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Diatoms (Eunotia sp.) growing on a red alga (Batrachospermum sp.). Algae form the 
base of the food chain in stream ecosystems and are instrumental in maintaining water 
quality, which necessitates a better understanding of the factors controlling their species 
and communities. Budnick et al. demonstrate that both algal species co-occurrence 
networks and community composition depend on climate and dispersal across nutrient 
supplies and ratios but to a different extent. Therefore, multi-level approaches are 
needed to predict how algae would respond to changes in their environment.  
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The amounts and ratios of nutrients (nitrogen and phosphorus) are important determi-
nants of producer community biodiversity and composition and their responses to cli-
mate and dispersal. However, the nutrient effects on co-occurrence network topology, 
particularly in freshwaters, are understudied. Here, we investigate 1) whether nutri-
ent supply and ratio constrain topological properties of algal co-occurrence networks 
in streams and 2) to what extent climate and space (a surrogate for dispersal) affect 
co-occurrence network topology versus metacommunity composition across nutrient 
supply and ratio contexts. We used a subcontinental dataset of benthic algae from 840 
stream localities in the conterminous US. We constructed co-occurrence networks rep-
resenting nutrient supply contexts (oligotrophic versus eutrophic) and nutrient ratio 
contexts (N-limited versus P-limited) and statistically assessed topological variability 
within each pair via randomization. We then used a null model framework and direct 
gradient analysis to ascertain the importance of climate and space in driving, respec-
tively, network topology and metacommunity composition. Nutrient supply was only 
positively related to network size (species node counts), which was driven by motile 
species, while other topological differences were non-significant. Climatic and spatial 
variables had pronounced and for the most part comparable effects on network topol-
ogy that further depended on nutrient context. A comparative assessment of topo-
logical versus compositional responses to climate and space across nutrient contexts 
identified both similarities and differences. While climate and space contributed to 
both network topology and metacommunity composition, space was a stronger pre-
dictor of compositional variability than climate, regardless of nutrient context. Our 
findings highlight the need for developing integrative multi-level approaches (from 
metacommunities to co-occurrence networks) to fully understand biological responses 
to complex and interactive abiotic forces.
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Introduction

The world’s freshwater ecosystems are undergoing global 
changes in nutrient inputs, which are either increasing, caus-
ing eutrophication and deterioration of water quality (Dodds 
and Smith 2016, Stoddard et al. 2016) or decreasing, leading 
to oligotrophication and potentially restoration of the original 
state (Flaim et al. 2016, Verbeek et al. 2018). As anthropo-
genic factors continue to force the pendulum to shift between 
nutrient extremes, how species and communities respond is 
a topic of great research interest and environmental concern 
(Tilman and Isbell 2015, Wang et al. 2016).

Numerous investigations have shown that both availabil-
ity and balance (i.e. relative proportions) of major nutrients, 
such as nitrogen and phosphorus, constrain biodiversity, 
composition and biomass production across ecosystems 
(Elser et al. 2007, Cardinale et al. 2009, Harpole et al. 2011, 
Lewandowska et al. 2016, Cook et al. 2018). However, we 
are just beginning to understand the impacts of nutrient sup-
ply and balance on the topology of species co-occurrence 
networks. Co-occurrence networks graphically represent the 
positive and negative pairwise species associations within a 
metacommunity, and the topological properties of these 
networks are sensitive to ecological gradients (Poisot  et  al. 
2015). For example, eutrophication was shown to increase 
species connectance (inter-connectedness among species, 
or the mean number of neighbors) and decrease modular-
ity (network subdivsion into modules; Cao et al. 2018) with 
potentially negative consequences for network resilience and 
susceptibility to disturbance. Nutrient balance effects (e.g. 
N-limitation versus P-limitation) on network parameters are 
much less studied, yet modularity and connectance in hetero-
trophic communities were demonstrated to respond to nutri-
ent ratios (Larsen et al. 2019).

Notably, our knowledge of nutrient effects on the topol-
ogy of co-occurrence networks comes primarily from terres-
trial systems as research in aquatic environments (Hu et al. 
2017, Qu et al. 2019, Chen et al. 2021) is just beginning. 
This is concerning as aquatic systems are disproportion-
ately more susceptible to human influences because of their 
relative isolation within the surrounding landscape matrix 
(Woodward et al. 2010). Furthermore, it is not understood 
to what extent network topology in aquatic systems is driven 
by shared niches, dispersal or actual interspecific interactions, 
given that all of these factors could underlie species co-occur-
rence relationships (Morueta-Holme et al. 2016).

We provide the first study of how species co-occurrence 
networks respond to each of four nutrient contexts (oligotro-
phic versus eutrophic and N-limited versus P-limited) at a sub-
continental scale, while controlling for climate and dispersal. 
We used as a model system benthic algae because their meta-
communities are sensitive to nutrient, climatic and dispersal 
effects (Soininen 2007, Verleyen et al. 2009, Soininen et al. 
2016, Leboucher et al. 2019) but it still remains unknown 
whether this sensitivity transcends to the level of to the level 
of co-occurrence networks. Given the backdrop of ongoing 
climate change, it is also poorly understood if climate effects 

on meta-community composition and network topology are 
enhanced or diminished by nutrient levels.

The goal of this investigation was therefore to determine 
how nutrient supply and imbalance affect properties of co-
occurrence networks in stream benthic algae, growing under 
oligotrophic (low N and P concentrations), eutrophic (high 
N and P concentrations) and N- or P-limited conditions 
(intermediate N and P concentrations but Redfield ratio 
below or above 16:1, respectively). We focused on network 
size, i.e. number of nodes (species) and edges (species cor-
relations), edge characteristics (mean proportion of positive 
edges), connectivity (mean shortest path length and con-
nectance), clustering (local and global) and modularity. Edges 
represent spatial associations between species. Edges can be 
positive or negative in value and their relative proportions 
have implications for network stability (Mougi and Kondoh 
2012, Suweis et al. 2014). Connectance among nodes reflects 
the fraction of possible edges that are realized in the network 
and is often examined as an indicator of the robustness of 
ecological associations (Dunne  et  al. 2002, Estrada 2007, 
Borrett  et  al. 2010). Clustering quantifies the tendency of 
nodes to form completely connected, distinct neighborhoods 
(local or global) (Shirley and Rushton 2005) and can influ-
ence network susceptibility to disturbance and propagation 
of effects (Watts and Strogatz 1998). Modularity reflects the 
overall subdivision of the network into discrete groups (mod-
ules), having the potential to represent functional groups or 
niche partitioning (Montoya et al. 2015). We thus pursued 
the following two objectives.

Our first objective was to quantify network topology 
under each nutrient context and test for differences. In 
addressing this objective, we test the hypothesis that nutri-
ent contexts (supply and ratio) influence co-occurrence 
network topology. Greater algal biodiversity with nutrient 
addition (Hillebrand  et  al. 2007, Passy and Larson 2019) 
should translate into overall larger co-occurrence networks 
with more nodes and edges. Eutrophic conditions promote 
speciose overstory guilds (high profile and motile) that are 
sensitive to nutrient limitation, whereas understory low pro-
file species dominate under nutrient limitation (Passy 2007, 
Marcel et al. 2017, Wu et al. 2017). Eutrophication is, there-
fore, likely to produce networks with greater local clustering, 
modularity and path lengths due to coexistence of different 
functional groups, while oligotrophic conditions may lead 
to greater network connectivity and global clustering among 
fewer and comparatively functionally uniform species. Algal 
functional responses to N:P ratios are varied and system-
specific, making it difficult to predict how network topology 
may respond to N:P ratios, but some studies have reported 
a tendency of P-limitation to stimulate high profile diatoms, 
whereas N-limitation to favor cyanobacteria and/or motile 
diatoms (Smith 1983, Stelzer and Lamberti 2001, Qu et al. 
2019).

Our second objective was to determine the relative con-
tributions of climate and space (surrogate of dispersal) to 
network topology versus meta-community composition and 
whether these factors differ between nutrient contexts. In 
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addressing this objective, we used a null model (Morueta-
Holme  et  al. 2016) to test hypotheses that gradients in 
climate, dispersal or both structure metacommunity com-
position, which in turn constrains topologies of algal co-
occurrence networks. In aquatic systems, climate drives local 
nutrient availability and ratio by affecting precipitation run-
off and flows (Jeppesen et al. 2009, Özen et al. 2010), and 
metabolic requirements (Woodward  et  al. 2010). Climate–
nutrient relationships in turn impact competitive and facilita-
tive mechanisms in algae (Bestion et al. 2018, Marañón et al. 
2018), which can have consequences for algal co-occurrence 
patterns, although this topic has not been studied with net-
work methods. At the spatial scale of this study, we expected 
climatic factors to substantially constrain network topology 
across nutrient contexts due to their pronounced influence 
on algal species composition and distribution (Pajunen et al. 
2016, Jyrkänkallio-Mikkola et al. 2017). However, stochastic 
mechanisms, which dominate in productive environments 
(Steiner and Leibold 2004, Chase 2010, Leboucher  et  al. 
2019), could more strongly control eutrophic than oligo-
trophic network topology, but this question has not been 
explored so far. It is also unknown if or how networks dif-
fering in nutrient ratio would respond to climatic and spatial 
control. We therefore examined network topology as a func-
tion of climatic and spatial factors across nutrient contexts 
and tested whether these factors exercised a similar effect on 
metacommunity structure.

Methods

Datasets

We used data from 840 stream sites, where samples were 
taken from May to September between 1993 and 2015 by 
the National Water-Quality Assessment Program of the US 
Geological Survey. Site coordinates (in degrees latitudeand 
longitude) were reprojected into Cartesian coordinates with a 
Robinson projection (EPSG: 4326) for spatial analyses using 
R package ‘rgdal’ (Bivand et al. 2020). Algae were collected 
from a defined area in the richest-targeted habitats, which 
encompass hard substrates or macrophytes in faster cur-
rents. Generally, 25 cobbles, 5 woody snags or 5 macrophyte 
beds were sampled within a stream reach and the material 
was composited into a single sample. All taxa were identified 
mainly to species and their densities were measured as cells 
per cm2. Species were categorized by ecological guild, follow-
ing Passy (2007), Passy and Larson (2011) and Rimet and 
Bouchez (2012), including low profile (growing close to the 
substratum), high profile (extending into the biofilm matrix), 
motile (fast moving) and planktonic (sedimented from the 
water column).

Each sample was classified based on nutrient supply (eutro-
phic or oligotrophic) and ratio (N-limited or P-limited). Total 
nitrogen (TN) and total phosphorus (TP) concentrations 
were below 0.669 and 0.025 mg l−1, respectively, in oligotro-
phic samples but above 1.499 and 0.075 mg l−1, respectively, 

in eutrophic samples (Dodds and Smith 2016). Nitrogen-
limited samples were identified as those with Redfield N:P 
ratios less than 16:1, whereas P-limited samples had ratios 
above 16:1 (Redfield 1934). Nitrogen and phosphorus-lim-
ited sites had nutrient conditions that were either mesotro-
phic for both nutrients, or had one nutrient at oligotrophic 
or mesotrophic level and the other nutrient at eutrophic level. 
Only sites with pH ≥ 6.5 were considered to remove poten-
tially confounding effects of high acidity. Using our classifica-
tion and selection criteria, we identified 942 sites that could 
be used for analyses, however, they produced different sample 
sizes and different patterns of spatial clustering across nutri-
ent categories. Thus, to equalize the number of samples and 
break up the geographic clustering, we randomly selected and 
removed sites from the most densely sampled areas. Our final 
datasets thus consisted of 193 oligotrophic, 193 eutrophic, 
227 N-limited and 227 P-limited sites (Supporting informa-
tion). All sites were unique to each nutrient context. Climatic 
predictors (bioclim variables 1–19, Fick and Hijmans 2017) 
were generated for each site.

Co-occurrence networks

Prior to network construction (Fig. 1), we filtered the spe-
cies by site metacommunity matrix for each nutrient context 
by removing rare species, which occurred in less than 10% 
of samples. We created weighted co-occurrence networks for 
each nutrient context by calculating a partial Spearman cor-
relation matrix on relative species density, standardized with 
mean = 0 and standard deviation = 1. Partial Spearman cor-
relations were used over raw correlations to account for the 
influence of indirect species associations and because the null 
model we employed requires their use (see Gradient effects 

Metacommunity matrix

Reduced metacommunity 
matrix

Partial Spearman 
correlation matrix

RMT-thresholded partial 
Spearman correlation matrix

Reduced thresholded partial 
Spearman correlation matrix

Graph adjacency matrix

Remove species occurring 
in <10% of the samples

Calculate partial Spearman 
correlation matrix

Use RMT to threshold the 
partial Spearman
correlation matrix

Remove species with 
zero degree

Convert correlation matrix 
to adjacency matrix using 

graphical packages

Figure 1. Flow chart showing the construction of nutrient supply 
and ratio networks.
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section). We used a modified random matrix theory (RMT) 
method from R-package ‘RMThreshold’ (Menzel 2016) to 
objectively determine thresholds below which correlations 
were likely spurious and should be removed from further 
analyses (Supporting information).

After thresholding the partial correlation matrix with the 
RMT-selected correlation value, species with all correlations 
below the threshold were removed. The resulting correlation 
adjacency matrix was used to generate both a weighted and 
an unweighted network using R package ‘igraph’ (Csardi 
and Nepusz 2019). In these networks, nodes represented 
individual species, and the edges between the nodes repre-
sented species correlations. Edges between nodes within the 
unweighted network were binary, with 1 if the correlation 
was above the RMT-defined threshold and 0 (i.e. absent) 
if the correlation was below this threshold. In the weighted 
network, the edges represented the actual species correlations 
(again, only those above the RMT-defined threshold). It was 
created only for tracking edge sign in the calculation of pro-
portion of positive edges, while the unweighted network was 
used for the remaining parameter calculations and the mod-
ule clustering function. We used fast-greedy clustering func-
tion provided by this package with default settings (function: 
‘cluster_fast_greedy’) to identify modules in the network. 
After using this function to assign nodes into their modules, 
we calculated network topology measures, including number 
of nodes, number of edges, mean node degree, mean shortest 
path length, clustering coefficients (a.k.a. transitivities), mod-
ularity and number of modules. Mean shortest path length, 
measuring on average how many nodes lie between any two 
nodes in the network, was calculated with a harmonic mean.

Gradient effects on co-occurrence networks

To explore whether species co-occurrence networks are struc-
tured by niche overlap along climatic gradients (climate), small 
scale environmental filtering and dispersal (space), or both cli-
mate and space, we used the null model outlined by Morueta-
Holme et al. (2016). We implemented associated functions 
from the R-package ‘netassoc’ (Blonder and Morueta-Holme 
2017), which we briefly describe (Supporting information). 
This procedure compares observed partial correlation values 
with a distribution of predicted partial correlation values and 
removes observed partial correlations that fall between the 
distribution extremes of the predicted. The predicted correla-
tion distributions are produced by calculating partial correla-
tions on a predicted metacommunity matrix that contains the 
same species as the observed species-by-site matrix, but with 
densities predicted using a species distribution model (SDM) 
framework. The SDM-predicted densities represent those 
expected, given climatic, spatial or both gradients. The null 
model procedure then samples individuals across sites using a 
weighted lottery model which constrains species’ entries into 
sites proportional to their overall densities in the observed 
matrix. We then calculated a partial correlation matrix on 
the relative densities after the randomization. The observed 
partial correlation value is then statistically tested using the 

generated null partial correlation values by counting the fre-
quency of occurrences where the observed partial correlation 
was less than the predicted value, dividing the count by the 
number of randomizations (here 1000), and performing a 
Benjamani–Hochberg p-value adjustment. If significant, the 
observed value is retained in the matrix or otherwise deleted 
as it represents a shared response to a gradient.

Here, we modified the null model only to use partial 
Spearman correlation values rather than Pearson values to 
account for non-linear but monotonic correlations. We used 
the partial correlation matrix created by the RMT procedure 
as the observed correlation matrix. The null model procedure 
outlined by Morueta-Holme  et  al. (2016) can accommo-
date predicted abundances generated from a variety of SDM 
frameworks. For this study, densities for each species, pre-
dicted by climate or spatial variables, or both, were calculated 
separately using optimally-parameterized boosted regression 
trees (BRT) with a Bernoulli link-function and trained using 
10-fold cross-validation (Elith et al. 2008). Spatial variables 
were generated from Robinson-projected site coordinates 
using Moran’s eigenvector maps (MEM) with functions in R 
package ‘adespatial’ (Dray et al. 2016). MEMs are orthogo-
nal variables whose values represent spatial autocorrelation 
patterns. They are generated as the eigenvectors of a spatial 
weighting matrix describing the strength of the spatial rela-
tionships between pairs of samples. Using function ‘listw.
candidates’, we used all available combinations of spatial 
weighting matrix (except d-nearest neighbors) and spatial 
weighting definitions (concave up and concave down fitting 
functions set to default values of 0.5 and 5 respectively). We 
then used ‘listw.select’, which uses forward selection (global 
significance test set to 30 000 permutations) to find the opti-
mal spatial weighting matrix, weight definitions and subset of 
MEM variables that best explained species presence/absence 
patterns (by adjusted R2) (Bauman et al. 2018). Only MEM 
variables modelling positive autocorrelation patterns were 
retained.

BRTs for each species were optimized by iteratively find-
ing the combination of tuning parameters (bag fractions 
ranging from 0.5 to 0.75, tree complexity parameters rang-
ing from 1 to 10 and numbers of trees fit), which maximized 
area under the curve (AUC) values. Then, we refitted the 
models using the parameters corresponding to maximum 
AUC. For the BRT procedure with the combined climate 
and spatial predictors, we used all climatic and spatial pre-
dictors. The BRTs produced probability estimates owing to 
the specified Bernoulli link function, which we transformed 
to densities by multiplying each species’ observed density 
by the species’ probability for the sample. When a species’ 
probabilities could not be predicted with any combination 
of tuning parameters, we used its observed abundances in 
the predicted matrix because the model fits were not better 
than a random expectation. We then combined the predicted 
abundances for each species into a single predicted metacom-
munity matrix and subsequently used it in the null model. 
We set the null model to run for 1000 iterations, transform-
ing the randomized predicted densities to relative densities 
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for each iteration as described for network construction, and 
identified non-significant correlations (p > 0.05), which 
were then removed from the observed partial correlation 
matrix. We reconstructed the networks and calculated net-
work parameters using these newly thresholded correlation 
matrices, which represented association networks free of co-
occurrences due to climatic niche overlap and/or environ-
mental filtering and dispersal. An important limitation of the 
lottery model is that the null model may identify and elimi-
nate links between species for which we used their observed 
abundances. This could result in overestimating the number 
of climate- and/or space-influenced species associations. To 
eliminate this problem, we replaced the links between these 
species if they were removed during the null model analy-
sis. After the null model analysis, we qualitatively assessed 
how climatic, spatial and climatic + spatial factors influenced 
overall network topologies when compared with the original 
networks by calculating the absolute proportional change in 
each measured network parameter.

Statistical analyses

We tested our first hypothesis by using a randomization pro-
tocol to examine whether the ecological networks differed in 
topology between nutrient contexts. We note the oligotro-
phic and eutrophic data consisted of samples that were either 
N- or P-limited, therefore we could not make fair pairwise 
comparisons of these networks with the N- and P-limited 
networks. We thus separated our statistical comparisons and 
assessed differences between oligotrophic versus eutrophic 
networks and N-limited versus P-limited networks. For both 
pairs of stream networks, we pooled their sites together and 
then randomly reassigned them to either nutrient category. 
We then calculated all network parameters, recorded the dif-
ference for each network parameter value, and repeated the 
randomization 999 times. We then compared the observed 
difference in parameter values between the nutrient networks 
to their respective randomized mean difference and deter-
mined significant differences if the observed difference was 
more extreme than the 2.5 or the 97.5 percentile of the ran-
domized difference values.

We used redundancy analysis to calculate the variance in 
Hellinger-transformed species relative abundances explained 

by climatic, spatial and climatic and spatial variables for each 
nutrient context. We then followed the analysis with varia-
tion partitioning. Climate variables were centered for these 
analyses, and to account for potential quadratic relationships, 
we incorporated the linear and quadratic forms of the cen-
tered climate variables. We then used the forward selection 
procedure provided in R package ‘adespatial’ (‘forward.sel’, 
Dray et al. 2016) to retain all significant climate predictors. 
Spatial factors were created using MEM, as described above 
for the BRT procedure, with significant MEMs retained using 
forward selection. The pure fractions of climate and space were 
tested using permutational analysis of variance (R-package 
‘vegan’ function ‘anova.rda’, Oksanen et al. 2019). The vari-
ance in species composition explained by climatic, spatial and 
climatic and spatial variables was compared with the magni-
tude of the respective network controls to assess objective 2.

Results

All four networks varied in size, ranging from 73 nodes in 
the oligotrophic network to 97 nodes in the eutrophic net-
work, and from 86 nodes for the N-limited to 96 nodes in 
the P-limited network (Supporting information, Table 1). 
Examination of the edge counts and connectance revealed 
that all networks were sparse and poorly connected (Table 1). 
Positive network edges generally constituted the majority of 
edges in the networks, although their proportion was the high-
est in the P-limited network. All networks consisted primar-
ily of diatoms (86–88% of nodes) with minor contribution 
by cyanobacteria and/or green algae depending on the nutri-
ent context (4–8%). Altogether, the remaining algal groups 
(red algae, euglenoids and unclassified algal taxa) generally 
comprised < 4% of the nodes. With respect to guilds, motile 
taxa dominated all networks (43–47% of all classified nodes), 
except for the oligotrophic network, where high profile taxa 
prevailed instead (45% of all classified nodes). Planktonic taxa 
generally represented the lowest fraction of nodes (2–11%).

Topological comparisons across contexts

The randomization tests indicated that overall network topol-
ogies generally did not differ significantly between nutrient 

Table 1. Parameters of raw algal co-occurrence networks differing in nutrient availability (oligotrophic versus eutrophic) and nutrient ratio 
(N-limited versus P-limited).

Parameter
Nutrient supply networks Nutrient ratio networks

Oligotrophic Eutrophic N-limited P-limited

Number of nodes 73 97 86 96
Number of edges 108 159 108 119
% positive edges 0.65 0.61 0.64 0.66
Local clustering 0.10 0.12 0.07 0.08
Global clustering 0.11 0.10 0.11 0.09
Modularity 0.61 0.54 0.67 0.69
Number of modules 8 7 10 12
Mean path length 3.42 3.30 3.87 4.33
Mean degree 2.96 3.28 2.51 2.48
Connectance 0.04 0.03 0.03 0.03



1114

contexts (Table 1). The only clear exception was network size 
(i.e. number of nodes), which was significantly greater (p < 
0.001) in the eutrophic network compared to the oligotro-
phic network. Although edge counts were noticeably greater 
in the eutrophic versus the oligotrophic network, this differ-
ence was non-significant after randomization.

Null model analysis and variance partitioning

Qualitative examination of the networks produced by the 
null model procedure indicated that controlling for climatic, 
spatial and combined climatic and spatial effects changed 
overall network topology with mean absolute percent change 
in network parameters ranging between 46–67% on average 
(Fig. 2). Overall, the three controls had comparable effects 
on network topology, except for the P-limited networks, 
where climate and climate + space exerted the strongest effect. 
However, differences in overall topologies between controls 
within nutrient contexts were generally small.

General patterns were observed in some parameters after 
climate and spatial control, owing in part to increases in 
0-degree nodes (i.e. nodes without any connections, Fig. 3, 
4). Node counts, edge counts, connectance and mean node 
degree decreased in a correlated fashion across all controlled 
networks between 41% and 56%, whereas modularity 
increased by 21–35% and number of modules drastically 
increased between 225% and 330%. Notably, the effects of 
control depended on nutrient context, including number 
of modules, clustering and mean path lengths. Specifically, 
number of modules increased more strongly after control in 
the nutrient ratio networks compared with the supply net-
works, ranging as low as 266% in the controlled P-limited 
network to as high 330% within the N-limited controlled 

networks. Local and global clustering decreased sharply in 
the eutrophic network, particularly when space was con-
trolled for (individually or in conjunction with climate) but 
also showed highly variable patterns in response to controls 
in the other networks. Responses in mean path length to 
controlling variables were generally negative across networks, 
especially in the P-limited network, but became positive in 
the eutrophic network. Finally, changes in the fractions of 
positive edges showed no clear general trends with respect to 
any controlling variable.

Climatic, spatial and climate + spatial variables signifi-
cantly explained community variation (Fig. 5a), with the 
majority of variance explained by spatial, followed by cli-
matic + spatial variables. Variance partitioning analysis on 
the metacommunities revealed that climatic and spatial vari-
ables generally explained significant fractions of algal relative 
abundances, with spatial variables predominating regardless 
of nutrient context (Fig. 5b). When examining the metacom-
munity composed of species only found in the networks, we 
observed that climate + spatial variables explained slightly 
more variance than spatial variables alone across all network 
contexts (< 3%, results not shown), however the results for 
the variance partitioning did not change. The analysis further 
revealed that pure climatic effects generally explained between 
2 and 5% of the total variability in composition in contrast 
to pure spatial factors, which explained usually between 9% 
and 19% of community variation. Covariance effects were 
also noticeably strong and explained between 8 and 15% of 
community variation, with the covariance fraction at times 
explaining more variation in meta-community composition 
than the spatial fraction (eutrophic and N-limited networks).

Discussion

The dependence of algal composition and biomass produc-
tion on nutrient supply and balance has been studied for 
decades and is generally well recognized (Hecky and Kilham 
1988, Borchardt 1996, Bergström 2010, Hillebrand and 
Lehmpfuhl 2011, Hayes et al. 2015). Here we examined for 
the first time how the topology of algal co-occurrence net-
works is structured by nutrient context, consistent with our 
first objective. Networks differed significantly only in size, 
i.e. number of nodes, and only between nutrient supplies but 
not between nutrient ratios. Following objective 2, we found 
strong support for the prediction that climatic and spatial 
gradients constrain the topology of the networks and that the 
magnitude of this influence depends on nutrient context. We 
further elucidated the mechanisms that control metacommu-
nity composition versus network topology.

Nutrient supply context influenced the size of co-occur-
rence networks but not their complexity and modular struc-
ture. Nutrient ratio, on the other hand, did not have any 
effect on network topology. The difference in size between 
the nutrient supply networks could be attributed to greater 
diversity of the most speciose guild, the motile guild, in the 
eutrophic network. The guild distribution was very similar 
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between the nutrient ratio networks, which could explain 
their network size similarity. Therefore, we found weak sup-
port for our first hypothesis, predicting that nutrient context 
would constrain network topology. A potential explanation is 
that topological responses to environmental factors may not 
manifest themselves at the sub-continental scale of this study 
due to low network connectance. Much work has shown 
that network topologies are strongly driven by the presence 
of highly connected nodes (Proulx et al. 2005, Poisot et al. 
2015), which were generally absent in our networks. As a 
result, these networks were poorly connected with con-
nectance values of 0.03–0.04, falling below the commonly 
reported values of 0.05–0.30 (Thompson  et  al. 2012). 
Consequently, differences between networks, originating 
from loss or gain of poorly connected nodes, had little conse-
quence for network topology. An interesting avenue of future 
research will be to determine at what scale network topology 
of algae becomes sensitive to nutrient inputs.

Previous observations for mutualistic pollinator networks 
showed that greater diversity in networks may present with 

greater node clustering (Gómez et al. 2011). We found this 
not to be the case for the co-occurrence networks exam-
ined here as the differences in clustering between the larger 
eutrophic network and the smaller oligotrophic network 
were not significant. Ecologically, clustering in networks 
reflects the presence of redundant pathways (Karimi  et  al. 
2017) and stronger organization of nodes into distinct sub-
groups (Girvan and Newman 2002). Much of our knowl-
edge on the environmental dependence of clustering comes 
from research on soil microbiota, where clustering decreased 
with CO2 concentrations (Zhou et al. 2011, Sauvadet et al. 
2016) but showed no response to anthropogenic disturbance 
(Zappelini et al. 2015). We add to this knowledge by finding 
that the clustering patterns of stream co-occurrence networks 
were relatively robust to nutrient supply and ratio, at least at 
the scale of this study.

All of our networks were dominated by positive asso-
ciations, as predicted for larger scales by multiple studies. 
Specific explanations include better detection of positive 
biotic interactions (Araújo and Rozenfeld 2014), increased 

(a) (b)

(c)
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Climate Climate

Climate Climate

Climate + Space Climate + Space

Climate + Space Climate + Space
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Figure 3. Raw networks and networks reconstructed after controlling for climate, space and Climate + Space in (a) oligotrophic, (b) eutro-
phic, (c) N-limited and (d) P-limited streams. Black lines = positive correlations, blue lines = negative correlations.
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number of marginal environments that support aggregation 
of common and geographically broad species (Bar-Massada 
and Belmaker 2017), and stronger dispersal limitation, result-
ing in co-occurrences that reflect shared dispersal barriers 
(D’Amen  et  al. 2018). Proportions of positive connections 
in ecological interaction networks have been linked to sta-
bility (Mougi and Kondoh 2012, Lurgi et al. 2016, García-
Callejas et al. 2018). However, we did not find evidence that 
positive co-occurrences may impart stability. Specifically, the 
proportion positive edges did not vary conspicuously across 
networks, but the network response to controls (described 
below) was widely variable. We thus conclude that positive 
co-occurrences do not necessarily relate to network topo-
logical stability, but further work in this area is necessary to 
determine the generality of this pattern and whether it is scale 
dependent.

With respect to objective 2, accounting for environmental 
(here climatic) and/or spatial effects strongly altered network 
topology, which supports results reported for North American 
tree communities (Morueta-Holme et al. 2016). In contrast 
to our findings for the raw networks, the controlled networks 
exhibited topological differences, which were qualitatively 
examined. It has long been argued that co-occurrence rela-
tionships contain much extraneous information (e.g. shared 
ecological responses and dispersal effects) that should be con-
trolled for to identify relevant biological associations and/or 
interactions (Berlow 1999, Bairey et al. 2016, Blanchet et al. 
2020). Our results supported this argument and revealed that 
after controlling for climate and/or space, the four networks 

exhibited 46–67% change on average across all parameters. 
The eutrophic network retained 88–89% of their connected 
nodes and 56–60% of their edges, while the other three net-
works showed more drastic changes and retained 72–76% of 
their connected nodes and 40–50% of their edges. Plausibly, 
these remaining edge percentages could be attributed in part 
to biotic interactions, which may be most pronounced in the 
most diverse eutrophic network. The removal of large frac-
tions of connected nodes and edges in our networks by the 
null model has important ramifications for co-occurrence 
network analyses because many network properties are highly 
sensitive to network size and sparseness of edges (Poisot and 
Gravel 2014). Our findings also highlight an opportunity 
worth exploring, as null model methods can reveal whether 
other factors, such as disturbance or herbivory, underlie 
algal co-occurrence patterns. There is a caveat with respect 
to the use of a single SDM framework because SDM pre-
dictions are sensitive to model choice (Araújo and Guisan 
2006). Realistically, different machine learning methods 
could predict different densities, which in turn could pro-
duce different network topologies even with the same model 
predictors. We selected BRTs because of their good predic-
tive performance and successful application in algal macro-
ecology (Pajunen et al. 2016, Pound et al. 2021). Examining 
networks derived from different SDMs was beyond the scope 
of this paper but we recommend that future studies explore 
this topic.

On average, climate, space and climate + space imposed 
similar constraints on network topology. As predicted, 
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climate strongly affected network topology across nutrient 
contexts. Space had a prominent role as well, but for some 
topological parameters, it had a stronger impact in the eutro-
phic than the oligotrophic context, as predicted, e.g. local 
and global clustering. However, for other parameters, space 
was a stronger driving force in the oligotrophic networks, e.g. 
mean path length. These important parameters describe at 
the network level whether a species influence is likely to be 
contained within groups (local clustering) or readily trans-
mitted across groups (global clustering), and how quickly this 
may occur (mean path length). Therefore, our results indicate 
that dispersal may have pronounced but distinct effects on 
network parameters across nutrient contexts, which falls in 
line with conclusions made with similar metrics for biotic 
interaction networks under different dispersal contexts 
(Thompson and Gonzalez 2017). We thus recommend that 

inferences about topological responses of co-occurrence net-
works to environmental contexts be made after appropriate 
controls are applied.

Across nutrient contexts, climatic and spatial factors had 
prominent effects on species composition and network prop-
erties. Prior reports as to whether ecological drivers of net-
work topology and community composition coincide have 
been mixed, with some studies showing correspondence 
(Mokross  et  al. 2013), while others, divergence (Li  et  al. 
2018). In this investigation, climatic and spatial variables had 
a substantial joint influence on metacommunity composi-
tion, consistent with other studies (Heino et al. 2012, Zorzal-
Almeida et al. 2017). Additionally, for the most part, climate 
and space contributed to the network patterns together as 
much as they contributed alone. This indicated that spatially 
structured climate may be an important source of variation 
for both metacommunities and networks. However, there 
was also a notable difference – spatial factors outperformed 
climatic factors in explaining metacommunity composition, 
but generally exercised control over network topology simi-
lar to this of climate. This discrepancy could be explained 
with a scale mismatch in species versus metacommunity 
response. Individual species distributions, and by extension, 
pair-wise species co-occurrences in the networks, are more 
spatially restricted and thus may be strongly driven by cli-
mate, as shown for stream diatoms (Pajunen  et  al. 2016). 
Conversely, at the subcontinental scale of our metacommu-
nities, geographic barriers among the discrete hydrologic sys-
tems that comprised their habitats, may have contributed to 
dispersal limitation subsuming some of the climatic effect. 
Although environmental factors predict better the variance 
in diatom metacommunities compared to space (Soininen 
and Teittinen 2019), these factors are generally associated 
with nutrient level (Soininen 2007), which in our case was 
accounted for by nutrient context. Thus, nutrient contexts 
apparently determined the contribution of dispersal processes 
to community variation or influenced spatially-structured cli-
matic drivers. These results suggest that there are both simi-
larities and differences in the drivers of network properties 
versus metacommunity composition, which to some extent 
depend on nutrient context.

Our study lays groundwork for connecting novel meth-
odology with classic ecological research to generate new 
information explaining why species co-occur. At subconti-
nental scale, nutrient supply and ratio affected only weakly 
algal co-occurrence network properties but determined the 
magnitude of climatic and dispersal effects. The differential 
response of network topology and species composition to 
climate and dispersal calls for broader multi-level ecological 
approaches to better understand how the environment struc-
tures biological communities.
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