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Abstract

The emergence of wearable health sensors in the last decade
has the potential to revolutionize the study of sleep and
circadian rhythms. In particular, recent progress has been
made in the use of mathematical models in the prediction of a
patient’s internal circadian state using data measured by
wearable devices. This is a vital step in our ability to identify
optimal circadian timing for health interventions. We review the
available data for fitting circadian phase models with a focus on
wearable data sets. Finally, we review the current modeling
paradigms and explore avenues for developing personalized
parameter sets in limit cycle oscillator models to further
improve prediction accuracy.
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Introduction

Chronic sleep deprivation and circadian disorders have
reached critical levels around the world by recent esti-
mates. For instance, a large chronotype survey found that
approximately 69% of the respondents reported social jet
lag of 1 h or more [1]. Circadian disruption and misalign-
ment with the external environment has been linked to a
host of negative mental and physical health outcomes [2,3].

In mammals, the core circadian clock has been localized
to a region of the hypothalamus known as the supra-
chaismatic nucleus (SCN). To remain entrained to the
external environment, the SCN must receive temporal

information from external forces known as zeitgebers
(time-givers). In mammals, the most important zeit-
geber is the daily light cycle. The master clock, in the
SCN, then coordinates a population of peripheral clocks
producing physiological rhythms throughout the body.

The sleep and circadian research communities have
made tremendous progress in elucidating the core
mechanisms driving and connecting sleep and circadian
rhythms. Translation of these scientific advances into
improvements in circadian and sleep health of the
populace has proved difficult [4]. For example, it has
been found that the efficacy of a number of treatments
vary in a circadian manner [5,6]. Application of this
knowledge will require the ability to accurately predict
the circadian phase of patients [7,8].

Circadian phase prediction is an inherently difficult
problem. Circadian phase in humans can only be
measured indirectly through the use of a peripheral
marker rhythm driven by the core clock [9]. However,
each of these peripheral rhythms has the potential to be
obscured (masked) by behavioral rhythms such as the
sleep—wake cycle [10]. This challenge has been met by
the development of a series of laboratory protocols
designed to isolate the circadian signatures from marker
melatonin/core body temperature rhythms [10]. Although
these protocols have been essential to determining many
core circadian clock properties, the labor, expense, and
significant patient burden make them impractical for use
on large populations or children [4,11].

Personalizing circadian phase predictions will require
novel data collection and mathematical modeling ap-
proaches. The advent and mass popularization of wear-
able technologies has provided an avalanche of data.
However, this infusion of data will require careful inte-
gration into the accumulated body of knowledge using
novel mathematical modeling techniques. Here, we will
review the various data collection methods available and
recent advances in building mathematical models.

Data overview

Phase assessment gold standards

The constant routine protocol is the current gold stan-
dard for human circadian phase estimation [10,12]. This
protocol calls for participants to be held in a constant
light environment free from time cues while a circadian
marker is monitored. This constant environment
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prevents the core circadian rhythms from being masked
by exogenous periodic cycles and the sleep—wake cycle.
Early circadian studies used the core body temperature
as the circadian marker, although in recent years this has
been replaced primarily by melatonin and other less
invasive markers [13,14]. Melatonin rhythms may be
collected from blood, saliva and urine samples, although
using melatonin comes with the additional complication
that even low levels of light suppress melatonin rhythms
[14,15,12]. Thus, melatonin samples must be collected
under dim light conditions of less than 30 lux-although
many researchers strive for less than 5 lux [16]. Usu-
ally, samples are collected every 30—60 min and are used
to estimate the onset of melatonin secretion which
typically occurs just before bedtime. This time point is
called the dim light melatonin onset (DLMO).
Recently, positive progress has been made on an effort to
move this protocol outside the laboratory by using self-
collected melatonin samples from saliva, although
compliance with this protocol could prove difficult in
children and other groups [17].

These circadian phase assessment protocols may be
applied to measure the effect of a light stimulus on the
circadian phase. Plotting the timing of the stimulus (e.g.
bright light) against the shift in circadian phase provides
a phase response curve (PRC). PRCs are often used for
treatment planning in clinical settings to determine the
optimal timing to shift the circadian phase in the
appropriate direction [18]. Several phase response
curves to light have been found using a variety of light
stimuli [13,19,20]. Moreover, several valuable data sets
for the effect of light schedules of different duration’s
and intensities on the circadian phase have also been
collected [21—23]. To date, PRC data have been the
primary data used to fit and validate circadian prediction
models [24,25].

Wearable data

A huge variety of wearable health and fitness trackers
have entered the market place in the last decade.
Generally, commercial versions of these devices will
provide a time series of accelerometer and heart rate
estimates based on photoplethysmography [26]. Wear-
able devices offer an objective alternative to self-
reported data to measure circadian patterns of various
clock outputs such as heart rate, sleep/wake patterns,
activity, and wrist body temperature. Moreover, some of
these devices have the ability to collect data on expo-
sure to zeitgebers (e.g. ambient light exposure),
although these are generally not found in commercial
devices [4,27,2,28,26,29].

From a circadian phase estimation prospective, each of
these sensor measurements should add additional in-
formation and improve circadian phase predictions.
However, incorporation of these time series
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measurements has proved challenging. These variables
are typically highly correlated with one another, and any
circadian signatures within the time series can poten-
tially be masked by the sleep—wake cycle or other bio-
logical rhythms [10]. Moreover, with the exception of
the light intensity variable, each of these physiological
processes is both an input and output of the master
circadian clock. Each of these factors must be accounted
for to build an accurate circadian phase prediction
system.

The large size of wearable data sets has the potential to
override some of these difficulties. The incorporation of
commercial devices will likely be required to make
maximal use of this big data potential for circadian phase
predictions. The diversity of commercial devices on the
market has proved a challenge to their validation.
Moreover, the algorithms used in processing the raw
sensor data are typically closed source and updated more
quickly; then, they could be validated for research
purposes [26]. However, recent progress has been made
in extracting the raw accelerometer and heart rate data
from a subset of these devices [26]. Development of
open-source methods for the extraction and processing
of raw sensor data from commercial devices is a crucial
step toward incorporating these data into circadian
phase estimates [26,4].

The relationship between the physiological variables
measured by wearable devices and the gold standard for
circadian phase estimation, DLMO timing, is still
somewhat unclear. However, recent studies have found
significant correlations between many of these time
series and DLMO measurements [30,31]. In particular,
measurements of the body temperature at the wrist and
mid sleep time have been found to be correlated with
the DLLMO and have been applied to estimate circadian
phase [32,30,31,33,34]. It remains to be seen how these
correlations can be used to refine circadian phase esti-
mates. In the best case scenario, these relationships in
combination with a lengthy time series could eliminate
the need for DLMO estimation all together. However,
the majority of the correlation results above were ob-
tained under regular entrainment conditions for healthy
adults. Before generalizing these results to larger
populations, additional validation will be required across
larger demographic ranges and environmental
conditions.

Predicting phase from wearables

The lengthy time series data collected by wearable de-
vices have allowed for machine learning techniques to
be used in sleep and circadian prediction
[35,26,36,30,37]. For example, artificial neural network
(ANN) approaches have provided some of the most
accurate predictions of circadian phase [35,36]. The
ANN approach is appealing because of the success of
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these techniques in predicting a variety of complex time
series data [38]. Furthermore, these techniques do not
require a mechanistic model and are therefore well-
suited to deal with the modeling of complex phenom-
ena. However, the predictions of ANN models have
been found to perform poorly when applied to the more
challenging problem of circadian phase prediction for
shift workers [35].

Limit cycle oscillator models

Mathematically, the circadian clock is an example of an
attracting limit cycle oscillator (LCO), meaning its so-
lutions contain a stable closed trajectory comprising a
self-sustained oscillator (Figure 1). The most wide-
spread LLCO models for human circadian rhythms are
based on progressive modifications of a Van der Pol
nonlinear oscillator model [39,25,40,41,18]. Recently, a
class of models based on a systematic reduction of phase
oscillators was proposed and fit to human phase
response curve data [24,42]. These models are based on
the network level physiology of the core clock, and
therefore, the parameters are endowed with physiolog-
ical interpretations [24]. By comparison, the lack of a
physiological foundation for the Van der Pol—based

Figure 1

models makes parameter and variable interpretations
more problematic. Each of these LCO models can take
the light levels recorded by a wearable device and
generate a circadian phase prediction as seen in
(Figure 2).

A LCO model was recently applied to the prediction of
circadian phase using wearable data for medical shift
workers and compared against direct measurements of
circadian phase [8]. These predictions were found to be
accurate to within £1 hour for 70—80% of subjects in
the study. This is comparable with the accuracy of
predictions made for diurnal subjects in previous studies
[43,44]. Being able to more accurately predict the
circadian phase of shift workers from wearable data will
help to facilitate the delivery of light therapy in the
treatment of shift-work disorder.

Parameters for limit cycle oscillator models

LCO models have parameters () which must be
estimated using experimental phase response data (D).
Optimization over a least squares cost function leads to.a
maximum likelihood estimation of the best-fit (6 )
parameter set.
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This figure shows an example simulation for a LCO model. The individual is started from a low amplitude rhythm (near 0) and then is entrained to a
regularly repeated light schedule with a period of 24 h. The yellow color shows light exposure times, and the dark shade shows periods of darkness on all
plots. On the left, the phase plane plot shows a parametric plot of the phase and amplitude variables growing toward a limit cycle solution (closed
trajectory). Two circadian phase markers used in human circadian rhythms are shown (CBT, is the minimum of the core body temperature rhythm, and
the DLMO is the dim light melatonin onset). The right plots show the amplitude (top) and phase plotted against the time variable [24].
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These best-fit parameter sets have been applied to
generate circadian phase predictions from the model
[8,44,43]. This use of a single set of best-fit parameters
ignores the inherent experimental, parameter and
model uncertainty [46]. Significantly, parameter uncer-
tainty results from the variation in the circadian pa-
rameters among the individuals used to construct the
experimental curve. These uncertainties may be
partially accounted for by adopting a Bayesian approach
and generating an ensemble of parameters which are
consistent with the experimental data rather than a
single best-fit set [24,47]. From a clinical prospective
the generation of statistical parameter ensembles could
assist in the classification of circadian and sleep disor-
ders. Whether these states are identifiable as distinct
regions in parameter space remains to be seen, however
the development of low-dimensional models whose

Figure 2
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parameters can be tied to clock physiology should help
in this regard [24].

Parameter estimation for circadian models
The intrinsic period (T) parameter is influential in
predictions, is variable across the human population, and
can be measured directly using a forced desynchrony
protocol [48—51]. Forced desynchrony decouples the
sleep and circadian cycles, allowing the unmasked
circadian cycle to be measured for long enough (10—20
days) to accurately assess the period [52,53].

Surveys can also be used to study circadian heteroge-
neity in larger samples than laboratory approaches, and
the results of chronotype surveys have been found to be
related to key circadian parameters [54,55,11,56].
Beyond the circadian period parameter, other parame-
ters in circadian models have also been found to vary
[57]. A striking example of this is provided by a recent
study, which found that evening light intensities varying
from dim reading light (10 lux) to bright indoor light
(400 lux) caused equivalent suppression of melatonin
rhythms in healthy young adults [57].
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Wrist light level measurements recorded by an Actiwatch Spectrum wearable device [45]. The light recordings span one week but are repeated four times
for illustration. The yellow blocks indicate light levels over 10 lux, and black areas indicate light levels below 10 lux. Red crosses show model predictions of
the core body temperature (CBT) minimum circadian marker, and blue circles show model predicted DLMO timing [24].
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The large data sets produced by wearable devices could
be used to estimate key model parameters. A method-
ological challenge is how best to integrate the wearable
device data alongside the laboratory and survey data.
Some promising results have been found using a particle
filter approach to integrate across these heterogeneous
data sources [58]. Particle filters provide optimal state
estimation by integrating a dynamical model with noisy
observations [58]. As wearable data sets become more
widely available, additional mathematical and compu-
tational tools will need to be developed to optimally
perform this integration.

Conclusion

Here, we have reviewed the various data sources avail-
able for circadian phase prediction of which large-scale
wearable data is an important component. In addition,
we reviewed recent advances in mathematical and
computational models for integrating wearable data into
phase predictions.

Circadian phase prediction is a difficult problem, and a
solution will require advancements in a number of fields.
The first challenge will be to develop inexpensive
methods for circadian phase measurement/validation
which are suitable to be deployed on a massive scale
outside the laboratory. Secondly, the challenge of
incorporating and processing the heterogeneous and
noisy measurements collected by wearable devices must
be faced. Finally, new models and paradigms will need to
be developed which can integrate laboratory, survey, and
wearable data into predictions. Each of these data
sources provide a complementary picture, and optimal
circadian phase prediction will require that each of these
are integrated into the predictive model.
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