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Abstract—Using data from V2V links along with onboard
sensor data is recognized as a crucial step towards the safety
and reliability of future automated driving. We address short-
term trajectory planning for the ego vehicle. We propose a
threat field model of the traffic surrounding the ego vehicle.
Informally, the threat field indicates the possibility of collisions
in the vehicle’s vicinity. We study uncertainty in the threat field
due to uncertainty in the positions and velocities of surrounding
vehicles, which may be known to the ego CAV via basic safety
messages. The cost of trajectories is defined by the expected
threat exposure, and the risk of trajectories is quantified based
on the variance in cost. Uncertainty quantification is studied using
Monte Carlo sampling as well a perturbation-based approach.
The main result of this paper is the observation that small
localization errors and/or speed measurement errors can lead
to large risks in planned trajectories.

Index Terms—Connected automated vehicles, risk, vehicle-to-
vehicle communications, trajectory planning.

I. INTRODUCTION

Connected automated vehicles (CAVs) obtain information
about the local environment and traffic from multiple sources
including onboard sensors and data received from vehicle-
to-vehicle (V2V) communications [1]. All current automated
vehicles (AVs), regardless of the level of autonomy, carry
multiple onboard sensors including optical cameras, radar,
and lidar. Various manufacturers use proprietary methods for
extracting and fusing information from onboard sensor data.

Using data from V2V links along with onboard sensor
data is recognized as a crucial step towards the safety and
reliability of future automated driving [2]. The literature
on using V2V data for automated driving mainly addresses
cooperative scenarios such as platooning, cf. [3]-[6]. However,
the current trend of advances in automated driving points to
scenarios of independent driving, where each vehicle plans and
executes its own actions without expecting cooperation from
other vehicles. In what follows, we refer to an ego CAV for
which we are interested in enabling automated driving.

In noncooperative scenarios, it is important to quantify the
risk associated with actions planned by the ego CAV. This
risk arises from uncertainty in the knowledge (e.g., positions,
velocities, and accelerations) of surrounding traffic.

We address the specific automated driving task of short-
term trajectory planning for the ego CAV. Such trajectories
are continually planned by AVs to serve higher-level planning
objectives such as lane-keeping, lane-changing, and waypoint
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navigation. Trajectory planning under uncertainty is generally
addressed as an optimization or optimal control problem to
minimize an expected cost function [7], [8]. The surrounding
environment is typically represented by probabilistic occu-
pancy maps (POMs) [9]-[11]. In this paper we address the
problem of trajectory risk quantification for the ego CAV using
data from basic safety messages (BSMs) via V2V communica-
tions. BSMs may include the current position, velocity, and/or
acceleration of surrounding vehicles.

We propose a threat field model of the traffic surrounding
the ego CAV, where a spatiotemporally varying scalar field is
constructed. Informally, the threat field indicates the possibility
of collisions in the surrounding environment, similar to POMs.
Desirable trajectories are characterized as those with low or
minimum threat exposure. We study uncertainty in the threat
field due to uncertainty in the positions and velocities of
surrounding vehicles, which may be known to the ego CAV
via BSMs. The cost of trajectories is defined by the expected
threat exposure, and the risk of trajectories is quantified by the
variance in cost. Uncertainty quantification is studied using
Monte Carlo sampling as well a perturbation-based approach.

The contributions of this paper are as follows. First, we
propose a new threat field model for short-term trajectory
planning in automated driving. This threat field model provides
a framework to fuse V2V data with onboard sensor data,
which is mathematically more convenient compared to the
probabilistic occupancy grids typically used. The details of
such data fusion are beyond the scope of this paper. Second,
we analyze the effects of uncertainty in the positions and
velocities of surrounding vehicles on the threat field. We
provide methods to calculate the statistical characteristics
(moments) of the threat field. Finally, we quantify risk of
planned trajectories based on threat field uncertainty.

The rest of this paper is organized as follows. We introduce
the threat field model in Section II, study its statistical charac-
teristics in Section III, quantify trajectory risk in Section III-C,
and conclude the paper in Section IV. In what follows, we
denote by R the set of reals, by R™*" the set of matrices of
size n x m, by I(,) € R"*" the identity matrix, and by [ []
and Var[-] the expected value and variance.

II. THREAT FIELD DEFINITION

In this section we define a spatiotemporally varying threat
field c that models the possibility of collisions perceived by
the ego CAV. Such a threat field is not unique. For example,



an aggressive driver may perceive the threat of collisions
differently compared to a defensive driver. The following 0s
definition is based on safety recommendations by the US

National Highway Traffic Safety Administration (NHTSA). g

04

0.6

Consider a ego-fixed Cartesian axes system attached to the
ego CAV such that the origin is at the vehicle’s center of mass, 02
the x-axis is tangential to the vehicle’s lane on the road, the
z-axis is perpendicular to the road and the y-axis completes a
right-handed triplet. For the purposes of short-term trajectory Fig. 1
planning, a section of the road W surrounding the ego CAV
is considered. For simplicity, we assume )}V is a rectangular
region that extends up to 200 m (typical onboard radar sensor Pr(0.0) s
range) in each direction along the x-axis and spans the entire
width of the road along the y-axis.
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We denote by p = (z,y) the spatial variable with coor-
dinates in this axes system, by ¢ the time, and by p,(t) =
(piz(t), piy(t)) the coordinates of the relative position and
relative velocity of other surrounding vehicles, respectively, - o

R . . p1=(134.4, 0) m
for i =1,2,..., N. Here N is the number of other vehicles. u=(-125, 0) m/s
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(a) py(t) = (150,0) m and v1(t) = (0,0) m/s

We assume a nominal speed vy associated with the ego
CAV’s traffic situation. For example, in free-flow traffic on
a highway, vy may be set equal to the regulatory speed 2 s
limit. The NHTSA recommends a safe following distance
(i.e., separation) per the “three-second rule,” which is a speed-
dependent separation. We denote by d;, the desired separation
to the i vehicle and encode the “three-second rule” as 1355, 0) s
diz = 3 (vo + |viz|) . Similarly, we denote by d;, the desired
lateral separation, which can be set to a constant based on lane
width. We set d;,, :=2 m for each 1 =1,2,..., N.

We define the threat field on WV as a summation of collision
threats to each of the IV surrounding vehicles. The collision
threat to the i*® other vehicle is modeled by a 2D lognormal Fig. 2. An illustration of the threat field with N = 1.
function such that the peak of the function occurs at the
relative position p; of the other vehicle and the function value
remains above a prespecified threshold €9 < 1 within a safe lognormal function with the vehicle’s position, we define
separation distance, as illustrated in Fig. 1. The asymmetry
in the lognormal function depends on the relative velocity v;, Six (P, 1) = (sgn vz (1)) (2 — pia(t)) + exp(Bia (1)),
e.g., a positive v;, is associated with a “forward” skew. Jiy(p,t) = (sgn viy (1)) (y — piy(t)) + exp(Biy(t)).

We consider a lognormal function of the general form
f(x) = exp(— (1‘”; 5)2) where o and 3 are parameters to
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(b) p;(t) = (134.4,0) m and v1(¢) = (—12.5,0) m/s.
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(c) p;(t) = (40.44,0) m and v (t) = (—12.53,0) m/s.

The collision threat for the it® vehicle is then defined as:

be chosen. We 0bta1n the desired peak location and separation —(In(8;5) — 3m)2 —(In(63) — Bi )2
as illustrated in Fig. 1 for the i*" vehicle by choosing ci(p,t) = exp ( 202 ) €xp 2'1;2 z
1T Y
Qi (t) = 1 In (”0 + [ ()] +52) whenever d;,(p,t) > 0 and &;(p,t) > 0. Otherwise,
vo — [viz ()| — €2 ci(p,t) := e5 otherwise, where €5 < 1 is a user-specified
€3 + |viy(t)| + €4 positive constant. Finally, the threat field is defined as the sum-
aiy(t) :=e1ln ( — |viy () > mation of collision threats for each of the IV other vehicles:

|
| -
o — |via(t)] — 2 c e
ﬂm(t) = 1In (d (l’l}w(t) T |) > (Pﬂf) . Gzzzl z(pvt)' (1)
(

Buy (1) = d — |viy(t)| — €4 In this paper, we choose the following values of the various
WA W 2(|U,y( )+ e4l) constants identified above.

vo = 24.20 m/s (55 mph), &9 =0.1, &5 = 0.2420,

where €1 := 1/4/—1In(e2) and €3,e4 < 1 and €3 < g
/ (<) e3=5,  e4=0.05, es = 1B-4  £¢ = 100.

are user-specified positive constants. To align the peak of the
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Fig. 3. Positions and velocities in 4-car traffic scenario.

In this threat field, the positions and velocities of surrounding
vehicles, p; and v;, may be considered time-varying parame-
ters. Figure 2 illustrates examples of ¢(p,t) with N =1 at a
particular time instant ¢ for various values of vy (t) and p, (t).

Another illustrative example consists of N = 4 other cars
on a three-lane road. Consider a traffic scenario where the
positions and velocities of other cars relative to the ego CAV
change over a 15 s time interval as shown in Fig. 3. Informally,
Car 2 quickly moves from the right lane (lowermost in
Fig. 4(a)) to the left lane and in the process moves in between
the ego CAV and Car 4. While the ego CAV’s line of sight
to Car 4 is blocked by Car 2, Car 4 decelerates by a large
amount. This traffic scenario, which is modeled after a real-
world traffic accident [12], may be used in the future as a
benchmark to demonstrate the benefits of connectivity, because
onboard line-of-sight sensors will not suffice for the ego CAV
to avoid collision with Car 4. Figure 4 shows the threat field
at various time instants in this traffic scenario.

III. THREAT UNCERTAINTY QUANTIFICATION

The relative positions and velocities p; and v; of surround-
ing vehicles may be known to the ego CAV via BSMs trans-
mitted by the surrounding vehicles. The underlying assumption
is that each vehicle can localize its poistion and estimate its
velocity, e.g., using the Global Positioning System (GPS).
Typical user error characteristics of position and velocity
estimates using GPS are well-known. As of May 2016, 95%
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Fig. 4. Tllustration of ¢(p, t) at various time instants in 4-car traffic scenario.

of the user range errors (URE) in horizontal position measured
by GPS were less than 0.715 m and 95% of the user range
rate errors (URRE) were less than 6E-3 m/s [13].

The main result of this paper is the observation that these
“small” localization errors and/or speed measurement errors
can lead to large uncertainties in the threat perceived by the
ego CAV, which may consequently lead to a large risk in
planned trajectories.

A. Monte Carlo Sampling

To address the problem of quantifying uncertainty in the
threat c(p, t) dependent on the uncertain parameters p,(t) and
v;(t),i=1,..., N, we consider the approach of Monte Carlo
sampling [14]. Here, we first recognize that each parameter is
a random variable that we assume to be normally distributed
with mean values as transmitted in the BSMs and variances
provided by the aforesaid URE and URRE statistics. Let p, ()
and v,(t) denote the relative position and velocity inferred
by the ego CAV from the BSMs received from the other
vehicles. Then p;(t) ~ N(P;(t),0frgl2)) and v;(t) ~
N (©i(t), 08 grrl(2)), where oure = 0.715/2 = 0.3575 m
and OyRRE = 6E-3/2 = 3E-3 m/s.



TABLE I
ILLUSTRATIVE RESULTS OF MONTE CARLO SAMPLING FOR UNCERTAINTY
QUANTIFICATION OF THE THREAT AT p € VW IN THE 1-CAR SCENARIO.

pm Pp;(t)(m) () ms) Ele(p,t)] Varlc(p,t)]
. (0,1)  (150,0) (0,0) 272783 2.227E-6
2. (20,1) (150,0) (0,0) 3.072E-2 2.066E-4
3. (40,1)  (150,0) (0,0) 0.2558 1.098E-2
4 (01 (1344.0)  (=12.5.0) 3.099 1.298
5. (201)  (134.4,0)  (—12.5,0) 5.033 3.432
6. (40,1) (134.4.0) (~12.5,0) 8.266 9.219
7. (0.1) (40.44.0) (—12.53,0) 30.73 1275
8 (20,1) (40.44,0) (—12.53.0) 4577 282.8
9. (40,1) (40.44,0) (—12.53,0) 55.93 4222
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(a) p,P;(t),v;(t) in Row 4. (b) p,p;(t),v;(t) in Row 6.
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Fig. 5. Normalized posterior frequency distributions for some of the examples
listed in Table I.

For the sake of simplicity, we make several simplifying
assumptions including: the position and velocity errors are
uncorrelated, the position/velocity errors along orthogonal
axes are uncorrelated, and the velocity error standard deviation
in each coordinate is the same as the URRE. The numerical
values of standard deviations oyrg and oyrgrg are calculated
with the assumption that GPS user errors are normally dis-
tributed. These assumptions will admittedly cause errors in
the resultant threat field uncertainty quantification, but they
can be removed in further detailed analysis in the future.

We take a large number of samples p,, v; from the distribu-
tions N'(p;(t), ofrpl(2)) and N(v;(t), 0f grpl(2))- For each
sample we evaluate the threat value and calculate posterior
statistics (mean and variance) at desired locations p € W and
time instant ¢. Table I provides examples of these posterior
statistics for the 1-car scenario shown in Fig. 2. Figure 5 illus-
trates the normalized histogram of the threat values computed
for each sample, which is an approximation for the posterior
probability density function. Each of these results (i.e., each
row in Table I) was obtained by threat evaluations for one
million samples of p; and v;.

The most important observation from the results shown in
Table I and Fig. 5 is that the uncertainty in threat (quantified

TABLE II
ILLUSTRATIVE RESULTS OF MONTE CARLO SAMPLING FOR UNCERTAINTY
QUANTIFICATION OF THE THREAT AT p € WV IN THE 4-CAR SCENARIO.

pm t@») Ele(p,t)] Varle(p,t)]

1. (0,1) 0 1.629E-1 1.494E-2

2. (20,1) 0 6.313E-2 1.297€-3

3. (40,1) 0 1.664 1.246

4. (0,1) 7.5 7.675 1.833

5. (20,1) 7.5 56.45 56.02

6. (40,1) 7.5 96.20 159.9

7. (0,1) 15 30.87 127.6

8. (20,1) 15 45.79 282.58

9. (40,1) 15 55.92 422.1
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(a) p,P;(t),v;(t) in Row 3. (b) p,p;(t),v;(t) in Row 4.
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Fig. 6. Normalized posterior frequency distributions for some of the examples
listed in Table II.

by its variance) can become large even though the uncertainty
in position and velocity of surrounding vehicles (quantified,
say, by GPS URE and URRE) remains small.

Table II and Fig. 6 illustrate similar results for the 4-car
scenario in Figs. 3 and 4.

B. Perturbation Method

An analytical alternative to the Monte Carlo sampling
method is the perturbation method, which relies on an-
alyzing the sensitivities of the threat values to the pa-
rameters p,;(t) and v;(t). We denote these parameters by
q = (q1,---,qa8) = (-, Pizs Piy, Vizs Viy, - - -), the pa-
rameter mean and variance by ¢ = (...,p,,?;...) and
P = diag(...,0%gp 0brpms - --) € RWXN | respectively.
As in Section III-A, the underlying assumption is that these

parameters are normally distributed and mutually independent.

9c
g .
9lq=g

It may be shown [14] that the posterior mean and variance
can be approximated as

E [C(pa t)] = C(qv t)’ (2)

This approximation is exact when the parameters are indeed
normally distributed and mutually independent, and the func-

The parameter sensitivity gradient is S =

Var[c(p,t)] = SPST.



TABLE III
ILLUSTRATIVE RESULTS OF PERTURBATION METHOD FOR UNCERTAINTY
QUANTIFICATION OF THE THREAT AT p € VW IN THE 1-CAR SCENARIO.

pm P;(t) m)  Ti(t) ms) Ele(p,t)]  Vare(p,t)]
1. (0,1)  (150,0) (0,0)  1.6978-3 4.430E-7
2. (20,1)  (150,0) (0,0)  2.2698-2 8.828E-5
3. (40,1)  (150,0) (0,0) 0.2147 7.942E-3
4. (0,1) (134.4,0) (—12.5,0) 3.097 1.642
5. (20,1)  (134.4,0)  (—12.5,0) 5.033 4337
6. (40,1) (134.4,0)  (—12.5,0) 8.258 11.67
7. (0,1) (40.44,0) (—12.53,0) 30.71 1614
8. (20,1) (40.44,0) (—12.53,0) 45.74 358.0
9. (40,1) (40.44,0) (—12.53,0) 55.90 534.8

tion c is linear. Per the threat definition in Section II, linearity
does not hold for this application. In fact, the threat field
definition involves discontinuities due to the sign function.
To compute the sensitivity gradient, we approximate the sign
function by a sigmoidal function.

Table III shows the posterior mean and variance values
computed for the 1-car scenario shown in Fig. 2. Comparing
these values to those in Table I, we note accurate results for
the posterior mean and order-of-magnitude accuracy for the
posterior variance. The variance accuracy may be improved in
the future by removing the aforesaid discontinuities.

C. Risk of Planned Trajectories

Consider a short-term trajectory 7 of the ego-CAV in
the form of a sequence of spatiotemporal waypoints ex-
pressed in the ego-fixed axes system at time t = 0, ie.,
7 = ((wo,t0), (wy,t1)...,(wa,ta)), where w,, € W are
spatial locations and t,, are uniformly spaced time instants
with fixed ¢, — t,_1 = At, for n = 0,1,...,A and
for some finite A. The cost of this trajectory is defined as
J(m) = At Z;?:O()\+)\c(wn, t)), where A > 0 is a constant.
The expected cost is E [J ()] = Zﬁzo(/\—f—ﬂi [c(w,,t)]). We
define the trajectory risk p(w) as dependent on the expected
cost as well as the threat variances at each waypoint:

p(m) = BT (m)] + Aty/ S Var [c(wa, 1)

By this definition, a low risk trajectory not only has low
expected threat exposure, but also low uncertainty thereof. The
expected trajectory cost and risk can be computed using the
analysis presented above. For example, in the aforementioned
4-car traffic scenario, consider a trajectory 7 with w,, = (0,0)
foreachn =0,..., A, with At = 5E-3 sand A = 15/(At) =
3000. This trajectory corresponds to the ego CAV’s steady
state of zero acceleration over a 15 s time interval. We choose
A = 0. Using the Monte Carlo sampling method, the expected
cost and risk of this trajectory are:

E[J(m)] = 230.4, p(m) = 231.3.

Fast analytical method such as the perturbation method can
enable the efficient computation of the expected cost and risk
for trajectory planning computations.

IV. CONCLUSIONS

In this paper, we proposed a new threat field model for
short-term trajectory planning in automated driving. This
threat field model provides a framework to fuse V2V data with
onboard sensor data, which is mathematically more convenient
compared to the probabilistic occupancy grids typically used.
We analyzed the effects of uncertainty in the positions and
velocities of surrounding vehicles on the threat field. Finally,
we quantify risk of planned trajectories based on exposure
to the uncertain threat field. Uncertainty quantification is
studied using Monte Carlo sampling as well a perturbation-
based approach. The main observation of interest is that small
uncertainties in positions and velocities of other vehicles can
lead to large uncertainties in the threat field and trajectory
risk. Future work includes addressing correlations between
positions and velocities via uncertainty propagation equations.
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