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Abstract— This paper addresses the problem of cooperative
adaptive containment control for multi-agent systems, which spec-
ifies the objective of jointly achieving containment control and
accurate adaptive learning/identification of unknown system pa-
rameters. We consider a class of linear uncertain multi-agent
systems with multiple leaders subject to bounded unmeasurable
inputs and multiple followers subject to unknown system dynam-
ics. A novel cooperative adaptive containment control architecture
is proposed, which consists of a discontinuous nonlinear state-
feedback control law and a filter-based cooperative adaptation
law. This new control architecture is compelling in the sense
that exponential convergence of both containment tracking errors
to zero and adaptation parameters to their true values can be
achieved simultaneously under a mild cooperative finite-time exci-
tation condition. This condition significantly relaxes existing ones
(e.g., persistent excitation and finite-time excitation) for parameter
identification in adaptive control systems. Effectiveness of the
proposed approach has been demonstrated through both rigorous
analysis and a case study.

Index Terms— Cooperative adaptive learning control, co-
operative finite-time excitation, containment control

I. INTRODUCTION

In the controls community, multi-agent systems (MASs) have been
well recognized as a useful paradigm to formalize complex distributed
control problems involving multiple/many dynamical agents working
in a cooperative fashion. Fruitful results can be found in the lit-
erature concerning various MAS distributed control tasks, such as
consensus control [1], formation control [2], bipartite consensus [3],
and containment control [4], etc. In particular, containment control
is fundamental for enabling coordinations among multiple leaders
and followers. It aims to drive all the followers into a convex-
hull space spanned by the leaders [5]. Such a behavior is highly
relevant to many important applications. One typical example is
multi-robot coordination (e.g., [30]), where movements of a team
of slave/follower robots are constrained within a region spanned by
some master/leader robots in order to avoid any of the slave robots
venturing into hazardous/prohibited areas.

A large majority of existing containment control techniques (e.g.,
[4]–[6]) consider MASs with precisely known dynamics, which is
deemed too restrictive in practice. This is because it is generally
difficult or even impossible to acquire accurate models of all the
agents especially when the number of agents is large. Robust control
techniques [7] and adaptive control techniques [8] provide promising
solutions for addressing the associated uncertainty issues. Compared
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to robust control, adaptive control is more appropriate in handling
time-invariant or slowly time-varying uncertainties [8]. This has been
motivating considerable research efforts to develop new adaptive
control techniques for uncertain MASs, e.g., [2], [9]–[11].

Despite rich literature, we observe that existing cooperative adap-
tive containment control techniques are largely focused on “control”,
while the “learning” capability of adaptive controllers has been poorly
explored. Specifically, existing adaptive containment controllers are
capable of rendering stability and containment tracking control per-
formance, but very few of them can guarantee convergence of the
associated adaptation/estimate parameters (e.g., estimate unknown
plant parameters or adaptive controller gains) to their true/optimal
values. One technical challenge lies in satisfaction of the so-called
persistent excitation (PE) condition [8], which requires some system
signals (e.g., inputs/states) to be sufficiently rich (e.g., containing
sufficiently large number of distinct frequencies for linear systems).
This condition is in general difficult to satisfy and even verify a
priori, especially when both control and learning objectives are jointly
concerned. Attempting efforts have been made to overcome this
challenge. In particular, a new concept of cooperative PE (cPE) was
proposed in [12]–[14] for accurate identification of unknown MASs,
which was extended by [2], [11] to composite adaptive formation
control and cooperative learning of nonlinear MASs. Such a cPE
condition relaxes the traditional PE condition in the sense that it
can be satisfied by incorporating multiple system signals with each
of them not necessarily PE. Moreover, a concurrent learning control
scheme was proposed in [15] by combining the use of instantaneous
and past/historical data for online parameter adaptation. With this
scheme, exponential convergence for both control tracking errors
and adaptation parameters can be jointly achieved by satisfying a
finite-time excitation (FTE) condition. This condition further relaxes
the traditional PE condition, as it only requires the system signals
to be exciting over a finite time but not necessarily persistently.
This concurrent learning control scheme was subsequently refined
in [16], [17] by employing a series of filtering techniques to avoid
using state-derivative feedback. However, these results pertain to
single adaptive systems, while extending them to MASs is non-trivial
due to the complexity of network structures and limited information
accessibility in MASs.

In this paper, our objective is to address the cooperative adaptive
control and learning problem for MASs by jointly accounting for
the specifications of containment control and adaptive identification
of unknown system parameters without resorting to the PE/cPE/FTE
conditions. Specifically, the problem will be discussed for a class of
linear MASs with multiple leaders and multiple followers; all the
leaders are subject to bounded reference inputs which are assumed
to be unmeasurable for any follower, and all the followers’ dynamics
are also unknown for local controller design. More detailed technical
definitions of the leaders and followers will be provided in the next
section. To this end, we propose a novel cooperative adaptive contain-
ment control protocol, which, compared to existing ones (e.g., [12],
[16], [17]), is more advanced and compelling in the following three
aspects: (i) It jointly renders containment control performance and
cooperative adaptive learning performance for MASs. (ii) It utilizes
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both local agent’s information (e.g., local plant’s instantaneous and
integrated states, and local estimate parameters) and neighboring
agent’s information (e.g., relative plant states, and relative estimate
parameters) for feedback control and adaptive learning. (iii) Expo-
nential convergence of both containment tracking errors (to zero)
and adaptation parameters (to their true values) can be guaranteed
under a new cooperative finite-time excitation (cFTE) condition,
which significantly relaxes existing ones including PE/cPE/FTE.
Moreover, this paper advances our previous work [18] by addressing
a more challenging containment control problem, providing more
rigorous analysis on system stability and parameter convergence, and
considering more realistic mobile robot systems in simulation study.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notation and Graph Theory

R denotes the set of real numbers. R+ denotes the set of positive
real numbers. Rm×n is the set of real m × n matrices, and Rn
is the set of real n × 1 vectors. In and 1n denote the identity
matrix of dimension n and an n-dimensional column vector with
all elements being 1, respectively. Sn and Sn+ denote the sets of real
symmetric n×n matrices and positive definite matrices, respectively.
A block diagonal matrix with matrices X1, X2, · · · , Xp on its
main diagonal is denoted by diag{X1, X2, · · · , Xp}. ⊗ denotes
the Kronecker product. col{x1, · · · , xn} denotes a column vector
by stacking column vectors x1, · · · , xn together. For two integers
k1 < k2, I[k1, k2] := {k1, k1 + 1, · · · , k2}. For x ∈ Rn,
‖x‖ := (xT x)1/2. The distance from x ∈ Rn to a set C ⊂ Rn
is denoted by dist(x, C) := infy∈C ‖x − y‖. The convex hull of a
finite set of points X = {x1, x2, · · · , xq} is defined by Co(X) :={∑q

i=1 αixi
∣∣xi ∈ X,αi ∈ R, αi ≥ 0,

∑q
i=1 αi = 1

}
.

A graph is defined as G = (V, E ,A), where the elements of V =
{1, 2, · · · , N} are called vertices, the elements of E are pairs (i, j)
with i, j ∈ V, i 6= j, called edges, and the matrix A ∈ RN×N
is called the adjacency matrix. If (i, j) ∈ E , it means agent i can
receive information from agent j where these two agents are called
adjacent. The adjacency matrix is thus defined as A = [aij ]N×N ,
with aij > 0 if and only if (i, j) ∈ E , and aij = 0 otherwise. The
graph G is called undirected if for every (i, j) ∈ E also (j, i) ∈ E .
The Laplacian matrix of a given graph is defined as L = [lij ], where
lii =

∑
j 6=i aij , lij = −aij , i 6= j. If the graph is undirected, then L

is a positive semi-definite real symmetric matrix, so all eigenvalues
of L are non-negative real. Zero is always an eigenvalue of L, so it
has rank at most N − 1. Furthermore, an undirected graph is called
connected if for every pair of distinct vertices i and j there exists
a path from i to j, i.e., a finite set of edges (ik, ik+1) with k =
1, 2, · · · , r − 1 such that i1 = i and ir = j. An undirected graph is
connected if and only if its Laplacian has rank N − 1. In that case
the zero eigenvalue of L has multiplicity one.

B. Problem Statement

Consider a linear MAS consisting of N followers and M leaders.
The dynamics of the ith follower is described as:

ẋi = Axi +Bui, ∀i ∈ F , (1)

where xi ∈ Rn and ui ∈ Rnu denote the state and control input,
respectively. F = {1, · · · , N} denotes the set of indices for the
followers. The dynamics of the kth leader is given by:

ẇk = A0wk +B0rk, ∀k ∈ R, (2)

where wk ∈ Rn is the state, rk ∈ Rnr is a bounded input,
R = {N + 1, · · · , N + M} denotes the set of indices for the

leaders. Let G and Gs denote the graphs of the N + M agents and
the N followers defined above, respectively. The adjacency matrix
and Laplacian matrix associated with Gs are denoted as A and
L, respectively. The weight associated with the connection edge
directed from a leader k ∈ R to the ith follower (i ∈ F) is
denoted by δki . Specifically, δki = 1 if the kth leader is connected
to the ith follower, otherwise δki = 0. We define diagonal matrices
∆k = diag{δk1 , · · · , δkN} for all k ∈ R.

Given the MAS (1)–(2), we consider the following setting. First,
considering that it is usually difficult to precisely obtain the model
of many physical systems and motivated from existing literature
(e.g., [21], [28]), for each follower considered in this paper, we
assume that B is available but A is unknown. Note that this can
be relaxed to a more general case with both A and B being
unknown by employing the pre-filtering approach from [19], [20],
interested readers are referred to these references for more technical
details. Second, the leader’s system matrices A0 and B0 are assumed
available for followers, while their states wk are measurable only for
their neighboring followers and their inputs rk are not measurable for
any follower (but the upper bounds of rk are available), as motivated
from [5], [26], [28]. The following assumptions are further made.

Assumption 1: There exist constant matrices K1 ∈ Rn×nu and
K2 ∈ Rnr×nu , such that A0 = A+BKT

1 and B0 = BKT
2 .

Assumption 2: (A0, B0) is stabilizable, and rk are bounded, i.e.,
‖rk‖ ≤ r∗k for all k ∈ R, where r∗k are positive constants.

Assumption 3: Gs is undirected and connected, and there is at least
one leader that has a directed path to each follower.
Assumption 1 includes the so-called model matching condition that
frequently arises in the literature of model reference adaptive control
[16], [17], [21]–[23]. It essentially requires that: there must exist two
matrices K1,K2 such that the follower model (1) can be transformed
to match the leader model (2). More discussions on such a condition
including its motivations from practical applications can be found
in [8] and the references therein. Under this assumption, since A is
unknown, only existence of K1 is guaranteed. In contrast, since B0

and B are given, K2 can be calculated off-line for each follower.
Assumption 2 is made to ensure a meaningful bounded convex-hull
containment envelop generated by the leaders. With Assumption 3,
according to [24], we have Hk := 1

M L + ∆k for all k ∈ R, and
Φ :=

∑N+M
k=N+1Hk are all positive definite.

Our objective is to design a cooperative adaptive containment
control protocol for the N followers in (1), such that the following
joint objectives can be achieved.

1) Containment Control: All the followers’ states xi in
(1) will converge to a dynamic convex hull spanned
by the leaders’ states wk in (2) as t → ∞, i.e.,
limt→∞ dist (xi(t),Co(wk(t), k ∈ R)) = 0, ∀i ∈ F .

2) Cooperative Learning: The unknown constant matrix K1 can
be accurately identified by every follower without requiring
satisfaction of the PE/cPE/FTE conditions1.

To fulfill the above objectives, in the following sections, a novel filter-
based adaptive learning control protocol will be proposed, followed
by rigorous analysis on system stability and parameter convergence,
and a case study on a group of realistic mobile robots.

III. MAIN RESULTS

1We refer the readers to [8], [12], and [16] for detailed definitions of the
PE, cPE, and FTE conditions, respectively.
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A. Controller Structure
We propose the following control protocol for the N followers in

(1):

ui = K̂T
1,ixi +KT

2 K3ei + βKT
2 f1(K4ei), ∀i ∈ F , (3)

where ei is an integrated error signal defined by ei =
∑N
j=1 aij(xj−

xi) +
∑N+M
k=N+1 δ

k
i (wk − xi), K̂1,i ∈ Rn×nu is a time-varying

controller gain used to estimate the true value K1. K2 ∈ Rnr×nu can
be obtained from Assumption 1. K3,K4 ∈ Rnu×n and β ∈ R+ are
constant design parameters. f1(K4ei) is a nonlinear function defined
by: f1(K4ei) = K4ei

‖K4ei‖
, if ‖K4ei‖ 6= 0; otherwise f1(K4ei) = 0.

For accurate identification of K1 via K̂1,i, we seek to develop a
new online adaptation law for K̂1,i such that convergence of K̂1,i to
K1 for all i ∈ F can be achieved without resorting to PE/cPE/FTE.
To this end, motivated by [16], [17], we first construct a series of
filters. Specifically, from Assumption 1 and system (1), we have ẋi−
Bui + BKT

1 xi = A0xi for all i ∈ F , which can be rewritten as
X̂i := ui + (BTB)−1BTA0xi− (BTB)−1BT ẋi = KT

1 xi, where
the matrix B is assumed to be full rank, ensuring invertibility of
BTB. Then, consider the following filter equations for all i ∈ F :

Ṅi = −kNi + xi, Ni(0) = 0 (4)

ġi = −kgi + X̂i, gi(0) = 0 (5)

where Ni ∈ Rn and gi ∈ Rnu denote the respective filter states,
k > 0 is a scalar. Solving the above two equations yields

Ni(t) = e−kt
∫ t

0
ekτxi(τ)dτ, ∀i ∈ F , (6)

gi(t) = e−kt
∫ t

0
ekτ X̂i(τ)dτ, ∀i ∈ F , (7)

which implies that gi(t) = KT
1 Ni(t). Note that Ni(t) can be

computed in real-time for each follower via (4) as xi is measurable,
but gi(t) is not measurable from (5) as X̂i containing the agent’s state
derivative information ẋi is not available. To overcome this, we note
that (7) can be reformulated using the by-parts rule of integration,
such that gi(t) can be computed online via

gi(t) = −(BTB)−1BT
(
xi(t)− e−ktxi(0)− kNi(t)

)
+ (BTB)−1BTA0Ni(t) + hi(t), ∀i ∈ F ,

(8)

where hi ∈ Rnu is the state of

ḣi = −khi + ui, hi(0) = 0. (9)

We further introduce two additional filters for all i ∈ F :

Ṁi = NiN
T
i , Ġi = giN

T
i , (Mi(0) = 0, Gi(0) = 0) (10)

where Mi ∈ Rn×n and Gi ∈ Rnu×n are two respective filter states.
Solving the above two equations gives

Mi(t) =

∫ t

0
Ni(τ)NT

i (τ)dτ, Gi(t) = KT
1 Mi(t), (11)

for all t ≥ 0 and i ∈ F . It is easy to verify that Mi(t) ≥ 0 for all
t ≥ 0 and all i ∈ F , and Mi(t) is a nondecreasing function of time,
i.e., Mi(t2) ≥Mi(t1) for any t2 ≥ t1 ≥ 0 and all i ∈ F .

Finally, we propose a new adaptation law for K̂1,i as follows:

˙̂
K1,i = γxie

T
i PB + f2,i + f3,i, ∀i ∈ F , (12)

where γ ∈ R+ and P ∈ Sn+ are two constant de-
sign parameters, f2,i := γ

(
GTi −MiK̂1,i

)
, and f3,i :=

γ
∑N
j=1 aij

(
K̂1,j − K̂1,i

)
.

Fig. 1: The proposed controller structure.

In summary, the proposed cooperative adaptive containment control
protocol consists of the adaptive control law (3) and the cooperative
adaptation law (12) with filters (4) and (8)–(10). To understand
this new control architecture, a block diagram is given in Fig. 1.
Specifically, the first two linear terms of (3) is used to stabilize the
overall MAS and attain containment control performance, while the
nonlinear term f1(·) of (3) is inspired from the sliding-mode control
theory [5], [25], [26] for eliminating the effects of unmeasurable
leaders’ input signals rk for all k ∈ R. For the adaptation law
(12), the first term is similar to traditional Lyapunov/gradient-based
forms for ensuring Lyapunov stability, while its novelty is reflected
from the last two terms f2,i and f3,i. In particular, f2,i is motivated
from the concurrent learning strategy [15], aiming to online adjust
the adaptation parameters K̂1,i by integrating local state information.
The last term f3,i is inspired from the MAS consensus control theory
[1], [12] for enabling cooperative learning among neighboring agents
through sharing knowledge (i.e., K̂1,i). Neighboring agents will need
to share both plant and controller state information (xi and K̂1,i).

B. Stability and Parameter Convergence Analysis

Interconnecting the controller (3) and (12) to (1), the closed-loop
dynamics of each follower can be obtained as

ẋi =
(
A+BK̂T

1,i

)
xi +BKT

2 K3ei + βBKT
2 f1(K4ei),

˙̂
K1,i = γxie

T
i PB + γMi

(
K1 − K̂1,i

)
+ f3,i, ∀i ∈ F .

(13)

Then, we define r̄k = 1N ⊗ rk, w̄k = 1N ⊗ wk for all k ∈ R,
e = col{e1, · · · , eN}, x = col{x1, · · · , xN}, and x̃ = x −(

Φ−1 ⊗ In
)∑N+M

k=N+1 (Hk ⊗ In) w̄k. To facilitate the subsequent
derivations, we list the following useful facts: (∆k⊗In)(1N⊗wk) =

(Hk ⊗ In)(1N ⊗ wk), (∀k ∈ R); e =
∑N+M
k=N+1(Hk ⊗ In)w̄k −

(Φ ⊗ In)x = −
∑N+M
k=N+1(Hk ⊗ In)x̃ = −(Φ ⊗ In)x̃, and

ei = −
∑N
j=1 hij x̃j , (∀i ∈ F), where hij denotes the (i, j)-th

entry of the matrix Φ =
∑N+M
k=N+1Hk, and x̃ is partitioned as

x̃ = col{x̃1, · · · , x̃N} with x̃i ∈ Rn for all i ∈ F .
Lemma 1: Let `ik denote the i-th entry of the vector Φ−1Hk1N ∈

RN for all k ∈ R. Then, under Assumption 3, we have∑N+M
k=N+1 `ik = 1 for all i ∈ F .

Proof: Since Φ =
∑N+M
k=N+1Hk, we have∑N+M

k=N+1 Φ−1Hk1N = Φ−1
(∑N+M

k=N+1Hk

)
1N = 1N . As

a result,
∑N+M
k=N+1 `ik = 1 can be concluded for all i ∈ F .

The overall closed-loop dynamics can be obtained from (13):

˙̃x = [IN ⊗A0 − Φ⊗B0K3] x̃+ (IN ⊗B)K̃T
1dx+ β(IN ⊗B0)

× F1(x̃) + (IN ⊗B0)
(

Φ−1 ⊗ Inr
) N+M∑
k=N+1

(Hk ⊗ Inr ) r̄k,

˙̃K1 = γdiag{x1e
T
1 , · · · , xNeTN}(IN ⊗ PB)− γ(M + L ⊗ In)K̃1,

(14)
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where

K̂1 = diag{K̂1,1, · · · , K̂1,N},
K̃1d = diag{K̃1,1, · · · , K̃1,N}, K̃1,i = K̂1,i −K1, (∀i ∈ F),

K̃T
1 =

[
K̃T

1,1 · · · K̃T
1,N

]T
, M = diag{M1, · · · ,MN},

F1(x̃) =

 f1(K4e1)
...

f1(K4eN )

 =


f1(−K4

∑N
j=1 h1j x̃j)
...

f1(−K4
∑N
j=1 hNj x̃j)

 .
Before presenting the main theorem, a cooperative finite-time

exciting (cFTE) condition on the filtered signals Ni(t) for all i ∈ F is
introduced. Specifically, Ni(t)’s are said to satisfy the cFTE condition
with degree of excitation α > 0, if there exists t1 ≥ 0, T > 0 such
that during the finite time interval [t1, t1 + T ],∫ t1+T

t1

N∑
i=1

Ni(τ)NT
i (τ)dτ ≥ αIn. (15)

Theorem 1: Consider the MAS consisting of the followers (1), the
leaders (2), and the controller (3) and (12). Under Assumptions 1–3,

(i) if there exist a P̂ ∈ Sn+ and a K̂3 ∈ Rnr×n such that

A0P̂ + P̂AT0 − λi(Φ)(B0K̂3 + K̂T
3 B

T
0 ) < −ρP̂ , (16)

holds for all i ∈ F and some constant ρ ∈ R+, where λi(Φ)
denotes the ith eigenvalue of Φ; and the controller coefficients
are chosen as γ ∈ R+, β ≥ maxk∈R r

∗
k, and P = P̂−1,K3 =

K̂3P̂
−1,K4 = BT0 P̂

−1;
(ii) and if the filtered signals Ni(t) for all i ∈ F satisfy the cFTE

condition (15) with degree of excitation α > 0,
then, the states of (14) are uniformly ultimately bounded for t ≥ 0,
xi will exponentially converge to Co(wk, k ∈ R), and K̂1,i will
exponentially converge to K1 for all i ∈ F and t ≥ t1 + T .

Before proving this theorem, we establish the following lemma.
Lemma 2: Consider a group of time-varying square matrices

Mi(t) defined in (11) for all i ∈ F . If Ni for all i ∈ F satisfy the
cFTE condition (15), and if Assumption 3 holds, then there exists
a positive constant α′ ∈ R+ such that M(t) + L ⊗ In ≥ α′INn,
∀t ≥ t1 + T , where M(t) = diag{M1(t), · · · ,MN (t)}.

Proof: With Assumption 3, L has only one zero eigenvalue
whose unit eigenvector is 1√

N
1N , and accordingly L ⊗ In has

n zero eigenvalues whose orthogonal unit eigenvectors are ν1 =
1√
N
1N ⊗ ε1, · · · , νn = 1√

N
1 ⊗ εm, where εi ∈ Rn represents

a unit vector whose ith element is one. The other eigenvalues of
L ⊗ In are positive and denoted as 0 < λn+1 ≤ · · · ≤ λNn,
whose orthogonal unit eigenvectors are denoted correspondingly as
νn+1, · · · , νNn. For an arbitrary nonzero vector ξ ∈ RNn, it can
always be expressed as ξ =

∑n
i=1 ciνi+

∑Nn
i=n+1 ciνi. We consider

the following two cases.
• When

∑Nn
i=n+1 c

2
i 6= 0, we have ξT (M(t) + L ⊗ In)ξ =

ξTM(t)ξ +
∑Nn
i=n+1 λic

2
i ≥

∑Nn
i=n+1 λic

2
i > 0.

• When
∑Nn
i=n+1 c

2
i = 0, which means that

∑n
i=1 c

2
i 6= 0

and ξ =
∑n
i=1 ciνi since ξ is a nonzero vector, we have

ξT (M(t) + L ⊗ In)ξ =
(∑n

i=1 ciνi
)T

M(t)
(∑n

i=1 ciνi
)

=

CTVTM(t)VC, where C = col{c1, · · · , cn} and V =
[ν1, · · · , νn]. Since Ni for all i ∈ F satisfy the cFTE condition
(15), and based on the definition of Mi in (11), it can be verified
that for all t ≥ t1 + T , VTM(t)V = 1

N

∑N
i=1Mi(t) ≥ α

N In,
which leads to ξT (M(t) + L ⊗ In)ξ ≥ α

N

∑n
i=1 c

2
i > 0.

As such, we have shown that M(t) +L⊗ In > 0 for all t ≥ t1 +T .
We need to further show that there exists a positive constant α′ such

that M(t) + L ⊗ In ≥ α′INn for all t ≥ t1 + T . This amounts to
show that all of the eigenvalues of the time-varying positive definite
matrix M(t)+L⊗In must have a lower bound α′ > 0. We will prove
this by contradiction. Suppose that for all t ≥ t1 + T , there exists
an eigenvalue λ(t) and a time sequence {tk}∞k=1 with tk ≥ t1 + T
such that limk→∞ λ(tk) = 0. Denote the unit eigenvector of λ(tk)
as η(tk), that is, ‖η(tk)‖ = 1. Then, we have

lim
k→∞

ηT (tk)(M(tk) + L ⊗ In)η(tk)

= lim
k→∞

ηT (tk)λ(tk)η(tk) = 0.
(17)

However, since η(tk) can also be written as η(tk) =
∑Nn
i=1 ci(t

k)νi
with

∑Nn
i=1 c

2
i (t

k) = 1, following the above two-case discussions,
we have the following observations.
• If

∑Nn
i=n+1 c

2
i (t

k) has a positive lower bound c, then
we have limk→∞ ηT (tk)(M(tk) + L ⊗ In)η(tk) ≥
limk→∞

∑Nn
i=n+1 λic

2
i (t

k) ≥
∑Nn
i=n+1 λic > 0, which con-

tradicts (17).
• If

∑Nn
i=n+1 c

2
i (t

k) does not have a positive lower bound,
then there must exist a time subsequence {tk`}∞`=1
corresponding to the time sequence {tk}∞k=1 such
that lim`→∞

∑Nn
i=n+1 c

2
i (t

k`) = 0, which means
that lim`→∞

∑n
i=1 c

2
i (t

k`) = 1. Denote η(tk`) =

η1(tk`) + η2(tk`) where η1(tk`) =
∑n
i=1 ci(t

k`)νi
and η2(tk`) =

∑Nn
i=n+1 ci(t

k`)νi. Obviously,
lim`→∞ η2(tk`) = 0, and then lim`→∞ ηT (tk`)(M(tk`) +
L ⊗ In)η(tk`) = lim`→∞ ηT1 (tk`)M(tk`)η1(tk`) ≥
lim`→∞

α
N

∑n
i=1 c

2
i (t

k`) = α
N > 0, which also contradicts

(17).
Thus, we can conclude that there exists a positive constant α′ such
that M(t) + L ⊗ In ≥ α′INn holds for all t ≥ t1 + T .

Proof: [Proof of Theorem 1] Consider (14), we chose a Lya-
punov function V = x̃T (Φ⊗ P )x̃+ 1

γ tr
(
K̃T

1 K̃1

)
to yield

V̇ = x̃T
(

Φ⊗ (PA0 +AT0 P )− Φ2 ⊗ (PB0K3 +KT
3 B

T
0 P )

)
x̃

+ 2x̃T (Φ⊗ PB0)
(
βF1(x̃)−

(
Φ−1 ⊗ Inr

)
×

N+M∑
k=N+1

(Hk ⊗ Inr )r̄k

+ 2x̃T (Φ⊗ PB)K̃T
1dx

− 2

N∑
i=1

tr

K̃T
1,ixi

 N∑
j=1

hij x̃j

T PB


− 2tr
(
K̃T

1 (M + L ⊗ In)K̃1

)
.

We first examine the term: x̃T (Φ ⊗
PB)K̃T

1dx = x̃T (Φ ⊗ In)(IN ⊗ PB)K̃T
1dx =∑N

i=1

∑N
j=1 hij x̃

T
j PBK̃

T
1,ixi. Since

∑N
j=1 hij x̃

T
j PBK̃

T
1,ixi =

tr

(
K̃T

1,ixi

(∑N
j=1 hij x̃j

)T
PB

)
, we have 2x̃T (Φ⊗PB)K̃T

1dx−

2
∑N
i=1 tr

(
K̃T

1,ixi

(∑N
j=1 hij x̃j

)T
PB

)
= 0. Therefore, we get

V̇ = x̃T
(

Φ⊗ (PA0 +AT0 P )− Φ2 ⊗ (PB0K3 +KT
3 B

T
0 P )

)
x̃

+ 2x̃T (Φ⊗ PB0)
(
βF1(x̃)−

(
Φ−1 ⊗ Inr

)
×

N+M∑
k=N+1

(Hk ⊗ Inr )r̄k

− 2tr
(
K̃T

1 (M + L ⊗ In)K̃1

)
.

(18)
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We consider the following three cases for (18).
(i) When for all i ∈ F , ‖K4

∑N
j=1(hij x̃j)‖ 6= 0, in light of

Assumption 2 and Lemma 1, we have

− 2x̃T (Φ⊗ PB0)(Φ−1 ⊗ Inr )

N+M∑
k=N+1

(Hk ⊗ Inr )r̄k

=− 2
[∑N

j=1 h1j x̃
T
j PB0 · · ·

∑N
j=1 hNj x̃

T
j PB0

]
×

N+M∑
k=N+1

(Φ−1Hk1N ⊗ rk)

=− 2

N∑
i=1

N∑
j=1

hij x̃
T
j PB0

N+M∑
k=N+1

`ikrk

≤2

N∑
i=1

‖BT0 P
N∑
j=1

hij x̃j‖max
k∈R

r∗k. (19)

On the other hand, with K4 = BT0 P , we have

2βx̃T (Φ⊗ PB0)F1(x̃) = 2βx̃T (Φ⊗ In)

× (IN ⊗ PB0)F1(x̃) = −2β

N∑
i=1

‖BT0 P
N∑
j=1

hij x̃j‖.
(20)

Consequently, combining (18)–(20), we obtain

V̇ ≤ x̃T
(

Φ⊗ (PA0 +AT0 P )− Φ2 ⊗ (PB0K3

+KT
3 B

T
0 P )

)
x̃− 2tr

(
K̃T

1 (M + L ⊗ In)K̃1

)
+ 2

N∑
i=1

‖BT0 P
N∑
j=1

hij x̃j‖max
k∈R

r∗k

− 2β

N∑
i=1

‖BT0 P
N∑
j=1

hij x̃j‖.

Obviously, if β ≥ maxk∈R r
∗
k, it yields

V̇ ≤ x̃T
(

Φ⊗ (PA0 +AT0 P )− Φ2 ⊗ (PB0K3

+KT
3 B

T
0 P )

)
x̃− 2tr

(
K̃T

1 (M + L ⊗ In)K̃1

)
.

(21)

(ii) When for all i ∈ F , ‖K4
∑N
j=1 hij x̃j‖ = 0, with K4 = BT0 P ,

follow the similar line of deriving (19) and (20), we have
−2x̃T (Φ ⊗ PB0)(Φ−1 ⊗ Inr )

∑N+M
k=N+1(Hk ⊗ Inr )r̄k ≤

2
∑N
i=1 ‖B

T
0 P

∑N
j=1 hij x̃j‖maxk∈R r

∗
k = 0, and 2βx̃T (Φ⊗

PB0)F1(x̃) = −2β
∑N
i=1 ‖B

T
0 P

∑N
j=1 hij x̃j‖

2 = 0. It
immediately yields the same result of (21).

(iii) When for some i ∈ F , ‖K4
∑N
j=1 hij x̃j‖ 6= 0, and all

other v ∈ F , ‖K4
∑N
j=1 hvj x̃j‖ = 0. In this case, without

loss of generality, we assume that i ∈ I[1, N1] and v ∈
I[N1 + 1, N ] with 2 ≤ N1 ≤ N − 1. Then, combin-
ing the discussions for the previous two cases, it is easy to
deduce that −2x̃T (Φ ⊗ PB0)(Φ−1 ⊗ Inr )

∑N+M
k=N+1(Hk ⊗

Inr )r̄k ≤ 2 maxk∈R r
∗
k

∑N1
i=1 ‖B

T
0 P

∑N
j=1 hij x̃j‖, and

2βx̃T (Φ ⊗ PB0)F1(x̃) = −2β
∑N1
i=1 ‖B

T
0 P

∑N
j=1 hij x̃j‖.

Then, with β ≥ maxk∈R r
∗
k, we arrive at (21).

Summarizing all the above discussions, with condition (16), we obtain
V̇ ≤ −ρx̃T (Φ ⊗ P )x̃ − 2tr

(
K̃T

1 (M + L ⊗ In)K̃1

)
. Apparently,

since for all t ≥ 0, M + L ⊗ In > 0, we have V̇ ≤ 0, ∀t ≥ 0,
which implies that all states of (14) are bounded. Furthermore, since
Lemma 2 states that M+L⊗In > α′INn for all t ≥ t1+T , we can
obtain V̇ ≤ −ρ̄V , where ρ̄ = min

{
ρ, 2γα′

}
. Solving the inequality

yields 0 ≤ V (t) ≤ V (0)e−ρ̄t,∀t ≥ t1 + T , which implies that x̃
and K̃1 exponentially converge to zero with a convergence rate no
less than ρ̄/2 for all t ≥ t1 + T . Based on the fact that convergence
of x̃ to zero implies that e is also converging to zero exponentially,
according to Lemma 8 of [22], the containment control objective is
achieved. Exponential convergence of K̃1 → 0 indicates cooperative
adaptive learning, i.e., K̂1,i → K1 for all i ∈ F .

Remark 1: Regarding solvability of condition (16), note that if we
specify a particular solution with K̂3 = κBT0 for some κ such that
κ ≥ 1

mini∈F{λi(Φ)} , then a sufficient condition to ensure solvability

of (16) is A0P̂ + P̂AT0 − 2B0B
T
0 < −ρP̂ . According to [5], [26],

[27], given a sufficiently small ρ, a necessary and sufficient condition
for existence of a P̂ ∈ Sn+ to satisfy the above condition is that
(A0, B0) is stabilizable, which is guaranteed under Assumption 2. In
summary, solvability of condition (16) is ensured with a sufficiently
small ρ > 0 under Assumption 2. It should be pointed out that
solving condition (16) requires the information λi(Φ), which might
not be always feasible under the distributed control context. Possible
solutions to overcome this issue are to utilize self-tuning adaptation
techniques as proposed in [5], which however is out of the scope of
this paper and will be pursued in our future research.

Remark 2: It is seen that the proposed cFTE condition (15) can
be satisfied whenever the associated group of signals Ni for all
i ∈ I[1, N ] are exciting in a cooperative (cumulative) fashion over a
finite-time window [t1, t1 + T ]. Specifically, it does not necessarily
require each individual signal Ni to be persistently exciting or even
finite-time exciting, which significantly relaxes existing excitation
conditions of PE [8] and FTE [16]. In addition, it does not necessarily
require the cumulative signal (i.e.,

∑N
i=1NiN

T
i ) to be exciting

persistently, which also relaxes the cPE condition of [12].
Remark 3: The proposed cooperative adaptive containment control

scheme distinguishes itself from existing methods (e.g., [5], [12],
[16], [17]) in the following aspects:
• Advanced over the method of [5] where only the containment

control objective is concerned, it succeeds to fulfill the joint
objectives of containment control and accurate parameter iden-
tification without requiring satisfaction of PE.

• Advanced over the method of [12], instead of dealing with the
parameter identification problem only, it renders simultaneously
containment control performance and accurate identification of
unknown system parameters for MASs, and accurate parameter
identification is ensured without resorting to cPE.

• Advanced over the methods of [16], [17] which are applicable to
single dynamical systems only, it addresses the direct adaptive
control problem for MASs, and parameter convergence can be
guaranteed without imposing FTE on each follower.

IV. A CASE STUDY

Consider a group of N unicycle mobile robots as followers, each
robot’s linearized motion equations are borrowed from [29], i.e.,
ṗx,i = wx,i, ṗy,i = wy,i, mẇx,i = ux,i, mẇy,i = uy,i, (∀i ∈ F),
where (px,i, py,i), (wx,i, wy,i), and (ux,i, uy,i) denote the robot
positions, angular velocities, and control inputs along X-Y axes,
respectively. m is the mass with unknown value equal to 1 kg. The
goal is to apply the proposed control scheme to realize containment
control and parameter identification for these robots. It is clear that the
X-axis and Y -axis dynamics are decoupled, we thus only consider
the X-axis dynamics for simplicity. Moreover, in order to fit into
the proposed design framework with all the unknown parameters
contained in A of (1), we need to introduce the X-axis dynamics
a pre-filter using method of [20], i.e., ẋu,i = Auxu,i + Buui,
ux,i = Cuxu,i, (∀i ∈ F). This leads to the state-space MAS
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model in the form of (1) with xi = col{px,i, wx,i, xu,i} and

A =

0 1 0
0 0 1
0 0 −1

, B = [0, 0, 1]T by choosing (Au, Bu, Cu) =

(−1, 1, 1). The M (virtual) leaders’ dynamics (2) are constructed

with A0 =

 0 1 0
0 0 1
−1 −2 −4

 and B0 = [0, 0, 1]T . For control

design, we specify N = 100 and M = 3 with an undirected
connected topology given in Fig. 2. Assumption 1 is satisfied with

Fig. 2: Network graph. Black circles: followers (F = {1, · · · , 100}).
Red squares: leaders (R = {101, 102, 103}).

K1 = [−1,−2,−3]T and K2 = 1. For simulation study, we further
specify the leaders’ inputs as r101(t) = 5 sin(t), r102(t) = 3,
r103(t) = −5 sin(t), which gives an upper bound maxr∈R r

∗
k = 5.

Controller gains are then synthesized by solving condition (16) with
γ = 2, ρ = 0.2, β = 7.5, and k = 1. With random initial
conditions for both leader and follower states and K̂1,i = 0 (∀i ∈ F),
simulation results are plotted in Figs. 3–4. Fig. 3 shows the contain-
ment error signals ei all converging to zero rapidly, thus confirming
fulfillment of containment control. The converging behaviors of the
estimate parameters K̂1,i (∀i ∈ F) to their true values are witnessed
in Fig. 4, demonstrating accurate learning capability of the proposed
controller.

Fig. 3: Containment tracking control errors (i = 1, · · · , 100).

Fig. 4: Estimate parameters K̂1,i (i = 1, · · · , 100).

V. CONCLUSIONS

A new cooperative adaptive control scheme has been proposed
to jointly achieve containment control and accurate cooperative
learning/identification of unknown system parameters for a class of
MASs subject to unmeasurable leader inputs and uncertain follower
dynamics. An important novelty of this new control scheme lies
in its capability of rendering jointly the containment control and
accurate learning performance via a mild cFTE condition, which
significantly relaxes existing ones (e.g., PE/cPE/FTE) for accurate
parameter identification in adaptive control systems.
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