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Abstract. We give necessary and sufficient conditions for the Kummer extension K := Q (ζn, n
√
α)

to be monogenic over Q(ζn) with n
√
α as a generator, i.e., for OK = Z [ζn] [ n

√
α]. We generalize

these ideas to radical extensions of an arbitrary number field L and provide necessary and sufficient
conditions for n

√
α to generate a power OL-basis for OL( n√α).

We also give sufficient conditions for K to be non-monogenic over Q and establish a general
criterion relating ramification and relative monogeneity. Using this criterion, we find a necessary
and sufficient condition for a relative cyclotomic extension of degree φ(n) to have ζn as a monogenic
generator.

1. Results and Previous Work

Let L be a number field. We will always denote the ring of integers by OL. Suppose M is a finite
extension of L. If OM = OL[θ] for an algebraic integer θ ∈ M , then we say M is monogenic over
L or OM has a power OL-basis. We note that in general OM may not be free over OL; however,
monogeneity implies freeness. When L is Q we will simply say M is monogenic or OM has a power
integral basis.

Suppose for the moment that L is a number field containing a primitive nth root of unity, ζn.
A Kummer extension of degree n is an extension of the form L ( n

√
α), where xn − α is irreducible

over L. The Kummer extensions of L of degree n are exactly the cyclic extensions of L of order n.
When L = Q (ζn), a Kummer extension will be denoted by K. If L is an arbitrary number field
(not necessarily containing the nth roots of unity), we call an extension of the form L ( n

√
α) a radical

extension1. Letting L again be arbitrary, when n = 2k with k odd, one has L(ζn) = L (ζk). For
this reason, when we speak of the nth cyclotomic field or an nth root of unity, it is often assumed
that n ̸≡ 2 mod 4. Context will make our intent clear.

The main result of this paper is Theorem 6.1, where we describe necessary and sufficient
conditions for the ring of integers of the radical extension L ( n

√
α) to have a power OL-basis

generated by n
√
α. This result can be illustrated by the important special case of Kummer

extensions, which we state below for n an odd prime. In our investigation of Kummer extensions,
we also obtain sufficient conditions for when K is not monogenic over Q; this is stated below as
well.

Theorem 1.1. Let p be an odd, rational prime, and let p := (1− ζp) be the unique prime of Z[ζp]
above p. Let α ∈ Z[ζp], and suppose that xp − α is irreducible in Z[ζp][x]. The ring of integers
OQ(ζp, p

√
α) is Z[ζp] [ p

√
α] if and only if α is square-free as an ideal2 of Z[ζp] and the congruence

αp ≡ α mod (1− ζp)
2 (1.1)
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K := Q (ζn) ( n
√
α)

Z/nZ

Q (ζn)

(Z/nZ)∗

Q

Figure 1. Kummer extensions we consider

is not satisfied.

Theorem 1.2. Suppose there exists a rational prime l such that l ≡ 1 mod n and l < n · φ(n). Let
α ∈ Z [ζn] be relatively prime to l. Suppose further that α is an nth power residue modulo some
prime of Z [ζn] above l and that xn − α is irreducible in Z [ζn] [x]. Then K = Q (ζn, n

√
α) is not

monogenic over Q. Moreover, l is an essential discriminant divisor, i.e., l divides [OK : Z[θ]] for
every integer θ such that Q(θ) = K.

Theorem 1.1 stands in marked contrast to the situation over Q. Gras [25] shows that the only
monogenic abelian extensions of Q of prime degree ≥ 5 are maximal real subfields of cyclotomic
fields. In order to obtain a single monogenic abelian extension of prime degree p ≥ 5, we must have

p = φ(n)
2 , where φ is Euler’s phi function. Over Q(ζp), however, we are able to construct infinitely

many monogenic abelian extensions of prime degree p.
In addition to the theorems mentioned above, we give a more general criterion relating

ramification to relative monogeneity, Proposition 3.1. The proof of Proposition 3.1 serves to
highlight our methods. This proposition is then applied to prove Corollary 3.2: For an arbitrary
number field L in which the nth cyclotomic polynomial is irreducible, the ring of integers
OL(ζn) = OL [ζn] if and only if gcd (n,∆L) = 1. We use the classical strategy of Dedekind to
prove Theorem 1.2, while our other results are established using a generalization, by Kumar and
Khanduja, of Dedekind’s index criterion to relative extensions (Theorem 2.5).

The outline of the paper is as follows. At the end of this section we will briefly survey the literature
regarding the monogeneity of abelian extensions, relative monogeneity, and the monogeneity of
radical extensions. Section 2 recalls the necessary tools that we will use. With Section 3, we state
and prove our proposition relating relative monogeneity and ramification. Section 4 is concerned
with the proof of Theorem 1.1. This section also serves to illustrate how we will approach the proof
of Theorem 6.1. In Section 5, we prove Theorem 1.2. Finally, Section 6 states and establishes our
main result on the monogeneity of radical extensions.

The literature regarding monogenic fields is extensive: For a nice treatise on monogeneity that
focuses on using index form equations, see Gaál’s book [14]. With the inclusion of numerous
references, this book is likely the most modern and thorough survey of the subject. For another
bibliography of monogeneity, see Narkiewicz’s text [40, pages 79-81]. Narkiewicz also considers
monogeneity in [41]. Zhang’s brief survey [51], though unpublished, is a nice overview.

Investigations into the monogeneity of abelian number fields are classical. For example,
the monogeneity of quadratic fields is immediate and the monogeneity of cyclotomic fields was
established very early. As mentioned above, Gras [25] has shown that, with the exception of the
maximal real subfields of cyclotomic fields, abelian extensions of Q of prime degree greater than or
equal to 5 are not monogenic. Generally, Gras [24] has shown that almost all abelian extensions of
Q with degree coprime to 6 are not monogenic. The extensions of Q we show are non-monogenic
in this paper generally have degree divisible by 2. Previous to Gras, Payan [42] found necessary
conditions for monogeneity of certain cyclic extensions. Cougnard [7] builds on the ideas of Payan
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and establishes more stringent conditions for an imaginary quadratic field to have a monogenic
cyclic extension of prime degree. Ichimura [31] establishes the equivalence of a certain unramified
Kummer extension being monogenic over its base field and the Kummer extension being given by
the pth root of a unit of a specified shape. Khan, Katayama, Nakahara, and Uehara [35] study the
monogeneity of the compositum of a cyclotomic field, with odd conductor n ≥ 3 or even conductor
n ≥ 8 with 4 | n, and a totally real number field, distinct from Q and with discriminant coprime to
the discriminant of the cyclotomic field. They show that no such compositum is monogenic. The
monogeneity of the compositum of a real abelian field and an imaginary quadratic field is studied
by Motoda, Nakahara, and Shah [39]. When the conductors are relatively prime and the imaginary
quadratic field is not Q(i), they establish that monogeneity is not possible. Shah and Nakahara [44]
show the monogeneity of certain imaginary index 2 subfields of cyclotomic fields. They also prove a
criterion for non-monogeneity in Galois extensions based on the ramification and inertia of a small
prime. Jung, Koo, and Shin [34] use Weierstrass units to build relative monogenic generators for
the composita of certain Ray class fields of imaginary quadratic fields. Motoda and Nakahara [38]
show that if the Galois group of L is elementary 2-abelian and L has degree ≥ 16, then L is not
monogenic over Q. They also establish partial results in the case that [L : Q] = 8. Chang [4]
completely describes the monogeneity of the Kummer extension K when [K : Q] = 6. Gaál and
Remete [19] investigate [K : Q] = 8. Though we do not outline it further here, there is a wealth of
literature on monogenic abelian extensions of a fixed degree. The interested reader should consult
the surveys mentioned earlier.

Gaál, Remete, and Szabó [22] study the relation between absolute monogeneity, i.e. monogeneity
over Q, and relative monogeneity. Suppose L is a number field, OL = Z[θ], and R is an order of a
subfield of L. They establish that θ can always be used to construct a power R-integral basis for
OL. Relative power integral bases are also studied in [13], [15], [16], [20], and [21].

Radical extensions are also a classical object of study. In 1910, Westlund [49] computed the
discriminant and an integral basis for the radical extensions Q ( p

√
α) over Q, where α ∈ Z and p

is a prime. Westlund also identified when p
√
α yields a power integral basis for Q ( p

√
α). Using

Dedekind’s index criterion (Theorem 2.4) and the Montes algorithm, Gassert [23] gives necessary
and sufficient conditions for the ring of integers of Q ( n

√
α) to be Z [ n

√
α]. Having n

√
α generate a

power integral basis is dependent on the congruence

αp ≡ α mod p2, (1.2)

where p divides n. Loosely speaking, non-zero solutions to Congruence (1.2) are obstructions to
n
√
α generating a power integral basis. A prime p for which Congruence (1.2) has a solution is called

a Wieferich prime3 to the base α. See Keith Conrad’s excellent expository note [6] for background
on Z-power bases of radical extensions and the history of Wieferich primes.

The monogeneity of radical extensions of a given degree has been studied extensively. The radical
quartic case is investigated by Funakura, who finds infinitely many monogenic fields [12]. Gaál and
Remete [17], characterize the only power integral bases of a number of infinite families of radical
quartic fields using binomial Thue equations and extensive calculations on a supercomputer. In [1]
and [2] degree six is studied. Degree eight is considered in [28] and [29]. Degree equal to a power
of 2 is also studied in [29]. For degree n with 3 ≤ n ≤ 9, Gaál and Remete [18] establish a periodic
characterization of integral bases. Very recently this was generalized in [32].

One can also ask about the extent to which monogeneity can fail. First a few definitions: A
quantity related to monogeneity is the field index. The field index is defined to be the pair-wise
greatest common divisor gcdα∈OK

[OK : Z[α]]. Note that K can have field index 1 and still not be
monogenic; see Example 2.3. Define the minimal index to be minα∈OK

[OK : Z[α]]. Monogeneity is
equivalent to having minimal index equal to 1. An early result of Hall [27] shows that there exist
cubic fields with arbitrarily large minimal indices. In [46], this is generalized to show that every

3Wieferich [50] studied these primes, with α = 2, in relation to Fermat’s Last Theorem.
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cube-free integer occurs as the minimal index of infinitely many radical cubic fields. Monogeneity
is equivalent to requiring exactly one ring generator; Pleasants [43] shows that the number of
generators needed for a field of degree n is less than ln(n)/ ln(2)+1, and, if 2 splits completely, the
minimal number of generators is ⌊ln(n)/ ln(2) + 1⌋.

2. Background and Necessary Lemmas

Notation: An overline always denotes reduction modulo a prime. A ∆ denotes a discriminant,
and a subscript on ∆ indicates the object whose discriminant we are considering. A subscript is
also used to indicate localization. For example, (OL)p is OL localized at p. A choice of uniformizer
is indicated by π with the ideal of localization in the subscript. In the aforementioned context, πp
is a uniformizer. The normalized valuation associated with a prime p is denoted by vp.

We start with some ideas of Dedekind based on work of Kummer. The following is often called
Dedekind’s criterion and first appeared in [8]. Since we have two criteria due to Dedekind, we will
call the following Dedekind’s criterion for splitting.

Theorem 2.1 (Dedekind’s criterion for splitting). Let f(x) ∈ Z[x] be monic and irreducible, let
θ be a root, and let L = Q(θ) be the number field generated by θ. If p ∈ Z is a prime that does
not divide [OL : Z[θ]], then the factorization of p in OL mirrors the factorization of f(x) modulo p.
That is, if

f(x) ≡ ϕ1(x)
e1 · · ·ϕr(x)

er mod p

is a factorization of f(x) into irreducibles in Fp[x], then p factors into primes in OL as

p = pe11 · · · perr .

Moreover, the residue class degree of pi is equal to the degree of ϕi.

An expository proof can be found in many algebraic number theory texts. For example, see [40,
Proposition 4.33]. We note there is a natural generalization to relative extensions of number fields.
See [33, Chapter I, Theorem 7.4].

Using this criterion, Dedekind was the first to demonstrate a number field that was not
monogenic. Dedekind considered the cubic field generated by a root of x3 − x2 − 2x − 8. He
showed that the prime 2 splits completely. If there were a possible power integral basis, then one
would be able to find a cubic polynomial, generating the same number field, that splits completely
into distinct linear factors modulo 2. Since there are only two distinct linear polynomials in F2[x],
this is impossible. Hence the number field cannot be monogenic. More generally, if a prime p < n
splits completely in an extension L/Q of degree n, then L is not monogenic. We will use the same
strategy as Dedekind to construct non-monogenic fields. Hensel [30] built on these ideas to show
the following.

Theorem 2.2. Fix a prime p. The prime p divides [OL : Z[θ]] for every algebraic integer θ
generating L over Q if and only if there is an integer f such that the number of prime ideal
factors of pOL with inertia degree f is greater than the number of monic irreducibles of degree f in
Fp[x].

Any p satisfying Theorem 2.2 is called an essential discriminant divisor4 or a common index
divisor. It turns out that essential discriminant divisors are not the only obstruction to monogeneity:

Example 2.3. [40, Chapter 2.2.6] Consider the number field given by L = Q
(︂

3
√
7 · 52

)︂
=

Q
(︂

3
√
5 · 72

)︂
. The elements

{︂
1,

3
√
7 · 52, 3

√
72 · 5

}︂
form an integral basis of L. For any fixed prime

p, one can find θ ∈ OL such that [OL : Z[θ]] is not divisible by p; however, L is not monogenic.

4Confusingly, essential discriminant divisors are sometimes called inessential discriminant divisors in the literature.
We prefer essential discriminant divisor because, for a root of a polynomial to generate the number field in question,
it is essential that p divide the polynomial’s discriminant.
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We will use another criterion of Dedekind, which we’ll call Dedekind’s index criterion, to establish
monogeneity. First, we state the version Dedekind proved, with Q as the base field.

Theorem 2.4 (Dedekind’s index criterion). Let f(x) be a monic, irreducible polynomial in Z[x],
θ a root of f , and L = Q(θ). If p is a rational prime, we have

f(x) ≡
r∏︂

i=1

fi(x)
ei mod p,

where the fi(x) are monic lifts of the irreducible factors of f(x) to Z[x]. Define

d(x) :=

f(x)−
r∏︁

i=1
fi(x)

ei

p
.

Then p divides [OL : Z[θ]] if and only if gcd
(︂
fi(x)

ei−1
, d(x)

)︂
̸= 1 for some i, where we are taking

the greatest common divisor in Fp[x].

Recently, Kumar and Khanduja, using completely different methods from those of Dedekind, have
proved a generalization of Dedekind’s index criterion to relative extensions. This generalization will
be very useful to us.

Theorem 2.5. [36, Theorem 1.1] Let R be a Dedekind domain with quotient field L, and let f(x)
be a monic, irreducible polynomial in R[x] with θ a root. Define M = L(θ), and suppose p is a
prime of R. We have

f(x) ≡
r∏︂

i=1

fi(x)
ei mod p,

where the fi(x) are monic lifts of the irreducible factors of f(x) to R[x]. Note the integral closure
of Rp in M is (OM )p. Define the polynomial d(x) ∈ Rp[x] to be

d(x) :=

f(x)−
r∏︁

i=1
fi(x)

ei

πp
.

Then (OM )p = Rp[θ] if and only if fi(x)
ei−1

is coprime to d(x) for each i.

With Equation (2.2), we will see that the conclusion of Theorem 2.5 is exactly what we need to
study [OM : OL[θ]]. The interested reader should consult [48] for a nice discussion of and comparison
between three different criteria for monogeneity: Dedekind’s index criterion, a theorem of Uchida
[47], and a theorem of Lüneburg [37]. For other, similar generalizations of Dedekind’s index criterion
see [5], [10], and, for the greatest generality, [9].

In addition to the work of Dedekind, we will need a few facts about cyclotomic, radical,
and Kummer extensions. First, we recall the following well-known formula relating polynomial
discriminants and field discriminants. Let f be a monic, irreducible polynomial of degree n > 1,
let θ be a root, and write L = Q(θ), then

∆f = ∆L[OL : Z[θ]]2. (2.1)

Equation (2.1) admits a generalization to relative extensions. We will specialize [11, Chapter
III, Equation 2.4] for our purposes. Let L be a number field, and let M be a finite extension of L
generated by a root, θ, of a monic, irreducible polynomial f(x) ∈ OL[x]. As ideals, we have the
equality

∆f = ∆M/L [OM : OL[θ]]
2 . (2.2)
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Thus, in studying monogeneity, we need only consider the prime factors of ∆f .
Suppose M and N are two finite extensions of a number field L. We call M and N arithmetically

disjoint (over L) if they are linearly disjoint and, as ideals, gcd
(︁
∆M/L,∆N/L

)︁
= OL. The following

is Proposition III.2.13 of [11].

Proposition 2.6. If M and N are arithmetically disjoint over L, then OMN = OM · ON as
OL-modules.

Proposition 2.6 will be useful in studying the monogeneity of relative cyclotomic extensions.
Turning to cyclotomic extensions of Q, the following is Lemma 6 of Chapter III of [3].

Lemma 2.7. The discriminant of Q (ζn) over Q is

∆Q(ζn)/Q = nφ(n)

/︃∏︂
p|n

p
φ(n)
p−1 ,

where φ denotes Euler’s phi function. Further, an integral basis for OQ(ζn) is given by 1 and the

powers ζkn with 1 ≤ k ≤ φ(n)− 1.

Lemma 2.7 and Equation (2.1) yield the following corollary.

Corollary 2.8. The cyclotomic polynomial φn(x) has discriminant

∆φn = nφ(n)

/︃∏︂
p|n

p
φ(n)
p−1 .

It is useful to understand the splitting of primes in cyclotomic extensions.

Lemma 2.9. [3, III.1 Lemma 4]: If p is a prime not dividing n, then it is unramified in Q (ζn)
and its residue class degree is the least positive integer f such that pf ≡ 1 mod n.

Bringing our attention to radical and Kummer extensions, consider the polynomial xn −α. One
computes

∆xn−α = (−1)
n2−n

2 nn(−α)n−1. (2.3)

One can also derive this by specializing Theorem 4 of [26].
The following describes splitting in Kummer extensions.

Lemma 2.10. [3, III.2 Lemma 5]: The discriminant of K = Q (ζn, n
√
α) over Q (ζn) divides

nnαn−1. A prime p of Z [ζn] is unramified in K if p - nα. In this case, the residue class degree of
p is the least positive integer f such that αf ≡ xn mod p is solvable.

3. Monogeneity and Ramification

In this section we present a proposition relating monogeneity and ramification. The result is
likely classical, but we include it here to highlight our methods.

Proposition 3.1. Let L be a number field, h(x) a monic, irreducible polynomial in OL[x], and η
a root of h(x). Suppose p is a prime of L above the rational prime p such that p | ∆h. Let M be an
extension of L such that h(x) is irreducible in M . If p is ramified in M , then p | [OM(η) : OM [η]].

The setup of Proposition 3.1 is summarized in Figure 2.

Proof. We will use Theorem 2.5 to show that p divides
[︁
OM(η) : OM [η]

]︁
. Reducing h(x) modulo p

and choosing lifts of the irreducible factors to OL[x], we have

h(x) ≡ h0(x)
e0h1(x) mod p, (3.1)

where e0 > 1. Such an h0 exists since p | ∆h.
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M(η)

not monogenic via η

M pe>1
∏︁
i
p
ei
i

L p

Figure 2. Diagram for Proposition 3.1

Let p be a prime of M that is ramified above p. Consider the element of (OM )p [x] given by

d(x) =
h(x)− h0(x)

e0h1(x)

πp
.

Let η0 be a root of h0 in some extension of (OM )p. For η to yield a power OM -basis, it is necessary

that d(η0) ̸≡ 0 mod π2
p. Equation (3.1) shows that d(η0) ≡ 0 mod πp. Since π2

p | πp, we see

d(η0) ≡ 0 mod π2
p and p |

[︁
OM(η) : OM [η]

]︁
. �

Proposition 3.1 sheds some light on the monogeneity of cyclotomic relative extensions:

Corollary 3.2. Let L be a number field in which the nth cyclotomic polynomial is irreducible,
where n > 2 is any integer not congruent to 2 modulo 4. Then OL [ζn] = OL(ζn) if and only if
gcd (n,∆L) = 1.

Proof. The contrapositive is given by Proposition 3.1. If gcd (n,∆L) = 1, then L and Q (ζn) are
arithmetically disjoint over Q, and the result follows from Proposition 2.6. One can also prove this
direction via a computation with Theorem 2.5. �

We can contrast the above Proposition 3.1 to the following example.

Example 3.3. Let k,m ∈ Z with gcd(k,m) = 1, k and m square-free, m ≡ 1 mod 4, and k ≡

2, 3 mod 4. One can use Theorem 2.5 to show that a Z
[︃
1 +

√
m

2

]︃
-basis of OQ(

√
m,

√
k) is given by

1 and
√
k. Thus, in this case, a root of a polynomial in Z[x] yields a power Z

[︃
1 +

√
m

2

]︃
-basis for

OQ(
√
m,

√
k) = Z

[︃
1 +

√
m

2
,
√
k

]︃
. The interested reader should consult [45] for an in-depth study of

relative integral bases of quartic fields with quadratic subfields.

4. Monogeneity of K over Q(ζp)

We wish to establish Theorem 1.1: Let p be an odd, rational prime, and let p := (1− ζp) be the
unique prime of Z[ζp] above p. Let α ∈ Z[ζp], and suppose that xp − α is irreducible in Z[ζp][x].
The ring of integers OQ(ζp, p

√
α) is Z[ζp] [ p

√
α] if and only if α is square-free as an ideal of Z[ζp] and

the congruence
αp ≡ α mod (1− ζp)

2 (4.1)

is not satisfied.
Note that Congruence (4.1) is exactly the Wieferich congruence, Congruence (1.2), but with

respect to the prime (1− ζp). We will see that the analogue of Congruence (1.2) in Theorem 6.1 is
a bit more complicated. This is due to the potential for higher powers of a prime to divide n and
the need to accommodate arbitrary residue class degrees.
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Proof. Recall that ∆xp−α = (−1)
p2−p

2 pp(−α)p−1. Equation 2.2 and the discussion afterwards show
that for questions of monogeneity, we need only consider the prime divisors of ∆xp−α. We will
contend with the prime divisors of α, then we will contend with p. In both cases, we will use
Theorem 2.5.

Suppose l is a prime of Z[ζp] dividing α. The reduction of xp − α modulo l is xp. Hence, in the
notation of Theorem 2.5, we have

d(x) =
xp − α− xp

πl
=

−α

πl
.

Now vl

(︂
−α
πl

)︂
= 0 if and only if vl(α) = 1. If vl(α) = 1, the reduction −α

πl
generates the unit ideal.

In particular, −α
πl

is relatively prime to xp−1. Conversely, if vl(α) > 1, then −α
πl

= 0 and is not

relatively prime to xp−1. With Theorem 2.5, we see

(OK)l = (Z[ζp])l
[︁

p
√
α
]︁

if and only if vl(α) = 1.
Next, we contend with p. We localize Z[ζp] at p and choose 1 − ζp to be the uniformizer. The

reduction of xp − α modulo p is (x− α)p. We have

d(x) =
xp − α− (x− α)p

1− ζp
.

Evaluating at α, we see that d(x) is relatively prime to x− α if and only if

αp ̸≡ α mod (1− ζp)
2.

Applying Theorem 2.5, our result follows. Note, our argument here does not depend on whether
or not p divides α. �

5. Non-monogeneity of K over Q

In this section, we will prove Theorem 1.2: Suppose there exists a rational prime l such that
l ≡ 1 mod n and l < n · φ(n). Let α ∈ Z [ζn] be relatively prime to l. Suppose further that α is an
nth power residue modulo some prime of Z [ζn] above l and that xn − α is irreducible in Z [ζn] [x].
Then K = Q (ζn, n

√
α) is not monogenic over Q. Moreover, l is an essential discriminant divisor,

i.e., l divides [OK : Z[θ]] for every θ such that Q(θ) = K.

Proof. We will use Dedekind’s method for proving a number field is not monogenic. From Lemmas
2.9 and 2.10, we see that l splits completely in K. If K is monogenic over Q, then Theorem 2.1
shows that the factorization of l in K is mirrored by the factorization of a degree n·φ(n) polynomial
modulo l. Thus there is a degree n · φ(n) polynomial that generates K over Q and factors into
distinct linear factors modulo l. Since l < n · φ(n), we see this is impossible. Thus K is not
monogenic over Q. Applying Theorem 2.2, we see l is in fact an essential discriminant divisor. �

Remark 5.1. If k denotes the multiplicative order of l modulo n, the number of irreducible
polynomials in Fl[x] of degree k is 1

k

∑︁
d|k µ

(︁
k
d

)︁
ld. If

1

k

∑︂
d|k

µ

(︃
k

d

)︃
ld <

n · φ(n)
k

and the requirements on α remain the same, then K is not monogenic over Q by the same methods
used above. One can also obtain weakened hypotheses on α via these ideas.



9

Example 5.2. Consider n = 5 and l = 11. We see 11 < 5 · 4. Since 11 ≡ 1 mod 5, the prime 11
splits completely in Q(ζ5). For 11 to split completely in Q (ζ5, 5

√
α), we need α to be a 5th power

in F11. This is satisfied by rational integers congruent to ±1 mod 11. Hence all rational integers
α ≡ ±1 mod 11 for which x5 − α is irreducible in Z(ζ5)[x] yield non-monogenic K.

6. General Radical Extensions

In this section we consider an arbitrary number field L and an element α ∈ OL such that xn−α
is irreducible over L. To avoid trivialities, we assume n ≥ 2. For a prime p of OL dividing n, we
write p for the residue characteristic and f for the residue class degree. If p divides n, we factor
n = pem with gcd(m, p) = 1. Let ε be congruent to e modulo f with 1 ≤ ε ≤ f , and define β to be
α to the power pf−ε. By construction β is the pe-th root of α modulo p. The Wieferich congruence,
Congruence (1.2), generalizes to

αpf−ε+e
= βpe ≡ α mod p2. (6.1)

In the case where e ≤ f , this is simply

αpf ≡ α mod p2.

Theorem 6.1. The ring of integers of L ( n
√
α) is OL [ n

√
α] if and only if α is square-free as an

ideal of OL and every prime p dividing n does not satisfy Congruence (6.1).

Proof. We need only consider the prime divisors of ∆xn−α = (−1)
n2−n

2 nn(−α)n−1. For any primes
dividing α, the argument is straightforward and essentially the same as in the proof of Theorem
1.1.

Maintaining the notation outlined above, let p be a prime of OL dividing n, but not α. Noting
βpe ≡ α mod p, we have

xn − α ≡
(︁
xm − β

)︁pe
mod p.

With the notation of Theorem 2.5,

d(x) =
xn − α− (xm − β + aπp)

pe

πp
,

where a is some element of (OL)p so that the term aπp accommodates possible further factorization
of xm − β modulo p.

The relative primality of d(x) and the factors of xm − β does not change upon extension, so it
suffices to work in (OL)p

(︁
m
√
β, ζm

)︁
and (OL)p

(︁
m
√
β, ζm

)︁
modulo (πp). With Theorem 2.5 in mind,

we wish to show that d(x) does not have ζkm
m
√
β as a root for any k. Evaluating,

d
(︂
ζkm

m
√︁
β
)︂
=

βpe − α− (β − β + aπp)
pe

πp
=

βpe − α+ (aπp)
pe

πp
.

Clearly, d
(︁
ζkm

m
√
β
)︁
≡ 0 mod πp if and only if

βpe − α = αpf−ε+e − α ≡ 0 mod π2
p .

Our result follows. �

Combining the above proof with the generalization of Dedekind’s criterion for splitting, [33,
Chapter I, Theorem 7.4], we obtain
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Porism 6.2. As above, suppose xn − α ∈ OL[x] is irreducible with α square-free. Let p be a prime
of L that does not divide n. Then the splitting of p in L ( n

√
α) is mirrored by the splitting of xn − α

in OL/p[x], as in Theorem 2.1. In particular, p splits completely if and only if α ̸= 0 is an nth root
in OL/p. Moreover, if Congruence (6.1) holds, we can remove the restriction that p - n.
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