 or W = 0), based on whether the sprinkler
is on (S) and whether it rained (R). The state of the sprinkler
and rain are determined by unknown background factors,
captured in the variables U; and Us, but the sprinkler will
never be on when it has rained. Following are a series of
equations (or rather, imperative assignment statements) de-
termining the state of the system; Fig. 1 depicts the structure
as a causal graph.

R=U
S=U; A=R
W=RVS

U, and U, are exogeneous variables, and may be probabilistic.
R, S, and W, in contrast, are endogenous variables, and are
given by the deterministic equations above, which may be

52

Onward! ’20, November 18-20, 2020, Virtual, USA

Figure 1. Causal graph for the sprinkler example. Exoge-
neous variables omitted.

read as a straight-line imperative program. The distribution
of U; and Us thus induces a distribution on R, S, and W.

Actual causation deals with specific scenarios rather than
general models. Once a setting of the U; has been picked, the
system becomes completely deterministic, allowing queries
about why a specific combination of variable values occurred.

An assignment of values &4 = {uy,...,u,} to variables
U= {U1,...,U,} is denoted U= 4, and is called a context.
With some abuse of notation, it is frequently written as just i.
Similar notation is used for settings of other sets of variables.

More formally, a model M consists of a set of endogenous
variables X and a set of exogenous variables U, where each
variable v takes values from a domain D,, and a set of equa-
tions {X; = fi()?, U)}. Most settings limit their attention to
strongly recursive models, in which the ith equation expres-
sion f; ignores all variables {x;,...,x,} that are assigned
later. Strongly recursive models may thus be interpreted as
straight-line imperative programs.?

Given a model M and context %, the judgment (M, #)
X; = x; means that, when U= i, the equations of M entail
the equality X; = x;. More generally, if ¢ is a logical formula
in terms of the X; (called an event), then (M,4) E ¢ if
¢ is true under the unique assignment to the X; entailed
by the formulas of the model in the context U = @. Actual
causation deals with the question of which values of variables
may be considered to be “causes"” of the event ¢, i.e., which
intermediate variables were relevant to ¢ being true.

Of importance is that, while the event ¢ may be an arbi-
trary formula, the causes may only be assignments to vari-
ables (or sets of variables). A formulalike R=1Vv S=11is
not permitted to be a cause, but a formulalike R=1AS=1
is.

Intervention is the capability that distinguishes causal
models from probabilistic models, which contain no more
information than a count of how often each combination
of variables occurs. It is the feature that justifies a model’s

2Confusingly, while these programs may be “recursive" in the computability-
theory sense of “computable,’ a programming languages theorist might be
tempted to call them “not recursive," as they correspond to acyclic graphs!

Onward! ’20, November 18-20, 2020, Virtual, USA

interpretation as an imperative program rather than as a
relation among variables. The intervened model Mx,y, is a
model that is identical to M, except that f;(X, U) is replaced
with the constant x;. For example, if M is the sprinkler model
defined above, then Mg 1 (“M where the sprinkler has been
forced on") is defined by the following equations:

R=U;
S=1
W=RVS

Intervention is fundamentally outside the ability of pure sta-
tistical methods such as conditioning (discussed extensively
in Pearl [38]). Note that, with this intervention, it becomes
possible to speak about what happens when it rains and
the sprinkler is on, which could never occur when passively
observing the original model.

Intervention extends naturally to sets of assignments,
Mg, ., and the judgment (M3 _ ,#) | ¢ can also be written

Xe—x
as (M, i) | [Z « Z]g.
We have now defined all the tools needed to express actual
causation.

—2z

4.2 But-for Causation

As a build-up to our preferred definition, we first present a
simpler definition of actual causation called “but-for" causa-
tion, erroneously called “scientific causality” in law schools
worldwide. In but-for causation, A is a cause of B if, but for
A happening, B would not have happened. More formally:

Definition 4.1. X = X is a but-for cause of ¢ in (M,) if
there is an ¥’ # X such that:

1. The setting X=3 actually occurred: (M, i) |= X
2. The event ¢ actually occurred: (M,) E ¢,

3. If X = X’ instead, @ would be false: (M,) E [X « X'

-

=X

In the sprinkler/grass model, with U; = 1 and Uy = 0,
rain (R = 1) is a but-for cause of wetness (W = 1), because,
without the rain (and since the sprinkler would not be on),
the grass would not be wet. However, with Uy = Uy = 1
(and hence R = 1, S = 0), rain (R = 1) is not a but-for cause,
because, were it not raining, the sprinkler would come on,
and the grass would be wet anyway.

For an example in a program context, a program starting is
a but-for cause of it printing any output: if it had it not started,
there would be no output. However, the second sprinkler
example above shows that, for over-determined events, but-
for causation does not align with intuition: the rain should
be the cause of the grass being wet—it’s what made the
grass wet, after all! This situation is isomorphic to Example
5 in §2, where an app uses some service (say, one payment
service), and, if it fails, uses a different one. But-for causation
would say—implausibly—that, if the first payment service
succeeded, its success would not have been a cause of the app

53

James Koppel and Daniel Jackson

successfully processing a payment. Causality researchers call
this preemption. More generally, whenever there is a backup
in case of failure, no single happening can be the cause of
success.

Such undesirable answers in but-for causation have led
many to seek alternate definitions. At the very least, but-for
causation is unsuitable as a basis for the theory of depen-
dence, as it would indicate that the app does not depend on
the first payment service, or at least no more than it depends
on any unused payment service. Using such a definition of
dependence in dynamic program slicing would construct a
slice without including code from any payment service at all.
We therefore turn to a more modern definition of causation.

4.3 The Halpern-Pearl Definition

After witnessing problems with but-for causation and other
attempted definitions, Halpern and Pearl began working in
the early 2000’s on a new definition that was both rigor-
ous and yet still captured our intuitions about the causes of
events. In 2015, after discovering problems with two earlier
attempts, Halpern published his current definition of actual
causation [13], which has an imperfect but excellent track
record of aligning with intuition.

The key idea that differentiates the three Halpern-Pearl
definitions from but-for causation is the idea of a contin-
gency. Because of over-determination, it may not be pos-
sible to change a variable X; to make ¢ false, even if X;
was clearly used in the process that made ¢ true—because
changing it may have a secondary effect that counteracts the
change. However, by blocking this secondary effect, it becomes
possible to observe that X;’s value was indeed involved in
the chain of events leading to ¢. Halpern’s 2015 definition
achieves this by allowing the change to the causing variables
X to be observed in the context of some intervention (a “con-
tingency") which forces a witness set of variables W to keep
the values they would have taken had X not been modified.

Definition 4.2 (Actual cause (Halpern 2015)). X = Xisan
actual cause of ¢ in (M, i) if the following three conditions
hold:

AC1. (M, 7)) £ (X =X) and (M, 7)) E ¢
AC2. There is a set W of variables and a setting ¥’ of the
variables in X such that if (M, i) F W = w then

(Mii) E [X « X, W — w]-p
AC3. X is minimal; no proper subset of X satisfies conditions
AC1 and AC2.

It’s easy to show that every (minimal) but-for cause is also a
Halpern 2015 cause. But the converse is not true. For example,
in the sprinkler example with U; = Uy = 1, R = 1 is a cause
of W = 1, witnessed by the contingency S < 0. In other
words, the rain was a cause of the grass being wet, because,
were there no rain, and the sprinkler were kept in the off state,

Demystifying Dependence

then the grass would not be wet. This judgment aligns with
intuition. But is the mechanism of contingency the reason
why?

4.4 Which Definition? Neither. Or Both.

In the writing of this paper, we switched between several
definitions of causation, beginning with a direct analogue
of the Halpern 2015 definition, and then one more similar
to but-for, and then the current one, which is superficially
more similar to the Halpern 2015 definition®, but spiritually
closer to but-for, as we found few examples of contingencies
in a software context, and those we did find could be better
justified without them.

All proposed definitions are evaluated by humans’ highly-
developed causal intuitions. And intuition states that, when
it rains, the rain causes the grass’s wetness. But compare:
suppose instead there is no rain, but you activate the sprin-
kler 5 minutes before it was scheduled to turn on anyway.
Though this graph is isomorphic, many would say your ac-
tions were not an actual cause of the grass’s wetness an hour
later. Perhaps then, the causal judgment about rain stems
not from the weather, but from the differences between tap-
water and rainwater; not from past actions, but from a more
precise model of the end-result.

Similarly, for the example of a fallback payment processor,
there is a material difference depending on which one is
used (seen on the bill from each vendor), which supports
the intuition that a successful transaction did depend on
whichever processor was used. *

Throughout the remainder of this paper, we shall fre-
quently point to undesirable results from our definition, and
to alternate answers given by other definitions. Causality is
still an immature field, despite its growing popularity in Al
and other areas. And so, as long as there is debate over the
proper definition of actual causation, there shall be debate
over the exact logical formula defining dependence.

We now proceed to construct a definition of dependence
based directly on actual causation. But first we must deter-
mine how to lift interventions from the setting of causal
models to the setting of programs, and the evaluation of
properties from boolean combinations of assignments to ar-
bitrary facts about a program’s static semantics, dynamic
semantics, and correctness.

3And even more similar to the Halpern-Pearl 2005 definition [18], not
described here.

4 As a real example of this: the multi-language CusIx framework [28] uses
an outdated-yet-robust Java parser, but falls back to a newer-but-buggy
parser when it encounters newer syntax. It makes sense to say that the
execution of CUBIX depends on which parser was used in part because they
produce different output; it would makea less sense if they had the exact
same behavior save intermittent failure.

54

Onward! ’20, November 18-20, 2020, Virtual, USA

5 Causality in Programs
5.1 Intervention as Program Transformation

Intervention in a causal model is setting a variable to a con-
stant. As structural causal models are straight-line programs,
the naive extension to general programs is to modify the
program by inserting assignment statements setting some
variables to constants; this is the approach taken in early
work by Icard [23].

This, however, is not sufficiently general for our purposes.
The shift from straight-line to arbitrary programs is not
merely about admitting more complex code between assign-
ments to variables, but a fundamental change in the nature
of assignment itself: that a variable can take on an entire
family of values (or perhaps not exist at all). The power of
an intervention must be upgraded accordingly.

From another lens, if the functions f; defining each en-
dogenous variable are the “lines of code" of a causal model,
then interventions may be seen as program transfor-
mations. Indeed, researchers in pure causal inference have
recently adopted a view very much like this, with a formal-
ism in which interventions may set a variable not just to a
constant, but to an arbitrary (perhaps stochastic) function of
its predecessors [7].

When generalizing models to arbitrary programs, there-
fore, this suggests taking general program transformations as
the analog to interventions, an idea introduced in our previ-
ous work formalizing a probabilistic programming language
with counterfactuals [42].

If the interventions are program transformations, what are
the variables? An easy answer is: fragments of the program
state at arbitrary points in the execution. This raises the
challenge of actually specifying such an execution point to
perform an intervention, with identifiers such as “the value
of i in the 5th iteration of the loop in function foo when
called from a signal handler" being quite unstable across
intervention. This is closely related to execution-point iden-
tification in dynamic analysis [41], and to mutation of exe-
cution traces in probabilistic programming [44]. Finding a
universally satisfactory treatment is still an unsolved prob-
lem, though both cited papers offer effective defaults in their
respective contexts, as does our work on counterfactual prob-
abilistic programming [42]. In our example formalizations
for specific systems in §7, we will artfully dodge these issues.

With this generalization, the definition of actual cause is
already starting to look like a more refined version of “A
depends on B if a change to B can change A" But, before
we dive into the details, there is still one more aspect of
structural causal models to generalize, one that was subtly
sneaked into the definition.

Onward! ’20, November 18-20, 2020, Virtual, USA

5.2 The Concept of Valid Intervention

In the mid-2000s, Liblit and Aiken developed the Coopera-
tive Bug Isolation (CBI) project [30]. In this project, their sys-
tem would instrument programs to record at various points
whether certain predicates such as “x > y" were true, in the
style of Daikon [8]. They would then release the programs
to users, and have the systems send statistics back home, so
that they could detect which predicates were correlated with
program failures.

But a problem emerged: the strongest correlates were
often not ones useful for pinpointing a bug. Instead, they
would often be ones correlated with a large input, as these
were more likely to contain edge-cases. Aiken later told us in
conversation that the inability to identify useful predicates
was the greatest unsolved problem of the project.

The essence of the difficulty is that users of the CBI system
were most interested in predicates that showed the cause of
bugs—not just those that were correlates. And this is a much
harder problem, even just to define. But below, we do define
it—and find that it requires information not in the program.

Imagine CBI discovered that the predicate strien(s) >
1000 was correlated with a program crash, and an agent
with limitless computational power was trying to determine
whether this relationship was causal. To apply either of the
definitions from §4, the agent would have to intervene in
the program to make s be some string of length greater than
1000 and then look for the crash—and this is underdefined,
as it clearly matters which string is used. In general, there is
no good way to intervene on a predicate; this is the reason
why the Halpern-Pearl definition only allows sets of assign-
ments as causes, even as events may be arbitrary boolean
formulas. But now suppose that the string were a structure
with a separate length field, and the predicate was s.length
> 1000. Now it is quite trivial to intervene and set s.length
to something else—and then the program would crash irre-
spective of the pursued bug, because this is not a valid
intervention.

In structural causal models, it is permissible to intervene
in a variable to set it to any value in its domain. And that “in
its domain" restriction hides a lot of work.

It has been noted [22] that structural causal models are
ontologically similar to propositional logic, where each vari-
able stands alone, and there are no composite structures.
Programs are not like this, of course. The reason, for in-
stance, that setting s.length to an arbitrary value is invalid
is that it likely violates s’s representation invariant relating
the length field to the string buffer itself.

Meanwhile, in structural causal models, restrictions on
valid interventions are encoded into the choice of variables
and their domains, so that causality questions may have
different answers depending on modeling choices (they are
model-relevant). For a classic example where adding vari-
ables changes an answer, in the Halpern-Pearl definition of

55

James Koppel and Daniel Jackson

§4.3, if two people throw rocks at the same bottle and it
shatters, it cannot be shown that one person’s throw but not
the other’s is a cause of the bottle shattering, unless there
are variables added representing which one hit first. And
for an example where changing a variable’s domain changes
causality, consider Example 4 from §3.4: it cannot be shown
that your neighbor’s action NA is a cause of you cooking
dinner unless the domain includes a setting NA = acy; rep-
resenting them cutting your power and gas lines (and the
equations defining the model are augmented accordingly).

There are several ways to counteract this, such as adding
a parameter for how “abnormal” an intervention may be, but,
no matter what extensions are made to the formalism, the
first line of defense is to carefully construct the model to
permit exactly the relevant counterfactuals. So far, there is
no analogue to this when checking causality in programs.
By default, interventions as we have described them may
insert arbitrary code and set variables to arbitrary values of
their type, though there is no reason to believe that the set of
reasonable values a variable may take should coincide with
the domain of the standard types in a language.

As the analogue of the carefully-chosen variable domain
in structural causal models, we stipulate that there must
be some additional restrictions on what interventions are
valid. As it is perfectly reasonable to perform an intervention
that modifies a module’s spec (to, say, determine whether
another module’s correctness relies on a specific property),
for lack of a better term, we deem these extra restrictions a
super-specification. We first described the need for such
restrictions in our work on counterfactual probabilistic pro-
gramming [42], but we swept it under the rug by assuming
some unspecified static analysis to prevent invalid inter-
ventions. In this paper, we develop an explicit notion of
super-specifications. Without such super-specs, there may
be multiple possible answers to questions of dependence.
Thus, even after choosing a specific property, it may be im-
possible to decisively determine dependence from inspecting
the code alone. °

When changing modules, a common super-spec is some
kind of frame condition stipulating which variables may be
modified or what effects may result. As a spoiler, this is the
resolution to two of the examples in §2, where dependence
on a module varies with whether it’s permissible to alter
that module to crash or mess with another module’s vari-
ables. When considering dependence of variable values on
other variable values, a useful super-spec is to only permit
interventions that respect a data structure’s representation
invariants, as in the string example. A more basic super-
spec is to rule out interventions that result in an ill-formed

SBut, at least for dependence on program state subject to a super-spec
of data structure invariants, there is empirical hope for useful answers
in the absence of user-provided restrictions: Zeller’s experience with the
HOWCOME tool [45] suggests that randomly mutating a valid program
state is moderately likely to produce another valid program state.

Demystifying Dependence

program—but when considering build dependencies, such
interventions are of great interest.

The super-spec assigned to a program element may differ
with the nature of the query. One strand of research in actual
causation allows considering not a single model but a range
of models with a normality ordering [14, 16], where, for ex-
ample, a more “abnormal” model for fire may be allowed to
consider the case where there is a stray spark but no oxy-
gen. Such judgments have analogues in software as well: a
software engineer may conclude that one module’s failure
cannot affect another’s, while a security engineer, unwilling
to rule out a code-injection vulnerability, might not.

The need for a super-spec implies that the program text
will generally not contain enough information to check de-
pendence. This might seem undesirable, but we argue that
this is necessary, and any purported definition that lacks this
property will be flawed. If dependence is witnessed by possi-
ble changes, then, as the programmer’s intentions influence
what kinds of changes are possible, said intentions must also
influence whether a dependence exists.

And now, with a fuller framework for extending inter-
ventions to programs, we are ready to translate notions of
causality in the physical world into a notion of dependence
in the world of software.

6 A General Definition of Dependence

The last section identified challenges defining causality in
programs. This section answers these challenges by creat-
ing a general, formal definition of causality in program se-
mantics, built atop state machines as a common language
representing many kinds of semantics.

Causality is built on notions of components, properties,
allowable interventions, and deterministic execution. It can
thence be developed in many settings, from Halpern and
Pearl’s causal graphs, to databases and relational algebra
[32], to continuous-time models of biochemical reactions
[29]. We chose the setting of state machines as one which is
expressive enough to model most forms of program seman-
tics, while still permitting a simple, visual explanation. In
this section, we both present the generalized definition of
dependence in deterministic state machines, and simulta-
neously give an example application to dependence in
dynamic semantics (which roughly corresponds to dynamic
slicing), which requires little transformation to express as
a state machine. §7 then applies it to develop several other
forms of dependence.

Programs are substantially more expressive than struc-
tural causal models, and so any model of program semantics
will exhibit phenomena with no correspondence in causal
graphs. The two primary problem addressed by this section
is how to generalize the notion of a variable.

An easy first thought when generalizing structural causal
models to programs is to build a graph whose variables are

56

Onward! ’20, November 18-20, 2020, Virtual, USA

program variables, where intervention is forcing a variable
to a value, as done by one early attempt [23]. This is clearly
not suitable for applications where the objects of dependence
are high-level properties or otherwise not program variables.
And it is not even suitable for expressing dependence in ex-
ecution semantics, as it provides no way to, e.g., intervene
on a variable but only in the 5th iteration of a loop. A state
machine state, on the other hand, may represent an entity
much finer or much coarser than a program location. And,
in many cases, the state machine will correspond to a flat-
tening of some hierarchical structure such as a typechecking
derivation or a correctness proof, meaning it can provide
arbitrary amounts of context.

As our running example, we use Imp, an imperative lan-
guage with variables (integer only), assignments, arithmetic,
boolean expressions, conditionals, and loops, all defined the
usual way:.

Actions, States, and Properties. In our setting, a system
is a state machine (S, I, L, A, M) where S is a set of states,
I C S a set of initial states, L a set of action labels, and
A C S XL xSis a set of labeled transitions (“actions") on S.
The available mutations, M : S — P(S), are described below.
The machine is required to be deterministic, so that, from
a given initial state, there is exactly one (possibly empty)
maximal path.

For example, to define a state machine for Imp which has[[]
statement-level granularity: States are values of the current
environment y together with the current program counter
pc, where pc indicates either the beginning of an assignment,
or the condition of an if-statement or loop. Transitions cor-
respond to executions of single statements, and their labels
are unique identifiers for those statements. Fig. 2 shows a
portion of the state machine x := x + 1; y := x + 1; halt,
with the three statements numbered 1, 2, and 3, respectively;
the full state machine has infinitely many initial states, cor-
responding to the infinitely many possible starting values of
x.b

A trace is a maximal sequence of actions (ag, lp, bo), - - -,
such that ag is an initial state (ap € I) and b; = aj,; for
all 0 < j < n. A finite trace corresponds to a terminating
execution, and an infinite trace to a nonterminating one. For
example, each of the columns in Fig. 2 is a trace.

We assume there is some language of properties on traces.
We write t |= ¢ if property ¢ is true for trace ¢. A property
can equivalently be defined as a set of satisfying traces.

This example shows how the choice of many initial states allows these
state machines to model an initial input, in this case the initial value of x. It
is similarly possible to model other aspects of the outside world, such as
interactive input, as an exogeneous variable in the initial state containing an
answer to all possible queries to the outside world. There are, after all, only
countably infinitely many of them, and it is permissible to have similarly
infinitely many initial states.

Onward! ’20, November 18-20, 2020, Virtual, USA

Figure 2. Fragment of state machine for program x := x +

1, y i=x+1

Permitted Mutations. Associated with each state a and
its unique outgoing transition (a, 1, b) is a set of available
mutated actions or available interventions M(a). Each avail-
able intervention is an alternate outgoing transition with the
same variable, i.e.: (a,[,b") for some b’. This set is typically
given by some super-spec p, where any transition (a, [, b")
that satisfies p(a, 1, b, b’) is an available mutation.

For Imp, if a is a state corresponding to an assignment x :=
e and (a, [, b) its unique outgoing transition, then the super-
spec p(a,1,b,b’) is: in the successor state b’, no variable other
than x may be modified, and the program counter of b must
equal that of b. If a is a state corresponding to the program
point immediately before executing a conditional if e or
while e, then the super-spec is that the new program counter
must correspond to either the next statement to be executed
if e is true, or the next statement if e is false. In summary:
any assignment may be modified, and any branch taken
may be flipped to the other alternative. However, neither
assignments to new variables nor loops may be inserted.

Causality. With this setup, we can adapt the Halpern-
Pearl definition of causality to the setting of state machines,
and use it as a formal definition of dependency.

Defining the first intervention in a trace is straightfor-
ward: replace one edge a in a trace with a permitted mutant
a’, and continue execution. But including any additional,
compensating changes is trickier. Unlike the static setting of
causal graphs, in programs or the state machines modeling
them, a small intervention may cause execution to take a
completely different path. For this, we offer a broad, perhaps
too broad, remedy: allow any permitted mutation on the new
states as a “witness" to the causality of a’.

"This renders our definition of causation more similar to Halpern and
Pearl’s 2005 definition [18], with a more liberal allowance on compensating

57

James Koppel and Daniel Jackson

Definition 6.1. Given a trace ¢, property ¢, and an action
a, we say that a causes ¢ (also: is a it cause of ¢) in ¢ iff:

1. aoccursin t

2.tEo

3. There exists a’ an available intervention for g, and w’ a
set of available interventions to some set of actions I/T/,
such that, if ¢’ is the unique trace resulting from replacing
a with a’ in t and continuing execution with any encoun-
tered transition in W replaced with the corresponding
transition in w’, then t’ £ ¢. In this case, a’ and w’ are
witnesses to the dependence on a. (Alternatively, the de-
pendence relies on interventions a’ and w’.)

4. There is no trace in which any element of w’ is itself a
cause of ¢.

For example, in the trace obtained by execution x := x + 1;
y := x + 1; halt with start state [x + 1], the first state-
ment (i.e.: the outgoing edge of the top-left state of Fig. 2) is
a cause, and hence a dependency, of the proposition x == 2
being true in the end state, as witnessed by the intervention
replacing x := x + 1 with x := 3 (equivalently: mutating the
top-left edge of Fig. 2 to target the center node). The state-
ment y := x + 1 is not a cause, as no mutation is permitted
to this action which affects x.

For a more complicated example which uses compensating
changes, consider the code:

1: a := 1
2: b := 1
3: if (a == 1) then
4 X = a
else
5: x := b

In the unique trace of this code from an empty start state, the
action corresponding to line 1 is a cause of the proposition
x == 1 being true in the final state. This is witnessed by
mutating line 1 to a := 2, and by the compensating change
of forcing the conditional to enter the “true" branch (i.e.:
mutating the outgoing edge from the state (i : [a +— 2,b —
1], pc : 3) to target (i : [a > 2,b — 1],pc : 4)).

Awkwardly, by similar reasoning, line 2 is also a cause! The
authors disagree over whether this is reasonable behavior,
with the argument in favor that it interferes with the ability
to change x by changing a and would be included in any
static slice, and the argument against being that there is no
dataflow from this line to x in the actual trace.

If a developer wishes to build a tool that reports line 1
but not line 2 as a dependence, they have many options
for tweaking our definition. An easy choice is to restrict
compensating changes so that they may restore the control
flow of the original trace, but not introduce a new control

changes, than the 2015 definition [13]. (These are referred to, somewhat
confusingly, as the “updated” and “modified" definitions respectively in
Halpern’s book [14].)

Demystifying Dependence

flow. However, we found such a distinction difficult to justify:
it nonetheless enters different states, and it is quite possible
for two traces that follow the same control path to have
radically different behavior. ® While such heuristics may
be useful in applications, our conclusion is to question the
soundness of the idea of dynamic slicing itself, for it relies on
a distinction between control- and data-dependencies which
is semantically untenable.

Lifting Actual to Type Causality. We defined depen-
dence on a state, or, equivalently, on the outgoing transition
from a state. But if a specific state is an actual cause of an
event, then it can be said that a category containing this
state is a general cause of an event. And thus, dependence
on a state induces a dependence on any coarsening of the
state. For example, “dependence on a label" can be defined
as dependence on some transition with that label. In our
running example on IMp, labels are effectively line numbers,
so the development above also gives a definition for dynamic
dependence on a line. And similarly, module dependences
might be defined by coarsening to all the transitions executed
by a given module.

This section has lifted dependence from vagueness into
an objectively-checkable formal definition, but its edges are
still blurred by the same imperfections that caused Halpern
and Pearl to go through four definitions of actual causation
over 20 years [13, 17, 18, 37].

7 More Example Formalizations
7.1 Linking Dependence

Module M has a build dependency on module N if M cannot
be built in the absence of N, which typically means that M
has a syntactic reference to N. We should hope to find that
this is a special case of the definition of §6—and indeed it is,
applying the definition to the static semantics of a language.

This section uses a simple model for whether a program
successfully builds: whether a term in the simply-typed
lambda calculus (STLC) is well-formed. This takes the form
of a state machine which takes in a queue of bindings, and
subsequently attempts to add each to its typing context. If a
binding is in the typing context upon termination, then it is
well-typed, and hence “built" successfully’.

8Indeed, electronics are constructed this way. While there are many differ-
ent things a CPU can do, the effect of each cycle is expressed as straight-line
code: different components compute many possible results in parallel, and
multiplexers select among them. Such a style is also important when imple-
menting constant-time cryptography.

9This is superficially different from the typical presentation of the STLC,
which gives a hierarchical typing derivation rather than a linear machine.
In fact, there are mechanical techniques for converting any hierarchical
proof system into a linear abstract machine [19, 27]; Sergey [40] gives a full
worked-example of doing so for a type system.

58

Onward! ’20, November 18-20, 2020, Virtual, USA

Below, we present the full definition of the state machine.
This machine evaluates each binding in a single step, al-
though it could be modified to have individual steps check-
ing each subterm, likely following Sergey [40]. Fig. 3 shows
the execution of this machine on the program P, containing

“modules" F = Af Ax.f(fx) and G = Ax.F(Ay.y)x.

States A state is a triple (T, cur, q) of a typing context T, a
focused binding cur, and a queue q. I takes the form
F : 11,G : 19,..., containing type bindings for all
successfully evaluated prior definitions. A binding b
is either an assignment F = f, or the special token
end. cur is a binding containing the term currently
being typechecked. The queue g, written in either the
notation [F=f,G=g,...]or F=f::G=g:...,is
a list of bindings to be checked after the current one
is completed.

Actions The state (I, F = f,b :: q) stepsto ((I, F : 7),b,q)
with label F if there is some 7 such thatT' + f : 7 under
the normal rules of STLC. It steps to (T, b, g) with label
F if there is no such 7. Any state with cur = end is
terminal.

Properties Properties take the form F € T', where T’ is the
typing context of the terminal state. This means that
the binding for F typechecked successfully.

Allowed Mutations From the state (I, cur,F = f :: q),
a mutated action may step to (I, F = f,q). This is
equivalent to forcing the binding F = f to fail to type-
check.

Applying the definition of §6 to program P, we find that
the well-formedness of G, G € T, does depend on the well-
formedness of F, as reified in the transition labeled F.

7.2 “Depend on Interfaces, Not Implementations”

A common slogan in software engineering is “depend on
interfaces, not implementations." In this section, we formal-
ize this advice inside the simplest setting that allows for
reasoning about logical interfaces: Imp with Hoare-style ver-
ification. In this setting, the dependee “module” is the first
portion of a sequential program, and the “interface” is a post-
condition which is weaker than its actual behavior. The lack
of dependence on implementation means that no change to
the module which preserves its postcondition may alter the
overall guarantees of the program.

In this domain, showing that an altered program meets a
spec means finding a Hoare logic proof of that spec. More
broadly, the “execution" of the Hoare logic semantics is a
highly nondeterministic proof search which may involve
conjuring new propositions (e.g.: loop invariants) out of thin
air. It is overall a poor fit for our formalism in terms of
deterministic state machines. While an alternate formalism
of causality would be more appropriate for this problem—
and we have preliminary work on one, based on derivation
trees—we find that, for pedagogical purposes, we can encode

Onward! ’20, November 18-20, 2020, Virtual, USA

T: @

Ir: e
cur: G=Ax.F(Ay.ydx
q: O

cur:

r: [F :
end

q: [

cur: F=Af.Ax.f(fx)
q: [G=Ax.FQry.ydx]

(t31)»1-1]

James Koppel and Daniel Jackson

: [F : (ms1)s101]
cur: G=Ax.F(Ay.ydx
a: []

T: [F: (ms1)s121
, G 1 o1at]
cur: end

q: [

Figure 3. Execution of typing machine on the program P. Dashed edges represent possible interventions.

it quite adequately into a state machine by removing the
nondeterminism from the language via these adjustments:

1. All loops are annotated with their loop invariant. They
take the form while; E do S, where I is the loop invariant.

2. There is no arbitrary strengthening or weakening of as-
sertions (i.e.: the CONSEQUENCE rule is removed). All post-
condition weakening / preconditioning strengthening is
done by the command weaken(Q), where the Hoare triple
{P} weaken(Q) {Q} is derivable for any P with P = Q.
This command also doubles as a way to give an explicit
“interface" for the preceding code.

With these changes, computing the strongest postcondition
of a command becomes a deterministic function, and we can
now linearize the system into a state machine.

States We first define an assertion. At assertion P for a pro-
gram point pc is a predicate a predicate which must be
true of state at pc in all concrete program executions.
A state is stack of program counter/assertion pairs
(pc1, Py) -+ 2 0, with P; an assertion for pc; for all
i. pcy is the “current” program point. Each successive
pciy1 is the pe prior to executing the parent loop or
conditional pc;, where relevant. At times we will speak
loosely and only refer refer to the head of the state,

(pe1, Pr).

59

Actions Let C be the command at pcy, and pc] its successor
command. Then state (pc1, P1) :: S transitions to a
new state depending on C.

1. Cis an assignment: Then the state steps to the tar-
get state (pcy,sp(C, P)) :: S, where sp(C, P) is the
strongest postcondition of P across C.

2. C = weaken(Q). If P = Q, then the state steps
to (pci, Q) :: S. Else, the state is terminal. In the
latter case, we say that the preceding segment of
the program fails its immediate postcondition.

3. C = if E then C; else Ca. Let pcgy be the pc for im-
mediately before the execution of Cy. Then the state
steps to (pco, Py A E) == (pc1, Py) 2 S.

4. The previous case should communicate the use of
the stack. The remaining rules are not necessary
to communicate the intended point, and we leave
them as an exercise to the reader. (This system is
a linearization of the normal rules of Hoare logic,
similarly to what can be mechanically derived via
the transformation of §5.1 of [19].)

Properties The property in question is that a terminal state
with a given pc and assertion Q is reached, i.e.: that Q
is a valid postcondition for the entire program.

Demystifying Dependence

Allowed Mutations Depending on the kind of dependence
query considered, this system uses one of two choices
for the space of allowed mutation:

1. When checking for dependence on a spec, the fol-
lowing mutations are allowed: Consider some pc as-
sociated with a weaken command weaken(Q). Any
state with this pc will have a transition to a new
state with head (pc’, Q). A valid mutation may in-
stead target (pc’, Q') for any proposition Q’. That
is, the preceding code may be ascribed a new spec.
(Note that the preceding code need not actually
meet this spec!)

2. When checking for dependence on an implementa-
tion, the following mutations are allowed: Consider
some pc associated with a command C, with outgo-
ing transition targeting some pc’. A valid mutation
is a transition targeting a state (pc’, P) for an arbi-
trary assertion P (equivalent to replacing the code
at pc with any code) subject to the condition that
the intervened trace does not fail its immediate post-
condition. More formally: consider the next state
in the original trace whose pc is associated with a
weaken command weaken(Q); then the intervened
trace must reach another state with the same pc, and
this state may not be terminal (meaning Q is a valid
weakening of the postcondition). These mutations
are used to check for dependence on an implemen-
tation.

We now apply this definition to a simple example:

// Module 1

1;

weaken (choice ==
|| choice
|| choice

choice :=

—_

Il
Il
w N
~

// Module 2
result ;=
weaken(result <

choice =
10)

2;

The only valid mutations to the body of module 1, the
choice ;= 1 line, are the equivalents of replacing it with
code passing the postcondition, e.g.: choice := 2 or choice
:= 3. Neither of these prevent module 2 from achieving the
postcondition result < 10, so module 2 does not depend on
the implementation of module 1. However, it does depend
on the interface, as replacing module 1’s postcondition with
choice == 5 will cause module 2 to violate its postcondition.

7.3 Trusted Bases

The idea of a trusted base is fundamental to high depend-
ability systems. In short, the trusted base is that part of the
system that must function correctly; failures in any other
part of the system can be tolerated. If the system can be

60

Onward! ’20, November 18-20, 2020, Virtual, USA

designed so that the trusted base is small, this implies a
concomitant reduction in the effort required to guarantee
correctness of the system as a whole, since only the trusted
base need be checked. Of course the claim that the trusted
base is indeed alone sufficient to establish correctness must
be justified, and this may require in addition some kind of
non-interference argument (to show that failures outside the
trusted base cannot compromise it).

To define the concept of trusted base, we need to limit the
interventions that can be considered in determining causality.
The intuition is very simple: the very idea of a trusted base
relies on the assumption that this part of the system will not
break. So we consider causality and dependence only in the
context in which interventions may not alter the behavior
of the trusted base.

More formally, we partition the actions of the system as a
whole into the actions of the trusted base B, which we shall
refer to as the trusted actions, and the actions of the rest of the
system, which are untrusted. Correctness of the system as a
whole is with respect to some critical property P. It is rarely
practical for this property to capture full correctness, and for
most critical systems it will represent the non-occurrence
of some catastrophe (such as loss of data, violation of secu-
rity, physical accidents such as collision, etc). The base B is
then sound for P—that is, it indeed forms a trusted base for
that property—if P holds for all traces (that is, P is indeed
a property of the system), and no action outside B causes
P, in a context in which the only permitted interventions
are on actions outside B. That is, so long as the actions in
the trusted base execute faithfully, the criticality property
depends only on the trusted base, and on no other parts of
the system.

To illustrate this, consider the example of the careful file
transfer protocol from the famous end-to-end paper [39]. In
the simple (standard) file transfer protocol, blocks are read
from disk, sent across the network, and written to disk on
the other side. In the careful file transfer protocol, the sender
computes a checksum of the file on disk; the receiver simi-
larly computes a checksum after writing the file to disk on
the other side, and sends it back to the sender; and if the two
checksums do not match, the transfer is repeated until they
do.

In the original paper, the example was used to explain
the idea of end-to-end design: by designing the endpoints to
perform the checksum computations, the protocol no longer
depended on a reliable network, suggesting that the over-
all goals of a protocol can be established at the endpoints
without burdening the network itself with requirements that
might not even apply to other protocols. In the context of
this paper, the key point is that the checksum mechanism
becomes a trusted base for the protocol: so long as the check-
sums are computed correctly, the file transfer can be assumed
to be correct. Below, we give a semi-formal description of

Onward! ’20, November 18-20, 2020, Virtual, USA

how to formalize this work into a state machine. Fig. 4 gives
an example trace.

States The state components are the files on disk, the mes-
sages in the network, and various buffers for local
storage. For convenience, we represent each category
as a single variable, and represent the value of that
variable as a relation (or equivalently as a predicate).
Thus, for example, the disk variable holds the contents
of the files on disk for both sender and receiver, and
includes in its value the tuple (S, C) when, on the
sender’s disk, file has content C); likewise the network
net contains (S, C) when the channel emanating from
the sender (S) contains the value C; and the variable
checksum contains (S, i) when the sender has com-
puted the checksum i for the file.

Actions The actions are disk.read(d,c),disk.sum(d,i) and
disk.write(d,c) in which the file contents c are read,
have checksum i computed, and written, at disk d;
net.send(p,c and net.recv(p,c) in which the chan-
nel emanating from participant p has a message with
content ¢ sent on it or received from it; and an internal
action ftp.match of the top-level protocol that checks
that the checksum received by the sender matches the
checksum it previously computed from the file on its
own disk.

Property The correctness property is that, for any terminat-
ing trace, the data stored for the file in the final state
is the same in the two disks (that is, the disk variable
contains tuples of the form (S, c) and (R, c) where c
is the shared value of the file.

Allowed Mutations Except for the trusted disk.sum and
ftp.match actions, any action may be mutated to give
either fail (resulting in a retry) or to give an arbitrary
value!®.

The trusted base then comprises (a) the actions of the top-
level program (including both the general order of actions
and the specific ftp.match action), and (b) the disk.sum ac-
tion that computes the checksum of files on disk. With this
setup, applying the definition of §6, the correctness property
does not depend on any non-trusted action.

There is one additional subtlety that must be addressed, common to any
formal analysis of a system of this sort. When considering the interventions
that are permitted for the actions outside the trusted base, the formalism
must disallow transitions that magically guess the correct value of the
checksum. If such an intervention were allowed, the net.send action (for
example) might cause the correctness property, because one could construct
a trace in which an intervention breaks the disk.write action, causing the
wrong data to be written to disk, and a second intervention breaks the
net.recv action so that the sender happens to receive the correct checksum
back, despite the fact that it does not match the file written to disk. Another
solution to this problem would be to represent the checksum computation
more abstractly in a way that disallows faking.

61

James Koppel and Daniel Jackson

8 Puzzling No More!

We are now ready to revisit the examples of §2. With the
new perspective of the proper framing and the multiple vari-
eties of dependence, all of the apparent paradoxes disappear.
Some of these examples also serve to illustrate some coun-
terintuitive properties of dependence that it inherits from its
basis in actual causation.

1. Assuming tasks are dynamically assigned, the round-robin
scheduler’s well-formedness does not depend on the tasks
in static semantics. Specific results obtained and timing
do depend in the dynamic semantics. Correctness does
not depend in program logic, with a posssible exception
for minor conditions on resource use.

2. For a pair of a serializer/deserializer, the round-trip prop-
erty depends on both in the program logic. Alternatively,
if the spec for each is defined with reference to a math-
ematical description of the format, defined as a relation
between a data structure and its serialized form, then the
correctness of each depends on said format in the program
logic.

3. If it is reasonable for B to modify a global variable of A,
then indeed the correctness of A already depends on B
in the program logic not to do so, and any programmer
checking the code would need to inspect B for whether it
interferes with A. But if B’s super-spec includes a frame
condition restricting what state is considered reasonable
for it to modify, then such a programmer would not need
to inspect B, and A’s results do not depend in the dynamic
semantics on B.

4. Similarly, if it is considered valid to replace any module
with one that crashes, then A not crashing depends in the
dynamic semantics on every other module. But if each
module has a super-spec prohibiting crashing, then these
dependences are removed.

5. By the definition in §6, A’s success in the trace does in-
deed depend on B, witnessed by the contingency where
B fails, and C also fails. (If C is never executed, then it
cannot be a dependence.) Under a definition closer to but-
for-causation, A’s success would not depend on B, as B
cannot be modified to cause A to fail, but it would depend
on the set {B, C} rendering B part of a dependence. Mean-
while, A’s correctness does not depend on the correctness
of B in the program logic according to either definition.
This example is isomorphic to examples in causality on
over-determined events and having a backup plan, such
as Example 1 from Halpern [15], and Example 13 in Gly-
mour [12]. This is the only realistic software-engineering
example we have found that involves a contingency /
compensating intervention; we discussed specific instan-
tiations in §4.4.

Demystifying Dependence

disk.read(S,0)

disk:{(S,0}
buf: {}

net:{}

checksum: {(S,1)}

disk.sum(R,1i)

disk:{(S5,0),(R,0}
buf:{}
net:{}
checksum: {(S,1),(R,1)}

buf: {3}
net:{}

net.send(R,1)

v net.recv(R,1i)

disk:{(5,0),(R,O0}
buf: {}

net:{(R,1)}
checksum: {(S,1),(R,1)}

disk:{(S,0}
buf: {(S,0}

net: {}
checksum: {(S,i)}

disk:{(S,0,(R, 0}

checksum: {(S,i)}

disk:{(5,0,(R,0}
buf:{(S,1)}
net:{(R,1)}
checksum: {(S,1),(R,1)}

Onward! 20, November 18-20, 2020, Virtual, USA

net.send(S,0)

disk:{(S,0}
buf: {3}

net:{(S,0)}
checksum: {(S,i)}

net.recv(S,0)

disk.write(R,0)

disk:{(S,0O}
buf:{(R,O}
net: {}

checksum: {(S,i)}

ftp.match

disk:{(5,0,(R,0}
buf: {}
net:{C(in,i)}
checksum: {(S,1),(R,1)}

Figure 4. Sample trace of the careful file transfer protocol.

6. If A uses B through dependency inversion, then A’s well-
formedness does not depend on B in the static semantics,
but its results do depend on B in the dynamic semantics,
and its correctness depends on the spec of B in the pro-
gram logic.

7. Even with dependence both ways between properties of A
and properties of B, we need not consider self-dependence
because, in general, dependence is not transitive. A may
use B, and B may use C, but A need not exercise all be-
haviors of B, so it is possible for A’s results or correctness
to not depend in the dynamic semantics on C. Alterna-
tively, see the structure in Example 5 above. Causation
is generally not transitive for the same reasons; Halpern

62

[15] discusses why, along with situations in which it is
transitive.

. Correctness of the hash table would likely be defined

conditionally: if the inserted keys correctly implement
equals() and hashcode(), then the hash table operations
produce the correct results. Then a hash table’s correct-
ness does not depend in the program logic on the caller or
keys. Its results do still depend in the dynamic semantics
on both.

. The robot’s moves depend in the dynamic semantics on

any subset of 3 programs, but each individual program is
merely part of a dependence. This example is lifted directly
from questions in causality about majority vote (Glymour
[12] Example 14, Halpern [13] Example 3.8). According

Onward! ’20, November 18-20, 2020, Virtual, USA

to both the Halpern-Pearl definition and but-for causation
with minimality, if 5 people vote on a proposal where
majority vote wins, and all 5 vote in favor, then any subset
of 3 is a cause, while each individual is “part of a cause."
This example shows the use of the minimality condition,
D3. !

As an extra insight, Example 2 shows that coupling is dif-
ferent from dependence. While the serializer and dese-
rializer are clearly coupled for any reasonable definition,
neither depends on the other: either the correctness of both
is defined in terms of some common abstract format, or the
correctness is defined in terms of a round-trip property that
depends on both.

While we leave thorough investigation of the concept of
coupling to future work, one possible working definition is:
two code fragments are coupled if they ever must change
in tandem to maintain some property. This would make the
relation between dependence and coupling the same as be-
tween causation and correlation. According to Reichenbach’s
principle [20], if two variables are correlated, then either one
causes the other or they have a common cause (or some com-
mon effect of both is being held constant). Correspondingly,
if two code fragments are coupled, then either one depends
on the other, they depend on some common thing (like the
abstract description of a file format), or some property (such
as the round-trip property) depends on both.

9 Conclusion

Programmers and programming-language researchers some-
times appear to work in parallel universes, each with its
own concerns and priorities and seemingly little overlap.
Advances that are recognized in both, and which combine
the rigor and clarity of research with the subtle insights of
practice, have the potential for great impact.

Type theory has achieved broad impact by providing a
unified toolset, which has provided a foundation for both
an abstract framework for computation and practical tools
for structuring programs. In contrast, except for Parnas’s
pioneering exploration of the “uses” relation [36], and some
work unifying several instantiations of noninterference [1],
most work that might have contributed to a more general no-
tion of dependence—such as theories of data abstraction (in-
dependence of representation) and polymorphism (indepen-
dence of type)—has proceeded in more specialized contexts,
resulting in theoretical ideas with more limited applicability.

HThis is according to the Halpern 2015 definition [13] of actual causation.
While we like the intuitive appeal of this answer, the formalism of §6 is
expressive enough to permit sets to be causes. Instead, its answer is more
similar to the Halpern-Pearl 2005 definition[18], which states: each of the
5 voters is a cause, but with responsibility [5, 14] % (as 3 votes must be
modified to change the outcome). Our preliminary (and more complicated)
formalism based on tree-structured derivations does permit causes to be
sets.

James Koppel and Daniel Jackson

A more generalized study of program dependences, we
believe, might tie together these and many other existing
threads of research (in compilation, program analysis, slicing,
and so on), open room to explore it in new application areas,
and provide a solid foundation for evaluation of program
designs.

We hope that our paper will rekindle interest in the topic of
dependences; that the promise that we see in studying these
problems will inspire others to engage them; and that our
ideas will encourage designers and tool developers to explore
new forms of dependence analysis with new applications in
many areas.

Acknowledgments

We warmly thank Hana Chockler, Zenna Tavares, Adam Lan-
caster, Eric Casteleijn, Benjamin Duron, and the anonymous
reviewers for comments on earlier drafts of this paper. This
research was funded in part by the Secure and Trustwor-
thy Cyberspace (SaTC) program of the CISE division of the
National Science Foundation under Award Number 1801399.

References

[1] Martin Abadi, Anindya Banerjee, Nevin Heintze, and Jon G Riecke.
1999. A Core Calculus of Dependency. In Proceedings of the 26th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages.
147-160.

Martin Abadi and Luca Cardelli. 1996. A Theory of Objects. Springer.

https://doi.org/10.1007/978-1-4419-8598-9

Jonathan Aldrich. 2013. The Power of Interoperability: Why Objects

are Inevitable. In ACM Symposium on New Ideas in Programming and

Reflections on Software, Onward! 2013, part of SPLASH ’13, Indianapolis,

IN, USA, October 26-31, 2013. 101-116. https://doi.org/10.1145/2509578.

2514738

Gadi Aleksandrowicz, Hana Chockler, Joseph Y Halpern, and Alexan-

der Ivrii. 2017. The Computational Complexity of Structure-Based

Causality. Journal of Artificial Intelligence Research 58 (2017), 431-451.

[5] Hana Chockler and Joseph Y Halpern. 2004. Responsibility and Blame:

A Structural-Model Approach. Journal of Artificial Intelligence Research

22 (2004), 93-115.

William R. Cook. 2009. On Understanding Data Abstraction, Revisited.

In Proceedings of the 24th Annual ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications, OOPSLA

2009, October 25-29, 2009, Orlando, Florida, USA. 557-572. https://doi.

org/10.1145/1640089.1640133

[7] J. Correa and E. Bareinboim. 2020. A Calculus For Stochastic Inter-
ventions: Causal Effect Identification and Surrogate Experiments. In
Proceedings of the 34th AAAI Conference on Artificial Intelligence. AAAL
Press, New York, NY.

[8] Michael D Ernst, Jeff H Perkins, Philip] Guo, Stephen McCamant,
Carlos Pacheco, Matthew S Tschantz, and Chen Xiao. 2007. The Daikon
System for Dynamic Detection of Likely Invariants. Science of computer
programming 69, 1-3 (2007), 35-45.

[9] Martin Fowler. 2018. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional.

[10] Richard Gabriel. 2011. Definitions of Modularity. http:
//modularity.info/conference/2011/files/PerspectivesOnModularity/
ModularityDefinitions.pdf. (2011).

[11] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1993.
Design Patterns: Abstraction and Reuse of Object-Oriented Design.

[2

—

[3

—

[4

[l

(6

—_

63

https://doi.org/10.1007/978-1-4419-8598-9
https://doi.org/10.1145/2509578.2514738
https://doi.org/10.1145/2509578.2514738
https://doi.org/10.1145/1640089.1640133
https://doi.org/10.1145/1640089.1640133
http://modularity.info/conference/2011/files/PerspectivesOnModularity/ModularityDefinitions.pdf
http://modularity.info/conference/2011/files/PerspectivesOnModularity/ModularityDefinitions.pdf
http://modularity.info/conference/2011/files/PerspectivesOnModularity/ModularityDefinitions.pdf

—

[—_

—

—

[t

—

[t

[l

=

=

—

Demystifying Dependence

In European Conference on Object-Oriented Programming. Springer,
406-431.

Clark Glymour, David Danks, Bruce Glymour, Frederick Eberhardt,
Joseph Ramsey, Richard Scheines, Peter Spirtes, Choh Man Teng, and
Jiji Zhang. 2010. Actual Causation: A Stone Soup Essay. Synthese 175,
2 (2010), 169-192.

Joseph Halpern. 2015. A Modification of the Halpern-Pearl Defini-
tion of Causality. In Twenty-Fourth International Joint Conference on
Artificial Intelligence.

Joseph Y Halpern. 2016. Actual Causality. MIT Press.

Joseph Y Halpern. 2016. Sufficient Conditions for Causality to be
Transitive. Philosophy of Science 83, 2 (2016), 213-226.

Joseph Y Halpern and Christopher Hitchcock. 2015. Graded Causation
and Defaults. The British Journal for the Philosophy of Science 66, 2
(2015), 413-457.

Joseph Y Halpern and Judea Pearl. 2001. Causes and Explanations:
A Structural-Model Approach: Part I: Causes. In Proceedings of the
Seventeenth Conference on Uncertainty in Artificial Intelligence. 194—
202.

Joseph Y Halpern and Judea Pearl. 2005. Causes and explanations: A
structural-model approach. Part I: Causes. The British journal for the
philosophy of science 56, 4 (2005), 843-887.

John Hannan and Dale Miller. 1992. From Operational Semantics to
Abstract Machines. Mathematical Structures in Computer Science 2, 4
(1992), 415-459.

Christopher Hitchcock and Miklés Rédei. 2020. Reichenbach’s Com-
mon Cause Principle. In The Stanford Encyclopedia of Philosophy
(spring 2020 ed.), Edward N. Zalta (Ed.). Metaphysics Research Lab,
Stanford University.

Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. 2012. Multivariate
Amortized Resource Analysis. ACM Trans. Program. Lang. Syst. 34, 3
(2012), 14:1-14:62. https://doi.org/10.1145/2362389.2362393

Mark Hopkins and Judea Pearl. 2003. Clarifying the Usage of Structural
Models for Commonsense Causal Reasoning. In Proceedings of the
AAAI Spring Symposium on Logical Formalizations of Commonsense
Reasoning. AAAI Press Menlo Park, CA, 83-89.

Thomas F Icard. 2017. From Programs to Causal Models. In Proceedings
of the 21st Amsterdam Colloquium. 35-44.

Daniel Jackson. 2002. Module Dependences in Software Design. In
International Workshop on Radical Innovations of Software and Systems
Engineering in the Future. Springer, 198-203.

Daniel Jackson and Eunsuk Kang. 2009. Property-Part Diagrams: A
Dependence Notation for Software Systems. In ICSE Workshop: A
Tribute to Michael Jackson, Vancouver. Citeseer.

James Koppel. 2018. You are a Program Synthesizer.
http://www.pathsensitive.com/2018/12/my-strange-loop-talk-
you-are-program.html. (Dec. 2018).

James Koppel, Jackson Kearl, and Armando Solar-Lezama. 2020. Auto-
matically Deriving Control-Flow Graph Generators from Operational
Semantics. (2020). arXiv:cs.PL/2010.04918

Onward! ’20, November 18-20, 2020, Virtual, USA

[28] James Koppel, Varot Premtoon, and Armando Solar-Lezama. 2018. One
Tool, Many Languages: Language-Parametric Transformation with In-
cremental Parametric Syntax. Proceedings of the ACM on Programming
Languages 2, OOPSLA (2018), 1-28.

[29] Jonathan Laurent, Jean Yang, and Walter Fontana. 2018. Counter-
factual Resimulation for Causal Analysis of Rule-Based Models. In
Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden.
1882-1890. https://doi.org/10.24963/ijcai.2018/260

[30] Ben Liblit. 2007. Cooperative Bug Isolation. Vol. 4440. Springer.

[31] Robert C Martin. 2009. Clean Code: A Handbook of Agile Software
Craftsmanship. Pearson Education.

[32] Alexandra Meliou, Wolfgang Gatterbauer, Joseph Y Halpern, Christoph

Koch, Katherine F Moore, and Dan Suciu. 2010. Causality in Databases.
IEEE Data Eng. Bull. 33, ARTICLE (2010), 59-67.

[33] John Ousterhout. 2018. A Philosophy of Software Design. Yaknyam
Press.

[34] Pavel Panchekha, Adam T Geller, Michael D Ernst, Zachary Tatlock,
and Shoaib Kamil. 2018. Verifying that Web Pages have Accessible
Layout. ACM SIGPLAN Notices 53, 4 (2018), 1-14.

[35] David L Parnas. 1972. On the Criteria to be Used in Decomposing
Systems into Modules. In Pioneers and Their Contributions to Software
Engineering. Springer, 479-498.

[36] D. L. Parnas. 1979. Designing Software for Ease of Extension and
Contraction. IEEE Transactions on Software Engineering SE-5, 2 (1979),
128-138.

[37] Judea Pearl. 1998. On the Definition of Actual Cause. (1998).

[38] Judea Pearl. 2009. Causality. Cambridge University Press.

[39] J. H. Saltzer, D. P. Reed, and D. D. Clark. 1984. End-to-End Arguments
in System Design. ACM Trans. Comput. Syst. 2, 4 (Nov. 1984), 277-288.
https://doi.org/10.1145/357401.357402

[40] Ilya Sergey and Dave Clarke. 2011. From Type Checking by Recursive
Descent to Type Checking with an Abstract Machine. In Proceedings of
the Eleventh Workshop on Language Descriptions, Tools and Applications.
1-7.

[41] William N Sumner and Xiangyu Zhang. 2013. Identifying Execution
Points for Dynamic Analyses. In 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 81-91.

[42] Zenna Tavares, James Koppel, Xin Zhang, and Armando Solar-Lezama.
2019. A Language for Counterfactual Generative Models. http://www.
zenna.org/publications/causal.pdf. (2019).

[43] Peng Wang, Di Wang, and Adam Chlipala. 2017. TiML: A Functional
Language for Practical Complexity Analysis with Invariants. Pro-
ceedings of the ACM on Programming Languages 1, OOPSLA (2017),
1-26.

[44] David Wingate, Andreas Stuhlmiiller, and Noah Goodman. 2011. Light-
weight Implementations of Probabilistic Programming Languages via
Transformational Compilation. In Proceedings of the Fourteenth Inter-
national Conference on Artificial Intelligence and Statistics. 770-778.

[45] Andreas Zeller. 2002. Isolating Cause-Effect Chains from Computer
Programs. ACM SIGSOFT Software Engineering Notes 27, 6 (2002), 1-10.

https://doi.org/10.1145/2362389.2362393
http://www.pathsensitive.com/2018/12/my-strange-loop-talk-you-are-program.html
http://www.pathsensitive.com/2018/12/my-strange-loop-talk-you-are-program.html
https://arxiv.org/abs/cs.PL/2010.04918
https://doi.org/10.24963/ijcai.2018/260
https://doi.org/10.1145/357401.357402
http://www.zenna.org/publications/causal.pdf
http://www.zenna.org/publications/causal.pdf

	Abstract
	1 Introduction
	2 Nine Dependency Puzzles
	3 What's in a Dependence Query?
	3.1 Dependence Is about Properties, Not Programs
	3.2 Dependence Is Relative to a Semantics
	3.3 Dependence is Relative to Permitted Changes
	3.4 Dependence Is Causality

	4 Background: Actual Causation
	4.1 Structural Causal Models
	4.2 But-for Causation
	4.3 The Halpern-Pearl Definition
	4.4 Which Definition? Neither. Or Both.

	5 Causality in Programs
	5.1 Intervention as Program Transformation
	5.2 The Concept of Valid Intervention

	6 A General Definition of Dependence
	7 More Example Formalizations
	7.1 Linking Dependence
	7.2 ``Depend on Interfaces, Not Implementations"
	7.3 Trusted Bases

	8 Puzzling No More!
	9 Conclusion
	References

