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Abstract—Data access control is a critical issue for any organi-
zation generating, recording or leveraging sensitive information.
The popular Role-based Access Control (RBAC) model is well-
suited for large organizations with various groups of personnel,
each needing their own set of data access privileges. Unfortu-
nately, the traditional RBAC model does not involve the use of
cryptographic keys needed to enforce access control policies and
protect data privacy. Cryptography-based Hierarchical Access
Control (CHAC) models, on the other hand, have been proposed
to facilitate RBAC models and directly enforce data privacy and
access controls through the use of key management schemes.
Though CHAC models and efficient key management schemes
can support large and dynamic organizations, they are difficult
to design and maintain without intimate knowledge of symmetric
encryption, key management and hierarchical access control
models. Therefore, in this paper we propose an efficient algorithm
which automatically generates a fine-grained CHAC model based
on the input of a highly user-friendly representation of access
control policies. The generated CHAC model, the dual-level key
management (DLKM) scheme, leverages the collusion-resistant
Access Control Polynomial (ACP) and Atallah’s Efficient Key
Management scheme in order to provide privacy at both the
data and user levels. As a result, the proposed model generation
algorithm serves to democratize the use of CHAC. We analyze
each component of our proposed system and evaluate the result-
ing performance of the user-friendly CHAC model generation
algorithm, as well as the DLKM model itself, along several
dimensions.

Index Terms—Cryptography-based Hierarchical Access Con-
trol, Role-based Access Control, Key Management, Usability

I. INTRODUCTION

Much of the data generated, recorded and leveraged by
organizations encodes confidential, sensitive information. Un-
fortunately, many such organizations are often the victims of
large-scale data breaches in which attackers steal or expose
private data. Such exposure of sensitive data often yields
substantial societal, financial and legal ramifications [17].
Therefore, organizations must ensure that sensitive data is
only accessible by the set of users and personnel given
appropriate access privileges. In fact, in high-security domains,
such as healthcare [18] and government [23], organizations
may be explicitly required by laws to protect the privacy and
confidentiality of sensitive data.

Fortunately, much research has been performed in order to
deliver methods for organizations to exercise fine-grained data
access controls [26]. Many access control models have been

proposed in order to define and enforce access control policies
in a systematic manner [10]–[16], [25], [27], [28]. One such
access control model, the Role-based Access Control (RBAC)
model [27], assigns access privileges to groups of users based
on their role within an organization. Due to the RBAC model’s
flexibility and simplicity, it has been widely accepted and
deployed [32].

Unfortunately, the traditional RBAC model does not include
the use of cryptographic keys in order to enforce access
control policies and ensure the confidentiality of sensitive
data [27]. Therefore, Cryptographic Hierarchical Access Con-
trol (CHAC) models [3] have been proposed. CHAC models
introduce the use of key management schemes in order to
facilitate storage, distribution and usage of cryptographic keys.
The resulting cryptographic keys, in turn, can then be used to
facilitate a hierarchical RBAC model and explicitly enforce
data privacy [3], [20], [29], [30]. One recently proposed and
comprehensive key management scheme, the Dual-Level Key
Management (DLKM) scheme [24], [36], combines the Access
Control Polynomial (ACP) [35] and Atallah’s Efficient Key
Management scheme [5] in order to provide cryptographically-
enforced fine-grained access controls and privacy at both the
data and user levels. The collusion-resistant ACP technique
is used to distribute shared secrets to groups of users sharing
a role within an organization. Atallah’s scheme is then used
to organize such groups of users into a cryptographically-
enforced, hierarchical RBAC model in which dynamic modi-
fications can be handled efficiently.

On major issue facing CHAC models is that their key
management schemes, such as the DLKM scheme, are often
represented by tree or directed acyclic graph (DAG) structures
which cannot be easily interpreted or understood by users
without intimate knowledge of symmetric encryption, key
management and hierarchical access control models [3], [5].
Therefore, we propose a model generation algorithm which
serves to effectively democratize cryptographically-enforced
hierarchical RBAC models. More specifically, in this paper
we provide the following contributions:
• We provide the specific details of how each component

of the DLKM scheme is leveraged in order to facilitate
a privacy-preserving, flexible and efficient hierarchical
RBAC model.

• We design a novel CHAC generation algorithm. The
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algorithm uses a highly user-friendly representation of
access control policies as input and yields a correspond-
ing DLKM-based model.

• We implement both the CHAC generation algorithm and
the DLKM scheme in order to evaluate their performance.
Our experiment demonstrates the efficiency and scalabil-
ity of the generation algorithm and DLKM-based model
along several dimensions.

The paper is organized as follows. In Section II, we provide
a brief overview of proposed access control models. Then,
in Section III, we detail the design of the DLKM scheme
including how the ACP technique and Atallah’s scheme are
seamlessly combined to provide a comprehensive access con-
trol model. Next, in Section IV, we design a user-friendly
model generation algorithm which serves to democratize the
comprehensive and fine-grained DLKM-based CHAC model.
In Section V, we perform experiments to illustrate the scalabil-
ity and efficiency of the proposed model generation algorithm,
as well as the DLKM scheme itself, along several dimensions.
Finally, in Section VI, we offer concluding remarks.

II. RELATED WORK

Access control of sensitive data is an important and well-
studied issue. Over the years, several access control models
have been proposed, accepted and deployed in various do-
mains [26], [32].

Discretionary Access Control (DAC) models [10], [28],
where the access privileges of each data object is left to the
discretion of its corresponding owner, provided flexibility and
fine-granularity. DAC models often involved the use of Access
Control Lists (ACL) in which individual user-to-privilege
mappings could be defined with respect to each data object.
Unfortunately, DAC models are not scalable. Defining the
privileges of every user with respect to every data object
becomes complex and cumbersome as the number of users
within an organization grows.

Mandatory Access Control (MAC) models [15], [25], which
were widely adopted in military and government domains,
allowed a central authority to define organization-wide policies
to control data and operation access. MAC models introduced
the use of privilege levels when defining access control
policies. Within a MAC model, each user and data object
could be assigned a corresponding privilege level. Then, users
could access data objects of equal or lower privilege level.
As a result, MAC models provided additional security by
centralizing the definition of access control policies, but the
use of privilege levels limited the granularity and flexibility of
access controls.

In order to address the weaknesses of DAC and MAC
models, while at the same time leveraging their strengths,
Role-based Access Control (RBAC) models [11], [27] were
proposed. RBAC models organize users within an organization
into groups based on their role or activities within the orga-
nization. Each role is then, in turn, assigned corresponding
data access privileges by a central authority. RBAC models
simplified access control policy definition and management,

while at the same time offering flexibility and fine-granularity.
RBAC models were found to be well-suited for many types of
organizations as grouping personnel into hierarchical roles is
common within many domains. As a result, the RBAC model
has been the most widely accepted and deployed access control
model [26].

Since the introduction of RBAC models, several advanced
access control models, such as Relation-based Access Con-
trol (ReBAC) models [12], [13] and Attribute-based Access
Control (ABAC) models [14], [16], have been proposed.
Unfortunately, the acceptance and adoption of these recently
proposed models is challenged by their complexity.

Unfortunately, none of the aforementioned access control
models involve the use of cryptographic keys to enforce access
control policies nor do they consider data or user privacy.
Therefore, Cryptography-based Hierarchical Access Control
(CHAC) models [3] have been proposed. CHAC models
typically involve key management schemes which organize
users into hierarchical groups. A central authority, known as
a group-controller (GC) is often tasked with designing and
maintaining the hierarchical structure. Each group is given a
corresponding cryptographic key by the GC which can later
be used to decrypt and access the data for which the group
has been given access privilege. Furthermore, through the
hierarchical structure defined by the key management scheme,
groups with many access privileges are often able to derive the
cryptographic keys of lesser groups in order to successfully
access data assigned to the lesser groups. These hierarchical
structures leveraged by CHAC models are often used to model
and facilitate cryptographically-enforced hierarchical RBAC
models.

Many of the early CHAC models had efficiency and flex-
ibility issues. Early CHAC models, such as [3], involved
division of two large primes which becomes computationally
expensive as the number of bits in the primes increases. Other
early models constrained the design of the hierarchy to tree
structures or did not allow for efficient modification opera-
tions [20], [29], [30]. Later models offered improved flexibility
and efficiency of some modification operations [7], [8], [21],
[34], but still suffered some inefficient hierarchy modification
operations which required re-computation and re-distribution
of many groups’ cryptographic keys. One elegant scheme,
Atallah’s Dynamic and Efficient (Extended) Key Management
scheme [5], is able to facilitate arbitrary directed acylic graph
(DAG) hierarchies. Furthermore, Atallah’s scheme handles
modification operations locally within a hierarchy. This pro-
motes system efficiency and scalability as there is much less
need to re-compute and re-distribute keys when performing
modifications.

Although CHAC models directly address the issue of
cryptographically enforcing access control policies and data
privacy, they also introduce important issues such as key
management and distribution. Secure group communication
techniques have been proposed to address how to handle
key synchronization among users in the same group within
a hierarchical access control model. Many different protocols
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Fig. 1. Example hierarchical RBAC model built using the ACP technique and Atallah’s scheme.

have been proposed, including: distributed group key distri-
bution [2], distributed contributory group key agreement [6],
decentralized group key management [22] and centralized
group key distribution [19]. One interesting solution, the
Access Control Polynomial (ACP) [35], is a provably privacy-
preserving and attack-resistant method of distributing a shared
secret to a group of users.

III. SYSTEM DESIGN

In this section, we formally define the DLKM-based CHAC
model [24], [36] generated by our proposed model generation
algorithm. The model uses the collusion-resistant and privacy
preserving ACP technique [35] in order to distribute a shared
secret to a group of users. Such user groups are then organized
into a cryptographically-enforced hierarchical RBAC model
through the use of Atallah’s scheme [5]. The resulting DLKM-
based CHAC model provides fine-grained access controls, data
and user privacy, and scalability through efficient modification
operations.

Like many other CHAC models [3], [7], [8], [20], [21], [29],
[30], [34], the DLKM-based CHAC model involves a trusted
group-controller (GC). The GC is responsible for designing
and maintaining the CHAC hierarchy. Furthermore, the GC
is responsible for organizing users into role-based groups
and distributing needed shared secrets. As the trusted GC
will distribute shared secrets, build the hierarchy and perform
modification upon the hierarchy, the GC is be able to derive
any cryptographic key used within the model and access any
corresponding privileged data.

A. Access Control Polynomials

After the GC has organized a set of users into a role-
based group, the GC must distribute a shared secret to each

of the group members. To carry out this task, the GC uses
the ACP technique [35]. The ACP technique involves a pair
of polynomials, a private polynomial A(x) and a public
polynomial P (x), each of which is computed over a finite
field, Fq , where q is a large γ-bit prime.

The GC begins by computing the group’s private polyno-
mial, A(x). In order to compute A(x), the GC begins by
obtaining the secret id, SIDi ∈ Fq , of each user in the role-
based group, ψi ∈ Ψ. A user’s SIDi could be derived by
information stored by the GC during enrollment, e.g. the user’s
password hash. Using the SIDi of each user in the group, the
GC carries out computation of A(x) as follows:

A(x) =
∏
i∈Ψ

(x− f(SIDi||z)) mod q (1)

where || denotes a concatenation operation, z ∈ Fq is a
random public-value the GC re-determines during each private
polynomial computation and f : {0, 1}∗ → {0, 1}γ is a public
cryptographic hash function (i.e. SHA-256 [4]).

Clearly, the private polynomial A(x) computation yields an
n-degree polynomial where n is the number of group members
assigned to the role-based group, i.e. |Ψ| = n. Furthermore,
it can be seen that each hash of a secret id concatenated by
the public z value, f(SIDi||z), will be a root of the resulting
A(x) polynomial. This means that evaluating A(x) with any
such value will yield 0, i.e. A(f(SIDi||z)) = 0. Using the
n-degree polynomial, A(x), the GC can proceed to compute
the public polynomial P (x) ∈ Fq as follows:

P (x) = A(x) + s mod q (2)

where s ∈ Fq is a secret γ-bit value the GC wishes to distribute
to each member of role-based group, Ψ. Clearly, the secret
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value s will be mixed with and masked by the constant term
of A(x). Therefore, without knowledge of A(x) or any of
its components, the shared secret s cannot be recovered from
P (x).

Note that each group member, ψi ∈ Ψ, has access to their
own secret id, SIDi, as well as public value z and public
cryptographic hash function f . Therefore, any group member
can compute f(SIDi||z). By plugging the resulting value into
P (x), the group member can recover s as follows:

P (f(SIDi||z)) = A(f(SIDi||z))+s = 0+s = s mod q (3)

Therefore, the GC can securely distribute s to each group
member, ψi ∈ Ψ, by multi-casting (P (x), z). Each time the
GC re-computes and re-distributes (P (x), z), they will select a
new public random value, z

′ ∈ Fq . The altered value, z
′
, will

serve to dynamically update the two polynomials, i.e. A
′
(x)

and P
′
(x). The GC can then simply distribute the updated

values (P
′
(x), z

′
).

It should be noted that, through using the above formulation
of the ACP polynomials, the public polynomial is attack
resistant to adversaries without knowledge of the private poly-
nomial or its components. Fortunately, the above formulation
is also resistant to insider collusion attacks. Since any group
member can derive s as previously mentioned, the insider
attack we consider here is the attack where a subset of a group,
Φ ⊂ Ψ, collude in order to try to derive the secret id, SIDi,
of some target user also apart of the group, ψi /∈ Φ. Since any
member of the colluding group can derive s, they can obtain
the private polynomial by simply computing A(x) = P (x)−s.
Then, using any root-finding algorithm, the colluding group
may find the root values of private polynomial A(x). As
previously mentioned, the roots of the private polynomial
A(x) are the hashes of the group members’ secret ids, SIDi,
concatenated with the public z value, f(SIDi||z). Therefore,
if the finite field Fq is sufficiently large and a secure hash
cryptographic function, f , is used, it is computationally infea-
sible for a colluding group to derive any SIDi (regardless of
the number of colluding group members).

The collusion-resistant and privacy preserving ACP tech-
nique can be further strengthened by the inclusion of dummy
roots, V IDj ∈ Fq in the computation of private polynomial
A(x) as follows:

A(x) =
∏
i∈Ψ

(x− f(SIDi||z)) ∗
∏

j=1...d

(x− V IDj) (4)

where d is the number of dummy roots to be added to the
private polynomial and each dummy root V IDj is a value
randomly selected by the GC. By adding such dummy roots,
insider collusion attacks can be even further defended against.
Even in the most adversarial case where the colluding group
includes all group members besides a single target group
member, Φ = Ψ− ψi, it will be impossible for the colluding
group Φ to discern if roots of A(x) correspond to the hash
of the target user’s secret value, f(SIDi||z), or one of the
dummy roots V IDj . Therefore, the ACP technique provides

Algorithm 1: Atallah’s scheme algorithm for deriving
descendant keys.

1 Derive (vsource, vtarget, G)
2 if vsource = vtarget then
3 return vsource.get k
4 end
5 if Path(G, vsource, vtarget) = ∅ then
77 return null
8 else
9 vi = vsource

10 ki = vsource.get k
11 ti = vsource.get t
12 for vj ∈ Path(G, vsource, vtarget) do
13 rij = f(ti||lj)
14 tj ||kj = Decrij (yij)
15 ti = tj
16 ki = kj
17 end
18 return ki
19 end

a robustly secure method to distribute a shared secret s to a
group of users.

B. Atallah’s Scheme

After organizing users into role-based groups and using the
ACP to distribute shared secrets, the GC then uses Atallah’s
Efficient Key Management scheme [5] in order to organize
user groups into a cryptographically-enforced hierarchical
RBAC model. An example hierarchy built using the ACP
technique and Atallah’s scheme can be viewed in Fig. 1.

Atallah’s scheme uses a directed acyclic graph (DAG) to
represent the hierarchical relationships among roles in the
system. The DAG is defined as G = (V,E,O), where V is a
set of vertices of cardinality |V | = n, E is a set of edges of
cardinality |E| = m and O is a set of data objects of cardi-
nality |O| = p. A public hash function f : {0, 1}∗ → {0, 1}γ ,
i.e. SHA-256 [4], and symmetric encryption scheme ε, i.e.
AES [9], are needed for the derivation and use of symmetric
cryptographic keys. Symmetric encryption scheme ε is made
up of polynomial-time encryption function EncSK : mi → ci
and decryption function DecSK : ĉi → m̂i where SK is
an input encryption/decryption cryptographic key, mi is a
plaintext message and ci is the ciphertext encryption of mi.

Each vertex vi ∈ V represents a role in the organiza-
tion, associated with a corresponding group of users, Ψ, and
privileges. The GC assigns each vi a random public label,
li ∈ Fq , and a random private secret si which is shared with
the group members, ψj ∈ Ψ, via the previously described ACP
technique. User ψj can derive the two private keys belonging
to her group vi once having si: ki = f(si||0||li), where
ki ∈ Fq is used for data encryption and decryption, and
ti = f(si||1||li), where ti ∈ Fq is used for derivation of other
groups’ private keys.

Authorized licensed use limited to: IUPUI. Downloaded on July 02,2021 at 15:16:09 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
TIME COMPLEXITY OF KEY DERIVATION AND MODIFICATION

OPERATIONS

Operation Time Complexity
Key Derivation O(n)

Insertion of a Node O(1)
Insertion of an Edge O(1)

User Acceptance O(k2)

Each object oi ∈ O represents a data object belonging to
an organization which requires certain privileges in order to
access. The mapping function O : V → 2O maps a vertex to a
corresponding set of objects for which it is granted access such
that |O(vi)| ≥ 0. One constraint is ∀i∀j,O(vi) ∩ O(vj) = ∅
if and only if i 6= j, which will enforce each data object oj ∈
O(vi) is encrypted using a single, corresponding encryption
and decryption key ki. This constraint may lead to hierarchy
design and modification difficulties, but our proposed model
generation algorithm will later fully address these potential
difficulties.

Each directed edge (vi, vj) ∈ E denotes hierarchical rela-
tionships between user groups vi to vj . In such an edge, vj is a
direct successor of vi and, likewise, vi is a direct predecessor
of vj . We also denote such hierarchical relationships as vj ∈
Succ(vi, G) and vi ∈ Pred(vj , G). Furthermore, we denote
the entire set of descendants of vi as Desc(vi, G). Likewise,
we denote the entire set of ancestors of vi as Anc(vi, G).
It should be note that we consider vi ∈ Desc(vi, G) and
vi ∈ Anc(vi, G). Each edge, (vi, vj), has a private value,
rij = f(ti||lj), and a public label, yij = Encrij (tj ||kj). The
formulation of these edge values enables group vi to be able
to derive the private keys of its successor, vj (kj and tj).
Notice that the directed edge formulation does not allow the
key derivation of predecessors to be performed by successors.
Hence vi can access the keys of vj where vj ∈ Desc(vi, G)
and, as a result, vi is granted the access privileges of its
descendants, O(vj).

The key derivation algorithm of Atallah’s scheme [5],
Derive(vsource, vtarget, G), is shown in Algo. 1. Using this
algorithm, any user in group vi is able to use her own group’s
ti key, along with public node and edge labels, in order to
derive the private keys of any descendants vj ∈ Desc(vi, G).

C. Efficient Hierarchy Modification Operations

Atallah’s scheme is a very flexible and dynamic key
management scheme that supports various kinds of efficient
modification operations upon the hierarchy [5]. Each of the
modification operations are carried out by the trusted GC.
In the context of our proposed user-friendly system (which
leverages a user-friendly model generation algorithm), many
of these efficient modification operations become fully trans-
parent to the GC. Model generation, as well as many hierarchy
modification operations, can be simply carried by the GC
inputting a user-friendly representation of the desired access
control policies and re-creating the entire hierarchical DAG

model using the proposed model generation algorithm which
we will see in the next section.

Here, for clarity and completeness, we will briefly dis-
cuss how the GC could manually carry out the modification
operations used in the model generation algorithm. For an
extensive summary of how to carry out every type of possible
modification operation, please see [24]. The complexity of the
key derivation (shown in Algo. 1) and each discussed hierarchy
modification operation can be seen in Table I.

Insertion of a node. When inserting a new node, vi,
to the graph, vi is first considered as a node without any
connections to or from it. The GC simply creates the new node
by computing and assigning its secret and public information.
This involves assigning the new node vi a random public label,
li ∈ {0, 1}γ , and a random secret, si ∈ {0, 1}γ . Then, vi’s two
private keys can be computed whenever they are needed as:
ki = f(si||0||li) and ti = f(si||1||li).

Insertion of an edge. Suppose the directed edge (vi, vj)
must be added to the graph. The GC must first compute rij =
f(ti||lj), and then use the resulting rij to compute the public
label of the new edge, yij = Encrij (tj ||kj). These values
are assigned to the new edge, (vi, vj). In this way, the new
edge can support the hierarchical cryptographic key derivations
shown in Algo. 1.

Acceptance of a new user. Suppose a new user with secret
value SIDnew is going to be assigned to group vi by the GC.
No group-hierarchy level operations will need to be performed.
Instead, the GC only recomputes vi’s ACP with new value
z′ ∈ Fq and updated group, Ψ

′
= Ψ + ψnew, as follows:

A′(x) = (x− f(SIDnew, z
′))

∗
∏
i∈Ψ(x− f(SIDi||z′)) ∗

∏
j=1...d(x− V IDj)

P ′(x) = A′(x) + s

IV. USER-FRIENDLY MODEL GENERATION

In this section we design a user-friendly model generation
algorithm (shown in Algo. 2). The algorithm is designed such
that the GC is able create and modify the CHAC model’s
role-based hierarchy without knowledge of its structure or
constraints. The GC only needs to provide a list of roles
and all corresponding privileges of the particular roles in a
user-friendly list-based representation. The algorithm will then
automatically generate the corresponding CHAC model which
cryptographically-enforces and satisfies the specified access
control policies. The overall workflow of model generation
is shown in Fig. 2. The GC will then only be responsible
for carrying out encryption of sensitive data and distributing
the generated group secrets using the ACP technique. As
a result, the design and usage of the DLKM-based CHAC
model is democratized. For discussion of several specific data
encryption and decryption strategies which can be leveraged
with the resulting model, please see [24].

A. User Friendly Interface

We begin by creating a user-friendly interface which will
be used by the GC in order to input a highly-simplified, list-
based representation of access control policies. The goal of
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Algorithm 2: Model generation algorithm.

1 Create (V ∗,O∗)
2 Initialize V,O
3 for i ∈ (0, length(V )) do
4 for j ∈ (i+ 1, length(V )) do
5 if O(vi) ∩ O(vj) 6= ∅ then
6 V.append(vlength(V ))
7 O(vlength(V )) = (O(vi) ∩ O(vj))
8 end
9 end

10 end
11 Sort(O, key = length(O(vi)), order =

descending)
12 Initialize P
13 Connect(O, E, P, v0)
14 return O, G
15 Connect (O, E, P, vi)
16 if i = length(O) or Pvi 6= ∅ then
17 return
18 end
19 for j ∈ (i+ 1, length(O) do
20 Connect(O, G, P, vj)
21 if P (vj) ∈ O(vi) and P (vj) 6∈ P (vi) then
22 E.append(vi, vj)
23 P (vi) = P (vi) ∪ P (vj)
24 end
25 end
26 O(vi) = O(vi)− P (vi)
27 P (vi) = O(vi) + P (vi)
28 return

this interface is to provide the user a simple and easy way
to implement a CHAC. As the described hierarchical access
control model is subject to design constraints, a GC without
knowledge of symmetric encryption, key management and
hierarchical access control models, is likely to struggle to
successfully design the correct DAG hierarchy corresponding
to their desired access control policies. Albeit, even if the GC
has the necessary background knowledge of CHAC models
and the data structures involved, they will likely still encounter
difficulties. A hierarchical model with even a relatively small
number of roles quickly becomes tedious and difficult to
design by hand.

Each role in the hierarchy is assumed to have a certain num-
ber of associated objects which it has the privilege to access. In
a RBAC model the user would simply define the privileges for
each role, however, when using a cryptographically-enforced
CHAC model, there are additional concerns. In a CHAC
model, roles are arranged as nodes in a DAG where each
node is able to access privileged data assigned to itself or any
of its children. Instead of simply defining privileges for each
role, the designer must define roles is such a way that shared
privileges are gained by greater roles through traversing down
the hierarchy to lesser, descendant roles. Designing a hierarchy

based on numerous role-to-privilege mappings is unpleasant at
best and infeasible at worst.

Therefore, we use a web-based application to provide the
GC a user-friendly interface. This web application utilizes
the Python framework, Django, to implement the server-side
code and Javascript to implement the client-side code. The
interface allows the GC to add/remove possible privileges,
add/remove roles, and to assign a possible privilege to a
particular role. Once a role is created, the GC is able to easily
mark the privileges they want this role to have. From the GC’s
perspective, she is able to define privileges in same intuitive
manner as she would using an RBAC scheme. However,
transparent to the GC, our model generation algorithm will
arrange the roles into a cryptographically-enforced hierarchy
where each role can derive all its assigned privileges. After
generating the CHAC, the interface will use a Javascript graph
visualization library to display the resulting DAG to the user.
An example screenshot of the proposed user interface is shown
to the left in Fig. 2. Furthermore, the output visualization of
a generated model is shown to the right.

B. Model Generation Algorithm

Now, using the GC’s input through the aforementioned user-
friendly interface, the system can carry out model generation.
The model generation is carried out through Algo. 2. Here we
describe the algorithm in detail.

1) (Algo. 2, Line 2) First, we begin by initializing G
with the given input, V ∗ and O∗, from the user-
friendly interface. Recall that the user-friendly input,
V ∗ and O∗, will be a list-based representation of roles
and corresponding privileges, so the Attalah scheme
constraint, ∀i∀j,O(vi) ∩ O(vj) = ∅, will likely not
be satisfied. Using the user-friendly input, we create a
vertex for each given role, V = set(vi ∈ V ∗), and
begin by assigning all corresponding privileges to each
of the roles according the given access control policies,
O = O∗.

2) (Algo. 2, Line 3–10) As mentioned in the previous step,
one important constraint of Atallah’s key management
scheme is that there should be no intersection of privi-
leges directly assigned to any two roles. This is because
only one symmetric data encryption and decryption key
should be used to access the data. In order to satisfy
this constraint, we introduce extra placeholder roles to
hold the possible intersections of privileges. If we let
k = length(V ), we add vk as a placeholder in V
using the insertion of a new node operation defined in
Sec. III-C. We then assign Ovk = Ovi ∩ Ovj .

3) (Algo. 2, Line 11) Next, we sort the role-privilege
list, O, such that roles are ordered by the amount of
privileges that have in descending order. This sorted
ordering will ensure correctness when generating edges
to form the hierarchy.

4) (Algo. 2, Line 12–13) Edges are then generated in
order to build the hierarchy and make certain that each
privilege is only assigned to a single corresponding role
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Fig. 2. Model generation using proposed Algo. 2. Left: The designed user-friendly interface described in Sec. IV-A. As shown, the interface is used by the
GC to input easily-understandable, list-based access control polices. Right: The generated cryptographically-enforced hierarchical RBAC model corresponding
to the input access control policies.

in the model. To accomplish this, we need to call a
recursive helper function to traverse the role-to-privilege
mapping, O. P is initialized to serve as an additional
mapping of roles to corresponding privileges. P is used
in the recursive function to record the privileges each
role can access from all its descendants. Therefore,
P (vi) will have all the privilege accessible to vi when
the helper function returns.

5) (Algo. 2, Line 16–18) These lines define the base case
of the recursive helper function. If we reach the end of
the O list or if vi was visited before, we can return from
the recursive function.

6) (Algo. 2, Line 19–25) Here we traverse all the roles
and add edges from each role to its successors. As we
sorted O, successors of role vi will only appear after it
in the list. We can tell if vj is a direct successor of vi if
P (vj) ⊂ O(vi) and if there is no P (vj) ⊂ P (vk) where
vk is already a descendant of vi. If vj is considered to
be a successor of vi, we add an edge (vi, vj) to E. This
edge insertion operation is performed using the steps
described in Sec. III-C. Finally, we update P (vi) to be
the union of itself and P (vj). This is because vi can
now inherit all privileges of vj through derivation of the
keys of vj using the newly inserted edge (vi, vj).

7) (Algo. 2, Line 26–27) Finally we have the graph infor-
mation for vi needed to facilitate the access privileges
assigned to vi by the GC. Furthermore, the generated
graph information will satisfy the uniqueness require-
ment of privilege assignments. We then need to eliminate
the privileges accessed from Desc(vi, G) from O(vi).
We finally record all inherited privileges of vi in P (vi)
before we return.

8) (Algo. 2, Line 14) Finally, O is the role-privilege map-
ping generated for CHAC model and G contains the
graph information that the GC can leverage for future
use.

V. EXPERIMENT

This section details the computational and memory scala-
bility of the resulting system. Each experiment was ran on
a modest Lenovo Thinkpad 13 Ultrabook laptop with a Intel
i5-6200U CPU and 8GB of RAM.

A. Model Generation Experiment

It is important to note that this interface is intended for real-
world use in which algorithm run-time is of great concern.
Therefore, this experiment illustrates the speed the model
generation algorithm as the hierarchy DAG increases in size.
The model generation algorithm is first tasked with creating a
10 role graph. With each subsequent trial, the number of roles
is then incremented by 10 until reaching a graph of 100 roles.
Each role is then assigned 10 random privileges from a set of
possible privileges. The set of possible privileges will be 10
times the number of roles used. For example, in a graph with
10 roles there will be a total of 100 possible privileges where
each role will randomly be assigned 10 privileges.

After generating roles and randomly assigning privileges,
the algorithm will generate a DAG for the model. It is impor-
tant to note that the number of roles input may not be the same
as the number of nodes produced in the resulting graph. As
discussed in the model generation section, there may be cases
in which a placeholder node must be introduced to maintain
the hierarchical structure. Also note that the experiment only
measures the run-time of the model generation algorithm and
not any time taken to define the role/privilege mapping.

For each input size, the experiment was ran 10 separate
times with a different random role/privilege mapping each
time. Since program run-times may naturally fluctuate, the
average of 10 run-times is what is reported.

The results of the experiment can be seen in Fig. 3. The
x-axis represents the number of roles used while the y-axis
represents the amount of time in seconds to complete the
model generation algorithm. It can be seen that run-time
increases linearly with the number of roles. At the highest
point on the graph the run-time is seen to be as much as 16
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seconds. The input size at this point is 100 roles with a total of
1000 possible privileges where the DAG created may have to
create many different placeholder nodes in order to maintain
its properties. The resulting DAG is highly complex and would
be extremely difficult to design by hand. With this in mind,
while the user may have to wait a few seconds, they will still
be saving a great deal of time.

Due to the random nature of assigning privileges, it is likely
that in practice user-defined structures would be less intensive
to generate. Also, if a real world application needs to generate
such a complex DAG it is likely that a more powerful computer
will be used. This experiment provides strong indication that
the system is scalable and can democratize complex model
generation.

B. Memory Consumption Experiment

This experiment provided analysis of memory consumption
by the system. Again, the x-axis represents the number of roles
used in the randomly generated role/privilege mapping. The
y-axis represents the amount of kilobytes used by the DAG
object created by the model generation algorithm.

The results of the experiment can be see in Fig. 4. Memory
consumption clearly grows linearly with respect to the number
of roles. This is because each node added to graph requires
the same amount of storage space. The increase in memory
consumption varies slightly due to the fact that placeholder
nodes may increase the number of nodes to a value greater
than the number of roles. However, the increase in memory
consumption is negligible. At the largest DAG size of 100
roles and 1000 objects the required memory consumption is
less than 100KB. This small memory consumption strongly
supports the scalability of the proposed system.

C. Key Derivation Experiment

The final experiment examined the scalability of the key
derivation algorithm in conjunction with the DAG created
by the model generation algorithm. In this experiment priv-
ileges are no longer assigned randomly. Instead privileges
are assigned in such a manner that the DAG created will be

Fig. 3. Model generation algorithm speed.

composed of a single directed chain of nodes. For example,
the root level node has all possible privileges assigned to it.
Then its direct successor node has all of the same privileges
except for one. The privileges of each node is decremented in
this manner until the final leaf node only has a single privilege.
This ensures that trials with the same number of roles as an
input will have the same structure.

Once more, the x-axis represents the number of nodes along
the path that must be traversed using Algo. 1 in order for the
root node to derive the leaf node’s keys. The y-axis represents
the amount of time in seconds to derive the key of the leaf
node starting at the root level node. Overall, the key derivation
run-time increases linearly with respect to the number of roles.
The small variation in jumps between input sizes is mostly due
to the inconsistent nature of run-time measurement. At some
points, run-times seems to increase non-linearly, but this is
simply due to the scale of the y-axis. The algorithm is fast
enough that run-time inconsistencies appear to result in sharp
increases, but overall the algorithm execution time is still quite
short. With 100 roles the key derivation algorithm is still able
to derive the key of the leaf node in under 0.03 seconds.
This quick key derivation is critical as users will expect key
derivation, data decryption and data access to happen in near
real-time speeds. The experimental results strongly indicate
the system is scalable to and can provide quick data access.

VI. CONCLUSION

In this paper, we have presented a user-friendly model
generation algorithm which can effectively generate a DLKM-
based CHAC model. The generated model is able to facilitate
a cryptographically-enforced hierarchical RBAC model. In
addition to the security and privacy benefits of the generated
model, our experiments demonstrate that it is highly scalable
and efficient. As the proposed model and generation algorithm
are scalable, privacy-preserving and user-friendly, there is clear
motivation for their adoption by large organizations which
leverage sensitive data. Our Python code implementation is
provided for open use at [1].

Fig. 4. Model memory consumption.
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Fig. 5. Key derivation speed.

As future work, we plan to expand the proposed interface
and model generation algorithm. As we allow an inexperienced
GC design and modify the hierarchy from the user-friendly
list-based access control policy perspective, we would also
like to allow an experienced GC to be able to directly modify
the generated DAG model. Such an extended interface would
allow the GC to modify the model from two perspectives,
giving them enhanced control of the model they adopt and
deploy for their organization.
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