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Abstract—Program comprehension is a vital skill in software
development. This work investigates program comprehension by
examining the eye movement of novice programmers as they
gain programming experience over the duration of a Java course.
Their eye movement behavior is compared to the eye movement
of expert programmers. Eye movement studies of natural text
show that word frequency and length influence eye movement
duration and act as indicators of reading skill. The study uses
an existing longitudinal eye tracking dataset with 20 novice and
experienced readers of source code. The work investigates the
acquisition of the effects of token frequency and token length in
source code reading as an indication of program reading skill.
The results show evidence of the frequency and length effects
in reading source code and the acquisition of these effects by
novices. These results are then leveraged in a machine learning
model demonstrating how eye movement can be used to estimate
programming proficiency and classify novices from experts with
72% accuracy.

Index Terms—eye tracking, source code, natural text, expertise,
empirical study, token effects

I. INTRODUCTION

Software development involves diverse activities such as
program composition, comprehension, debugging, modifica-
tion, and learning [1, 2]. However, the overwhelming majority
of software development time is spent reading source code
in a process known formally as program comprehension [3].
Studies have found that programmers spend more than 50
percent of their time on activities that reflect searching for
information [3–8]. Program comprehension is defined as the
process of understanding how a software system or part of
it works [3]. Program comprehension is a vital skill for
understanding the intended behavior of source code which
can be written by the same person or someone else. Without
understanding existing source code, debugging, modifying,
reusing, and maintaining software is impossible [9]. From an
economic standpoint, software maintenance cost is the biggest
factor in creating software systems [10, 11].

The process of reading source code shares many aspects
with reading natural text, yet the cognitive processes involved
in reading source code are much less understood and studied.
A contributing factor is the recency of programming languages
and the cumulative evidence that shows reading source code
differs fundamentally in purpose, syntax, semantics, and view-
ing strategy from natural text [12–15].

The differences between source code and natural text pro-
hibit the extension of the results of natural text reading
research to source code, leaving a cloud of uncertainty on the
commonalities and differences between natural text and source
code reading. At the same time, understanding and modeling
the cognitive processes involved in reading source code grants
a way to increase the efficiency and productivity in learning to
program and also helps understand the software development
process in general.

In this paper, we focus on the frequency and length effects
on eye movement in reading source code in relation to
programming experience. A fixation is the stabilization of the
eye over a particular area of interest. The period of time our
eyes stay focused over the area is the fixation duration. Visual
features of text are extracted only during fixations [16]. The
frequency effect refers to the difference in fixation duration for
high-frequency and low-frequency words (in our case tokens)
in which low-frequency words are fixated longer than high-
frequency words [16]. The frequency of a word (in natural
language) is measured by counting the number of times a word
appears in books and articles. We measure the frequency of
tokens by examining open source systems. Word length effect
refers to the difference in reading time in relation to word
(token) length, as longer words, in number of characters, take
longer fixation durations [16, 17] to be read and understood.

The frequency and length effects are well studied and estab-
lished in natural language reading [18–20], yet the presence
of the frequency and length effects in reading source code,
especially in relation to skill level, is still unclear. Through an
existing dataset of a longitudinal eye tracking study of novices
and experts with source code and natural text [12] we address
the following research questions:

• RQ1: Does token frequency influence the eye movement
of experienced programmers in reading source code?

• RQ2: Does token frequency influence the eye movement
of novices during source code reading?

• RQ3: When do novices acquire the frequency effect in
reading source code?

• RQ4: Does token length influence eye movement in
reading source code?

• RQ5: Can we distinguish novices from experienced pro-
grammers based solely on eye movement?
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Studying the frequency and length effects in source code
leads the way in understanding the most suitable coding styles
and best practices that enhance programmer productivity and
comprehension. Our focus on classifying novices from experts
based on their eye movement is motivated by our long term
vision of an IDE that adapts its interface and features to match
the skill level of the user. Additionally, the work can form the
basis to automatically assess programmer skill level.

Our results support the presence of the frequency and length
effects on the eye movement of novice and experienced readers
of source code. In addition, we show that the frequency
effect is acquired gradually by novice programmers during an
introductory Java course. Finally, we demonstrate how token
level analyses of eye movement during reading source code is
used to classify novices from experts with 72% accuracy.

The contributions from this paper are as follows:
• Provide evidence to support the presence of the frequency

and length effects in reading source code.
• Show the gradual acquisition of the frequency effect by

novices.
• Demonstrate how eye movement over source code is used

to estimate program reading skill level to classify novices
from experts.

II. BACKGROUND AND RELATED WORK

Eye tracking is one of the key tools in software engineering
that provides evidence on attention and the cognitive processes
of programmers [21]. This popularity is evident by surveying
31 papers in the field in 2015 [22] and 63 papers in 2018
[21]. The use of eye tracking in software engineering can
be categorized into five groups: Program comprehension,
debugging, model comprehension, collaborative programming,
and traceability [21, 22]. Two patterns can be identified in
previous research - First, the collective agreement that read-
ing source code differs fundamentally from reading natural
text [12, 23, 24]. Second, that there are differences in eye
movement of novices and experts [25–27].

A. Eye Movement on Natural Text and Source Code

The first eye tracking study in software engineering by
Crosby et al. [23] found that subjects need a significant
number of additional fixations to comprehend algorithms in
comparison to natural text. In addition, Busjahn et al. [24]
found that source code received higher fixation durations and
more regressions (jumps back) consistently on a statistically
significant level. Moreover, in a later study, Busjahn et al. [12]
focus on the scanning strategies in reading source code and
natural text. They investigate the linearity of reading natural
text and source code. Natural text is read from top to bottom
and from left to right, some skipping and regressions do occur
but eye movement patterns match to a great extent the linear
nature of the text. The study found that programmers look
at source code less linearly and to some extent their eye
movement is coupled with the control flow of the program.

At the token level, Busjahn et al. [14] present an inves-
tigation of token level effects in source code reading where

the eye movement of 15 programmers is recorded with a
focus on attention distribution over code elements. The paper
uses dwell time as a proxy for attention over lexical elements
and explored the frequency effect in Java keywords. The
study found no effect for frequency on eye movement in
reading source code, unlike natural text. This result deserves
attention as the frequency effect describes a reduction in the
duration of time needed to recognize frequent visual stimuli.
Therefore, the frequency effect is a result of neurons forming
more synapses as a result of frequent activation. At least
theoretically, a frequency effect could exist in source code.

The work by Busjahn et al. [14] found no evidence of
the frequency effect in reading Java keywords. We extend
this investigation to include all types of Java tokens, such as
identifiers, separators, operators, and literals. In addition, we
conduct our examination with novices and experienced Java
programmers, and we conduct our frequency calculations with
two normalization techniques (division and matching).

B. Eye Movement Differences between Novices and Experts

A significant pattern in the study of eye movement in
software engineering is the difference between novice and
expert readers. This is a shared phenomena between natural
text and source code [28]. In an early study, Crosby et al. [25]
focused on the novice vs. expert viewing strategies of beacons
– the surface features of computer programs that serve as keys
to facilitate program comprehension. The study found that
novices do not benefit from comprehension aids, while experts
take advantage of the visual aids in the program to support
comprehension. In addition, Bednarik et al. [26] focused on
visual attention of novice and experienced programmers in
a debugging task with multiple representations of the code.
The study found distinct viewing patterns between novices and
experts, where novices frequently shift attention between the
code and the visual representation of the code while experts
focus more on the code and the output.

In a study focusing on task difficulty assessment in software
development, Fritz et al. [27] used eye tracking, electroen-
cephalography, and electrodermal activity to determine the
perceived task difficulty. The study uses NASA Task Load
Index (NASA-TLX) [29] as an account of task difficulty, the
tasks used C# code followed by multiple choice questions
about the code. The results of the study indicate that eye
movement could be used for difficulty assessment and skill
level should be considered as a factor for perceived difficulty.

C. Frequency and Length Effects in Eye Movement on Natural
Text

Many studies on eye movement in reading natural text have
appeared over the years [16, 18, 30, 31]. The frequency effect
refers to the difference in reaction times for high-frequency
and low-frequency words in which low-frequency words are
fixated longer than high-frequency words [16]. The frequency
of a word is measured through counting the number of times
a word appears in books, articles, and various sources. Word
frequency for natural languages has been organized in lexical
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databases such as the CELEX database [32], and it is measured
in words per-million. High-frequency words appear thousands
of times in a million words, an example of that is the word
“the” which appears approximately 65,000 times-per-million
[32]. Word length effect refers to the difference in reading
time in relation to word length, as longer words in number of
characters take longer fixation durations [16, 17]. Word length
effect comes from visual acuity as processing more characters
that are distributed further from the center of the fixation takes
more time than a shorter word [16].

One of the early studies on the frequency and length
effects on natural text produced the effects in a number of
different experimental situations [33]. Another study on the
lexical complexity and fixation times found strong effect of
word frequency where low frequency words received longer
fixation duration than high-frequency words [18]. In addition,
focusing on the differences between younger (novices) and
older (experts) readers a more recent study found that the
frequency effect is larger with older readers than younger ones
[31]. Another study focused on the frequency effect in relation
to average and skilled readers found that the magnitude of
the frequency effect is influenced by reading skill [34]. These
results form the basis to investigate the frequency effect as an
indicator of programming skill in source code reading.

III. SOURCE CODE FREQUENCY AND LENGTH

In the context of our research questions, we need to know
the frequency of every code token to inspect the difference
between low- and high-frequency tokens on eye movement
duration. In this section we present our methodology for
calculating token frequency and length for source code tokens
in order to measure the influence of token frequency and length
on fixation duration.

Frequency information for natural text is obtained from
lexical databases, but no such resources exist for source
code. Therefore, we use 10 Java repositories to calculate
the frequency of each token. We use repositories that are
reported to provide a language model with low perplexity
[35], and fulfilled the guides [36] of selecting meaningful
repositories sets. The repositories represent approximately 3.9
million lines of code resulting in approximately 14.3 million
tokens, after removing comments from code. Only Java files
were processed, code in other languages is excluded. Table
I shows the details of the selected Java repositories and the
number of tokens in each repository.

The frequency of a token is estimated by counting the
number of times the token appeared in all repositories over
the number of all tokens in all repositories normalized by one
million:

frequency(token) =
count(token)

count(vocabulary)/(1, 000, 000)

Vocabulary is the set of all tokens that appear in the 10
repositories. Token frequency is normalized by one million to
provide a reproducible estimation of how common a word or
a token is in a specific language.

TABLE I
JAVA REPOSITORIES USED TO CALCULATE TOKEN FREQUENCIES.

Repository Files Lines Tokens
Ant 1,314 304,957 1,053,481
Batik 1,651 353,516 1,185,185
Cassandra 2,673 586,451 2,055,723
Eclipse 154 25,914 77,699
Log4J 309 60,078 208,578
Lucene 8,467 1,874,373 6,900,196
Maven2 378 60,775 206,887
Maven3 834 113,384 388,503
Xalan-J 958 348,769 1,355,646
Xerces2 833 261,312 958,345
Total 17,571 3,979,251 14,390,243

Token length is calculated as a direct measure of the number
of characters in a token. When studying the frequency effect,
it is common practice to normalize eye movement duration by
word/token length, as this provides a more reliable measure of
only the frequency effect and removes any length effect that
influences eye movement duration [14, 18].

IV. EXPERIMENTAL DATASET AND METRICS

In this section we describe the preexisting dataset we used
in this study, which was first presented in [12]. In addition, we
present the eye movement metrics, filtering, and transforma-
tions that we perform in our analyses. A complete replication
package is available at https://osf.io/t5je9/.

A. Participants and Apparatus

We now summarize relevant aspects of the longitudinal
experiment presented in [12]. The 20 participants consisted
of 14 people with no previous programming experience and
six experienced professional software developers. Novices
were college students with the exception of two subjects and
enrolled in a Java course consisting of six learning modules.
Each learning module took several weeks in duration and
an eye movement recording session with code and natural
language text followed each module. The six experienced
programmers had 5 to 28 years of programming experience
and they were recorded only once. An SMI RED-m remote eye
tracker with a sample rate of 120 Hz is used in the experiment.
The screen resolution was set to 1680x1050 for novices (done
in a lab) and 1280x1024 for experts (outside the lab). The font
used was Arial with size no less than 13 pt and no greater than
16 pt and varied for each lesson making sure that everything
was clear and calibration was successfully done.

B. Experiment Design and Hypothesis

As reported in [12], the experiment material consists of
programs that are 4 to 28 lines long, subjects are asked to
read three programs after they completed each module. Two
of the programs are in pseudocode and programs progress in
complexity throughout the six learning modules. An experi-
ment block diagram showing this is given in Figure 1.

Our methodology consists of examining expert and novice
eye movement over source code to determine the influence
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Fig. 1. Experimental Design Workflow

of the frequency effect on their eye movement. The six Java
learning modules contain source code tokens with diverse
lengths and frequencies. Our hypothesis is that novices have
not been exposed to source code tokens initially, therefore their
eye movement will not show an influence of token frequency
on eye movement duration. In contrast, experts who have
been exposed to source code tokens extensively will show
an influence of the frequency effect and display shortened
fixation durations on high-frequency tokens. If this is true,
then we expect novices to acquire the frequency and length
effects after a certain amount of exposure to programming in
Java, which we measure in learning modules.

C. Tokenization and Filtering

According to Schütze et al. [37], tokenization is the process
of splitting a character sequence into pieces called tokens.
Tokenization is language and application specific, and in the
context of eye movement over source code, a token includes
any source code element (i.e. identifier, keyword, separator,
operator, and literal) that is surrounded by spaces (including
the beginning and ending of each line). Figure 2 shows
collection of tokens highlighted in different colors, notice
that some tokens are separators or operators that can be one
character long.

Since our study focuses on token level effects, each token of
the source code stimuli is mapped to an area of interest (AOI).
An example of the token level AOIs used in this analysis
is seen in Figure 2 (this mapping is done using EyeCode1).
Keywords and symbols are individual tokens. For identifiers,
we do not split them apart or split on dots. For example,
”text.substring” is one token, not two separate tokens.

After this mapping is complete, the first and last tokens of
each line are removed as fixation duration is irregular and
prolonged at the beginning and ending of a line of code

1https://github.com/synesthesiam/eyecode

Fig. 2. A sample program with token level AOIs shown.

(sentences in natural text) [38]. In addition, fixations with
duration less than 90 ms and greater than 500 ms are removed
as very short fixations represent eye tracker error or inter-
word regressions caused by motor error. Fixations longer than
500 ms often occur at the end of a sentence and are not
representative of the influence of linguistic factors such as
frequency and length on eye movement [38].

D. Eye Movement Metrics

We measure the influence of the frequency and length
effects on eight eye-movement metrics that are calculated for
each token. Four duration metrics and four probability metrics
as defined below [38, 39].

Let F be the set of all fixations on token n before moving
to token n+1. Fi is the fixation at index i where i = {1, 2, ...,
k}. S refers to the number of subjects in the experiment, and
R is all re-fixations on token n after moving to token n+1 and
making a regression. The duration metrics are:

1) First-Fixation Duration (FFD): The duration of the first
fixation on a word/token.

FFD =
{∑S

1 F1

S , k > 0

}
2) Single-Fixation Duration (SFD): The duration of the

fixation when only one fixation was made on the
word/token.

SFD =
{∑S

1 F1

S , k = 1

}
3) Gaze Duration (GD): The sum of all fixations on

word/token n before moving to word/token n+1.

GD =
{∑S

1 F1+F2+...+Fk

S , k > 0

}
4) Total Time (TT): The sum of all fixations on word/token

n (including regressions).

TT =
{∑S

1 F1+F2+...+Fk+R1+R2+...+Rm

S , k > 0

}
Assume that SF is the number of subjects who make at

least one fixation on the token, S1 is the number of subjects
who make only one fixation, S2 is the number of subjects who
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make 2 fixations or more, and S0 is the number of subjects
who skip the token. The probability metrics for that token are:

1) fixation probability (PrF): The probability of a
word/token in getting a fixation.

PrF =
SF

S

2) probability of making exactly one fixation (Pr1): The
probability of a word/token in getting exactly one fixa-
tion.

Pr1 =
S1

S

3) probability of making two or more fixations (Pr2): The
probability of a word/token in getting two or more
fixation.

Pr2 =
S2

S

4) probability of skipping (PrS): The probability of a
word/token in getting no fixation (getting skipped).

PrS =
S0

S

V. EXPERIMENTAL RESULTS

A. RQ1: Does token frequency influence the eye movement of
experienced programmers in reading source code?

In answering this question we attempt to find evidence for
the frequency effect in source code reading with experts. A
small previous study by Busjahn et al. [14] reported a negative
result on the presence of the frequency effect in reading source
code. For that reason, we replicate the previous study with a
few changes and borrow the methodology from key research
that presents the frequency effect in natural text [19, 20]. The
frequency effect appears as a reduction in fixation duration on
high-frequency words in comparison to low frequency words
with the same length. The normalization by length is done by
dividing eye movement duration by the number of characters
(as in [14]), or by selecting high and low frequency target
words of the same length (as in text [19, 20]). To answer
our question thoroughly we do both division and matching
methods of normalization and verify our results statistically.

The influence of frequency on eye movement is acquired by
experience and exposure to the language in question, therefore
we focus our attention on experienced programmers to inves-
tigate the presence of the frequency effect in reading source
code. We consider low-frequency words with frequency below
100/million (e.g., height, method), and high-frequency words
with frequency above 10,000/million (e.g., public, return).

Starting with normalizing by division, we divide eye move-
ment duration over a token (i.e. Single Fixation Duration, First
Fixation Duration, Gaze Duration, and Total Time) by the
number of characters in that token. For example, if the Total
Time is 400 ms on a token of 4 characters, the normalized total
time (n Total Time) is 100 ms. Excluding tokens consisting of
exactly one letter space in length, such as ”)”, we end up with

TABLE II
MEAN EYE MOVEMENT DURATIONS (IN MILLISECONDS) NORMALIZED BY
DIVISION FOR LOW-FREQUENCY AND HIGH-FREQUENCY CODE TOKENS. p
SHOWS THE PROBABILITY THAT LOW-FREQUENCY AND HIGH-FREQUENCY

BELONG TO THE SAME POPULATION.

Metric Low High p
n Single Fixation Duration 53 52 0.11
n First Fixation Duration 49 55 0.75
n Gaze Duration 79 81 0.60
n Total Time 133 114 0.34

234 low and high frequency target tokens. Single character
tokens are filtered as natural language text studies have showed
single character are often skipped or processed through the
parafovea (peripheral vision) without a direct fixation [17, 38].

Table II shows mean eye movement metrics (normalized
by division) for low/high-frequency code tokens. We observe
that low-frequency tokens take longer fixation durations than
high-frequency tokens in the total time metric only. Yet
when this difference in duration is tested statistically through
Wilcoxon signed-rank test the difference between high and
low frequency tokens is not statistically significant.

Wilcoxon signed-rank test is used here instead of paired
t test since the data residuals are not normally distributed,
which is one of the requirements of the paired t test. Wilcoxon
signed-rank test is the non-parametric version of the paired
t test, and use it here since we have two within subject
categories (high frequency and low frequency).

This result replicates the results of the previous study by
Busjahn et al. [14] which found no statistically significant dif-
ference in eye movement over low- and high-frequency source
code tokens when normalized by length through division.

TABLE III
MEAN EYE MOVEMENT DURATIONS (IN MILLISECONDS) NORMALIZED BY
MATCHING FOR LOW-FREQUENCY (LOW) AND HIGH-FREQUENCY (HIGH)
CODE TOKENS. p SHOWS THE PROBABILITY THAT LOW-FREQUENCY AND
HIGH-FREQUENCY BELONG TO THE SAME POPULATION. BOLD WHEN p

<0.05.

Metric Low High p
n Single Fixation Duration 220 225 0.11
n First Fixation Duration 224 228 0.34
n Gaze Duration 411 345 0.24
n Total Time 937 425 0.02

We use another normalization technique, namely matching,
to thoroughly test the presence of the frequency effect in
reading source code. The target tokens are matched with 6
characters in length, with 42 high-frequency tokens and 36
low-frequency tokens. The resulting 78 target tokens are more
than double the number of target words reported in [19, 20].
Table III shows mean eye movement durations for length-
matched low- and high-frequency tokens.

Both Gaze Duration (GD) and Total Time (TT) appear to
show shorter fixation duration for high-frequency tokens, yet
statistical testing through Wilcoxon signed-rank test showed
that only Total Time was statistically significant. The effect
size (d = .92) was found to be large according to a Cohen’s
d test. Table III shows that the difference between low- and
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high-frequency tokens in Total Time is statistically significant
(with p <0.05), providing evidence to support the presence of
the frequency effect in reading source code. In fact, the mean
Total Time difference between low and high frequency tokens
is more than double.

To summarize, our results suggest that there is a difference
between low- and high- frequency tokens in the eye movement
of experienced programmers. This difference is statistically
significant only in the Total Time metric when eye movement
is normalized by matching tokens of equal length. It is
important to note that the lack of statistical significance in
other metrics does not indicate a negative result.

B. RQ2: Does token frequency influence the eye movement of
novices during source code reading?

In this section, we focus on the eye movement of novices
during a Java course consisting of six learning modules, where
eye movement over source code was recorded after each
module. Our hypothesis is that linguistic effects such as the
frequency effect are an indication of skilled reading, and that
the frequency effect appears as a result of repeated exposure
to source code. Therefore, we search for evidence of the
frequency effect in all modules, and in the next section we
focus on each module individually.

To verify that the frequency effect is not observed in
the eye movement of novices we apply identical filtering
as the previous question, where low-frequency words have a
frequency below 100/million, and high-frequency words have
a frequency above 10,000/million. Similar to the previous
section, single character tokens are filtered as they are highly
likely to be processed in the parafovea (peripheral vision). In
addition, we focus on novice data in all six learning modules,
and we normalize eye movement duration by length using
division and matching, similar to the previous question.

TABLE IV
MEAN NOVICE EYE MOVEMENT DURATIONS (IN MILLISECONDS)

NORMALIZED BY DIVISION FOR LOW-FREQUENCY AND HIGH-FREQUENCY
CODE TOKENS. p SHOWS THE PROBABILITY THAT LOW-FREQUENCY AND
HIGH-FREQUENCY BELONG TO THE SAME POPULATION. BOLD WHEN p

<0.05.

Metric Low High p Effect Size
Single Fixation Duration 68 50 0.001 0.512
First Fixation Duration 60 48 0.003 0.364
Gaze Duration 100 71 0.005 0.466
Total Time 178 119 0.0009 0.368

Processing 241 high-frequency tokens and 481 low-
frequency tokens in all six modules yielded a statistically
significant advantage for high-frequency tokens in terms of
shorter eye movement durations. Table IV shows mean novice
eye movement durations in the all six learning modules
normalized (by division), and every metric shows shorter mean
duration for high-frequency tokens in comparison to low-
frequency tokens. When this difference is tested statistically
through Wilcoxon signed-rank test, the difference was statisti-
cally significant with p <0.05. Statistical testing of individual
modules and accompanying post-hoc tests will be presented in

TABLE V
MEAN NOVICE EYE MOVEMENT DURATIONS (IN MILLISECONDS)

NORMALIZED BY MATCHING FOR LOW-FREQUENCY AND
HIGH-FREQUENCY CODE TOKENS. p SHOWS THE PROBABILITY THAT

LOW-FREQUENCY AND HIGH-FREQUENCY BELONG TO THE SAME
POPULATION. BOLD WHEN p <0.05.

Metric Low High p Effect Size
Single Fixation Duration 264 232 0.465
First Fixation Duration 235 230 0.753
Gaze Duration 480 352 0.046 0.653
Total Time 1178 595 0.046 0.934

the next section. Wilcoxon signed-rank test is used here again
since the data residuals are not normally distributed, and we
have two within-subject categories (high frequency and low
frequency).

We now present the results of normalization by matching.
Despite the small sample size for tokens of equal length, in all
six modules 186 high-frequency tokens and 42 low-frequency
tokens where matched with length equal to six characters. This
token length is chosen based on the most common token length
to aid in finding the largest sample of high- and low-frequency
tokens of equal lengths. Nonetheless, in some instances no
matches were found resulting in a small sample size.

Table V presents data from all six learning modules, where
novice eye movement is compared over low- and high-
frequency tokens normalized by matching. The table shows
that novice eye movement over low frequency tokens have
longer durations than high frequency tokens in every metric.
Again, Wilcoxon signed-rank test is used, and the difference
is statistically significant in the Gaze Duration and Total Time
metrics.

To summarize, we found evidence of the frequency effect in
the eye movement of novices when normalized by division and
matching, the difference between high- and low- frequency
tokens is statistically significant. This result suggests that
novices acquire the frequency effect during a Java course.

C. RQ3: When do novices acquire the frequency effect in
reading source code?

To answer this question we calculate the influence of the
frequency effects on eye movement of novices longitudinally
over the duration of a Java course (six learning modules).
Since the frequency effect appears as a reduced fixation
duration over high-frequency tokens in comparison to low-
frequency tokens, we sample tokens from each of the six mod-
ules into high-frequency (>10,000/million) and low-frequency
(<100/million) to compare normalized mean duration. We
exclude tokens that are single characters. All duration in this
section are normalized by division, since matching tokens of
equal lengths reduces the size of the sample data.

Table VI is a comparison of eye movement durations over
high/low frequency code tokens in each learning module. This
module level view allows for an examination of the frequency
effect as reduced eye movement duration over high-frequency
tokens in comparison to low-frequency tokens from the same
module. One observation in the last module is that in every eye
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TABLE VI
NOVICE MEAN EYE MOVEMENT DURATION OVER LOW-FREQUENCY AND

HIGH-FREQUENCY TOKENS IN EACH LEARNING MODULE (DURATIONS
NORMALIZED BY LENGTH THROUGH DIVISION).

learning module metric high-frequency low-frequency
1 SFD 83 61
1 FFD 77 61
1 GD 92 113
1 TT 96 195
2 SFD 63 56
2 FFD 58 60
2 GD 72 76
2 TT 103 102
3 SFD 42 74
3 FFD 46 71
3 GD 71 102
3 TT 129 155
4 SFD 60 49
4 FFD 41 47
4 GD 53 91
4 TT 103 221
5 SFD 53 69
5 FFD 53 50
5 GD 81 84
5 TT 115 164
6 SFD 44 73
6 FFD 44 75
6 GD 54 103
6 TT 87 217

movement metric, high-frequency tokens had lower average
durations than low-frequency tokens. This advantage to high-
frequency tokens is not consistent among the first five modules.

Fig. 3. Novice low-frequency mean duration minus mean high-frequency
durations, showing the average advantage of high-frequency tokens in each
learning module.

We now focus on the difference in duration between high-
and low-frequency tokens. Figure 3 presents the mean low-
frequency durations minus mean high-frequency durations
for each learning module. It shows how much longer low-
frequency tokens take to process, when compared to high-
frequency tokens in the same learning module. The bigger
the value in milliseconds, the greater the benefit from the
frequency effect, and if the difference is zero it means that
there is no difference between high- and low-frequency tokens.

Figure 3 shows a positive trend between modules 1 and
modules 6, suggesting an increase in the frequency effect over
time. Most notably, in module 1 novices show an inverted
frequency effect where low-frequency tokens took less time
than high-frequency tokens, and module 6 shows an advantage
for high-frequency tokens in all metrics.

A non-parametric Friedman test of differences among re-
peated measures is used and renders a Chi-square value of
12.42 which is significant p = 0.029. Friedman test is the
appropriate test here as we have repeated measures and non-
parametric data. Post-hoc pairwise comparisons using Dunn’s
test indicated that module 1 scores are observed to be signif-
icantly different from those of module 6 (p = 0.040, Cohen’s
d = 0.88). The same test indicates that module 2 scores are
observed to be significantly different from those of module
6 (p = 0.009, Cohen’s d = 1.98). No other differences are
statistically significant.

The statistical tests suggest that there is a significant dif-
ference between the frequency effect measured in module 1
and module 6. To examine this difference further, Wilcoxon
test is used to determine the eye movement metrics that show
a significant difference. Wilcoxon signed-rank test indicates
that Gaze Duration and Total Time are statistically significant
with (p = 0.027) and (p = 0.046) respectively. Single Fixation
Duration and First Fixation Duration are not significant.

To summarize, the results indicate statistically significant
differences between the first two modules and module 6 in the
affect of token frequency on Gaze Duration and Total Time.

D. RQ4: Does token length influence eye movement in reading
source code?

Token length is a direct measure of the number of characters
in a token. Word length effect refers to the difference in
reading time in relation to word length, as longer words in
number of characters take longer fixation durations [16, 17].
Word length effect comes from visual acuity as processing
more characters that are distributed further from the center of
the fixation takes more time than a shorter word [16].

Starting with experts, Figure 4 shows mean expert eye
movement durations over tokens ranging in length from two
to 10 characters (i.e., letters, dots, underscores). The figure
shows that expert Single Fixation Duration and First Fixation
Duration appear to be not influenced by token length. Yet,
Gaze duration and Total Time appear to increase with the
increase in characters. A non-parametric Friedman test of
differences among Total Time repeated measures is done and
renders a Chi-square value of 12.78 that is not significant p =
0.11 (p <0.05).

For novices, Figure 5 shows mean eye movement durations
over tokens ranging in length from two to 10 characters. The
figure shows that expert Single Fixation Duration and First
Fixation Duration appear to be not influenced by token length.
Yet, Gaze duration and Total Time appear to increase with the
increase in letter-spaces, in a similar manner to experts.

A non-parametric Friedman test of differences among
novice Total Time repeated measures used and renders a
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Fig. 4. Expert mean eye movement durations per-token-length in letter-spaces.

Fig. 5. Novice mean eye movement durations per-token-length in characters.

Chi-square value of 16.53 which is significant p = 0.035.
Post-hoc pairwise comparisons using Dunn’s test indicated
that eye movement durations over tokens with three letter
spaces in length are observed to be significantly different
from those of length ten (p = 0.045, Cohen’s d = 1.36).
No other differences are statistically significant. Bonferroni
correction is used with post-hoc Dunn’s test to avoid Type-1
errors. Bonferroni correction compensates for the increased
probability of detecting a false positive by accounting for
number of pairwise tests in the significance threshold.

To summarize, our results suggest that token length influ-
ences eye movement duration in reading source code. This
influence is seen in longer eye movement duration over tokens
with more characters. This difference was only statistically
significant in the eye movement of novice programmers.

E. RQ5: Can we distinguish novices from experts based solely
on eye movement?

To answer this question we compare the eye movement
of novices to experts based on our 8 metrics and validate
the comparison through statistical testing. Table VII gives
the mean eye movement metrics for novices and experts
normalized (by division with prefix “n ”) and probability
metrics. Starting with duration metrics it appears that novices
mean duration is either equal to experts (i.e. n First Fixation
Duration) or longer than experts (i.e. n Single Fixation Du-
ration, n Gaze Duration, and n Total Time). It is important
to note that the durations are normalized by division, which
means that a durations represent processing time per-character.
For example the difference between novices and experts in
n Single Fixation Duration of 8 milliseconds will translate
to a 40 millisecond difference in a 5 character token. When
these differences are verified statistically using Kruskal-Wallis
statistical test, n Single Fixation Duration and n Total Time
are significantly different between novices and experts.

TABLE VII
MEAN EYE MOVEMENT METRICS FOR NOVICES AND EXPERTS

NORMALIZED (BY DIVISION WITH PREFIX “N ”) AND PROBABILITY
METRICS. BOLD WHEN GROUPS ARE DIFFERENT ON A STATISTICALLY

SIGNIFICANT LEVEL (p <0.05).

Metric Novice Expert p Effect Size
n Single Fixation Duration 48 41 0.022 0.179
n First Fixation Duration 64 64 0.992
n Gaze Duration 97 92 0.107
n Total Time 159 138 7e-05 0.166
Fixation Probability 0.78 0.71 0.008 0.286
Prob. of One Fixation 0.28 0.32 0.531
Prob. of Two Fixations 0.49 0.39 6e-05 0.308
Prob. of Skipping 0.21 0.28 0.008 -0.286

Moving to probability metrics, Table VII shows a com-
parison of mean probabilities between novices and experts.
The values indicate that novices are more likely to make
two or more fixations on the same token (Probability of Two
Fixations - Pr2), and also experts are more likely to skip a
token (Probability of Skipping). When these results are exam-
ined statistically through Kruskal-Wallis test the results show
significant difference between novices and experts in Fixation
Probability, Probability of Two Fixations and Probability of
Skipping (Fixation Probability and Probability of Skipping
complement each other as probability of making a fixation
and a probability of skipping). Hence, we find statistically
significant differences in eye movement between novices and
experts in two duration metrics and two probability metrics.

The differences between the eye movement of novices
and experts in specific metrics motivates the use of machine
learning models to classify eye movements over tokens as
coming from experts or novices. Such a model will validate
our findings and form the bases to utilize the results of our
research for practical tasks.

We construct a machine learning model to classify eye
movement over tokens of code as coming from either novices
or experienced programmers. We used Random Forest model
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[40] for this task for a number of reasons. First, based on
our previously presented statistical results we can make a dis-
tinction between novices and experts based on eye movement
duration and probability of making more than one fixation.
This leads us to use decision trees as a suitable classification
model for the problem as each metric can represent a branch
in the decision tree. For example if a token has a n Total
Time of 160 milliseconds and and Probability of Two Fixations
(Pr2) of 0.5 then it is more likely that the tokens is coming
from a novice. Second, Random Forests represent a class
of ensemble learning that utilizes a combination of machine
learning models to increase the classification accuracy. This is
evident by the fact that Random Forests overcome the tendency
of decision trees to over-fit training data [40]. Third, our data
set consists of 1403 words with an asymmetrical distribution
between expert and novice data (40/60) and Random For-
est models work well with this type of distribution. Lastly,
Random Forests can rank feature importance and this is very
relevant while explaining the precise differences between the
eye movement of novices and experts.

TABLE VIII
RANDOM FOREST MODEL PARAMETERS

Parameter Value
n estimators 100
criterion gini
max depth None (unlimited)
min samples split 2
min samples leaf 1
min weight fraction leaf 0
max features auto: max features=sqrt(n features)
max leaf nodes None (unlimited)
min impurity decrease 0
min impurity split 1e-7
bootstrap True
oob score False
random state None
warm start False
class weight None

We use the same data from the experiment described
earlier with the following features: n Single Fixation Du-
ration, n First Fixation Duration, n Gaze Duration, n Total
Time, Probability of One Fixation (Pr1), Probability of Two
Fixations (Pr2), Fixation Probability, Probability of Skipping
(PrS) (Frequency and length features are removed to base
the classification solely on eye movement). We use min-max
normalization for the data as most ML algorithms are sensitive
to features that are not on the same scale and we split the
data using stratified sampling into a 70% training set and 30%
testing set. A Random Forest model [40] is used with 10-fold
cross validation as implemented in [41]. The model parameters
are presented in Table VIII.

Running the model with 10-fold cross validation results in a
mean accuracy score of 72.3%. Although this is a good result,
accuracy alone is not very meaningful in a classification task;
therefore precision, recall, and F1-score are used to provide
a better understanding of the performance of the model. The
precision score of our model is 77%, recall score is 75.4%,
and F1-score is 76.2%. These results show that the model can

TABLE IX
RANDOM FOREST MODEL FEATURE IMPORTANCE RANKING AFTER

TRAINING.

Feature Importance
n First Fixation Duration 0.124
Probability of Skipping 0.122
n Total Time 0.112
n Single Fixation Duration 0.108
n Gaze Duration 0.102

classify experts and novices based on their eye movement.
Furthermore, looking at feature importance presented in Table
IX we see that the most important feature in classifying
novices from experts is n First Fixation Duration followed
by Probability of Skipping, n Total Time, n Single Fixation
Duration, and n Gaze Duration. This ranking is informative
of how the eye movement of novices and experts differ.

VI. THREATS TO VALIDITY

Internal validity: With regards to RQ3, as mentioned in [12]
some novice participants dropped out of of the experiment
after a few weeks resulting in fewer samples in the last
modules. In addition, experts are recorded through a single
eye tracking session unlike novices who are recorded 6 times.
This is caused by the difficulty of recruiting experts and
professional programmers. This results in comparing the six
novice modules to a single recording of experts, which might
create an experience effect with novices that is not possible for
experts. The machine learning classification in RQ5 is intended
as a proof of concept demonstration to highlight the potential
use of our research. We have taken many steps such as cross
validation and stratified sampling to ensure the generalizability
of the model. Nonetheless, significant steps remain incomplete
before a practical real-time IDE extension is able to distinguish
the level of expertise of a user based on their eye movement.

Construct validity: Busjahn et al. [12] notes that not all
novice participants completed all modules as some dropped
out. This does not affect RQ1 as we focus on expert eye
movement exclusively. At the same time, RQ2 and RQ4 focus
on novices, but we pool tokens based on their frequency
and length across the six modules into groups that we can
test statistically. As for RQ3, we used tokens aggregated
in each module into low- and high-frequency tokens, and
normalization by division was used to collect the largest valid
sample possible. With regards to the experimental steps in RQ1
and RQ2, trying to quantify the frequency effect exclusively is
extremely difficult. Here, we normalize eye movement dura-
tion by length to focus only on the frequency effect. We used
two normalization techniques to cover aspects of variation in
the normalization technique that might influence the results.
We focused on the frequency and length effects in this paper
as they appear to be the most influential language factors on
eye movement in natural text reading [16]. Nonetheless, other
factors such as token predictability and the syntactic structures
can influence eye movement [42, 43].

External validity: The tasks used in earlier modules were
relatively simple but got progressively more realistic. The ex-
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perts were a representative sample from industry and novices
were true novices, making these results applicable to real life
settings.

Conclusion validity: We use appropriate inferential statisti-
cal tests since our data was not normally distributed and had
a skew larger than 3 standard deviations.

VII. DISCUSSION

When comparing our results to the previous study that
reported no frequency effect in reading source code [14],
we recognize a few differences. In this paper, we include
key words and identifiers, and we apply proven filtering and
normalization techniques that are reported in key previous
research [19, 20, 38]. At the same time, our results on length
effect matched the previous study.

The results from RQ1 and RQ2 provide evidence to support
the presence of the frequency effect in reading source code.
This result does not agree with the previous study by Busjahn
et al. [14] which found no influence of frequency on eye
movement in reading source code. However, there are a
few major differences in the way we approach the question:
First, we apply two methods of normalization and filtering
techniques that are drawn from foundational research on the
frequency effect in natural language text [19, 20]. In addition,
we include four duration metrics in our analysis, namely First
Fixation Duration, Single Fixation Duration, Gaze Duration,
and Total Time. Furthermore, we considered the frequency
effect on all code tokens that are greater than a single character
in length, while the previous study focused on keywords.
Lastly, our statistical analysis shows statistically significant
differences between low- and high-frequency tokens in both
normalization techniques.

The results of RQ3 provide a deeper analysis of the acqui-
sition of the frequency effect by novices, where the results
indicate a statistically significant difference between the first
two modules and the last module in Gaze Duration and
Total Time. These results suggest that indeed the frequency
effect can be acquired through experience similar to how
it is acquired in reading natural text. These results call for
a future study to record novice eye movement beyond six
learning modules to see the long-term effects of exposure to
programming and how novice eye movement changes through
the transition to experts. These results impact how educators
would develop instructional materials for novices.

With regards to RQ4, our results match those presented
by Busjahn et al. [14], which indicates the presence of the
length effect in the eye movement of novice and expert
code readers. This result calls for further investigation of the
learning modules in which the effect appears. One hypothesis
is that the length effect appears from the first module, since the
length effect is a result of visual processing and acuity where
larger stimulus requires more time to process. On the other
hand, another hypothesis that the length effect is an acquired
skill similar to the frequency effect.

Reflecting on the frequency and length effects from an eye
movement control perspective, we can ask: Why are there

frequency and length effects in the first place? And why
do they appear in reading source code? The most prominent
natural text eye movement control model, namely E-Z reader
[38], may provide some insight in answering these questions.
The model describes the length effect as a result of visual
processing where a longer word requires more time to process
as it involves encoding a more complex visual stimulus. As for
the frequency effect, which influences lexical access where a
stimuli that is more frequent is retrieved faster. This is possibly
a result of the brain forming more synapses between neurons
that are frequently activated together.

The results of RQ1-RQ4 leave us with implications to
educators and practitioners. The presence of the frequency
effect in reading source code means that exposure to consistent
coding style facilitates reading and ultimately comprehension.
When programming language elements are presented con-
sistently their frequency increases, and thus become more
predictable to the reader. Simultaneously, the presence of word
length effect shows that longer identifier names take longer
to process. Therefore, shorter identifier names are potentially
easier and faster to read (without sacrificing a meaningful
name). In the context of coding best practices, our results seem
to uncover the cognitive bases for good coding style.

Regarding RQ5, the use of token level analyses of source
code reading opens the door for interesting discussions on the
influence of coding style and structure on source code reading
and comprehension. Our intention behind the classification
between novices and experts based on their eye movement
is to demonstrate a potential practical use for our work. We
envision an Integrated Development Environment (IDE) that
is able to detect the expertise of a programmer and adjust its
environment and recommendations accordingly. Perhaps such
a system is able to introduce learners to IDE tools gradually
in a way that matches their developing skill level.

VIII. CONCLUSIONS AND FUTURE WORK

The paper analyzes an existing longitudinal data set of
source code eye movements of novice and experienced Java
programmers. The results present evidence in support of the
presence of the frequency and length effects in reading source
code. In addition, we present evidence of the acquisition of
the frequency and length effects by novices over the duration
of a Java course. Finally, we demonstrate how eye movement
during reading source code can be used to classify novices and
experts using fixation duration derived features. The results
presented in this paper motivate further investigation into the
linguistic factors, such as predictability and token type, that
influence eye movement in reading source code. This could be
useful in building a model of eye movement control that may
be able to predict when and where the eyes move across a
line of code. Eye movement models can give us a baseline for
typical source code reading behaviour, which can be compared
to novices or experts to determine their programming skill
level. In addition, this research leads us to question the ways
in which programming students leverage their natural language
ability in reading source code.
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