
SCHUR COMPLEMENT BASED MULTICOLORING LOW-RANK

CORRECTION PRECONDITIONER FOR SPARSE MATRICES ∗

QINGQING ZHENG † , YUANZHE XI ‡ , YOUSEF SAAD § , AND LINZHANG LU ¶

Abstract. This paper proposes an efficient Schur complement based parallel preconditioner for
solving general large sparse linear systems which include the nonsymmetric and highly indefinite
problems that are difficult to solve by using iterative methods. The basic idea is that the original
problem is solved after it is transfered to several smaller systems based on the multicoloring ordering
and the Schur complement combined with low-rank correction. Each smaller system corresponds to
one color and one sub-solution vector. The low-rank correction matrix is obtained by several steps
of Lanczos process and Arnoldi process for the symmetric and nonsymmetric matrices, respectively.
Numerical examples illustrate that, when combined with Krylov subspace accelerators, the new
preconditioner is efficient to solve large sparse symmetric and nonsymmetric linear systems.

Key words. Low-rank approximation; Schur complement; multicoloring; parallel precondition-
er; Krylov subspace method

1. Introduction. Consider the solution of the following linear system

A0x0 = b0, (1.1)

where A0 ∈ R
n×n and b0 ∈ R

n. Iterative methods based on the Krylov subspace
methods can be quite efficient for solving the above linear system especially when
a good preconditioner is provided. A preconditioner to matrix A0 is just a way to
approximately solve A0z = r, where r is the residual vector. This way can be a matrix
M which is a good approximation of A0 or an effective function F , which satisfies
z = M−1r or z = F (r) is a good approximation to the solution of A0z = r. A basic
property of the preconditioner is that the system with coefficient being the matrix M

or function F should be inexpensive to solve.
ILU preconditioners [10, 15] based on the Incomplete LU (ILU) factorization

of A0 can be quite effective for solving certain kinds of linear systems. However,
the preconditioners can not handle problems with coefficient matrix being highly
indefinite. In addition, the ILU preconditioners have very poor performance on high-
performance computers equipped with massively parallel coprocessors due to their
sequential nature. The algebraic multigrid (AMG) is a popular technique to solve the
problems coming from the discretized PDEs, which performs well for a large class of
SPD matrices and also works efficiently in parallel. But multigrid method without
specialization will fail on indefinite problems. Sparse approximate inverses [1, 8, 3]
can overcome these situations. However, these preconditioners may result in high cost
to the construction and application.

In Recent years, a new class of approximate inverses preconditioners rely on low-
rank approximations were presented. For example, the divide-conquer based: Mul-
tilevel Low-Rank (MLR) preconditioner presented in [13]. The basic idea of this
preconditioner is that a low-rank approximation is recursively applied after the prob-
lem is divided in two smaller parts. In addition, combining domain decomposition

∗This work was supported by NSF under grant NSF/DMS-1521573 and by the Minnesota Super-
computing Institute

†School of Mathematical Science, Xiamen University. {zhengxmu@gmail.com}
‡Department of Mathematics, Emory University. {yxi26@emory.edu}
§Computer Science & Engineering, University of Minnesota, Twin Cities. {saad@umn.edu}
¶School of Mathematical Science, Guizhou Normal University, China & School of Mathematical

Science, Xiamen University, China {lzlu@xmu.edu.cn }

1

with greedy multicoloring algorithm, the Multicoloring based Low-Rank (MCLR) pre-
conditioner [18] was presented which can be used to solve the symmetric and nonsym-
metric matrices. Another class of preconditioners are the Schur complement based:
the Schur complement low-rank (SLR) preconditioner [14], the Multilevel Schur com-
plement Low-Rank (MSLR) preconditioner [17] based on a multilevel Hierarchical
interface decomposition (HID) ordering [17, 5, 9], the Generalized Multilevel Schur
complement Low-Rank (GMSLR) preconditioner [5] presented to generalize MSLR
preconditioner to solve nonsymmetric systems. In this paper, we present an efficient
Schur complement based preconditioner by combining the multicoloring reordering
and low-rank correction. Approximate inverses method is considered to apply to the
left-top submatrices of the reordered matrix corresponding to each color. The result-
ed preconditioner is called Schur complement based Multicoloring Low-Rank (SMLR)
correction preconditioner. Low-rank corrections are used for the submatrices in the
left-top part of the reordered matrices for each color.

The SMLR method can solve symmetric and nonsymmetric large sparse linear
systems. However, the previous methods such as SLR, MLR and MSLR can only
be used for solving symmetric problems. In contrast with the GMSLR and MCLR
technics which can also handle the nonsymmetric matrices have only one low-rank
approximation scheme, SMLR method has two different schemes for the symmetric
system and nonsymmetric system, respectively. The scheme can be chosen depend
on the problem we need to solve. Similar to the MCLR method, we only need a very
small rank to reach the same approximation accuracy for the SMLR preconditioner
especially for the symmetric positive definite matrices. The cost for the preconditioner
construction will be reduced dramatically due to this good property, since the cost to
computing and applying the low-rank correction terms can be pretty high. The rank
can just be taken as a value smaller than 5, and this is verified via numerical results
presented in Section 5. To obtain each sub-solution according to the color, we only
need to solve two linear systems with coefficient being block diagonal matrices. An
efficient Block-Jacobi type correction technique presented in [18] is used to correct the
solution to boost the convergence of the SMLR preconditioner. Here, the application
of the Block-Jacobi type correction to the SMLR preconditioner is different with the
one used in the MCLR preconditioner where the Block-Jacobi correction technique is
applied to construct the MCLR preconditioner. In addition, a sufficient condition to
converge for this corrected technique is presented in Section 4, which has not been
discussed in the MCLR preconditioner [18].

The rest part of this paper is organized as follows: In Section 2, we present the
SMLR preconditioner by transfering the multicoloring reordered system to an equiv-
alent block diagonal linear system. This system is establish to put the solutions cor-
responding to different colors together, which are approximately obtained from some
smaller linear systems with coefficient matrices being Schur complements. Section 3
shows some properties of the SMLR method. Section 4 studies the improvement of
the SMLR preconditioner and presents the convergence property of the Block-Jacobi
type correction which was not proved in [18]. In Section 5, we propose some numer-
ical experiments to illustrate the efficiency of the new method. Section 6 gives some
concluding remarks and presents some future works.

2. Schur complement based Multicoloring Low-Rank Preconditioner.

This section presents the construction and application of SMLR preconditioner. We
begin by briefly introducing the domain multicoloring ordering [18] which was pre-
sented to keep the balance between performance of convergence and parallel efficiency

2

of the MCLR preconditioner: first some domain decomposition methods are used to
partition the graph, then the standard greedy multicoloring algorithm is applied to
color the partition. This domain multicoloring is different from the classical multi-
coloring in which the standard greedy algorithm is applied to the adjacency graph of
subdomains rather than vertices. The reordered matrix obtained by applying domain
multicoloring ordering has block structure and the submatrices in the diagonal part of
the reordered matrix are block diagonal matrices. Furthermore, if we have c diagonal
blocks (here c > 0 is the number of colors), then each diagonal block is a block diag-
onal matrix. Figure 2.1 is an illustration of this multicoloring ordering for a general
matrix. For this case, the number of colors is c = 4 and there are 3 subdomains in
each color.

=

x

Ax= b

x

x

x

1

 2

3

 4

b

b

b

b

1

2

3

4

Fig. 2.1. A four colors reordering with 12 subdomains for a general matrix by using domain
multicoloring ordering. Here, A is the reordered matrix and there are 3 submatrices in each color.

Equation (1.1) can be rewritten as the following permuted system

PA0P
TPx0 = Pb0, (2.1)

where the matrix P is the permutation matrix obtained by applying the domain
multicoloring algorithm introduced above. Denote PA0P

T = A, Px0 = x and Pb0 =
b, then linear system (2.1) reduces to

Ax = b, (2.2)

where

x = (xT
1 , x

T
2 , . . . , x

T
c)

T , (2.3)

b = (bT1 , b
T
2 , . . . , b

T
c)

T

and

A =




A1,1 A1,2 . . . A1,c

A2,1 A2,2 . . . A2,c

...
...

. . .
...

Ac,1 Ac,2 . . . Ac,c


 .

3

As mentioned above, here A1,1, A2,2, . . . , Ac,c are block diagonal matrices and c is the
number of colors.

2.1. Equivalent solution. In this section, we study the solution of (2.2) from
the view of an equivalent solution. Firstly, we transfer the original system to c (the
number of color) smaller equivalent systems according to the colors, and then solve
each sub-solution xi (i = 1, 2, . . . , c) base on a ”local” Schur complement. Here, xi

(i = 1, 2, . . . , c) are column vectors definite in (2.3).
For i = 1, 2, . . . , c, the system Ax = b can be rewritten as the following block

two-by-two linear systems:
(
Bi Fi

Ei Ci

)(
xo
i

xi

)
=

(
boi
bi

)
, (2.4)

where

Bi =




A1,1 · · · A1,i−1 A1,i+1 · · · A1,c

...
...

...
...

Ai−1,1 · · · Ai−1,i−1 Ai−1,i+1 · · · Ai−1,c

Ai+1,1 · · · Ai+1,i−1 Ai+1,i+1 · · · Ai+1,c

...
...

...
...

Ac,1 · · · Ac,i−1 Ac,i+1 · · · Ac,c




,

Ei =
(
Ai,1 . . . Ai,i−1 Ai,i+1 . . . Ai,c

)
, Ci = Ai,i,

and

Fi =




A1,i

...
Ai−1,i

Ai+1,i

...
Ac,i




, xo
i =




x1

...
xi−1

xi+1

...
xc




, boi =




b1
...

bi−1

bi+1

...
bc




.

In fact, the above matrix Bi is just the submatrix of A obtained by deleting the
elements in ith row and ith column. Moreover, the coefficient matrix of linear system
(2.4) is obtained by moving the elements in ith row to the last row and then putting
the elements in the ith column to the last column. Since

(
Bi Fi

Ei Ci

)
=

(
I 0

EiB
−1
i I

)(
Bi Fi

0 Si

)
, (2.5)

where Si = Ci − EiB
−1
i Fi is the ’local’ Schur complement of color i, we can obtain

(
Bi Fi

0 Si

)(
xo
i

xi

)
=

(
boi

bi − EiB
−1
i boi

)

or equivalently,
{

Sixi = bi − EiB
−1
i boi ,

Bix
o
i = boi − Fixi.

(2.6)

4

If we accurately solve one system in (2.5) for arbitrary i (i = 1, 2, . . . , c), we can
get the solution of linear system (2.1). The iteration step will be only one if this solver
is used as a preconditioner. However, the cost is very expensive since we need to solve
three linear systems with coefficient matrix Bi. Now we consider replacing the above
procedure by partitioning the whole solution to c ”local” solutions according to the
colors, which can be solve at the same time based on the ”local” Schur complement.

Note the first equation of (2.6), we can obtain xi by solving a linear system with
coefficient matrix being a ”local” Schur complement Si. Denote

fi = bi − EiB
−1
i boi (i = 1, 2, . . . , c),

then the linear system (2.2) has the same solution with the following linear system
whose coefficient matrix is block diagonal:




S1 0 · · · 0
0 S2 · · · 0
...

...
. . .

...
0 0 · · · Sc







x1

x2

...
xc


 =




f1
f2
...
fc


 . (2.7)

To illustrate the above process, we present a simple example below. Example

2.1. Consider the case for c = 3, the reordered linear system with three colors has the
following block structure:



A11 A12 A13

A21 A22 A23

A31 A32 A33





x1

x2

x3


 =



b1
b2
b3




which is equal to all the following three linear systems:





(
A22 A23

A32 A33

)(
x2

x3

)
+

(
A21

A31

)
x1 =

(
b2
b3

)
,

(
A12 A13

)(x2

x3

)
+A11x1 = b1,

(2.8)





(
A11 A13

A31 A33

)(
x1

x3

)
+

(
A12

A32

)
x2 =

(
b1
b3

)
,

(
A21 A23

)(x1

x3

)
+A22x2 = b2,

(2.9)





(
A11 A12

A21 A22

)(
x1

x2

)
+

(
A13

A23

)
x3 =

(
b1
b2

)
,

(
A31 A32

)(x1

x2

)
+A33x3 = b3.

(2.10)

We can solve x1 from the following linear system:

[

A11 − (A12 A13)

(
A22 A23

A32 A33

)−1(
A21

A31

)
]

x1 = b1 − (A12 A13)

(
A22 A23

A32 A33

)−1(
b2

b3

)
,

5

whose coefficient matrix is a Schur complement:

S1 = A11 −
(
A12 A13

)(A22 A23

A32 A33

)−1(
A21

A31

)
.

Similarly, we can obtain x2 and x3 by solving the other two linear systems with the
coefficient matrix being ’local’ Schur complement. These three linear systems can be
solved at the same time.

Figure 2.2 shows the above procedure to get the solution for the system presented
in Figure 2.1.

=

b1

B1 F1

E1

>

x1

=

x2 b2

B2 F2

E2

>

C1

C2

C3

=

 x b

B3 F3

E3

>

C3

=

x b

B4 F4

E4

>

C4

3

4

 3

4

x1

x2

 x 3

4x

 x

x1

=
x2

 3 x

 x4

Fig. 2.2. Solving 4 ”local” solutions to get the whole solution of the reordered system with
coefficient matrix given in Figure 2.1.

For the systems

Sixi = fi, (i = 1, 2, . . . , c), (2.11)

we just need to solve two linear systems with coefficient matrix Bi for each color. In

next section, we consider some matrix B
−1

i to approximate B−1
i to further reduce the

cost. Here, the linear system with coefficient matrix Bi is more easier to solve than
that with Bi.

2.2. Low-rank approximation. In this section, we consider approximating the
matrix Bi by low-rank corrected methods. Here, the low-rank corrections presented
have two different schemes for the symmetric matrices and nonsymmetric matrices,
respectively. In the MCLR preconditioner [18], we have shown the low rank property
associated with the difference between the inverse of a general matrix and the inverse of
its block diagonal part if the matrix is partitioned into a block two-by-two matrix. And
then the application of the MCLR method is based on the low-rank decay property
of matrix

I −BiB
−1
i0 .

6

That is,

B−1
i ≈ B−1

i0 (I − VikHikV
T
ik)

−1 (2.12)

= B−1
i0 (I + VikGikV

T
ik),

where Vik, Hik are matrices with rank k which are obtained by taking several steps
of Arnoldi procedure and Gik = (I −Hik)

−1 − I ∈ R
k×k is also a matrix with rank k.

In this paper, we will just use one level to get the approximation of B−1
i by applying

the MCLR method [18]. That is, Bi0 will be replaced by the block diagonal part of
matrix Bi:

Bi0 =




A1,1

. . .

Ai−1,i−1

Ai+1,i+1

. . .

Ac,c




.

However, we should note that the preconditioner obtained by using the above low-
rank approximation is nonsymmetric. How can it be applied to a symmetric matrix
by some symmetric forms? Note the matrix I − L−1

i0 BiL
−T
i0 is similar to the matrix

I −BiB
−1
i0 , where Li0 is a lower triangular matrix (Cholesky factor) obtained by the

Cholesky decomposition of Bi0, i.e., Li0L
T
i0 = Bi0. This means I − L−1

i0 BiL
−T
i0 can

also be approximated by a low rank matrix. We can apply the Lanczos algorithm to
obtain the low-rank approximation of this matrix

I − L−1
i0 BiL

−T
i0 ≈ VikTikV

T
ik

with Tik ∈ R
k×k be a tridiagonal matrix. Then, we have

B−1
i ≈ L−T

i0 (I − VikTikV
T
ik)

−1L−1
i0 (2.13)

= L−T
i0 (I + VikTik(I − Tik)

−1V T
ik)L

−1
i0

= L−T
i0 (I + Vik[(I − Tik)

−1 − I]V T
ik)L

−1
i0

= L−T
i0 (I + VikGikV

T
ik)L

−1
i0 ,

where Gik = (I − Tik)
−1 − I ∈ R

k×k is a symmetric matrix with rank k.
If Bi is symmetric positive definite, denote

Rik = L−T
i0 VikGikV

T
ikL

−1
i0 ,

which is a symmetric matrix. Otherwise, let

Rik = B−1
i0 VikGikV

T
ik .

Obviously, Rik is a matrix with rank k and we have

B−1
i ≈ B−1

i0 +Rik = B
−1

i ,

where Bi = (B−1
i0 + Rik)

−1. Therefore, one can choose the low-rank approximation
scheme base on the matrix need to be solved.

7

For the Schur complement matrix Si (i = 1, 2, . . . , c), we use

Si = Ci − EiB
−1

i Fi

to approximate it. Then, for the linear systems with coefficient matrices Si (i =
1, 2, . . . , c) we can use some preconditioned Krylov subspace methods to solve them.
In this case, we just need to know the result of matrix vector product y = Siv for
arbitrary vector v. This implies that we just need to solve two linear systems with
coefficient matrix Bi for each color, which can be solved in parallel by using ILU or
IC method (SPD case).

2.3. Approximated solution. Based on Section 2.1 and Section 2.2, in this
section, we solve the linear system (2.7) by considering an approximated solution
obtained from an approximated system whose coefficient matrix also has a block
diagonal structure.

Obviously, the solution of linear system (2.7) can be solved approximately from

Sx =




S1 0 · · · 0
0 S2 · · · 0
...

...
. . . 0

0 · · · · · · Sc







x1

x2

...
xc


 =




f1

f2
...

f c


 , (2.14)

where f i = bi − EiB
−1

i boi . Here, the matrix Si is the Schur complement of the block
two-by-two matrix

(
Bi Fi

Ei Ci

)
, i = 1, 2, . . . , c. (2.15)

For an arbitrary vector v, if Bi is symmetric positive definite, then y = B
−1

i v can
be obtained by

y = L−T
i0 (v1 + VikGikV

T
ikv1)

= L−T
i0 (v1 + Vik(Gik(V

T
ikv1)))

= L−T
i0 v̂

where v1 is computed from v1 = L−1
i0 v and v̂ = v1 + Vik(Gik(V

T
ikv1)). If Bi is not

symmetric positive definite, then y = B
−1

i v can be computed as follows

y = B−1
i0 (v + VikGikV

T
ikv)

= B−1
i0 (v + Vik(Gik(V

T
ikv)))

= B−1
i0 v̂,

where v̂ = v + Vik(Gik(V
T
ikv)).

From (2.14), we can see that the SMLR preconditioner we have presented is a func-
tion which can approximately solve the linear system (2.2). Here, we denote this func-

tion by F , then the performance of F on a residual vector r =
(
rT1 , rT2 , . . . , rTc

)T
,

i.e., z = F (r) can be obtained by solving

Sz =




S1 0 · · · 0
0 S2 · · · 0
...

...
. . . 0

0 · · · · · · Sc







z1
z2
...
zc


 =




r1 − E1B
−1

1 ro1

r2 − E2B
−1

2 ro2
...

rc − EcB
−1

c roc




,

8

where

roi = (rT1 , . . . , r
T
i−1, r

T
i+1 . . . , r

T
c)

T .

That is,

z = S
−1

(r− EB
−1

ro) = F (r), (2.16)

with

E =




E1

E2

. . .

Ec


 , B =




B1

B2

. . .

Bc


 , ro =




ro1
ro2
...
roc


 .

Since the matrix E and matrix B are block diagonal, the above procedure is highly
parallelizable. Algorithm 1 presents the detail description of this process.

Algorithm 1

Computing z = F (r)

1: For i = 1 : c
2: Solve Bivi = roi
3: Compute yi = ri − Eivi

4: Solve Sizi = yi

5: EndFor

6: Obtain solution z = (zT1 , z
T
2 , . . . , z

T
c)

T

2.4. Spectral property. This section studies the eigenvalues property of the
preconditioned matrix for the SMLR preconditioner. For matrix A, it is easy to see
that the preconditioned matrix is Y = F (A), so we just need to analyse the spectral
property of the matrix Y . Here, for simplicity, we consider the case that c = 2, i.e.,
the number of colors after A0 being reordered is 2. Then, we have

A =

(
A11 A12

A21 A22

)
.

Observe matrices Bi, Ci, Ei, Fi with i = 1, 2 introduced in (2.4), we can obtain

B1 = A22, C1 = A11, E1 = A12, F1 = A21

and

B2 = A11, C2 = A22, E2 = A21, F2 = A12.

Hence, the matrix A can be rewritten as

A =

(
C1 E1

F1 B1

)
and A =

(
B2 F2

E2 C2

)
,

which implies F1 = E2 and B1 = C2. So we have A =

(
C1 E1

E2 C2

)
.

9

Denote Ao =

(
F1 B1

B2 F2

)
, then from (2.16) we can get

Y = S
−1

(A− EB
−1

Ao)

= S
−1
[(

C1 E1

E2 C2

)
−

(
E1B

−1

1 0

0 E2B
−1

2

)(
F1 B1

B2 F2

)]

=

(
S
−1

1 0

0 S
−1

2

)(
C1 − E1B

−1

1 F1 E1 − E1B
−1

1 B1

E2 − E2B
−1

2 B2 C2 − E2B
−1

2 F2

)

=

(
I S

−1

1 E1(I −B
−1

1 B1)

S
−1

2 E2(I −B
−1

2 B2) I

)

= I +

(
0 Z1

Z2 0

)
,

where Z1 = S
−1

1 E1(I −B
−1

1 B1) and Z2 = S
−1

2 E2(I −B
−1

2 B2). Let

Z =

(
0 Z1

Z2 0

)
,

then the eigenvalues of Y satisfy

λ(Y) = 1 + λ(Z). (2.17)

Furthermore, if Bi (i = 1, 2) are taken as full rank matrices, then Bi = Bi (i = 1, 2),
which means Z1 = Z2 = 0. So Y is an identity matrix in this case, and the eigenvalues
of Y are 1 with multiplicity n.

3. Properties of SMLR. In this section, we study some properties of the SML-
R preconditioner.

Proposition 3.1. If Bi is taken as the full matrix for i = 1, 2, . . . , c, then
the iteration step will be only one when the SMLR preconditioner is applied to solve
(2.14).

Proof. If the matrix Bi (i = 1, 2, . . . , c) are taken as the full matrices, then
Bi = Bi. This means (2.14) is just equal to (2.7). Hence, the result holds true
directly.

Proposition 3.2. For the matrix Si and its approximate matrix Si we have

Si − Si = Ei∆ikFi = ∆i, (3.1)

where ∆ik = B−1
i −B

−1

i . Moreover, we can obtain

∆S = S − S = diag(∆1,∆2, . . . ,∆c).

Proof. Obviously, we have

Si − Si = EiB
−1
i Fi − EiB

−1

i Fi = Ei∆iFi.

So we can obtain S − S = diag(∆1,∆2, . . . ,∆c).
Proposition 3.3. The condition number of the coefficient matrix of system

(2.14) is

κ(S) =
λmax(Si)

λmin(Sj)
, i, j = 1, 2, · · · , c. (3.2)

10

In addition, the condition number of the coefficient matrix of (2.7) is:

κ(S) =
λmax(Si)

λmin(Sj)
, i, j = 1, 2, · · · , c. (3.3)

Here, λmax(·) and λmin(·) denote the largest and smallest module of the eigenvalues
for the corresponding matrix, respectively.

Proposition 3.3 studies the condition number of the matrices S and S. From
Proposition 3.3, we can see

κ(Si) ≤ κ(S), and κ(Si) ≤ κ(S), (i = 1, 2, . . . , c).

Now, we study the eigenvalues property of S and S.
Lemma 3.4. If η is an eigenvalue of A + △A ∈ Cn×n and X−1AX = D =

diag(ξ1, ξ2, · · · , ξn), then

min
ξ∈λ(A)

|ξ − η| ≤ κp(X)‖△A‖p,

where ‖ · ‖p denotes any of the p-norms.
Proof. See [6, 7] for detail.
From the result of Lemma 3.4, we can get the following Corollary, which shows

the eigenvalue perturbation property of the matrix Si for i = 1, 2, . . . , c.
Corollary 3.5. If µj (j = i1, i2, · · · , in) are eigenvalues of Si ∈ R

in×in and

X−1
i SiXi = Λi = diag(λi1 , λi2 , · · · , λin),

then

min
i1≤j≤in

|λj − µj | ≤ κp(Xi)‖∆i‖p.

Here, λj (j = i1, i2, · · · , in) are the eigenvalues of Si. Moreover, if Si is symmetric,
then there is an orthogonal matrix Qi such that

Q−1
i SiQi = Λi = diag(λi1 , λi2 , · · · , λin),

so we have

min
i1≤j≤in

|λj − µj | ≤ ‖∆i‖.

By making use of Corollary 3.5, we can obtain the following result.
Proposition 3.6. For the matrices S, S ∈ Rn×n, we have

min
λ∈λ(S),µ∈λ(S)

|λ− µ| ≤ min
1≤i≤c

κp(Xi)‖∆i‖p. (3.4)

Moreover, if A is a symmetric matrix, then we have

min
λ∈λ(S),µ∈λ(S)

|λ− µ| ≤ min
1≤i≤c

‖∆i‖. (3.5)

11

Proof. Since

min
λ∈λ(S),µ∈λ(S)

|λ− µ| ≤ min
1≤i≤c

min
i1≤j≤in

|λj − µj |

≤ min
1≤i≤c

κp(Xi)‖∆i‖p,

the result in equation (3.4) holds true directly. Here, λj and µj (j = i1, i2, · · · , in) are
the eigenvalues of Si and Si (1 ≤ i ≤ c), respectively. Moreover, if the matrix A is
symmetric, then Si = Ci −EiB

−1
i ET

i (i = 1, 2, · · · , c) is also a symmetric matrix. So
we can obtain (3.5) based on the result in Corollary 3.5. This completes the proof.

Above proposition illustrates the eigenvalue perturbation property of the approx-
imated system (2.14) of linear system (2.7). Following results show the upper and
lower bounds of relative errors between the approximated solutions obtained from
(2.14) and the exact solutions of (2.7) for each color.

Theorem 3.7. For i = 1, 2, . . . , c, the following results hold true:

‖xi‖

‖xi‖
≤ κ(Si)

‖Si‖

‖Si‖

‖fi‖

‖fi‖
, (3.6)

where xi satisfies Sixi = fi. Moreover,

1− κ(Si)
‖Si‖

‖Si‖

‖fi‖

‖fi‖
≤

‖∆xi‖

‖xi‖
≤ 1 + κ(Si)

‖Si‖

‖Si‖

‖fi‖

‖fi‖
. (3.7)

Here, ∆xi = xi − xi is the error between xi and xi.
Proof. Note Sixi = fi, we can obtain

‖xi‖ = ‖Si
−1

fi‖ ≤ ‖Si
−1

‖‖fi‖.

On the other hand, we have Sixi = fi which means

1

‖xi‖
≤

‖Si‖

‖fi‖
.

So we have

‖xi‖

‖xi‖
≤ ‖Si‖‖Si

−1
‖
‖fi‖

‖fi‖

= ‖Si
−1

‖‖Si‖
‖Si‖

‖Si‖

‖f i‖

‖fi‖

= κ(Si)
‖Si‖

‖Si‖

‖fi‖

‖fi‖
.

Now, we prove the rest conclusion of this theorem. From the triangle inequalities
below

±(‖xi‖ − ‖∆xi‖) ≤ ‖xi −∆xi‖,

we can obtain

1−
‖xi −∆xi‖

‖xi‖
≤

‖∆xi‖

‖xi‖
≤ 1 +

‖xi −∆xi‖

‖xi‖
.

Note xi −∆xi = xi, then apply (3.6) which we have proved to the above inequality,
the result in (3.7) sets up directly. The proof is completed.

12

4. Improvement. In this section, we consider improve the preconditioner by
using some corrected technics. Here, we will apply the Block-Jacobi type correction
method presented in [18] to correct the solution x = (xT

1 , x
T
2 , . . . , x

T
c)

T obtained from
the approximated system (2.14) of (2.7). The application of Block-Jacobi type correc-
tion here is different with the one used for MCLR preconditioner studied in [18], since
the Block-Jacobi corrected method is used to construct the MCLR preconditioner in
[18] rather than correct the solution obtained by the MCLR preconditioner. In addi-
tion, the convergence property of the Block-Jacobi type corrected method, which has
not been analysed in [18] is discuss in this section. Note we have

(
Ei Ci

)(xo
i

xi

)
≈ bi,

with xo
i = (xT

1 , . . . , x
T
i−1, x

T
i+1, . . . , x

T
c)

T , where xi (i = 1, 2, . . . , c) are the solutions
we have obtained after solving (2.14). Let the corrected solution of xi be xi + δi and
let

(
Ei Ci

)(xo
i

xi + δi

)
= bi

for color i, then we have

Ciδi = bi − Eix
o
i − Cixi

= bi −Aix

with Ai =
(
Ai,1 Ai,2 · · · Ai,c

)
. Hence, for color i = 1, 2, · · · , c, to obtain the

corrected solution of xi, we just need to solve a linear system with coefficient matrix
being the block diagonal Ci. Figure 4.1 illustrates the Block-Jacobi correction step for
the problem given in Figure 2.1. In addition, the above correction step can be applied

=

E1 b1

=

E2 b2

=

E3 b3

=

E4 b4

x1= x1
+ ✁1 x= x+ ✁2 22 x= x+ ✁3 3 3

x= x+ ✁4 44

 x=

Fig. 4.1. Block-Jacobi type correction for the system given in Figure 2.1.

more than once, i.e., after obtaining a corrected solution xc
i of xi, we can use the

Block-Jacobi type corrected method again to correct xc
i to get next corrected solution

of color i. We call the method combined SMLR preconditioner with the Block-Jacobi

13

type correction SMLR preconditioner with correction. Algorithm 2 illustrates the
SMLR preconditioner with correction method. We denote this method by function
Fcor and m is the number of Block-Jacobi correction steps.

Algorithm 2

Computing x = Fcor(b)

1: Applying Algorithm 1 to get solution x = (xT
1 , x

T
2 , . . . , x

T
c)

T

2: For j = 1 : m Do
3: For i = 1 : c
4: Update local residual: ri = bi −Aix

5: Solve Ciδi = ri
6: Get corrected solution yi = xi + δi
7: EndFor

8: Update solution x = y

9: EndDo

In the rest part of this section we will study the convergence property of the Block-
Jacobi corrected method. In fact, the Block-Jacobi correction step can be rewritten
as 




Aiiδi = bi −Aix,

xi = xi + δi,

i = 1, 2, . . . , c,

(4.1)

where Ai =
(
Ai1 Ai2 · · · Aic

)
. This is equal to








A11 0 · · · 0
0 A22 · · · 0
...

...
. . . 0

0 0 · · · Acc







δ1
δ2
...
δc


 =




b1
b2
...
bc


−




A11 A12 · · · A1c

A21 A22 · · · A2c

...
...

. . .
...

Ac1 Ac1 · · · Acc







x1

x2

...
xc


 ,

x = x+ δ,

(4.2)
where x = (xT

1 , x
T
2 , . . . , x

T
c)

T and δ = (δT1 , δ
T
2 , . . . , δ

T
c)

T . Let Ad be the block diagonal
part of matrix A, i.e., Ad = diag(A1,1, A2,2, . . . , Ac,c), then (4.1) can be obtained
by

xi+1 = xi +A−1
d ri = (I −A−1

d A)xi +A−1
d b, (4.3)

where xi and ri are definite below

xi =




xi
1

xi
2
...
xi
c


 and ri =




ri1
ri2
...
ric


 .

Hence, the iteration matrix of (4.3) is T = I−A−1
d A, which implies that the iteration

(4.1) is convergent if ρ(T) < 1, where ρ(T) is the spectral radius of the matrix T .
Following theorem proposes a sufficient condition to converge for the iteration (4.1).

Theorem 4.1. Suppose that A is a SPD matrix, then we have ρ(T) < 1 if there
exist a block two-by-two partition of A:

A =

(
L11 L12

LT
12 L22

)
, L11 ∈ Rp×p, L22 ∈ Rq×q,

14

which satisfies Ad =

(
L11 0
0 L22

)
. Here, p+ q = n.

Proof. The eigenvalues of T are equal to that of matrix J = I − A
− 1

2

d AA
− 1

2

d ,
because T is similar to J . Since

J = I −

(
L
− 1

2

11 0

0 L
− 1

2

22

)(
L11 L12

LT
12 L22

)(
L
− 1

2

11 0

0 L
− 1

2

22

)

=

(
0 L

− 1

2

11 L12L
− 1

2

22

L
− 1

2

22 LT
12L

− 1

2

11 0

)

=

(
0 Φ
ΦT 0

)
,

where Φ = L
− 1

2

11 L12L
− 1

2

22 ∈ Rp×q. So the eigenvalues of T are the t pairs ±σi, with
n − 2t additional zero eigenvalues if n > 2t; see [18, 7]. Here, σi (i = 1, 2, . . . , t) are
the non-zero singular values of the matrix Φ. From the result of Theorem 3.2 in [18]
we can see σi ∈ [0, 1) for i = 1, 2, . . . , t, so we have

ρ(T) = max |λ(T)| ≤ max
1≤i≤t

σi < 1.

The proof is completed.

5. Numerical experiments. In this section, we present some numerical tests
to illustrate the efficiency of the SMLR preconditioner with correction for solving 2D
and 3D large sparse linear systems. The codes were written by C++ and compiled
by the Intel C compiler with -O3 optimization and all the experiments were run
on the Mesabi Linux cluster (with a single node) at the Minnesota Supercomputing
Institute. In our tests, the PartGraphKway comes from METIS [12] package was used
to partition the original coefficient matrix A0. In the numerical results, the time
to build the preconditioner reported comes from the factorization of block diagonal
submatrices of the reordered coefficient matrices and the computation of the low-
rank correction terms. The reordering time for the original matrix was regarded as
preprocessing and was not reported in the numerical results.

In actual computations, the right-hand-side vector b was chosen such that Ae = b

with e being a random vector. Moreover, the initial iteration vectors used were
zero vectors for all the tests. We need to use the following notations in the coming
numerical tests:

• fill: nnz(prec)
nnz(A) ;

• its: number of iterations of preconditioned GMRES or preconditioned CG
required for relative residual smaller than 10−6. In addition, we use ”F” to
indicate that preconditioned GMRES method or preconditioned CG method
can not converge after 300 iterations;

• p-t: CPU time to build the preconditioner (in seconds);
• i-t: CPU time to iteration phase. We denote the iteration time by ”–” when
the preconditioned GMRES or preconditioned CG method can not converge
after 300 iteration (in seconds);

• t-t: CPU time to build and apply SMLR preconditioner with correction (in
seconds);

• rk: rank which is used in the low-rank corrections term;
• nd: number of subdomains;

15

• tol0: threshold used to solve the linear systems with coefficient matrices being
the Schur complements in (2.14);

• its0: number of iterations for solving the linear systems with coefficient ma-
trices being the Schur complements in (2.14);

• m: number of Block-Jacobi type correction steps.
For the SPD matrices, the SMLR preconditioner with correction was compared

with the incomplete Cholesky factorization with threshold dropping (ICT) and the
MSLR preconditioner [17]. The accelerator we used for these three methods is the
conjugate gradient (CG) method [11]. Otherwise, the SMLR method was compared
with the incomplete LU factorization with threshold dropping (ILUT) and the GM-
SLR preconditioner [5]. Here, the accelerator we used for the SMLR, MSLR and ILUT
methods is the generalized minimal residual (GMRES) [16] method. In all the tests,
OpenMP [2] was used to parallelize the applications of SMLR, MSLR and GMSLR
preconditioners. The number of threads used here is the number of cores which is 24.

5.1. Test 1. First, we consider the following nonsymmetric problem:

−△u− α · ∇u− βu = f in Ω, (5.1)

u = 0 on ∂Ω.

which is a shifted convection-diffusion equation. Here, Ω = (0, 1)3 and α ∈ R3. This
equation is discreted by using finite differences with the standard 7-point stencil in 3
dimensions.

Table 5.1

The iteration counts and CPU time for solving (5.1) with s = 0.16 and α = [.1, .1, .1] on a
323 grid by applying the GMRES-SMLR method with correction (m = 5). Here, nd is taken as 20
and threshold used in the incomplete LU factorization is fixed to 10−2. The rank for the low-rank
correction is fixed to rk = 2.

tol0 its fill (ILU) fill (Low-rank) p-t i-t t-t
.2 67 2.64 1.76 .09 4.10 4.19
.1 62 2.64 1.76 .09 3.83 3.92
.05 58 2.64 1.76 .10 3.65 3.75
.01 54 2.64 1.76 .15 3.50 3.65
.005 52 2.64 1.76 .10 3.55 3.65
.001 49 2.64 1.76 .09 3.67 3.76
.0005 47 2.64 1.76 .09 3.80 3.89
.0001 46 2.64 1.76 .10 3.87 3.97

5.1.1. Effect of tol0 and its0. One important effect we need to consider is the
threshold used for solving the linear systems with coefficient matrices being Schur
complements in (2.14). We study this factor on the SMLR preconditioner with cor-
rection by solving problem (5.1) with s = 0.16 and α = 0.13 on a 323 grid. Here,
we shift the discretized convection-diffusion operator by sI with s = 5 ∗ h, where
h is the mesh size. Moreover, the number of Block-Jacobi correction steps is set as
m = 5. The numerical results are shown in Table 5.1, from which we can see a steady
improvement of the number of iteration steps when the threshold reduces from 0.2 to
0.0001. This is because that a smaller threshold always results in a better approxi-
mation to the solution of equation (2.14) which leads to a smaller number of iteration
steps. In addition, the time to compute the solution of (2.14) increases at the same
time, so it is unworthy to use a lower tolerance to reduce the smaller decrease of the
iteration steps. Moreover, the effect of the number of iteration steps its0 used to solve

16

(2.14) on the SMLR preconditioner with correction is similar to that of tol0. This
is verified in Table 5.2, where the fill factors for the ILU factorizations and low-rank
correction terms were omitted since these results are the same as the results in Table
5.1.

Table 5.2

The iteration counts and CPU time for solving (5.1) with s = 0.16 and α = [.1, .1, .1] on a
323 grid with the GMRES-SMLR method with correction (m = 5). Here, nd is taken as 20 and
threshold used in the incomplete LU factorization is fixed to 10−2.

its0 its p-t i-t t-t
0 53 .17 4.83 5.00
1 42 .15 3.80 3.95
2 39 .15 3.55 3.70
3 35 .15 3.58 3.73
4 30 .16 3.62 3.78

5.1.2. Effect of m. In this section, we study the performance of SMLR precon-
ditioner with correction when the number of Block-Jacobi correction varies. We study
this effect by solving the same problem as in the Section 5.1.1. As is see in Table
5.3, the iteration number decreases form 109 to 33 when m increases from 0 to 13,
which illustrates the efficiency of the Block-Jacobi correction to improve the SMLR
preconditioner. Meanwhile, the cost to apply this Block-Jacobi correction increases
with higher m, which is further illustrated by Figure 5.1, from which one can see the
iteration time first decreases when m increase from 0 to 5, and then increases as m

increases from 5 to 13. For this test problem, the optimal number of correction steps
is m = 5, which results in a smallest iteration time and total time. In the remaining
tests, we set m as m = 5 for simplicity, if not special specified.

Table 5.3

The iteration counts and CPU time for solving (5.1) with s = 0.16 and α = [.1, .1, .1] on a 323

grid with the GMRES-SMLR method. Here, nd is taken as 20 and threshold used in the incomplete
LU factorization and tol0 are fixed to 10−2.

m its p-t i-t t-t
0 109 .18 4.83 6.80
1 85 .18 4.83 5.02
3 59 .17 3.35 3.52
5 49 .19 2.84 3.04
7 42 .18 2.98 3.16
9 36 .16 3.01 3.17
11 34 .18 3.29 3.37
13 33 .17 3.88 3.64

5.2. Test 2. The second test is the symmetric problem:

−△u− βu = f in Ω, (5.2)

u = 0 on ∂Ω.

5.2.1. Effect of nd. The number of the subdomain is also an important factor
we need to consider. Here, the test matrix was obtained by discretizing (5.2) with
β = 0.0 on a 503 grid. As the number of subdomain increases from 10 to 60, one can
see from Table 5.4 that the iteration number has a slight fluctuation. Moreover, the
fill factor from the low-rank term increases monotonously while the fill factor from the

17

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

m

s
e

c
o

n
d

p−t

i−t

t−t

Fig. 5.1. The time to build the preconditioner and the iteration time with respect to different m.

ILU decomposition decreases. This is because a bigger nd leads to a larger number of
colors, which will cause more low-rank correction terms. On the other hand, a larger
nd results in a smaller size of each block diagonal matrix, which reduces the storage
of the ILU factorizations. In addition, we find nd = 30 is usually the optimal value for
this problem based on various tests, so we set nd to 30 in the remaining experiments
for simplicity.

Table 5.4

The fill factor, iteration counts and CPU time for solving (5.2) with s = 0.0 on a 503 grid with
the GMRES-SMLR method with correction (m = 5). Here, the rank for the low-rank correction
matrices is fixed at 2, and the thresholds used in the incomplete LU factorization and tol0 are taken
as 10−2.

nd fill (ILU) fill (Low-rank) fill (total) its p-t i-t

10 2.81 1.16 3.97 10 .47 2.21
20 2.75 1.43 4.18 10 .70 2.37
30 2.70 1.74 4.44 10 .70 2.19
40 2.66 2.03 4.69 10 .71 2.39
50 2.63 2.12 4.75 11 .80 3.06
60 2.61 2.18 4.79 10 .75 2.75

5.2.2. Effect of rk. Now we study the effect of the low-rank correction on the
performance of the SMLR preconditioner with correction. To illustrate this, we solve
the same test problem as in the Section 5.2.1 with different values for the rank rk.
Here, the number of Block-Jacobi correction steps was taken as 5. The test problem
(5.2) becomes more difficult to solve with a larger s since the indefiniteness of the
matrix becomes higher, so we expected that the iteration steps and computing time
should increase. This is verified with the numerical results in Table 5.5 when s is
increase from 0 to 0.2. As one can see from Table 5.5, as the rank increases from 0
to 10, the iteration number and the iteration time decreases. This is because a larger
rank results in a more accurate approximation to the coefficient matrix of linear
system (2.7). In addition, we can see from Table 5.5 that the preconditioner building

18

time increases when the rank becomes larger, this is because more time is needed to
compute the low-rank correction terms for higher rank. Meanwhile, a larger rank also
results in more storage to the low-rank correction terms especially for the indefinite
matrices. Hence, we don’t need to take a higher rank (rk ≤ 5) to correct the Schur
complements in actual application.

Table 5.5

The fill factor, iteration counts and CPU time for solving (5.2) on a 503 grid with the GMRES-
SMLR method with correction (m = 5). Here, the thresholds used in the incomplete LU factorization
and tol0 are taken as 10−2.

s rk = 0 rk = 2 rk = 5 rk = 10

fill its p-t i-t fill its p-t i-t fill its p-t i-t fill its p-t i-t

.00 2.68 10 .40 1.15 4.44 9 .65 .98 7.06 8 .78 .85 11.43 7 .90 .69

.05 2.70 38 .68 6.50 4.78 34 .76 5.87 7.81 30 .99 5.44 12.90 26 1.12 4.80

.15 2.75 116 .91 12.03 4.80 107 1.11 11.68 7.83 100 1.25 10.48 12.93 93 1.32 9.47

To further illustrate the effect of the value of rk on the SMLR preconditioner, we
present the numerical results for the same tests where the number of Block-Jacobi
correction steps are taken as m = 0. The corresponding fill factors, iteration counts
and iteration time are given in Table 5.6. As we can see from this table, the iteration
number reduces faster than that of the results in 5.5 when rk increases from 0 to 10
and s are fixed. So the low-rank correction terms is more important to the SMLR
preconditioner without Block-Jacobi correction. In addition, the iteration number
and the iteration time in Table 5.5 are both less than that of the results in Table 5.6
when rk and s are fixed, which implies that the Block-Jacobi correction can further
improve the SMLR preconditioner when the same rank is used to solve the problem.

Table 5.6

The fill factor, iteration counts and CPU time for solving (5.2) on a 503 grid with the GMRES-
SMLR method (m = 0). Here, the thresholds used in the incomplete LU factorization and tol0 are
taken as 10−2.

s rk = 0 rk = 2 rk = 5 rk = 10

fill its p-t i-t fill its p-t i-t fill its p-t i-t fill its p-t i-t

.00 2.68 18 .42 1.89 4.44 15 .67 1.57 7.06 12 .77 1.26 11.43 10 .92 .1.06

.05 2.70 52 .66 8.50 4.78 44 .78 7.21 7.81 37 .99 6.15 12.90 30 1.15 5.07

.15 2.76 157 .93 15.06 4.80 140 1.10 13.34 7.83 125 1.27 11.90 12.93 100 1.33 10.16

In the rest part of this section, we present more numerical results to the SMLR
preconditioner with correction for solving the 2D and 3D Laplacian matrices. Here,
we solve (5.2) for the positive case with β = 0 and indefinite case with β > 0. We
set rk to rk = 2 and rk = 5 for the matrices with β = 0 and β > 0, respectively.
Also, for the indefinite case, we fixed s to be s = 5 ∗h for mesh size h. The numerical
results for 2D problems are given in Table 5.7, from which we can see that the new
method outperforms the ICT and MSLR preconditioners when they have almost the
same fill-factors since the iteration number and computing time to converge for the
SMLR preconditioner with correction are less than that of the other two methods.

19

The numerical results for the 3D cases are given in Table 5.8, which illustrates that the
SMLR preconditioner with correction is more efficient than the ILUT and GMSLR
methods for solving indefinite problems. The ILUT and GMSLR methods even can
not converge for the matrices with grid 1024×1024 (s = 0.005) and grid 128×128×128
(s = 0.04) which have 394 and 217 negative eigenvalues, respectively.

Table 5.7

Comparison among SMLR with correction (m = 5), ICT/ILUT and MSLR/GMSLR precondi-
tioners for solving symmetric positive definite/indefinite linear systems from the 2D PDEs with the
CG/GMRES method.

Mesh s SMLR ICT MSLR

fill its p-t i-t fill its p-t i-t lev rk fill its p-t i-t

2562 0 3.09 20 .05 .12 3.37 55 .03 .43 5 8 3.11 35 .05 .21

5122 0 3.19 32 .50 2.67 3.38 55 .26 3.81 7 8 3.15 72 .13 3.20

10242 0 3.37 52 1.92 10.23 3.39 122 0.64 19.97 9 8 3.18 117 0.59 15.99

Mesh s SMLR ILUT GMSLR

fill its p-t i-t fill its p-t i-t lev rk fill its p-t i-t

2562 0.02 3.09 171 .19 0.69 3.37 181 .05 .1.63 5 16 3.18 270 .06 1.25

5122 0.01 3.14 208 .53 11.65 3.08 298 .20 17.90 10 16 3.30 279 .22 15.88

10242 0.005 3.37 167 1.52 14.01 3.30 F 2.24 – 13 16 3.38 F 2.30 –

Table 5.8

Comparison among SMLR with correction (m = 5), ICT/ILUT and MSLR/GMSLR precondi-
tioners for solving symmetric positive definite/indefinite linear systems from the 3D PDEs with the
CG/GMRES method.

Mesh s SMLR ICT MSLR

fill its p-t i-t fill its p-t i-t lev rk fill its p-t i-t

323 0 3.08 8 .09 .12 3.06 23 .29 .30 7 8 3.10 15 .10 .20

643 0 2.80 12 .12 .98 2.96 26 .26 2.03 10 8 3.09 24 .30 1.53

1283 0 2.87 18 1.46 7.09 2.98 41 2.16 20.02 13 8 3.03 27 2.08 11.08

Mesh s SMLR ILUT GMSLR

fill its p-t i-t fill its p-t i-t lev rk fill its p-t i-t

323 0.16 3.51 47 .18 .24 3.06 85 .03 .51 7 16 3.57 75 .11 .35

643 0.08 2.80 127 .39 8.09 3.00 208 .45 19.89 10 16 3.19 153 1.04 12.63

1283 0.04 3.33 233 3.50 12.01 2.98 F 10.23 – 13 16 3.43 F 5.32 –

5.3. Test 3. In this section, we apply our SMLR preconditioner with correction
to some general matrices (Table 5.9) come from SuiteSparse Matrix Collection [4] to
further illustrate the efficiency of this new method for solving general large sparse
linear systems. The numerical results for these matrices are presented in Table 5.10.

20

From this table we can see that the SMLR preconditioner with correction outperforms
the ICT and MSLR methods for solving the symmetric matrices and outperforms the
ILUT and GMSLR methods to solve the nonsymmetric matrices.

Table 5.9

Names, orders (N), numbers of nonzeros (nnz) and short descriptions of the test matrices.

Matrix Order nnz symmetric Description

Dubcova3 146,689 3,636,643 yes 2D/3D Problem

ecology1 1,000,000 4,996,000 yes landscape ecology problem

thermal1 82,654 574,458 yes thermal problem

thermal2 1,228,045 8,580,313 yes thermal problem

Atmosmodd 1,270,432 8,814,880 no atmospheric model

Atmosmodl 1,489,752 10,319,760 no atmospheric model

Transport 1,602,111 23,500,731 no CFD problem

Table 5.10

Comparison among SMLR with correction (m = 5), ICT/ILUT and MSLR/GMSLR precondi-
tioners for solving general sparse linear systems along with CG or GMRES.

Matrix SMLR ICT MSLR

fill its p-t i-t fill its p-t i-t lev rk fill its p-t i-t

Dubcova3 1.57 19 .76 1.60 1.59 38 1.52 3.34 8 64 1.60 23 1.58 2.61

ecology1 2.58 10 1.06 1.07 2.60 20 .60 3.31 11 50 2.68 16 1.11 2.43

thermal1 2.43 34 .23 .99 2.52 79 .16 2.41 6 64 2.60 69 .40 1.72

thermal2 2.94 66 3.62 6.96 2.54 171 3.01 14.12 8 180 2.33 122 4.02 9.98

Matrix SMLR ILUT GMSLR

fill its p-t i-t fill its p-t i-t lev rk fill its p-t i-t

Atmosmodd 2.85 21 2.94 4.71 2.97 47 1.27 11.53 10 16 2.98 38 4.78 8.89

Atmosmodl 2.89 11 1.19 2.90 2.97 27 2.51 7.71 11 4 2.82 21 2.77 4.34

Transport 1.39 41 3.67 11.89 1.41 77 2.33 29.65 11 4 1.46 58 2.09 17.90

6. Conclusion. In this paper, we present an efficient low-rank correction parallel
preconditioner for solving general large sparse linear systems based on the Schur
complement combined with multicoloring ordering. The original problem is solved
after it is transfered to some smaller linear systems which can be solved at the same
time. The inverse of Schur complement corresponding to each color is approximated
via a low-rank correction term.

The SMLR preconditioner with correction is very efficient for solving symmetric
and nonsymmetric problems. In addition, the new method is robust to solve the
highly indefinite matrices which stand techniques (ICT and ILUT) can not handle.

21

In the future, we may extend the application of SMLR method to the eigenvalues
problems, where the highly indefinite systems have to be solved.

Acknowledgements.
REFERENCES

[1] M. Benzi and M. Tuma, A sparse approximate inverse preconditioner for nonsymmetric linear
systems, SIAM J. Sci. Comput., 19 (1998), pp. 968–994.

[2] OpenMP Architecture Review Board, OpenMP Application Program Interface, Version
3.1, 2011.

[3] E. Chow and Y. Saad, Approximate inverse preconditioners via sparse-sparse iterations,
SIAM J. Sci. Comput., 19 (1998), pp. 995–1023.

[4] T. A. Davis and Y. Hu, The university of florida sparse matrix collection, ACM Trans. Math.
Software, 38 (2011).

[5] G. Dillon, V. Kalantzis, Y. Xi, and Y. Saad, A hierarchical low-rank schur complement
preconditioner for indefinite linear systems, SIAM J. Sci. Comput., 40 (2018), pp. A2234–
A2252.

[6] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins Studies in Mathe-
matical Sciences, 2013.

[7] , Matrix Computations, 4th edition, Johns Hopkins University Press, Baltimore, MD,
4th ed., 2013.

[8] M. Grote and T. Huckle, Parallel preconditioning with sparse approximate inverses, SIAM
J. Sci. Comput., 18 (1997), pp. 838–853.

[9] P. Hénon and Y. Saad, A parallel multistage ILU factorization based on a hierarchical graph
decomposition, SIAM J. Sci. Comput., 28 (2006), pp. 2266–2293.

[10] J. C. Haws, M. Benzi, and M. Tuma, Preconditioning highly indefinite and nonsymmetric
matrices, SIAM J. Sci. Comput., 22 (2000), pp. 1333–1353.

[11] M. R. Hestenes and E. L. Stiefel, Methods of conjugate gradients for solving linear systems,
J. Research Nat. Bur. Standards, 49 (1952), pp. 409–436.

[12] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular
graphs, SIAM J. Sci. Comput., 20 (1998), pp. 359–392.

[13] R. Li and Y. Saad, Divide and conquer low-rank preconditioners for symmetric matrices,
SIAM J. Sci. Comput., 35 (2013), pp. A2069–A2095.

[14] R. Li, Y. Xi, and Y.Saad, Schur complement-based domain decomposition preconditioners
with low-rank corrections, Numer. Linear Algebra Appl., 23 (2016), pp. 706–729.

[15] Y. Saad, ILUT: a dual threshold incomplete ILU factorization, Numer. Linear Algebra Appl.,
1 (1994), pp. 387–402.

[16] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

[17] Y. Xi, R. Li, and Y. Saad, An algebraic multilevel preconditioner with low-rank corrections
for sparse symmetric matrices, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 235–259.

[18] Q. Zheng, Y. Xi, and Y. Saad, Multicoloring low-rank correction preconditioner for general
sparse linear systems.

22

