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ABSTRACT

We present a new physics-inspired method for analysis of hy-
perspectral imagery (HSI). The method is based on the con-
cept of transport models for graphs. The proposed approach
generalizes existing dimension reduction and feature extrac-
tion algorithms, by replacing the role of diffusion processes,
as a measure of estimating proximity, with dynamical sys-
tems. This approach allows us to exploit different and new re-
lationships within the complex data structures, such as those
arising in HSI. We demonstrate this by proposing a specific
multi-scale algorithm in which transport models are used to
translate the information about contextual similarities of ma-
terial classes to enhance feature extraction and classification
results. This point is illustrated with a series of computational
experiments.

Index Terms— feature extraction, dimension reduction,
machine learning, transport operator, advection

1. BACKGROUND

Hyperspectral images (HSI) play an important role in remote
sensing [1]. The challenging problems of classifying and
clustering HSI have attracted much attention in recent years
[2]. The key process in many solutions is a feature extrac-
tion or dimensionality reduction technique, such as Principal
Components Analysis (PCA) [3], Isomap (ISO) [4], Diffusion
Maps (DIF) [5], or Laplacian Eigenmaps (LE) [6].

Inspired by LE, by the Schroedinger Eigenmaps method
(SE) [7, 8], and many applications of advection operators
[9, 10, 11, 12, 13], we recently introduced the concept of
Transport Eigenmap (TE) as a new feature extraction method
[14]. This is a semi-supervised learning technique with a rich
set of parameters, allowing various ways to make use of par-
tial groundtruth. The overall performance and robustness of
the transport model are satisfactory. The purpose of this note
is to present the transport model in a more intuitive way, to
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further test it through new experiments, and to discuss new
directions of applications.

2. THE TRANSPORT MODEL

We begin with a brief introduction of the transport model. For
more details we refer the reader to [15] and [14]. Following
the idea of LE, a collection of n data points can be associ-
ated with a weighted graph G with n nodes. The weights w; ;
depend on the distances between pairs of nodes and mimic a
diffusion process with a graph Laplacian L. Let v be a func-
tion defined on the edges of G, which can be viewed as an
n X n matrix. We assume v to be anti-symmetric to model a
velocity field. The associated transport operator 7" acting on
avectory = {y; } is formally defined as

Ty = Ly — div(vy).
A discretized version of this operator is:

(T'y); :Z(yz — Yj)wij _Z(yi+yj)%~ ey
J J

For any positive definite matrix A, we denote the inner
product (y, z) 4 := y' Az.

Assume that v;; = 0 if the nodes % and j are not con-
nected, as w;; = 0 in this case as well. Let v;; := 27;}; if ¢
and j are connected, and 7;; = 0 otherwise. Then v is also
anti-symmetric, “* = ¥;;w;;, and

(Ty)i =Y (1= 055) v — (14 0i5) ] wiy.

J
A desired property for the transport operator 7" is that it
has real eigenvalues, similarly to the graph Laplacian. It was
observed in [14] that if we choose v;; = 22—t for some

aj+a;
positive a;’s, then the operator (1'y); = 3 _; [yij— Y — 045 (yi+
y;)]w;; is self-adjoint with respect to the inner product (, ) x,
with X = diag(ca;) for some positive c.

We can easily extend this result to a more general model
by introducing a symmetric matrix r. Define 7} to be the
operator such that

(T7y)i =Y [rij (9 —y3) = 0sj (i + 9 wig. ()
i



Z;;Z’ r;; for some positive a;’s. Then T},
is self-adjoint with respect to the inner product (, )y, with
X = diag(ca;) for some positive ¢ [14].

When v;; = % 7:j, the operator T can be proved
to be non-negative in ¢%, where X = diag(ca;) for some
positive c.

We recall for comparison that the Laplacian operator is
(Ly)i = >_;(yi — yj)wi;. Ty generalizes L in two ways.
First, a; modifies the measure/coordinate and thus makes the
representation of ¢-th point closer to the origin if a; is large
or further away from the origin if a; is small. Second, r;; can
enlarge or reduce the weight w;; between two nodes ¢ and
j, serving as a weight modifier. We then choose parameters
to guide the data representation based on partial knowledge

about ground truth.

Assume 7;; =

3. IMPLEMENTATION

Suppose there are n data points, X = {x1,X2,...,X,} in
R4, and we aim to find a map P : R —3 R™gothat Y =
{y1,y2,...,¥n} in R™ satisfies y; = ®(x;).

The implementation for Transport Eigenmap is similar to
that of LE and SE. First construct the adjacency graph us-
ing the k-nearest neighbor (kNN) algorithm. Then define the

weight matrix, W, on the graph, by w;; = exp (f W) ,
if nodes ¢ and j are connected.

The key step of the new algorithm is to use an appropriate
transport operator/matrix in place of the classical Laplacian.
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Let W be the matrix with entries w] J = Wij o +2j . Then the

matrix form of T is

T = diag(a; Y wyj;) — W diag(a;). 3)
J

There are two special cases which can be used to speed
up the algorithm: transport by advection (TA), which corre-
sponds to the setting a; = 1+ S, 755 = (a; + a;)/2, and
transport by gradient flows (TG), which is the case r;; = 1.
To get the matrix form of TA, we set a; = 1 + SBu; and
rij = (a; + aj)/2. Then TA = L(I + [diag(p;)), where
L = D — W is the Laplacian matrix and [ is the identity. For
TG,wecanletr;; =1in(3)toget TG = L — (D, + Wv),
where D, = diag(zj w;jvij), Wy = (wi;vi;) and v;; =
(a; — a;)/(a; + a;).

Finally, let {u°, u',...,u" "1} be the solution of Tu =
A D, in ascending order according to their eigenvalues. De-
fine the mapping ®7 by x; — ®7(x;) = [u},u?,... u"],
which gives the final representation of the data. It is this final
representation that is subject to classification tests.

In summary, the Transport Eigenmap algorithm provides
us with a way to use the advection transport model and to
propagate the class-specific information from a single class
of choice to improve the clustering on the remaining portion
of the data.

4. EXPERIMENTS ON HSI

Unlike the previous previous works [15, 14] which focused on
the special forms TA and TG, in this paper we analyze TE in
its most general form (3). The main parameters are the matrix
r;; and the vector a;. The default values of these parameters
are 1. We set r;; = 0.9 if we believe that the points ¢ and j
are in different classes and r;; = 10* if i and j should be in
the same class. In general, the ratio of these numbers reflects
the measure of confidence in class similarity. We set a; = 0
by default, and a; = 20 for a point 7 in a pre-identified class.

We choose the Indian Pines, the Salinas, and Pavia Uni-
versity scene [16] in our experiments. For testing, we pick a
smaller sub-scene of the Salinas called Salinas-B. The classi-
fication task is done by the 1-nearest neighbor algorithm (after
various feature extraction techniques). The following metrics
are reported: the adjusted Rand index (ARI), overall accu-
racy (OA), average accuracy (AA), average F-score (FS) and
Cohen’s kappa coefficient (k).

We first test TE on the the Indian Pines dataset, assuming
the class “soybean” (class 11) is already identified. Similar
to the previous testing of TG in [14], TE performs better than
other methods in most cases. See Table 1 below.

1P PCA LE DIF ISO SE TE
ARI | 0.4426 03745 0.4210 0.3930 0.6955 0.7106
OA | 0.6761 0.6133 0.6557 0.6309 0.7354 0.7440
AA | 0.6403 0.5782 0.6219 0.5979 0.6249 0.6266
FS | 0.6471 0.5784 0.6212 0.5996 0.6255 0.6278
£ | 0.6301 0.5592 0.6065 0.5785 0.6982 0.7081

Table 1. Classification results for Indian Pines (IP): assume soybean (class
11) is known.

If similar classes (three corn classes, three grass classes
and three soybean classes) are grouped into a same class, TE
gains more improvement on the new version of Indian Pines,
as indicated in the following table.

IPG | PCA LE DIF ISO SE TE
ARI | 0.5330 0.4785 0.5102 0.4902 0.8929 0.9324
OA | 0.7744 0.7307 0.7575 0.7418 0.9088 0.9195
AA | 0.6987 0.6462 0.6883 0.6671 0.7111 0.7136
FS | 0.7111 0.6479 0.6905 0.6739 0.7157 0.7154
k| 0.6996 0.6423 0.6770 0.6563 0.8788 0.8931

Table 2. Classification results for Indian Pines-G (IPG): assume soybean
(class 10) is known

On the Salinas-B dataset, TE outperforms other methods
in all metrics if we assume the class “corn” to be identified.



SB PCA LE DIF 1SO SE TE
ARI | 09429 09346 0.9164 0.9440 0.9678 0.9723
OA | 09729 0.9685 0.9603 0.9733 0.9814 0.9825
AA | 09690 0.9643 09564 0.9700 0.9743 0.9753
FS | 09693 0.9638 0.9557 0.9696 0.9754 0.9757
k| 09682 0.9630 09534 09687 09782 0.9795

Table 3. Classification results for Salinas-B (SB): assume corn (class 10)
is known

Then we test TE on a grouped version of Salinas-B (de-
noted by SBG). The four lettuce classes are regarded as a sin-
gle class, i.e., classes 11-14 are all labelled as class 11. There
are five classes remaining in SBG (be aware that the two broc-
coli classes are NOT grouped). TE is still the best method for

the 8 classes, TE ranks 1st in four classes and the 3rd in one

class.
Class PCA LE DIF 1ISO SE TE

1 09752 0.9776 0.9679 0.9849 0.9791 0.9790
2 0.9984 0.9892 0.9977 0.9935 0.9903 0.9895
8 09672 0.9659 0.9634 0.9664 0.9763 0.9831
10 0.9583 0.9573 0.9292 0.9602 0.9990 1.0000
11 0.9576 0.9640 0.9330 0.9569 0.9761 0.9786
12 0.9984 0.9917 09876 0.9964 0.9979 0.9994
13 09731 0.9558 0.9666 0.9690 0.9547 0.9544
14 0.9235 0.9128 0.9059 0.9327 0.9208 0.9186

Table 7. Classification accuracy for each class in Salinas-B (SB): assume
corn (class 10) is known

SBG.

SBG | PCA LE DIF ISO SE TE
ARI | 0.9460 09421 09154 0.9480 0.9780 0.9819
OA | 09791 0.9767 0.9677 09795 0.9900 0.9917
AA | 09769 09750 0.9669 0.9784 0.9877 0.9894
FS | 09797 0.9763 0.9697 0.9797 0.9879 0.9896
K 0.9725 09694 0.9576 09731 0.9868 0.9891

Table 4. Classification results for Salinas-B-G (SBG): assume corn (class
10) is known

The Pavia University dataset is large, and we do not in-
clude memory consuming methods of DIF and ISO. For faster
implementation, we use the special form TA here, which is
good enough as indicated in the following two tables. The
class Asphalt and the class Bitumen are regarded as the same
in the grouped Pavia University dataset.

Similarly, in the grouped dataset, TE is the best in three
classes and 3rd in one class among all the five classes.

Class | PCA LE DIF ISO SE TE
1 0.9752 09776 0.9679 0.9849 0.9791 0.9790
2 0.9984 0.9892 0.9977 0.9934 0.9903 0.9893
8 0.9666 0.9657 0.9641 0.9665 0.9780 0.9843
10 | 09576 0.9566 0.9297 0.9602 0.9990 1.0000
11 0.9869 0.9857 0.9749 0.9867 0.9920 0.9944

Table 8. Classification accuracy for each class in Salinas-B-G (SBG):
assume corn (class 10) is known

It should be noted from Table 3 and Table 4 that the per-
formance of the transport model increases significantly after
grouping similar classes together. This not only shows that
the grouping is correct, but also indicates that our method is

PU | PCA LE SE TE
ARI | 0.7487 0.6061 0.9267 0.9280
OA | 0.8614 0.7719 0.9058 0.9059
AA | 0.8404 0.7534 0.8447 0.8439
FS | 0.8451 0.7556 0.8436 0.8426
£ | 0.8144 0.6962 0.8753 0.8754

compatible with a correct grouping in a dataset with multi-

tiered structure like Salinas-B (see Figure 1).

Table 5. Classification results for Pavia University scene (PU): assume
meadow (class 2) is known

PUG | PCA LE SE TE
ARI | 0.7640 0.6274 0.9380 0.9400
OA | 0.8762 0.7921 0.9256 0.9264
AA | 0.8535 0.7729 0.8762 0.8770
FS | 0.8624 0.7766 0.8761 0.8768

K 0.8319 0.7195 0.9001 0.9013

Table 6. Classification results for Pavia University scene-G (PUG): assume
meadow (class 2) is known

The improvement of accuracy comes from not only the
known class, but also other classes. The following table con-
tains the accuracy in each class of the Salinas-B. Among all

Corn Grapes

Lettuce-4wk
Lettuce-5wk

Broccoli-1
. Lettuce-6wk

Broccoli-2
Broccoli Lettuce-7wk

Lettuce

Fig. 1. Sample structure of material classes’ multi-scale rela-
tions in Salinas-B.

It is natural to investigate the possibility of using the trans-
port model to detect class similarities and multi-tiered data
structure, and improve classification accuracy on HSI. For ex-
ample, we could do classification on grouped classes first, and
then classify the subclasses within each big class. The rich



parameters in our model will allow us to make effective use
of the known information, which cannot be implemented in
Laplacian Eigenmaps.

5. CONCLUSIONS

In this paper, we propose and test a new approach to analyze
large, complex, and noisy datasets. The proposed method
takes advantage of the concept of transport models for dis-
crete data graphs, in a manner that extends and generalizes
many previous data organization and dimension reduction al-
gorithms. The main novelty of the technique we propose
is the contextual and tiered way in which it treats different
material classes. In other words, this methodology allows
us to build a multi-scale approach to feature extraction, by
means of taking advantage of additional information about
groundtruth classes of materials and how they are related to
each other. This results in a more effective processing of the
complex data structures, such as those present in hyperspec-
tral remote sensing modalities. In presented experiments, we
have demonstrated the superiority of this approach, as com-
pared with standard techniques based on LE and diffusion
distance-based representations.

The future work on this subject will be dedicated to op-
timization of the multi-scale transport model algorithm. In
this regard, we shall study the suitability of several proposed
advection-based transport models TE, T'A, and T'G, as well
as the way in which they can be most effectively combined in
the processing pipeline.
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